Daniel Keren's Publications
Journal Papers:
Improving Image Resolution Using Sub-Pixel Motion
S. Peleg, D. Keren and L. Schweitzer, Pattern Recognition Letters, 5, 223-226, 1987.
Probabilistic Analysis of Regularization
D. Keren and M. Werman, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15, 982-995, 1993.
Describing Complicated Objects by Implicit Polynomials
D. Keren, D. Cooper and J. Subrahmonia, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16, 38-53, 1994.
Using Symbolic Computation to Find Algebraic
Invariants
D. Keren, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16, 1143-1149, 1994.
J. Subrahmonia, D. Keren and D. Cooper: "An Algebraic and Bayesian
Technology for Object Recognition",
Journal of
Applied Statistics, 21, 165-205, 1994.
Data-Driven Priors for Hyperparameters in
Regularization
D. Keren and M. Werman, Maximum Entropy and Bayesian Methods,
79, 77-85, 1995
Practical Reliable Bayesian
Recognition of 2D and 3D Objects Using Implicit Polynomials and
Algebraic Invariants
J. Subrahmonia, D. Cooper and D. Keren, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18, 505-519, 1996.
Tight Fitting of Convex Polyhedral Shapes
C. Gotsman and D. Keren, International Journal of Shape Modeling, 4(3-4):111-126, 1998.
Denoising Color Images
Using Regularization and Correlation Terms
D. Keren and A. Gotlib, Journal of Visual
Communication and Image Representation, 9, 352-365, 1998.
Restoring Subsampled Color Images
D. Keren and M. Osadchy, Machine Vision and Applications, 11, 197-202, 1999.
Fitting Curves and Surfaces with Constrained
Implicit Polynomials
D. Keren and C. Gotsman, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21, 31-41, 1999.
A Full Bayesian Approach to Curve and
Surface Reconstruction
D. Keren and M. Werman, Journal of Mathematical Imaging and Vision,
11.1 27-44, 1999.
Recognizing 3D Objects
Using Tactile Sensing and Curve Invariants
D. Keren, E. Rivlin, I. Shimshoni and I. Weiss, Journal
of Mathematical Imaging and Vision, 12.1, 5-23, 2000
Antifaces: A Novel, Fast Method for Image Detection
D. Keren, M. Osadchy and C. Gotsman, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23.7, 747-761, 2001.
A Bayesian Method for Fitting Parametric and
Non-Parametric Models to Noisy Data
M. Werman and D. Keren, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23.5, 528-534, 2001.
All Points Considered: A Maximum Likelihood Method for Motion Recovery
D. Keren, I, Shimshoni, L. Goshen and M. Werman, Theoretical Foundations of Computer Vision, 72-85, 2002.
Recognizing Image Style and Activities in Video
Using Local Features and Naive Bayes
D. Keren, Pattern Recognition Letters,
24.16 2913-2922, 2003.
Bayesian-Based Motion Estimation with Flat Priors,
D. Keren, Bayesian Inference and Maximum Entropy Methods, AIP Vol. 735, 153-160, 2004.
Efficient Detection Under Varying
Illumination Conditions and Image Plane Rotations
M. Osadchy and D. Keren, Computer Vision and Image Understanding, 93, 245-259, 2004.
A Rejection-Based Method for
Event Detection in Video
M. Osadchy and D. Keren, IEEE Transactions on Circuits and Systems
for Video Technology, 14.4 534-541, 2004.
Topologically Faithful Fitting of Simple Closed Curves
D. Keren, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 26.1, 118-123, 2004.
Motion Recovery by Integrating over the Joint Image Manifold
L. Goshen, I. Shimshoni, P. Anandan and D. Keren, International Journal of Computer
Vision, Vol. 65.3, 131-145, 2005.
Hierarchical Decision Tree Induction in Distributed
Genomic Databases
A. Bar-Or, D. Keren, A. Schuster and R. Wolff, IEEE Transactions
on Knowledge and Data Engineering, 17.8, 1138-1151, 2005.
(This paper has an appendix with proofs of
some lemmas).
Applying Reproducing Kernels to
the Evaluation and Approximation of the
Simple and Time-Dependent
Imaginary Time Harmonic Oscillator Path Integrals
D. Keren, Applicable Analysis
Vol. 85, Nos. 6-7, 793-810, 2006.
"Hereditary Family Signature of Facial Expression", G. Peleg, G. Katzir, O. Peleg,
M. Kamara, L. Brodsky,
H. Helor, D. Keren, E. Nevo,
Proceedings of the National Academy of Sciences (PNAS), Vol. 103, No. 43,
15921-15926, 2006.
Paper on PNAS Website.
A Geometric Approach to Monitoring
Threshold Functions over Distributed
Data Streams
I. Sharfman, A. Schuster, D. Keren, ACM Transactions on
Database Systems,
Vol. 32, No. 4, Article 23, pages 23:1 - 23:29, 2007.
A New Measure of Symmetry and its Application to Classification
of Bifurcating Structures.
D. Milner, S. Raz, H. Hel-Or, D. Keren, E. Nevo. Pattern Recognition 40, 2237-2250, 2007.
A Probabilistic Method for Point Matching in the Presence
of Noise and Degeneracy ,
D. Keren, Journal of Mathematical Imaging and Vision,
Volume 33, Number 3, 338-346, 2009.
3D Surface Reconstruction Using a Generalized Distance Function
R. Poranne, C. Gotsman and D. Keren,
Computer Graphics Forum, 29.8, 2479--2491, 2010.
Distributed Threshold Querying of General Functions by a
Difference of Monotonic Representation
G. Sagy, D. Keren, I. Sharfman, and A. Schuster,
Proceedings of the VLDB Endowment, 4(2), 46-57, 2010.
Applying Property Testing to an Image Partitioning Problem
I. Kleiner, D. Keren, I. Newman, O. Ben-Zwi,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33.2, p. 256-265, 2011.
Top-k vectorial aggregation queries in a distributed environment,
G. Sagy, I. Sharfman, D. Keren, A. Schuster,
Journal of Parallel and Distributed Computing 71.2, 302-315, 2011.
On the uncertainty in the regularized solution
D. Keren and I. Nissenboim,
Journal of Physics A: Mathematical and Theoretical 44(2), 2011.
Shape Sensitive Geometric Monitoring
D. Keren, I. Sharfman, A. Schuster, and A. Livne,
IEEE Transactions
on Knowledge and Data Engineering, 24(8): 1520-1535, 2012.
A Probabilistic Approach to Pattern Matching in the Continuous
Domain
D. Keren, M. Werman, J. Feinberg,
IEEE Transactions on Pattern Analysis and Machine Intelligence,
34(10):1873-1885, 2012.
Sketch-based Geometric Monitoring of Distributed Stream Queries.
M. Garofalakis, D. Keren, V. Samoladas, PVLDB 2013.
Planar Shape Interpolation with Bounded Distortion.
R. Chen, O. Weber, D. Keren, M. Ben-Chen,
ACM Transactions on Graphics Vol.32, No. 4 (SIGGRAPH 2013).
Renjie's SIGGRAPH presentation (powerpoint).
Geometric Monitoring of Heterogeneous Streams
D. Keren, G. Sagy, A. Abboud, D. Ben-David, A. Schuster, I. Sharfman,
A. Deligiannakis. IEEE TKDE 2014, to appear.
Long Version, with Proofs of the NP-hardness theorems
(Section 7).
Clustering for Monitoring Distributed Data Streams (PCA 2014)
M. Barouti, D. Keren, J. Kogan, Y. Malinovsky. Partitional Clustering
Algorithms, 2014.
Monitoring Distributed Streams using
Convex Decompositions
A. Lazerson, I. Sharfman, D. Keren, A. Schuster,
M. Garofalakis, V. Samoladas. VLDB 2015.
Recognition Using Hybrid Classifiers
M. Osadchy, D. Keren, D. Raviv. IEEE Transactions on Pattern Analysis and Machine Intelligence,
VOL. 38, NO. 4, 2016.
Scalable Approximate Query Tracking over Highly Distributed Data Streams
with Tunable Accuracy Guarantees
N. Giatrakos , A. Deligiannakis , M. Garofalakis , D. Keren , V. Samoladas.
Information Systems 2018, to appear.
Conference Papers:
Image Sequence Enhancement Using Sub-Pixel
Displacement
D. Keren, S. Peleg and R. Brada, IEEE International Conference on Computer
Vision and Pattern Recognition (CVPR),
742-746, 1988.
Variations on Regularization
D. Keren and M. Werman, IEEE International Conference on Pattern Recognition (ICPR), 93-98,
1990.
Segmentation by Minimal Length
Encoding
D. Keren, R. Marcus, M. Werman and S. Peleg, IEEE International Conference on Pattern
Recognition (ICPR), 681-683, 1990.
D. Keren, J. Subrahmonia, D. Cooper and G. Taubin, "Bounded and Unbounded Implicit
Polynomial Curves and Surfaces,
Mahalanobis Distances, and Geometric Invariants
for Robust Object Recognition", Proceedings of DARPA Image Understanding
Workshop,
769-777, 1992.
Robust Object Recognition
Based on Implicit Algebraic Curves and Surfaces
D. Keren, J. Subrahmonia and D. Cooper, IEEE
International Conference on Pattern Recognition (ICPR), 791-794, 1992.
J. Subrahmonia, D. Keren and D. Cooper, "Bayesian Methods for the Use of Implicit Polynomials
and Algebraic Invariants in Practical
Computer Vision",
Proc. SPIE Vol. 1830, Curves and Surfaces in Computer Vision and Graphics III, 104-117, 1992.
Computing Correspondence Based
on Regions and Invariants Without Feature Extraction and Segmentation
C. Lee, D. Cooper and D. Keren,IEEE International Conference on Computer
Vision and Pattern Recognition (ICPR), 655-656, 1993.
Recognizing Mice, Vegetables and
Hand Printed Characters Based on Implicit Polynomials, Invariants
and Bayesian Methods
J. Subrahmonia, D. Cooper and D. Keren, International Conference on Computer Vision
(ICCV) 320-324, 1993.
D. Keren, J. Subrahmonia and D. Cooper, "Integrating Algebraic Curves and Surfaces, Algebraic
Invariants and Bayesian Methods
for 2D and 3D Object Recognition", Applications of Invariance
in Computer Vision, 493-510, 1993.
A Bayesian Framework for Regularization
D. Keren and M. Werman, IEEE International Conference on Pattern
Recognition (ICPR), 72-76, 1994.
M. BarZohar, D. Keren and D. Cooper, "Recognizing Groups of Curves
Based on New Affine Mutual Geometric,
Invariants, with Applications
to Recognizing Intersecting Roads in Aerial Images", IEEE International
Conference
on Pattern Recognition (ICPR), 205-209, 1994.
Using Color Correlation
To Improve Restoration of Color Images
D. Keren, A. Gotlib and H. Hel-Or, International Workshop
on Image and Signal Processing, 603-607, 1996.
New Approach to the Arc Length Parameterization
Problem
Y. Gil and D. Keren, Spring Conference on Computer Graphics,
27-35, 1997.
Recognizing
Surfaces Using Curve Invariants and Differential Properties of Curves and
Surfaces
D. Keren, I. Shimshoni, E. Rivlin and I. Weiss, IEEE Conference on Robotics and
Automation (ICRA), 3375-3381, 1998.
Recognizing Surfaces
from 3D Curves
D. Keren, E. Rivlin, I. Shimshoni and I. Weiss, International Conference on Image Processing (ICIP) 3, 551-555, 1998.
A Novel Bayesian Method for Fitting Parametric
and Non-Parametric Models to Noisy Data
M. Werman and D. Keren, IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), II:552-558, 1999.
Anti-Faces for Detection
D. Keren, M. Osadchy, and C. Gotsman,
Sixth European Conference on Computer Vision (ECCV), 134-148, 2000.
Image Detection under varying
illumination and pose
M. Osadchy and D. Keren, IEEE International Conference on Computer Vision (ICCV),
II:668-673, 2001.
Anti-Sequences: Event
Detection by Frame Stacking
M. Osadchy and D. Keren and Y. Gal, IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), II:46-51, 2001.
Painter Identification Using Local
Features and Naive Bayes
D. Keren,
International Conference on Pattern Recognition (ICPR), II 474- 477, 2002.
Recovery of Epipolar Geometry as a
Manifold Fitting Problem
L. Goshen, I. Shimshoni, P. Anandan and D. Keren, IEEE 9th International
Conference on Computer Vision (ICCV), 1321-1328, 2003.
Hierarchical Decision Tree Induction in
Distributed Genomic Databases
A. Bar-Or, A. Schuster, R. Wolff and D. Keren, Conference on
Data Mining and the Grid, 2004.
Decision Tree Induction in High
Dimensional, Hierarchically Distributed Databases.
A. Bar-Or,
A. Schuster, R. Wolff and D. Keren, SIAM International Conference on Data Mining,
2005.
Analyzing Symmetry in Biological Systems
D. Milner, H. Hel-Or, D. Keren, S. Raz, E. Nevo,
International Conference on Image Processing (ICIP) 2005, 361-364.
Incorporating the Boltzmann Prior in Object
Detection Using SVM.
M. Osadchy and D. Keren, IEEE International Conference on
Computer Vision and Pattern Recognition 2006 (CVPR06).
A Geometric Approach to Monitoring Threshold Functions
Over Distributed Data Streams
I. Sharfman, A. Schuster and D. Keren, SIGMOD06 (honorable mention for best paper award).
Spline-Based Robot Navigation
E. Magid, D. Keren, E. Rivlin, and I. Yavneh, 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS06), 2296-2301.
Aggregate Threshold Queries in Sensor Networks
I. Sharfman, A. Schuster, and D. Keren, IEEE International Parallel & Distributed Processing Symposium 2007 (IPDPS 2007).
Multi-Camera Topology Recovery from Coherent Motion
Z. Mandel, I. Shimshoni, and D. Keren,
ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC-07).
Shape Sensitive Geometric Monitoring
I. Sharfman, A. Schuster, and D. Keren, Principles of Database Systems (PODS) 2008.
Applying Two-Pixel Features to Face Detection
I. Nissenboim, D. Keren, and M. Werman. IEEE International Conference on Signal Image
Technology and Internet Based Systems, 2008.
Distributed Threshold Querying of General Functions by a
Difference of Monotonic Representation
G. Sagy, D. Keren, I. Sharfman, and A. Schuster,
VLDB 2011.
Monitoring Distributed, Dynamic Systems (keynote lecture).
D. Keren, SYSTOR 2011.
Hybrid Classifiers for Object Classification with a Rich Background
M. Osadchy, D. Keren, and B. Fadida-Specktor, ECCV 2012, V, 284-297.
Sketch-based Geometric Monitoring of Distributed Stream Queries.
M. Garofalakis, D. Keren, and V. Samoladas, PVLDB 2013.
Communication efficient
Outlier Detection for Scaleout
Systems
M. Gabel, D. Keren, and A. Schuster, BD3 Workshop, PVLDB 2013.
Communication Efficient
Distributed Online Prediction
using Dynamic Model Synchronizations
M. Boley, M. Kamp, D. Keren, A. Schuster, and I. Sharfman. BD3 Workshop, PVLDB 2013.
Safe-Zones for Monitoring Distributed Streams.
D. Keren, G. Sagy, A. Abboud, D. Ben-David, I. Sharfman, and A. Schuster.
BD3 Workshop, PVLDB 2013.
Planar Shape Interpolation with Bounded Distortion.
R. Chen, O. Weber, D. Keren, M. Ben-Chen,
ACM Transactions on Graphics Vol.32, No. 4 (SIGGRAPH 2013).
Renjie's SIGGRAPH presentation (powerpoint).
Invited Talk, by Assaf Schuster, ICAA 2014
Privacy-Preserving Distributed Stream Monitoring.
A. Friedman, I. Sharfman, D. Keren, A. Schuster.
NDSS 2014.
Communication-Efficient Distributed Variance Monitoring and
Outlier Detection for Multivariate Time Series.
M. Gabel, A. Schuster, D. Keren.
IPDPS 2014.
Adaptive Clustering for Monitoring Distributed Data Streams.
M. Barouti, D. Keren, J. Kogan, Y. Malinovsky. SDM-EDA 2014.
Monitoring Distributed Data Streams Through Node Clustering.
M. Barouti, D. Keren, J. Kogan, Y. Malinovsky. MLDM 2014.
Communication-Efficient Distributed Online
Prediction by Dynamic Model Synchronization (ECML/PKDD14).
M. Kamp, M. Boley, D. Keren, A. Schuster, I. Sharfman.
The European Conference on Machine Learning and
Principles
and Practice of Knowledge Discovery in Databases, 2014.
Adaptive Communication Bounds for
Distributed Online Learning (OPT2014 Workshop, NIPS 2014)
M. Kamp, M. Boley, M. Mock, D. Keren, A. Schuster, I. Sharfman.
Optimization for Machine Learning Workshop, NIPS 2014.
Latent Fault Detection With Unbalanced Workloads.
M. Gabel, K. Sato, D. Keren, S. Matsuoka, A. Schuster. EPForDM Workshop,
EDBT 2015.
Monitoring Least Squares Models of Distributed Streams
M. Gabel, D. Keren, A. Schuster. KDD 2015.
K-hyperplane Hinge-Minimax Classifier.
M. Osadchy, T. Hazan, D. Keren. ICML 2015.
Lightweight Monitoring of Distributed Streams
A. Lazerson, D. Keren, A. Schuster. KDD 2016.
Misc.
YNET article about painter identification project
MSNBC article about painter identification project