
J. Parallel Distrib. Comput. 71 (2011) 302–315
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Top-k vectorial aggregation queries in a distributed environment
Guy Sagy a, Izchak Sharfman a, Daniel Keren b,∗, Assaf Schuster a
a CS Faculty, Technion, Technion City 32000, Haifa, Israel
b CS Department, Haifa University, Haifa 31905, Israel

a r t i c l e i n f o

Article history:
Received 22 January 2010
Received in revised form
29 August 2010
Accepted 2 September 2010
Available online 19 September 2010

Keywords:
Top-k distributed algorithm
Vectorial aggregation
Geometric method

a b s t r a c t

Given a large set of objects in a distributed database, the goal of a top-k query is to determine the top-k
scoring objects and return them to the user. Efficient top-k ranking over distributed databases has been
the focus of recent research, with most current algorithms operating on the assumption that each node
holds a single or small subset of each object’s numerical attributes. However, in many important setups
each nodemight hold instead a full d-dimensional vector of numerical attributes for each object. Examples
include website activity in distributed servers, sales statistics for a retail chain, or share price information
in different stockmarkets. For these setups, we define a novel ranking problem, top-k vectorial aggregation
queries, where each object’s score is determined by first aggregating the attribute vectors held for it and
then applying the scoring function over the aggregated vector.

Our communication-efficient algorithmuses a blendof geometric and skyline relatedmachinery, some
of which is newly developed, as well as an algorithmic framework for defining generic local constraints.
Whereas previous algorithms have reduced data sharing by defining local thresholds for each attribute,
such tailored solutions might perform poorly. Experimental results on real-world data demonstrate that
our algorithm maintains low latency, with a communication cost up to four orders of magnitude lower
than that of existing solutions.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

As computer systems and data increase in size, algorithms that
can help the user to efficiently navigate the vast stores of available
information are more important than ever. A frequent task is to
rank the information retrieved by the end user. Oneway to support
this task is to return only the most important (top-k) relevant
answers to a query, known as top-k queries. The goal of top-k
queries is to detect the k highest scoring objects, according to
some scoring function. A naive approach is to compute the score
for all objects; however this suffers from huge communication,
computation, and access costs, especially in distributed setups.

In many distributed setups, data is partitioned over distributed
nodes using the same set of attributes across all nodes. Examples
include sensor systems (e.g. NASA EOS [36]), retail databases (e.g.
Wal-Mart [36]) and web applications (e.g. Google [23]). In these
setups, object data can be stored in various nodes and the scoring
function is commonly the aggregation (or sum) of the objects’ local
scores. Such queries are referred to top-k aggregation queries.

∗ Corresponding author.
E-mail addresses: guysagy@cs.technion.ac.il (G. Sagy), tsachis@cs.technion.ac.il

(I. Sharfman), dkeren@cs.haifa.ac.il (D. Keren), assaf@cs.technion.ac.il
(A. Schuster).

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.09.002
The problem of top-k aggregation queries have been intensively
researched. A prominent family of algorithms are threshold algo-
rithms (TA) [15,1,18,31]. These algorithms efficiently reduce the
number of accessed objects by iteratively accessing the objects ac-
cording to their local score, while in each iteration the maximal
value of each accessed object is estimated, and some of the ob-
jects (those which are guaranteed not to be in the top-k) pruned.
This iterative approach has been used in many top-k algorithms
[4,19,15,9,45,21,22]. However, while these algorithms minimize
the number of accessed objects, they require many iterations,
which increases communication bandwidth. Recently, a three-
phase algorithm, (TPUT)[8], was proposed for performing dis-
tributed top-k queries. The advantage of TPUT is that each phase
consists of a single round-trip interaction between the nodes and a
coordinator. KLEE [29] and other algorithms [52,33] use the ‘‘three-
phase’’ technique but consider the distribution of the values at each
node to define tighter local thresholds.

All these algorithms assume the aggregation is performed over
local scalar (1-dimensional) values. An interesting set of top-k
queries are those where the local scores are d-dimensional vectors,
and the scoring function is applied over the aggregation of these
vectors. For example:

Example 1. A large set of proxy servers storing the last day’s
statistics for website activity (Fig. 1). Each proxy stores the same

http://dx.doi.org/10.1016/j.jpdc.2010.09.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:guysagy@cs.technion.ac.il
mailto:tsachis@cs.technion.ac.il
mailto:dkeren@cs.haifa.ac.il
mailto:assaf@cs.technion.ac.il
http://dx.doi.org/10.1016/j.jpdc.2010.09.002

G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315 303
Fig. 1. Example of a distributed database, where each URL’s d-dimensional vectors of attributes (connections per day, uploaded data size, downloaded data size) are stored
over various routers.
Table 1
A simple example of top-1 vectorial aggregation query (f (x, y) = xy).

Node1 x1 y1 f (x1, y1) Node2 x2 y2 f (x2, y2) Global x1+x2
2

y1+y2
2 f

 x1+x2
2 ,

y1+y2
2

o2 5.1 1 5.1 o1 3 7 21 o3 3.5 3.5 12.25
o1 1 5 5 o2 6.9 3 20.7 o1 2 6 12
o3 4 1 4 o3 3 6 18 o2 6 2 12
vector of attributes for each website: the number of connections,
the uploaded data size, and the downloaded data size. The network
managermightwant to determine the top-k sites by computing the
upload/download ratio, using the vectors’ average values (i.e., the k
sites with the highest total uploaded data size divided by the total
downloaded data size).

Example 2. Consider a retailer who owns a chain of stores. The
retailer wants to know which pair of products are globally most
highly correlated—i.e., the correlation is computed over the global
vector which equals the average of objects’ local vectors, and not
locally in each store. Note that the global correlation coefficient is
not equal to the average of the local correlation coefficients, hence
first the local vectors representing the sales’ amounts should be
aggregated, and only then the correlation coefficients computed.

In these cases and others, the score for each object is deter-
mined by first aggregating the attribute vectors held for it in the
distinct nodes, and then applying the scoring function over the ag-
gregated vector. Top-k vectorial aggregation queries can be used
in many data mining applications. Other examples include find-
ing top performing shares computed from attribute vectors from
different stock markets, determining the most highly correlated
query terms from different search engine query logs, and identi-
fying denial of service attacks in distributed environments (using
the same type of indicators in each router) [20].

Performing top-k vectorial aggregation queries can be challeng-
ing. As an example, look at the data in Table 1. Assume the query
is to find the top-1 object using the scoring function f (x, y) = xy.
While the local top-1 objects in node1 and node2 are objects o2 and
o1 respectively, the global top-1 object is o3. Actually, while o3 is
the lowest scoring object in both nodes, its global value is the high-
est. This example vividly demonstrates how difficult it is to reach
correct global decisions when aggregating vectors.

In this paper we present what constitutes, to the best of our
knowledge, the first treatment of the problem of top-k vectorial
aggregation queries over distributed databases. The suggested algo-
rithmoperates in four phases, each consisting of a single round-trip
interaction between the nodes and a coordinator. It uses a blend of
geometric and skyline related machinery, some of which is newly
developed, as well as an algorithmic framework, to compile local
constraints. An efficient technique for checking whether an object
violates its local constraints is also introduced, further reducing the
local computational overhead. We show that the communication
cost of our algorithm is up to four orders of magnitude lower than
that of existing solutions.

1.1. Problem definition and notations

We assume the system consists of n nodes, p1, p2, . . . , pn,
where each node uses the same set of attributes. Our method is
also applicable when some attributes do not appear in all nodes;
simply fill in themissing attributeswith the average of the existing
ones. There are m objects, denoted by o1, o2, . . . , om, and the data
for each object is partitioned over the distinct nodes, aswill next be
described. The set of attributes for oj in node pi is a d-dimensional
vector x⃗j,i, referred to as oj’s local statistic vector. The score of an
object is defined as the value of a scoring function f () : ℜ

d
→ ℜ on

the aggregation (weighted sum)of the local vectors. Herewedefine
the global statistics vector (x⃗j) for the object oj as the average of the

local statistics vectors (x⃗j,i) held for it in each node i, i.e., x⃗j =

∑n
i=1 x⃗j,i
n

(note that x⃗j,i is not a component of x⃗j, but a vector of the same
length as x⃗j). The score of the object oj is f (x⃗j). Given a parameter k,
the goal of a top-k vectorial aggregation query is to determine the
k highest scoring objects while minimizing communications and
access costs.

We assume the scoring function f is monotonic. Given that a
vector v⃗1 dominates the vector v⃗2 (v⃗1 ≻ v⃗2), i.e., all the components
of v⃗1 are not smaller than the corresponding components of v⃗2,

304 G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315
then for any monotonic function f (), f (v⃗1) ≥ f (v⃗2). The scoring
function can be either monotonically increasing or monotonically
decreasing in each coordinate. Without loss of generality we may
assume that the scoring function is monotonically increasing in
all coordinates. We also assume that the components of the local
vectors are positive. Since the local statistics vectors are positive,
and the global statistics vector is their average, it is easy to see that
for any local statistics vector, x⃗j,i : x⃗j ≻

x⃗j,i
n . In addition, given

S ⊂ {1, 2, . . . , n} (a proper subset of the numbers from 1 to n),
it is easy to see that:

x⃗j ≻

∑
i∈S

x⃗j,i

n
. (1)

We assume that the query is initiated on an additional node
called the coordinator, denoted by p0. Communication is per-
formed solely between the coordinator and the nodes (the nodes
themselves do not interact). In general, this algorithm is performed
over static data (as opposed to streaming setups) and scales up to
hundred of nodes (as opposed to peer-to-peer networks). In this
paper we do not assume node failure.

Next we present in detail a running example which illustrates
the concepts and problems addressed in this paper. Consider a
distributed search engine, comprised of a distributed set of n
mirrors. Each mirror stores a stream of queries, where each query
consists of multiple search terms. Each mirror maintains counts
for the search terms that appeared in the queries. In addition,
each mirror maintains a count for each pair of search terms that
appeared together in the same query. This information can be used
to calculate a correlation score for the co-appearance of any pair
of search terms. Given two search terms, denoted A and B, let fA,i
and fB,i be the respective frequency of occurrence of A and B at
the mirror pi. By frequency of occurrence we mean the number
of queries the term appeared in, divided by the total number of
queries. Let fC,i be the number of queries received at pi which
contained both A and B, divided by the total number of queries
received at pi. We denote the statistics vector maintained by the
mirror pi for the pair A and B by x⃗AB,i = (fA,i, fB,i, fC,i). Let x⃗AB =

(fA, fB, fC) be the global statistics vector for the pair A and B, i.e., x⃗AB
represents the statistics for the pair A and B over the union of the
search queries received at the mirrors. For simplicity, we assume
that each mirror receives the same number of queries; therefore,
x⃗AB is the average of the vectors x⃗AB,i, i = 1, . . . , n. A widely used
measure for the correlation between the appearances of A and B is
defined by the correlation coefficient ρAB, which is given by:

ρAB(x⃗AB) =
fC − fAfB

(fA − f 2A)(fB − f 2B)

.

The correlation coefficient receives values in the range
[−1 · · · 1]. A negative score indicates that the terms tend to ex-
clude each other, a score of zero indicates that there is no corre-
lation between the appearance of the terms, and a positive score
indicates that the terms tend to appear in the same queries. Clearly,
the number of co-appearances of A and B cannot exceed the
number of appearances of A or that of B, i.e., fC ≤ min(fA, fB).
Subject to this restriction, it can be shown that the correlation coef-
ficient monotonically decreases with fA and fB, and monotonically
increases with fC . We are interested in determining the k pairs of
search terms which have the highest correlation score. Note that
the local data set held by every node is very large, since it consists
of all feature pairs, hence it is crucial to develop a communication
and access efficient algorithm.

1.2. Related work

Solving distributed top-k over partitioned databases has been
very well studied. In these databases, each node holds a subset of
the attributes of the objects and the nodes must share informa-
tion in order to compute an object’s score. A prominent family of
algorithms are threshold algorithms (TA) [15,1,18,31], which itera-
tively scans the attributes in each node, one object at a time. In each
iteration the algorithm computes the current k top score objects,
and define a global threshold. The algorithms stop when there are
k retrieved objects whose score is above the global threshold. A set
of threshold algorithmshavebeenproposed for caseswhere the ac-
cess to attribute list is limited to sorted access only, [4,19,15], when
attribute values are determined dynamically at run time [9], and
when data objects are given by a join operation [45,21,22]. While
these algorithms minimize the number of accessed objects, they
require a large number of iterations, which increases the commu-
nication cost.

Recently, low-latency top-k algorithms have been presented.
(TPUT) [8], KLEE[29] and other [52,32] algorithms have suggested
to bound the number of iterations between the nodes and the
coordinator and suggested a three-phase approach. While these
algorithms resemble our approach and can be used to resolve top-
k vectorial aggregation queries, they require viewing the scoring
function as a dn-dimensional function, which may incur high
communication cost.

Previous work has also studied how core database constructs,
such as selection queries and views, can be employed to efficiently
execute top-k queries [11,13,51,6]. Approximation of top-k query
results has been studied in [2,44,10,7], studied performing top-
k queries over web-accessible databases. These solutions assume
specific data models which are different from ours. The problem
of top-k queries in peer-to-peer environments was researched
in [3,30,46,47,28,50]. However, these setups are different from our
model, and assume communication among the nodes themselves.

Top-k algorithms have also been studied in central setups,
where all the data is stored in one physical location. A new ap-
proach to solve top-kqueries for general scoring functions has been
proposed in [49,53]. Several algorithms have been proposed for re-
solving top-k queries in a centralized OLAP environment [26,27,
48]. A common goal of these works and ours is to minimize the
number of locally accessed objects, but our work considers a dis-
tributed rather than centralized setting.

Our work utilizes domination relationships among objects to
reduce the number of objects retrieved locally by each node.
The domination relationship has been studied in the past in the
context of the skyline operator [5]. The skyline of a set of objects
consists of those that are not dominated by any other object.
Several algorithms have been proposed for efficiently detecting
the skyline [5,12,16,34,43]. In particular, the branch-and-bound
skyline algorithm (BBS) [34] uses R-trees to efficiently detect
dominating objects.

Recently, a geometric approach was introduced for defining
local constraints in distributed setups [41,40]. However, this ap-
proach is suited to distributed streaming setups only, does not
perform well for more than a few thousand objects, and requires
accessing all the objects for every query.

2. Problemmodel

2.1. Review of BPA, TPUT and KLEE algorithms

Previousworkmost related to the problems in this paper are the
BPA, TPUT and KLEE algorithms for processing top-k aggregation
queries. In this section, we briefly describe these algorithms,
and present a variant of them which supports top-k vectorial
aggregation queries. The Best Position Algorithm (BPA) [1] is
designed to process top-k queries over sorted lists. This algorithm
improves the performance of thewell-studied threshold algorithm
(TA) [15,19,31]. Given an attribute list in each node, BPA accesses

G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315 305
Table 2
An example of a database with three nodes.

Node1 Node2 Node3

(o1, 12) (o10, 9) (o7, 11)
(o2, 10) (o1, 8) (o2, 8)
(o3, 8) (o3, 7) (o10, 6)
(o4, 7) (o5, 6) (o3, 5)
(o5, 5) (o7, 5) (o8, 5)
(o6, 4) (o4, 4) (o1, 4)
(o7, 3) (o6, 3) (o5, 3)
(o8, 2) (o9, 2) (o9, 2)
(o9, 1) (o2, 1) (o4, 1)
(o10, 1) (o8, 1) (o6, 1)

those lists in parallel, one position at a time. At each iteration, the
node reports to the coordinator the largest value in its attribute
list which has not been reported yet. The coordinator calculates
the scoring function f () over these reported values. This score is
referred to as a threshold (τ). In addition, the coordinator retrieves
the objects for each accessed attribute and calculates each object’s
score. The k retrieved objects with the top scores are kept in a
top-k list. Note that, since f is a monotonic function, τ bounds
the score of unreported objects. Therefore, when the coordinator
has been reported k objects (the top-k list) whose score is higher
than τ , the coordinator can stop. While BPA is known to minimize
the number of accessed objects in each node, this threshold-based
technique requires many iterations between the coordinator and
the nodes. This increases the overall execution times as well as
the total number of objects reported to the coordinator, i.e., the
communication bandwidth. As an example of how BPA proceeds,
we study the data in Table 2. Each node holds one attribute for
each object oj. Assume that the scoring function f () is the sum of
the object’s values over the nodes, and the query is for the top-
2 scoring objects. In the first iteration, the coordinator looks at
the first top objects of all nodes, which are o1, o10, and o7. Then
it looks them up over all nodes and computes their global score:
f (o1) = 24, f (o10) = 16, f (o7) = 19. The threshold value
after one iteration is the sum of last reported values, i.e., τ =

12 + 9 + 11 = 32. Since τ is larger than the current top-2 scored
objects, the coordinator must continue to a second iteration, in
which the reported objects are o2 and o3. Note that node2 skips
o1, since the coordinator has already completed the attributes for
o1 from all nodes during the first iteration. Then the coordinator
computes their global values f (o2) = 19, f (o3) = 20, and
update the threshold value, τ = 10 + 7 + 8 = 25. In the next
iteration, node1 returns o4, node2 returns o5, and node3 returns
o8. The coordinator computes their global score. The algorithm
finally stops after this iteration since there are two objects o1, o3
whose global score (f (o1) = 24, f (o3) = 20) exceeds the current
threshold, τ = 7 + 6 + 5 = 18.

In order to reduce the number of iterations in distributed
setups, a three-phase algorithm, (TPUT) [8], was developed. In the
first phase, an estimated value of the kth object (τ) is determined.
In the second, the coordinator computes a local threshold for each
node, and the nodes report the objects which are locally above
this threshold. We refer to this set of objects as the candidate
list. Objects which are not reported are guaranteed not to be
among the top-k. In the third phase, the coordinator sends the
candidate list to all nodes and requests the local information of
these objects, which has not been reported in previous phases. The
advantage of this approach is that each phase consists of a single
round-trip interaction between the nodes and the coordinator,
which reduces the communications cost. While TPUT efficiently
reduces the number of iterations, in case of d-dimensional vectorial
aggregation queries it can become inefficient, as discussed later
in this section. As an example of TPUT, we perform a top-2 query
using the same scoring function f () and dataset (Table 2) as the
BPAalgorithm.At the first phase, the coordinator requests all nodes
to return their local top-2 objects ({o1, o2, o10, o7}), and computes
their partial sum {P(o1) = 20, P(o2) = 18, P(o10 = 9), P(o7) =

11}. Partial sum is an estimated score of each object computed
by the coordinator, using only the reported set of attributes. The
coordinator chooses the top-2 partial sums values, and takes the
second one as a threshold, τ1 = 18. Then it sets a local threshold
T =

τ1
n =

18
3 = 6. During the second phase the nodes report the

objects above this threshold: node1 reports o1, o2, o3 and o4, node2
reports o10, o1, o3 and o5, and node3 reports o7, o2 and o10. The
coordinator updates the partial sum of each reported object, and
sets τ2 = τ1 = 18 (since the top two partial sums are still o1
and o2). The coordinator also calculates the upper bound score of
each object, and removes o4 and o5, whose upper bound score is
below τ2. After collecting all local vectors for each of the remaining
objects, the coordinator determines o1 and o3 as the top-2 scored
objects.

A three-phase approach was also used in the KLEE algo-
rithm [29]. KLEE maintains a histogram of the data in each node.
Upon request, part of the histogram is sent to the coordinator using
Bloom filter compression. This enables returning an approximate
top-k results with low communication cost. Briefly, the KLEE three
phases follow like this. During the first phase the coordinator re-
quests a fraction of the histogram from each node. Based on this in-
formation the coordinator computes an approximate top-k list and
identifies the score of the kth object in this list as the top-k score. In
the second phase, the coordinator uses the histogram data to cre-
ate a candidate list of objects whose score may exceed the top-k
score, and requests from each node an approximate value for each
of these objects. In the third phase, the coordinator requests that
the nodes complete the data for the objects whose approximate
value exceed the top-k score.

In both the TPUT and KLEE algorithms, each node reports
a single attribute to the coordinator, and the aggregation is
performed over these attributes. In case each node holds a d-
dimensional vectors, and the scoring function f () is applied on the
aggregation of these vectors, TPUT and KLEE view these attributes
as different nodes, i.e., as a dn-dimensional function. For example,
given 2 nodes and 3-dimensional vectors in each node i (o⃗j,i =

Aj,i, Bj,i, Cj,i), top-k vectorial aggregation query over these vectors

with the scoring function f (oj) = f

o⃗j,1+o⃗j,2
2

will be redefined

as f (oj) = f

Aj,1, Aj,2, Bj,1, Bj,2, Cj,1, Cj,2

, where the scoring

function includes the computation of the average. In case of high-
dimensional vectors and a large number of nodes, the definition
of the local thresholds in each node becomes very difficult and
inefficient, and incur high computational, storage accesses and
especially communication costs.

The BPA, TPUT and KLEE algorithms reduce the communication
bandwidth between the nodes and the coordinator. We measure
the communication bandwidth by counting the total number of
objects sent from and to the coordinator. That is, each object the
nodes chose to report to the coordinator is counted as a single
transmission (the beginning of each BPA iteration, and TPUT and
KLEE first two phases), while each object collected as a result of a
coordinator request is counted as two transmissions, one in which
the coordinator sends each node a list of requested objects, and the
second in which the nodes reply with the local vectors for these
objects.

In this paper, we propose an algorithm to reduce the com-
munication cost by defining efficient local thresholds over d-
dimensional local statistics vectors in each node. In some cases, as
shown in the experimental section, our algorithm can reduce com-
munication cost by up to four orders of magnitude relative to BPA,
TPUT and KLEE.

306 G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315
2.2. Our approach

To achieve low communication cost and latency, our distributed
top-k algorithm is designed with four phases, each consisting
of a single round-trip interaction between the nodes and a
coordinator:
(1) Phase I—the coordinator determines a lower bound, τ1, on the

score of the top-k objects.
(2) Phase II—the coordinator collects additional information from

the nodes and determines an improved lower bound, τ2.
(3) Phase III—eachnodeuses the bound τ2 to prune out objects that

are guaranteed not to be in the top-k scoring set, and sends the
remaining objects to the coordinator.

(4) Phase IV—the coordinator collects additional information from
the nodes to determine the top-k objects among those it
received in the previous stages.
The suggested algorithm draws its efficiency over the previous

algorithms through its ability to compute the value of an object
over vectorial aggregation, reducing the number of attributes par-
ticipating in the computation of the scoring function. This vecto-
rial approach enables defining tight and efficient local thresholds
in each node. In the next sectionswe describe these phases and the
algorithm in detail.

3. Top-k vectorial aggregation query algorithm

The algorithm consists of four phases, each taking one round-
trip to complete. In this section we assume the data is static and
that there is a single coordinator. In Section 6 we present a version
of the algorithm which handles data updates and scalability
problems.

3.1. Phase I—determining the lower bound

The goal of the first phase is to determine a lower bound on
the score of the top-k objects. We first calculate a lower bound
on the scores of certain k objects (not necessarily the top scoring
ones). Theminimum among thesewill be the lower boundwe seek
because at least k objects will have a score equal to or exceeding
this value. The first phase proceeds with each node determining
the khighest scoring objects according to the local statistics vectors
held for them. This is done by computing the function f () at the
vectors xj,i (note that the local vectors are of the same dimension
as the global ones, hence the scoring function f can be applied to
them). Next, each node sends the coordinator the local statistics
vector of the k selected objects.

Once the coordinator received the objects from the nodes, it
compiles them to a single list. The coordinator records the local
statistics vector received for each object andwhich nodes reported
them. If several nodes reported a certain object, the coordinator
records the average of the local statistics vectors received for it. The
vector recorded for each object in the list is referred to as its partial
statistics vector. The list of objects maintained by the coordinator
is called the partial statistics list. The partial statistics vector held
for the object oj is denoted by p⃗j. The multiplicity of an object in
the partial statistics list is defined as the number of nodes that
reported their local statistics vectors for it, and is denoted by mj.
We say the coordinator has complete statistics for a certain object if
all the nodes have reported their local statistics vectors for it, i.e.,
the multiplicity of the object is n.

Given an object for which the coordinator holds a partial
statistics vector p⃗j and whose multiplicity is mj, note that mjp⃗j is
the sum of the local statistics vectors received for the object, and
therefore, according to Eq. (1), x⃗j ≻

mj p⃗j
n . Since f () is monotonic, it

follows that f (x⃗j) ≥ f

mj p⃗j
n

. Therefore, f

mj p⃗j
n

is a lower bound

on the score of the object. The coordinator determines this lower
bound for all the objects in the partial statistics list and selects
the k objects whose lower bound is the highest. These objects are
referred to as the initial candidate set. The objects in the initial
candidate set are sorted according to their lower bounds. The lower
bound of the kth object in the list is denoted by τ1. As explained
above, τ1 is a lower boundon the scores of the top-k scoring objects.

3.2. Phase II—improving the lower bound

In the second phase we improve τ1, the lower bound calculated
in the first phase, by collecting all the local statistics vectors for
the objects in the initial candidate set. At the end of this phase the
coordinator can determine the exact scores of these objects; it then
sorts them according to their score. The score of the kth object is
denoted by τ2. Note that τ2 ≥ τ1.

While the secondphase is not required for the correctness of the
algorithm (it can be skipped, and τ2 can be replaced by τ1), exper-
imental results show that this phase notably improves the lower
bound, leading to a dramatic reduction in the communication cost
of subsequent phases.

3.3. Phase III—local elimination of objects

The goal of the third phase is to determine a set of objects
guaranteed to include the top-k scoring objects. Each node locally
detects objects whose global score might exceed τ2 and reports
them to the coordinator. Since τ2 is a lower bound on the scores
of the top-k objects, we can be certain that objects which have not
been reported by any node are not among the top-k objects.

As demonstrated in the Introduction, distributively determin-
ing that the score of an object does not exceed a given threshold
may be difficult, since combining local statistics vectors whose lo-
cal score is smaller than τ2 can yield a global statistics vectorwhose
score is above τ2. We address this problem using tentative upper
bounds.

Tentative upper bounds are scalar values determined locally for
an object by each node. The tentative upper bound determined by
the node pi for the object oj is denoted uj,i. Let Uj be the set of
tentative upper bounds determined for oj by the various nodes, i.e.,
Uj = maxi{uj,1, uj,2, . . . , uj,n}. Then, the following theorem holds:

Theorem 1. f (x⃗j) ≤ Uj.

In Section 4.1,wedescribe a geometricmethod for ensuring that
the global score of an object will not exceed one of the tentative
upper bounds determined for it, and prove Theorem 1.

The third phase begins with the coordinator sending the value
of τ2 to all the nodes. Each node compiles a list of all the objects
whose tentative upper bound exceeds τ2. This list is referred to
as the local candidate set. The nodes send the local statistics vec-
tors of the objects in their local candidate sets to the coordinator.
Tentative upper bounds guarantee that unreported objects cannot
be among the top-k objects, and therefore can be pruned with-
out communication. This is the most important property of these
bounds. In Section 4.2 we show that constructing the local candi-
date set does not require the nodes to iterate over all the objects,
and in Section 4.3 we show how to efficiently reduce the compu-
tational cost. After receiving the local candidate sets from all the
nodes, the coordinator adds the local statistics vectors from the
candidate sets to the partial statistics list.

If several nodes have sent the coordinator their local statis-
tics vectors for oj, it can determine a tentative upper bound
of oj that will replace those determined by the nodes. Say the
nodes p1, p2, . . . , pl have sent the coordinator their local statis-
tics vector for oj. The coordinator determines a tentative upper
bound for oj, which is denoted by uj,0. In this case, the value of

G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315 307
Uj = maxi{uj,0, uj,l+1, uj,l+2, . . . , uj,n} satisfies Theorem 1. The co-
ordinator can now locally prune additional candidates from the
partial statistics list. The coordinator might now hold complete
statistics for new objects (in addition to the k objects it collected
complete statistics for in the second phase). This enables it to de-
termine a better lower bound on the score of the top-k objects. It
examines the list of objects forwhich it has complete statistics, and
sets τ3 to be the score of the kth scoring object. Note that τ3 ≥ τ2.
Finally, the coordinator determines tentative upper bounds for the
objects in the partial statistics list and removes all those objects
whose tentative bound is below τ3.

3.4. Phase IV—determining the top-k scoring objects

In the fourth phase, the coordinator determines the top-k scor-
ing objects among those in the partial statistics list by requesting
the unknown local statistics vectors for all the objects in the list.
This can be accomplished in a single round-trip interaction. Once
the coordinator has determined the global statistics vectors for all
the objects, it can calculate their final score. It then selects the k top
scoring objects.

Note that the fourth phase can be very costly in terms of
communication. In Section 5 we show that many objects can be
eliminated at a fraction of the cost of collecting all their local
statistics vectors by slightly increasing the latency of this phase.

The algorithm is summarized in Algorithm 1.

Algorithm 1 Top-k Vectorial Aggregation Query
1. Phase1 :

For each node i:
(a) Let listi be the top k objects
(b) Report listi to coordinator
The coordinator:
(a) list =

listi.

(b) For each oj ∈ list compute its partial sum vector(p⃗j).
(c) Compute the partial sum score (f (p⃗j)) of each object, and let

listk be the k top scored objects.
(d) Let or be the object in the kth position. Let τ1 = f (p⃗r).
(e) Report list to all nodes

2. Phase2 :
For each node i:
(a) return x⃗j,i for each oj ∈ list
The coordinator:
(a) For each oj ∈ list , compute f (oj).
(b) Let τ2 be the kth top scoring object
(c) Report τ2 to all nodes

3. Phase3 :
For each node i:
(a) Let lcli = {oj|uj,i ≥ τ2}
(b) Report lcli to coordinator
The coordinator:
(a) Let gcs =

lcli

(b) Report gcs to nodes
4. Phase4 :

For each node i:
(a) For each oj ∈ gcs, report x⃗i,j to coordinator
The coordinator:
(a) For each oj ∈ gcs, compute f (oj)
(b) return the k top scoring objects

4. Determining tentative upper bounds

4.1. Definition of tentative upper bounds

In this section we describe how the nodes determine tentative
upper bounds. Recall that tentative upper bounds are local
constraints in each node which guarantee that for every object
there exists at least one tentative upper bound whose score
exceeds the object’s global score. Therefore, if the object’s tentative
upper bounds in all nodes are below a given threshold, the object’s
global score is guaranteed to be below this threshold and it can be
discarded.

Recall that x⃗j,1, x⃗j,2, . . . , x⃗j,n are the local statistics vectors held
for the object oj by the various nodes, and that x⃗j, the global
statistics vector for oj, is their average:

x⃗j =

n−
i=1

x⃗j,i
n

. (2)

A geometric interpretation of Eq. (2) is that an object’s global
statistics vector belongs to the convex hull of its local statistics
vectors. Let Conv(x⃗j,1, x⃗j,2, . . . , x⃗j,n) denote the convex hull of
the local statistics vectors held by the nodes for oj. Then x⃗j ∈

Conv(x⃗j,1, x⃗j,2, . . . , x⃗j,n).
Given an agreed common reference vector, x⃗ref, each node

constructs a sphere centered at the midpoint between x⃗j,i and the
reference vector, with a radius equal to half the distance between
them. This sphere is referred to as the bounding sphere and is
denoted by B(x⃗ref, x⃗j,i):

B(x⃗ref, x⃗j,i) =

z⃗
 z⃗ −

x⃗ref + x⃗j,i
2

 ≤

 x⃗ref − x⃗j,i
2

.

According to Theorem 2, proved in [40], the union of the
bounding spheres created by the nodes for a certain object contains
the convex hull of its local statistics vectors.

Theorem 2. Let x⃗ref, x⃗j,1, x⃗j,2, . . . , x⃗j,n ∈ Rd be a set of vectors
in Rd. Let Conv(x⃗ref, x⃗j,1, x⃗j,2, . . . , x⃗j,n) be the convex hull of
x⃗ref, x⃗j,1, x⃗j,2, . . . , x⃗j,n. Let B(x⃗ref, x⃗j,i) be a sphere centered at
x⃗ref+x⃗j,i

2 and with a radius of
 x⃗ref−x⃗j,i

2

. That is, B(x⃗ref, x⃗j,i) =
z⃗
 z⃗ −

x⃗ref+x⃗j,i
2

 ≤

 x⃗ref−x⃗j,i
2

.

Then Conv(x⃗ref, x⃗j,1, x⃗j,2, . . . , x⃗j,n) ⊂
n

i=1 B(x⃗ref, x⃗j,i).

Fig. 2 illustrates the use of the geometric bounding technique.
The four local statistics vectors are depicted together with the
reference vector. In addition, the figure depicts the bounding
spheres constructed by each node. One can see that the union of
the spheres contains the convex hull of the local statistics vectors.

Corollary 3. The global vector x⃗j belongs to the union of the bounding
spheres, x⃗j ∈

n
i=1 B(x⃗ref, x⃗j,i).

Let uj,i be the maximum score received on the vectors by node i
for object oj’s bounding sphere, i.e., uj,i = maxv⃗∈B(x⃗ref,x⃗j,i)(f (v⃗)). We
denote by uj,i the tentative upper bound of object oj in node i.

According to Corollary 3 and the definition of uj,i, the tentative
upper bound determined by the node pi is guaranteed to be equal
to or exceed the score of the object oj, proving Theorem 1.

The x⃗ref we use here is defined as follows. Given the set of
all local statistics vectors of all objects, let B be their minimal
axis-aligned bounding box. We denote the corner of B with the
minimal value in each component as x⃗ref (x⃗ref might not correspond
to an actual data vector). Clearly x⃗ref is dominated by all the local
statistics vectors, i.e., ∀x⃗j,i ≻ x⃗ref. We assume that each node
maintains its local data structure to allow the immediate retrieval
of the object with minimal value for that attribute. Then the
coordinator can easily compute x⃗ref by collecting these objects from
each node in a single communication phase, and report it to the
nodes.

Real-world data is often not distributed identically along the
various axes. In such cases, we may obtain tighter tentative
upper bounds by using ellipsoidal bounding regions instead of

308 G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315
xj,1

←

xref

←

xj,2

←

xj,3

←

xj,4

←

Fig. 2. Using spherical bounds. Four local statistics vectors are depicted (red
circles). The reference vector (blue square), and the bounding spheres determined
by the nodes, are also depicted. Note that the convex hull of the local vectors is
contained in the union of the spheres.

the spherical bounding regions described in the previous section.
Fig. 3(a) depicts the local statistics vectors held by four nodes for
a certain object. Note that the variance of the data along the x-
axis is considerably higher than the variance of the data along the
y-axis. Thus, before determining the spherical bounding regions,
we would like to scale the data so that its variance along all
the dimensions is identical. Fig. 3(b) depicts the data after the
scaling process. Nextwe determine the spherical bounding regions
(Fig. 3(c)), and finally, we reverse the scaling process (Fig. 3(d)).
One can see that using ellipsoidal bounds yields smaller bounding
regions, and therefore they are likely to yield tighter tentative
upper bounds.

Employing ellipsoidal bounding regions requires the nodes to
agree on scaling parameters, which can be reused for answering
multiple queries. In order to determine common scaling parame-
ters, each node determines the average and variance of the data
along each axis. The coordinator collects these statistics from the
nodes, calculates the global variance of the data along each axis,
and sends these global scaling parameters to the nodes. The global
scaling parameters will be used by the nodes to create bounding
ellipsoids in subsequent top-k queries.

Experimental results (see Section 7) demonstrate that commu-
nication costs for top-10 queries are up to three orders of magni-
tude lower when ellipsoidal bounding regions are used, and well
over an order of magnitude lower for top-100 queries.

4.1.1. Determining tentative upper bounds at the coordinator
Up to this point we defined the local tentative upper bound on

the score of each object computed in each node. In this section
we describe how the coordinator can determine a tentative upper
bound by using the local tentative upper bounds reported by
various nodes. Moreover, we prove that the tentative upper bound
determined by the coordinator does not exceed the maximum
among the tentative upper bounds determined in each of the
nodes.

Assume without loss of generality that the nodes p1, p2, . . . , pl
(l ≤ n) have sent the coordinator their local statistics vector for
oj. Recall that the coordinator records the average of the partial
Fig. 3. Employing ellipsoidal bounding regions. Data are usually not distributed identically along the various dimensions (a). The scaling process (b, c, d) yields ellipsoidal
bounding regions (d). Note that the reference vector (blue square) is constrained to lie at the origin, in order to satisfy the aforementioned domination constraint.

G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315 309
statistics vectors it received for oj in the partial statistics list. The
partial statistics vector maintained for oj is denoted by p⃗j. The
global statistics vector for oj can be written as follows:

x⃗j =

n−
i=1

x⃗j,i
n

=
l
n
p⃗j +

n−
i=l+1

x⃗j,i
n

. (3)

A geometric interpretation of Eq. (3) is that the global statistics
vector belongs to the convex hull of p⃗j, x⃗j,l+1, x⃗j,l+2, . . . , x⃗j,n. Let
the coordinator construct the sphere B(x⃗ref, p⃗j) and determine the
tentative upper bound uj,0, which is the maximum score received
by the vectors that belong to the sphere B(x⃗ref, p⃗j). According
to Theorem 2, the convex hull is contained in the union of the
spheres B(x⃗ref, x⃗j,l+1), B(x⃗ref, x⃗j,l+2), . . . , B(x⃗ref, x⃗j,n) and B(x⃗ref, p⃗j).
Consequently, the score of the object oj does not exceed the
maximum among uj,l+1, uj,l+2, . . . , uj,n and uj,0.

Next, we show that the tentative upper bound determined
by the coordinator does not exceed the maximum among the
tentative upper bounds determined by the nodes that sent it their
local vectors, i.e., uj,0 ≤ max(uj,1, uj,2, . . . , uj,l). This property is
based on the following theorem:

Theorem 4. Let x⃗j,1, x⃗j,2, . . . , x⃗j,l be d-dimensional vectors. Let p⃗j be
the average of the partial statistics vectors sent by nodes 1, 2, . . . , l.
Then uj,0 ≤ max(uj,1, uj,2, . . . , uj,l).

Proof. Since p⃗j is a weighted sum of the vectors x⃗j,1, x⃗j,2, . . . , x⃗j,l,
then according to the geometric interpretation, p⃗j ∈ Conv(x⃗j,1, x⃗j,2,
. . . , xj,l). According to Corollary 3, p⃗j ∈

l
i=1 B(x⃗ref, x⃗j,i). Therefore,

uj,0 ≤ max(uj,1, uj,2, . . . , uj,l). �

Consequently, the tentative upper bound determined by the coor-
dinator is guaranteed not to exceed the maximum among the ten-
tative upper bounds determined by these nodes.

4.2. Minimizing local accesses

The local candidate set, described in the previous section, con-
tains all the objects whose tentative upper bound exceeds a given
threshold τ2. However, calculating the tentative upper bound value
for every object in each node for every query incurs high local stor-
age access cost. In this section we show how to compute the lo-
cal candidate set by computing its value for only a fraction of the
objects in each node, by using a progressive detection of skyline
objects.

Given a set of objects, their skyline contains the objects in the
set whose local statistics vectors are not dominated by any local
statistics vector. Recall that a vector x⃗ dominates a vector y⃗(x⃗ ≻ y⃗)
if no component of x⃗ is smaller than the corresponding component
of y⃗. Given a set of objects in a node pi, we can therefore bound
their tentative upper bound value by bounding the tentative upper
bound of the skyline objects.

Lemma 5. Let x⃗a,i and x⃗b,i be local statistics vectors for two objects
at the node pi. Furthermore, let x⃗a,i dominate x⃗b,i. Then ua,i ≥ ub,i.
(The tentative upper bound value of the first object is greater than the
tentative upper bound value of the second object.)

Proof. We start by observing the following properties of the
domination relationship: given three vectors v⃗1, v⃗2, and v⃗3, where
v⃗1 dominates v⃗2, and v⃗2 dominates v⃗3:

1. The domination relationship is transitive, i.e., v⃗1 dominates v⃗3.
2. For any monotonic function f , f (v⃗1) ≥ f (v⃗2) ≥ f (v⃗3).
3. The translation operation preserves the domination relation-

ship, i.e., given a constant vector y⃗, v⃗1 + y⃗ dominates v⃗2 + y⃗.
4. Multiplication by a positive scalar preserves the domination

relationship, i.e., given α > 0, αv⃗1 dominates αv⃗2.
5. The distance between v⃗1 and v⃗3 is greater than the distance
between v⃗3 and v⃗2, i.e., ‖v⃗1 − v⃗3‖ > ‖v⃗2 − v⃗3‖.

Given two objects oa and ob, where oa locally dominates ob at
the node pi (i.e., x⃗a,i dominates x⃗b,i), we make several observations.
Recall our requirement that x⃗ref be dominated by all the local
statistics vectors. Thus, x⃗b,i dominates x⃗ref. Next, we examine
B(x⃗ref, x⃗a,i) and B(x⃗ref, x⃗b,i), the bounding spheres for oa and ob. The
centers of these spheres are x⃗ref+x⃗a,i

2 and x⃗ref+x⃗b,i
2 respectively. We

denote these centers by c⃗a,i and c⃗b,i. According to (3) and (4) above,
c⃗a,i dominates c⃗b,i. In addition, the radius of the bounding sphere
created for oa is greater than the radius of the bounding sphere
created for ob (follows from (5) above).

Recall that uj,i, the tentative upper bound for an object oj, is the
maximum score received for the vectors in the object’s bounding
sphere, i.e.,

uj,i = max
v⃗∈B(x⃗ref,x⃗j,i)

(f (v⃗)).

We claim that for any monotonic scoring function f , ua,i ≥ ub,i.
Let z⃗ ∈ B(x⃗ref, x⃗b,i) be a vector such that f (z⃗) = ub,i, i.e., z⃗ is the
vector in the bounding sphere defined for ob that maximizes the
scoring function f . Now we show how to match z⃗ with a vector
z⃗ ′ ∈ B(x⃗ref, x⃗a,i), such that z⃗ ′ dominates z⃗. Since z⃗ ′ belongs to
B(x⃗ref, x⃗a,i), its score does not exceed ua,i, i.e.,

f (z⃗ ′) ≤ ua,i.

Since z⃗ ′ dominates z⃗, its score is equal to or higher than the score
of z⃗, which is ub,i, i.e.,

ub,i ≤ f (z⃗ ′).

It follows that ua,i ≥ ub,i, as desired.
We match z⃗ ′ to z⃗ as follows. Let δ(z⃗) be the offset of z⃗ from the

center of the sphere, i.e.,

δ(z⃗) = z⃗ − c⃗b,i.

Then

z⃗ ′ = c⃗a,i + δ(z⃗).

Fig. 4 illustrates the constructs described above. It depicts the
reference vector, x⃗ref (blue square), the local statistics vector x⃗a,i
for the object oa (green circle), and the vector x⃗b,i for ob (red
circle). Note that x⃗a,i dominates x⃗b.i. The bounding spheres for
each object are depicted. The centers of the bounding spheres are
depicted by the green and reddiamonds. The figure depicts a vector
z⃗ that belongs to B(x⃗ref, x⃗b,i), and the corresponding vector z⃗ ′ in
B(x⃗ref, x⃗a,i).

Note that since the radius of the bounding sphere for oa is
larger than the radius of the bounding sphere for ob, if z⃗ belongs
to B(x⃗ref, x⃗b,i), then z⃗ ′ belongs to B(x⃗ref, x⃗a,i), as desired. In addition,
note that we can express z⃗ and z⃗ ′ as follows:

z⃗ = c⃗b,i + δ(z⃗)

z⃗ ′ = c⃗a,i + δ(z⃗).

Since c⃗a,i dominates c⃗b,i, according to (3) above, z⃗ ′ dominates z⃗, as
desired. As described above, it follows that ua,i ≥ ub,i. �

Theorem 6. Let Si be the set of skyline objects computed over a set
of objects in node pi and a given threshold τ2. If for every object oj in
Si, uj,i < τ2, then the tentative upper bound value for every object in
node pi is below τ2.

Proof. Let x⃗j,i be the local statistics vector of object oj in node pi.
If oj ∈ Si, then by definition uj,i < τ2. If oj ∉ S, then according

310 G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315
xb,i

←

←

xa,i

←

←

←

oz

←

oz1

δ(z)

←

δ(z)

vlower

Fig. 4. Two local vectors x⃗a,i and x⃗b,i are depicted, such that x⃗a,i dominates x⃗b,i .
The tentative upper bound defined by x⃗a,i is guaranteed not to be smaller than that
defined by x⃗b,i .

to the skyline definition, there exists an object ok, ok ∈ S, such
that x⃗k,i ≻ x⃗j,i. Since uj,i ≤ uk,i (Lemma 5) and uk,i < τ2, then
uj,i < τ2. �

Using Theorem 6, we present a progressive algorithm (Algorithm
2) for constructing the local candidate set while minimizing the
number of local accesses. Let O be a set of objects in node pi. Upon
initialization, this set contains all the objects in pi. At each iteration,
node pi computes the skyline objects set (S) of O, and computes
the tentative upper bound value of each object in this set. If the
tentative upper bound value of an object oj ∈ S is above τ2, then oj
is removed from O and added to the local candidate set. Otherwise,
this object is kept in O. The iteration process terminates when
the tentative upper bound value of all objects in S is below τ2.
According to Theorem 6, since the tentative upper bound value of
each object in S is below τ2, then the tentative upper bound values
of all current objects in O are below τ2 as well. In addition, the local
candidate set is now guaranteed to consist of the objects whose
tentative upper bound exceeds τ2.

Algorithm 2 Constructing local candidate list
1. LetO be the set of all objects in node pi, and τ2 a given threshold.
2. Compute the skyline objects set (S) of O.
3. For each object oj ∈ S, compute the local upper tentative bound

uj,i. If uj,i ≥ τ2, then remove oj from O and add it to the local
candidate set.

4. If the set O has been changes - return to 2.
5. Return the objects in the local candidate set.

Various algorithmswere proposed for efficiently computing the
skyline. These algorithms can be classified into two categories:
those which do not use pre-processing [5,17,14] (and therefore
have to make at least one pass over the database) and those which
use pre-processing [24,43,35] (such as indexing and sorting). Since
inmany database applications attribute values are already indexed
in a tree structure (e.g., B-tree, R-tree), here we have chosen to
apply the branch-and-bound technique for skyline computation
(BBS), proposed by Papadias et al. in [35]. The BBS algorithm
explores an R-tree using a best-first search paradigm, and has
been shown to be optimal with respect to R-tree page accesses.
Experiments, presented in Section 7, show that progressive
detection of skyline objects using BBS reduces the number of local
accesses by two orders ofmagnitude in comparison to accessing all
the objects in each node.

4.3. Minimizing computational costs

The top-k vectorial aggregation algorithm (Algorithm 1) pre-
sented in the previous section requires that the tentative upper
bound value be computed for every object. Finding the tentative
upper bound value can be viewed as an optimization problem of
the following form:

max(f (x⃗j,i)),
x⃗j,i ∈ D

where f is referred to as the objective function, and D is referred
to as the feasibility region (the bounding sphere B(x⃗ref, x⃗j,i) in our
case). The difficulty in solving optimization problems is that many
points in the feasibility regionmight locallymaximize the objective
function. Consequently, local algorithms, such as gradient descent,
maynot be suitable. In this sectionwepresent a branch-and-bound
method for determining the tentative upper bound value.

4.4. The branch-and-bound method

Given a threshold τ , our goal is to determine whether the
tentative upper bound value of an object’s local statistics vector
x⃗j,i is above τ , by determining the maximum score received in the
sphere B(x⃗ref, x⃗j,i). For many scoring functions, it may be difficult
to directly determine the maximum score received in a sphere,
but easy to determine the maximum score received in a box. For
monotonic scoring functions, for example, the maximum score in
a box is always obtained at the corner that has themaximum value
in all coordinates.

Using a branch-and-boundmethod, we cover the sphere with a
set of boxes, and compute the maximum scores received in them.
If the maximum scores are below τ , then the tentative upper
bound value of the object is also guaranteed to be below τ . If the
maximum scores are not below τ , we can increase the number of
boxes, creating a tighter cover of the sphere.

Given a sphere B(x⃗ref, x⃗j,i), amonotonic scoring function f (), and
a threshold value τ , the branch-and-bound method (as described
in Algorithm 3) initializes with the set of boxes containing a single
box that tightly encloses the sphere. If the maximum value on the
box is below τ , the algorithm terminates; otherwise it refines this
set in the next iteration. Let Bi be the set of boxes maintained
by the algorithm in the ith iteration. At the beginning of each
iteration, the algorithm selects the box in which the maximum
score is received.We denote this box by bi. If bi’s maximum score is
below the threshold, the algorithm terminates, having determined
that the maximum value of this sphere is below τ . Otherwise, the
algorithm determines the vector of the sphere that is closest to
bi’s corner. This vector is denoted by v⃗∗

i. If f (v⃗∗
i) is above τ , the

algorithm terminates and reports this object. Otherwise, v⃗∗
i is used

to partition bi into 2d sub-boxes, as depicted in Fig. 5. The algorithm
defines the set Bi+1 to include all the boxes in Bi. It then proceeds to
the next iteration, excluding bi, and all the sub-boxes of bi. After a
finite number of iterations, if there is a box whose maximum score
exceeds the given threshold, then the algorithm terminates and
reports this object.

As the number of iterations increases, the maximum score
received in the set of boxes is closer to the tentative upper bound
value. Experimentswith the branch-and-boundmethod over a real
data set (AOL query logs) have shown that the average number of
iterations needed to determinewhether the tentative upper bound
value of an object is above a threshold τ2 is very low, the average
number of iterations in 50,000 runs was 1.95 and the standard
deviation 0.054.

G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315 311
v1

←

v2

←

(a) 1st Iteration. (b) 2nd Iteration.

Fig. 5. The branch-and-bound method. In the first iteration (a), the maximum score of the red (solid) box is above the threshold, and this box is partitioned to two blue
(dashed line) sub-boxes. In the next iteration (b), the right blue box is selected and partitioned to the two grey (dotted) sub-boxes.
Algorithm3 Checking if an object’s tentative upper bound is above
a given threshold
1. Given x⃗j,i - the local statistics vector of object oj in node pi; a

reference vector x⃗ref; a scoring function f ; and a threshold τ .
2. Let i = 0 - An iteration counter.
3. Compute the sphere B(x⃗ref, x⃗j,i). Let Bi be the tightly enclosing

box of this sphere.
4. While i <number of iterations:
(a) Let bi ∈ Bi be the box with the maximum score according to

f .
(b) If bi’s score is below τ - the tentative upper bound of oj is

below the threshold and the algorithm terminates without
reporting it.

(c) Otherwise, choose the vector of the sphere that is closest to
bi’s corner. Denote this vector by v⃗∗

i.
(d) If f (v⃗∗

i) ≥ τ , report object oj and terminate.
(e) Otherwise, partition bi into 2d sub-boxes using v⃗∗

i .
(f) Set Bi+1 to include all the boxes in Bi and all the sub-boxes of

bi, excluding bi.
(g) i = i + 1;

5. Report oj and terminate.

5. Communication cost vs. latency

Recall that at the end of the third phase of the algorithm, the
top-k scoring objects are among the objects in the partial statistics
list maintained by the coordinator. In addition, the coordinator
determined τ3, a lower bound on the scores of the top-k objects.
The tentative upper bound determined by the coordinator for all
the objects in the partial statistics list is equal to or exceeds τ3.

In the fourth phase, the coordinator determines the top-k
scoring objects among the objects in the partial statistics list. To
perform this phase in a single round-trip interaction between the
nodes and the coordinator, the coordinator requests from all the
nodes all the local data vectors for all the objects in the list. Once
the coordinator has collected complete statistics for the objects, it
determines their scores and selects the top-k scoring objects. This
single-round approach allows low latency, but requires all the local
data vectors for each object.

However, many objects can be eliminated by the coordinator
using only a fraction of their local data vectors. Rather than
collecting all the local vectors for all the objects in a single round,
the coordinator can employ several rounds to gradually add local
vectors for each object. After each round the coordinator may raise
the lower bound it maintains on the scores of the top-k objects,
reduce the tentative upper bound it maintains for each object in
the partial statistics list, and prune out objects from the list. We
call this process the incremental elimination of objects.

The incremental elimination process is performed as follows. In
the ith round, for every object oj in the partial statistics list, the
coordinator randomly selects 2i−1 nodes that have not reported
their local vector for the object. Without loss of generality, we
denote these nodes by p1, p2, . . . , pl (where l = 2i−1). The
coordinator requests that these nodes send it their local statistics
vectors for oj, and adds these new vectors to the partial statistics
list. Note that the tentative upper bounds determined by the
nodes p1, p2, . . . , pl for the object oj are below τ3 (since they have
not been reported in phase 2), while the tentative upper bound
determined by the coordinator for oj is above τ3. Since adding the
new vectors to the partial statistics list cannot increase an object’s
tentative upper bound (see Section 4.1.1), the coordinator can
eliminate objects whose partial tentative upper bound is below τ3,
without collecting all their local data vectors. In addition, at the end
of each phase, the coordinator may have completed collecting all
the statistics for some objects, and may improve the lower bound
on the score of the top-k objects.

After each round, the coordinator examines the list of objects
for which it has complete statistics, and sets τ ′

i to be the score of
the kth scoring object. Note that τ ′

i ≥ τ ′

i−1. Then, the coordinator
determines updated tentative upper bounds for the objects in the
partial statistics list. Any object whose tentative upper bound is
below τ ′

i is removed from the list.
While the incremental execution of the fourth phase increases

the latency of the algorithm (since it requires more rounds), it
avoids collecting all the local vectors for objects that have been
eliminated in early rounds, thus dramatically reducing communi-
cation cost. The incremental execution is more significant as the
number of nodes scales up. Experimental results show that the
incremental implementation of the algorithm reduces the overall
communication cost by up to a factor of five beyond the improve-
ment reported in Section 4.1. The number of rounds performed in
the fourth phase does not exceed log(n), where n is the number of
nodes.

6. Data updates and scalability

The basic algorithm, presented in Section 3, assumes static data
with a single coordinator. In this section we will present two
versions of the algorithmwhich allow to relax these assumptions.

312 G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315
6.1. Changes in vectors

In this setup we assume that local vectors can change. Such
changes may affect the top-k result. The next algorithm presents
an efficient solution to this problem.
(1) Phases I–IV—the same as in the basic algorithm. After phase IV

the user receives the current top-k objects.
(2) Phase V—Let x⃗j,r be an updated local statistics vector of object

j in node r . Assume for the moment that oj is not among the
previous top-k. Given the new updated vector, node r reports
oj and its vector to the coordinator if one of the following
conditions holds:
(a) If uj,r ≥ τ2.
(b) If x⃗j,r does not dominate x⃗ref.
(c) If oj is member of the global candidate set and its updated

vector is not dominated by its previous value (x⃗oldj,r).
(3) Phase VI—if x⃗j,r was reported in phase V, the coordinator needs

to recompute oj’s global score. If oj is not amember of the global
candidate set (compiled during phase III), then the coordinator
requests all its local statistics vectors from all nodes; otherwise
it already holds its vectors. Given oj’s current global score, the
coordinator redetermines the top-k result, and upon changes
reports to the user.

Theorem 7. The above-described algorithm correctly identifies the
top-k objects, while supporting local vector updates.

Proof. We show that if none of the conditions in phase V is satis-
fied, then the top-k objects have not changed. We need to check
two cases. Firstly, assume x⃗j,r is not a member of the global can-
didate sets, uj,r < τ2 and x⃗j,r ≻ x⃗ref. Since oj is not a member of
the global candidate set, its tentative upper bounds in all nodes are
below τ2. In addition, also in node r the tentative upper bound is
below τ2. Since the reference point should not be changed (since
x⃗j,r ≻ x⃗ref), then according to Theorem 1, the global score of ob-
ject oj is below τ2, and it is not a member of the top-k objects. In
the second case, oj is a member of the global candidate set, but the
updated value x⃗j,r is dominated by the its previous value (x⃗oldj,r). So
oj’s new global vector (x⃗j) is dominated by its global previous value
(x⃗oldj), i.e., x⃗oldj ≻ x⃗j. Since the scoring function f () is monotonic,
f (x⃗oldj) ≥ f (x⃗j), and the top-k set will not change. Therefore, the co-
ordinator is updated only in specific cases of local vector updates;
in the other cases, the nodes handle the update without requiring
any communication. �

The algorithm above assumes that the local statistics vectors of
the top-k objects have not changed. Such a change may reduce the
threshold value (τ2) and therefore requires re-execution of the top-
k query. However, the probability of this scenario is very low

 k
m

as k ≪ m.

6.2. Multiple coordinators

In the basic algorithm, all the communication takes place be-
tween the single coordinator and the nodes. In case of a very
large network, this setup may impose considerable communica-
tion overhead on the coordinator. In this section we present a dif-
ferent version of the algorithm, which supports multi-coordinator
setups for reducing the maximal communication load incurred by
any single node in the system.

Given a system consisting of n nodes, we define additional C
nodes, denoted c1, . . . , cC , to also act as coordinators. We define
a lookup function h() which matches objects to coordinators h :

oj → ct (h() is assumed to assign an equal number of objects to
each coordinator). We choose this type of matching (as opposed to
assigning each coordinator a subset of nodes), since we are solving
a problemdefined on the object space, andnot the node space. Now
we present the following multi-coordinator algorithm:
(1) Phase I—Each node locally determines its top-k scoring objects
and reports them, with their local statistics vectors, to the
appropriate coordinator, using the lookup function h().

(2) Phase II—Each coordinator computes the partial sum statistics
vector for each of the reported objects (i.e., the aggregation of
reported objects) and defines its current top-k objects. Each
coordinator broadcasts its top-k objects to all C coordinators,
and then each coordinator locally calculate the kth lower
bound score (as described in Section 3.1). This score is defined
as the threshold τ1.

(3) Phase III—The coordinators broadcast τ1 to the nodes (note that
this is just a single scalar), and each node determines the set of
objects whose local tentative bound exceeds τ1, denoted as its
local candidate set. Each object in a local candidate set with
its local statistics vector is reported to the object’s appropriate
coordinator, using h().

(4) Phase IV—Each coordinator joins the nodes broadcasts and de-
fines its coordinator candidate set (ccst). Note that the global
candidate set is the union of these lists, i.e., gcs =

C
t=1{ccst}.

Given the information from the various nodes, each coordina-
tor computes the local tentative upper bounds of each object
in its ccst , and prunes objects whose value does not exceed
the threshold. The coordinators’ candidate sets are sent to the
nodes.

(5) PhaseV—Eachnode returns to each coordinator the local statis-
tics vector for each object in the coordinator candidate list.

(6) Phase VI—Each coordinator computes the global score of each
of the objects in its coordinator candidate list, and sends to all
coordinators its top-k objects and their score.

(7) Phase VII—Each coordinator can compute the top-k top scored
objects, and return this result to the user.

In case a coordinator maintains a list which is smaller than k,
then in phases II and VI, the coordinator will publish all the objects
in its list.

Lemma 8. The threshold τ1 bounds the value of the kth top scored
object.

Proof. Each node reports k objects to the various coordinators.
After phase II each coordinator reports its top-k objects (using the
partial statistics vectors) or its entire list (in case the list size is
smaller than k). At the end of phase II each coordinator maintains
a list of objects of length at least k and at most Ck. According to
τ1’s definition, it bounds the value of the k top scoring objects in
this list, i.e., there are at least k objects whose scores exceed τ1, as
required. �

Theorem 9. The algorithm correctly finds the top-k scoring objects.

Proof. Assume that an object oj is a member of the top-k set, and
that it was not reported by the coordinator at the termination
of the algorithm. Therefore, either oj was not a member in the
coordinator’s top-k scoring objects in phaseVI (contradiction to oj’s
definition), or it was not a member in the global candidate set. In
this case, the tentative upper bound of oj in each node was below
τ1. But, according to Lemma 8, τ1 bounds the value of the top-k
objects, contradicting oj’s definition. �

The concept of the lookup function h() and multiple coordina-
tors has been extensively used inDHT (DistributedHash Table) sys-
tems over peer-to-peer networks [42,38]. This approach enables
the algorithm to scale and reduce the maximal overhead relative
to a single coordinator setup. In addition, it can be applied to se-
tups in which nodes can disconnect and connect. In the future we
plan to extend the algorithm to peer-to-peer networks.

G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315 313
Fig. 6. The communication cost incurred by the variants of our algorithm in comparisonwith the cost incurred by TPUT, KLEE, BPA, and the basic solution. The communication
cost incurred by the incremental variant of our algorithm is two to four orders of magnitude lower than the cost of existing alternatives.
7. Experimental results

We evaluated the proposed algorithm using real-world data
compiled from four different data sets. Each set consisted of a
collection of tuples, where each tuple contained a list of terms
(words). These tuples were partitioned into disjoint groups, simu-
lating data held by distributed nodes. The goal of the experiments
was to distributively determine the k most highly correlated pairs
of terms in the original collection.

We used Pearson’s Correlation Coefficient function, defined in
detail in Section 1.1. The first two data sets were taken from search
queries, collected from a large, centralized search engine, over a
period of 3 months [39]. Each tuple in the data represented a
search query, and consisted of the search terms that appeared in
the query. We simulated data for a set of 100 nodes by splitting
the centralized query log in a round robin fashion. The first data set
consisted of all 100 nodes and is referred to as the QL-100 dataset.
The second set, referred to asQL-50, consisted of 50 nodes, selected
randomly from QL-100.

The third and fourth data sets were taken from the Reuters
Corpus (RCV1-v2) [37]. This Corpus consists of 804,014 news sto-
ries, each tagged as belonging to one or more of 103 content
categories. We restricted ourselves to the 47 categories contain-
ing at least 10,000 news stories, and used a precomputed list of
terms [25] contained in each news story. The third data set, re-
ferred to as RT -47, consisted of all 47 partitions. The fourth data
set, referred to as RT -25, consisted of 25 partitions that were ran-
domly selected fromRT -47. Partitioning by category (as opposed to
round robin) yields more heterogeneous data between the nodes.

In our experiments, we compared the communication cost
and number of local accesses incurred by our algorithm with
those of previously proposed algorithms (TA, TPUT, KLEE). We also
evaluated our algorithm’s scalability.

7.1. Communication cost

We compared the communication cost incurred by our algo-
rithm with the cost incurred by the Three-Phase Uniform Thresh-
old algorithm (TPUT) [8], KLEE algorithm [29], and Best Position
algorithm (BPA) [1]. We tested three variants of our algorithm: the
basic variant, which uses spherical bounding regions (as described
in Section 4.1); the scaled variant, which uses ellipsoidal bounding
regions (as described in Section 4.1); and the incremental variant,
which uses ellipsoidal bounding regions and executes the fourth
phase incrementally (as described in Section 5). Each algorithm
was run on each of the four data sets described above, for k = 10
and k = 100.

Communication cost was measured in terms of the number of
objects (in our case, pairs of terms) transmitted during the execu-
tion of the algorithm. For example, each object that is reported to
the coordinator in the first phase of our algorithm is counted as a
single transmission (and the communication cost of the first phase
is therefore kn). However, each object collected by the coordinator
in the second phase is counted as two transmissions, one in which
the coordinator sends each node a list of requested objects, and
the other in which the nodes reply with the local vectors for these
objects.

We first compare the basic algorithm with the TPUT, KLEE
and BPA algorithms. The results depicted in Fig. 6 show that the
communication cost of the basic algorithm is one to two orders
of magnitude lower than that of the naive approach. Neither do
TPUT, KLEE, and BPA perform well for these top-k queries over
our data sets. Their high communication cost is due to the large
set of different objects reported to the coordinator (candidate set),
emphasizing the problem in local elimination when viewing the
scoring function as a dn-dimensional function. In addition, during
the execution of these algorithms, the coordinator asks the nodes
to complete the statistics vector for every object in the candidate
set. Fig. 6 shows that over RT -47 and RT -25, the cost of this round-
trip increases overall communication cost in comparison to the
naive approach.

We next tested the scaled and incremental variants of our algo-
rithm. The scaled variant consistently outperformed the basic vari-
ant (which uses spherical bounding regions), with communication
costs lower by a factor of five. As depicted in Fig. 6, the commu-
nication cost of the scaled variant is between one to three orders
of magnitude lower than that of the basic solution (one order of
magnitude on RT -47 and RT -25 for the top-100 query, two orders
of magnitude on RT -47 and RT -25 for the top-10 query, and three
orders of magnitude on QL-100 and QL-50 for both top-100 and
top-10 queries).

Finally, we tested the incremental variant of our algorithm. The
incremental variant consistently outperformed the scaled variant,
with communication costs up to four orders of magnitude lower
than the basic solution (top-10 query on QL-100 and QL-50). The
results of our experiments indicate that the incremental execution
is more effective when the number of nodes is higher. In addition,
it was more effective on the RT data sets than on the QL data sets.

Communication costs are consistently lower for QL-100 and
QL-50 (in comparison with RT -47 and RT -25). We attribute this to
the relatively homogeneous distribution of data among the nodes
in these datasets.

7.2. I/O cost

In the third phase of the algorithm every node determines
a local candidate set, which consists of all the objects whose
tentative upper bound exceeds a threshold value sent by the
coordinator. A naive approach for constructing this set is to access
every object, determine its tentative upper bound, and then select
the ones whose tentative upper bound exceeds the threshold. This
approach is inefficient as it requires each node to retrieve all the
objects from secondary memory. As explained in Section 4.2, local
domination relationships among objects can be used by the nodes
to efficiently reduce I/O cost.

314 G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315
Fig. 7. The I/O cost of constructing the local candidate sets using a progressive detection of skyline objects is an order of magnitude lower than that of the naive solution.
Fig. 8. The graph presents the scalability of the Basic, Scaled, and Incremental algorithms with the number of nodes. The y-axis represents the communication cost of the
different algorithms divided by the total number of objects over the AOL data. The Incremental algorithm scales well since the communication cost is proportional to the
number of nodes. The Basic and Scaled algorithms, however, do not scale well.
Fig. 7 displays the number of objects that have been locally
accessed by the nodes using the local domination relationships
for the top-10 and top-100 queries. We compared the scaled
and incremental algorithms with the naive approach. The results
indicate that the method presented in Section 4.2 incurs an I/O
cost lower than that of the naive approach by well over an order
of magnitude (an average factor of 25 for the top-100 queries,
and an average factor of 45 for the top-10 queries). The results
also indicate that the incremental algorithm is more effective with
increasing value of k. This can be explained by the size of the global
candidate list. As the value of k is higher, the global threshold is
lower, and more objects are reported to the global candidate list.
Thus, the incremental algorithm reduces the number of statistics
vectors collected for each object in the global candidate set.

7.3. Scalability

Next we tested the Basic, Scaled, and Incremental algorithms
with an increasing number of nodes (from 10 to 100), and
computed the communication cost divided by the total number
of local statistics vectors. If this ratio is constant, the algorithm
scales well. Fig. 8 shows the scalability of these algorithms. The
graphs indicate that the Basic and Scaled algorithms do not scale
well, while the communication cost of the Incremental algorithm
is constantly proportional to the number of nodes. The scalability is
achieved by the fourth phase of the Incremental algorithm, which
enables the elimination of large sets of objects in the candidate set
without collecting their local statistics vectors from all nodes.

8. Conclusion and future work

We presented an algorithm for performing distributed top-k
vectorial aggregation queries. The proposed algorithm maintains
low latency and low I/O cost. Experiments on real-world data
indicate that the algorithm incurs communication costs lower
by orders of magnitude than the costs incurred by the existing
alternatives, and scales well as the number of nodes participating
in the query increases. In the future, we plan to extend the work
presented in this paper to handle continuous top-k queries over
distributed streams, and to peer-to-peer networks.

References

[1] Reza Akbarinia, Esther Pacitti, Patrick Valduriez, Best position algorithms for
top-k queries, in: VLDB 2007, pp. 495–506.

[2] Benjamin Arai, Gautam Das, Dimitrios Gunopulos, Nick Koudas, Anytime
measures for top-k algorithms, in: VLDB 2007, pp. 914–925.

[3] Wolf-Tilo Balke, Wolfgang Nejdl, Wolf Siberski, Uwe Thaden, Progressive
distributed top-k retrieval in peer-to-peer networks, in: ICDE, IEEE Computer
Society, Washington, DC, USA, 2005, pp. 174–185.

[4] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald, Gerhard
Weikum, Io-top-k: index-access optimized top-k query processing, in: VLDB
2006, pp. 475–486.

[5] Stephan Borzsonyi, Konrad Stocker, Donald Kossmann, The skyline operator,
pp. 421–430.

[6] Nicolas Bruno, Surajit Chaudhuri, Luis Gravano, Top-k selection queries over
relational databases: mapping strategies and performance evaluation, ACM
Trans. Database Syst. 27 (2) (2002) 153–187.

[7] Nicolas Bruno, Amelie Marian, Luis Gravano, Evaluating top-k queries over
web-accessible databases, in: ICDE 2002, pp. 319–362.

[8] Pei Cao, Zhe Wang, Efficient top-k query calculation in distributed networks,
in: PODC 2004, pp. 206–215.

[9] Kevin Chen-Chuan Chang, Seung won Hwang, Minimal probing: Supporting
expensive predicates for top-k queries, in: SIGMOD 2002.

[10] Surajit Chaudhuri, GautamDas, Vagelis Hristidis, GerhardWeikum, Probabilis-
tic ranking of database query results, in: VLDB 2004, pp. 888–899.

[11] Surajit Chaudhuri, Luis Gravano, Evaluating top-k selection queries, in: VLDB
1999, pp. 397–410.

[12] Jan Chomicki, Parke Godfrey, Jarek Gryz, Dongming Liang, Skyline with
presorting, pp. 717–719.

[13] Gautam Das, Dimitrios Gunopulos, Nick Koudas, Dimitris Tsirogiannis,
Answering top-k queries using views, in: VLDB 2006, pp. 451–462.

[14] Atish Das Sarma, Ashwin Lall, DanuponNanongkai, Jun Xu, Randomizedmulti-
pass streaming skyline algorithms, Proc. VLDB Endow. 2 (1) (2009) 85–96.

[15] Ronald Fagin, Amnon Lotem, Moni Naor, Optimal aggregation algorithms for
middleware, in: PODS 2001, pp. 102–113.

[16] Parke Godfrey, Ryan Shipley, Jarek Gryz, Maximal vector computation in large
data sets, in: VLDB 2005, pp. 229–240.

G. Sagy et al. / J. Parallel Distrib. Comput. 71 (2011) 302–315 315
[17] Parke Godfrey, Ryan Shipley, Jarek Gryz, Algorithms and analyses for maximal
vector computation, VLDB J. 16 (1) (2007) 5–28.

[18] Ulrich Güntzer, Wolf-Tilo Balke, Werner Kießling, Optimizing multi-feature
queries for image databases, in: VLDB 2000, pp. 419–428.

[19] Ulrich Güntzer, Wolf-Tilo Balke, Werner Kießling, Towards efficient multi-
feature queries in heterogeneous environments, in: ITCC 2001, pp. 622–628.

[20] Ling Huang, XuanLong Nguyen, Minos N. Garofalakis, Joseph M. Hellerstein,
Michael I. Jordan, Anthony D. Joseph, Nina Taft, Communication-efficient
online detection of network-wide anomalies, in: INFOCOM, 2007, pp.
134–142.

[21] Ihab F. Ilyas, Walid G. Aref, Ahmed K. Elmagarmid, Joining ranked inputs in
practice, in: VLDB 2002, pp. 950–961.

[22] Ihab F. Ilyas, Walid G. Aref, Ahmed K. Elmagarmid, Supporting top-k join
queries in relational databases, in: VLDB 2003, pp. 754–765.

[23] Ankur Jain, Joseph M. Hellerstein, Sylvia Ratnasamy, David Wetherall, A
wakeup call for internet monitoring systems: the case for distributed triggers,
2008.

[24] Donald Kossmann, Frank Ramsak, Steffen Rost, Shooting stars in the sky: an
online algorithm for skyline queries, in: VLDB’02, pp. 275–286.

[25] David D. Lewis, Yiming Yang, Tony G. Rose, Fan Li, Rcv1: a new benchmark
collection for text categorization research, J. Mach. Learn. Res. 5 (2004)
361–397.

[26] Chengkai Li, Kevin Chen-Chuan Chang, Ihab F. Ilyas, Supporting ad-hoc ranking
aggregates, in: SIGMOD 2006, pp. 61–72.

[27] Hua-Gang Li, Hailing Yu, Divyakant Agrawal, Amr El Abbadi, Progressive
ranking of range aggregates, Data Knowl. Eng. 63 (1) (2007) 4–25.

[28] SebastianMichel, Top-k aggegation queries in large-scale distributed systems,
in: BTW, 2009, pp. 418–427.

[29] Sebastian Michel, Peter Triantafillou, GerhardWeikum, Klee: a framework for
distributed top-k query algorithms, in: VLDB 2005, pp. 637–648.

[30] Sebastian Michel, Peter Triantafillou, Gerhard Weikum, Minerva∞: a scalable
efficient peer-to-peer search engine, in: Middleware, 2005, pp. 60–81.

[31] Surya Nepal, M. V. Ramakrishna, Query processing issues in image (multime-
dia) databases, in: ICDE 1999, pp. 22–29.

[32] Thomas Neumann, Matthias Bender, Sebastian Michel, Ralf Schenkel, Peter
Triantafillou, Gerhard Weikum, Distributed top-aggregation queries at large,
Distrib. Parallel Databases 26 (1) (2009) 3–27.

[33] Thomas Neumann, Sebastian Michel, Algebraic query optimization for
distributed top-k queries, in: BTW, 2007, pp. 324–343.

[34] Dimitris Papadias, Yufei Tao, Greg Fu, Bernhard Seeger, Progressive skyline
computation in database systems, vol. 30, pp. 41–82.

[35] Dimitris Papadias, Yufei Tao, Greg Fu, Bernhard Seeger, Progressive skyline
computation in database systems, ACM Trans. Database Syst. 30 (1) (2005)
41–82.

[36] Byung-Hoon Park, Hillol Kargupta, Distributed Data Mining: Algorithms,
Systems, and Applications, Lawrence Erlbaum Associates, 2002.

[37] Tony Rose, Mark Stevenson, Miles Whitehead, The reuters corpus volume 1—
from yesterday’s news to tomorrow’s language resources, in: Proceedings of
the Third International Conference on Language Resources and Evaluation, Las
Palmas de Gran Canaria, May 2002.

[38] Antony I.T. Rowstron, Peter Druschel, Pastry: scalable, decentralized object
location, and routing for large-scale peer-to-peer systems, in: Middleware,
2001, pp. 329–350.

[39] 2002. http://gregsadetsky.com/aol-data/.
[40] Izchak Sharfman, Assaf Schuster, Daniel Keren, A geometric approach to

monitoring threshold functions over distributed data streams, ACM Trans.
Database Syst. 32 (4) (2007).

[41] Izchack Sharfman, Assaf Schuster, Daniel Keren, Shape sensitive geometric
monitoring, in: PODS 2008, pp. 301–310.

[42] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, Hari
Balakrishnan, Chord: a scalable peer-to-peer lookup service for internet
applications, in: SIGCOMM, 2001, pp. 149–160.

[43] Kian-Lee Tan, Pin-Kwang Eng, Beng Chin Ooi, Efficient progressive skyline
computation, in: VLDB 2001, pp. 301–310.
[44] Martin Theobald, Gerhard Weikum, Ralf Schenkel, Top-k query evaluation
with probabilistic guarantees, in: VLDB 2004, pp. 648–659.

[45] Panayiotis Tsaparas, Themistoklis Palpanas, Yannis Kotidis, Nick Koudas,
Divesh Srivastava, Ranked join indices, in: ICDE 2003, p. 277.

[46] Akrivi Vlachou, Christos Doulkeridis, Kjetil Nørvåg, Michalis Vazirgiannis,
On efficient top-k query processing in highly distributed environments, in:
SIGMOD 2008, pp. 753–764.

[47] Akrivi Vlachou, Christos Doulkeridis, Kjetil Nørvåg, Michalis Vazirgiannis,
Skyline-based peer-to-peer top-k query processing, in: ICDE 2008, pp.
1421–1423.

[48] Tianyi Wu, Dong Xin, Jiawei Han, Arcube: supporting ranking aggregate
queries in partially materialized data cubes, in: SIGMOD 2008, pp. 79–92.

[49] Dong Xin, Jiawei Han, Kevin Chen-Chuan Chang, Progressive and selective
merge: computing top-kwith ad-hoc ranking functions, in: SIGMOD 2007, pp.
103–114.

[50] Xifeng Yan, Bin He, Feida Zhu, Jiawei Han, Top-k aggregation queries over large
networks, in: ICDE, 2010, pp. 377–380.

[51] Ke Yi, Hai Yu, Jun Yang, Gangqiang Xia, Yuguo Chen, Efficient maintenance of
materialized top-k views, in: ICDE 2003, pp. 189–200.

[52] Hailing Yu, Hua-Gang Li, PingWu, Divyakant Agrawal, Amr El Abbadi, Efficient
processing of distributed top-k queries, in: DEXA 2005, pp. 65–74.

[53] Zhen Zhang, Seung won Hwang, Kevin Chen-Chuan Chang, Min Wang,
Christian A. Lang, Yuan-Chi Chang, Boolean + ranking: querying a database
by k-constrained optimization, in: SIGMOD 2006, pp. 359–370.

Guy Sagy is a graduate student at the Computer Science Faculty, the Technion. His
main area of research is distributed algorithms.

Izchak Sharfman recently completed his Ph.D. in the Computer Science Faculty,
the Technion. His main area of research is distributed algorithms and geometric
methods for stream processing.

Daniel Keren http://cs.haifa.ac.il/~dkeren/, (Ph.D. 1991, Hebrew University in
Jerusalem) is currently the chairman of the computer science department in Haifa
University, Haifa, Israel. Prof. Keren’s main fields of research are geometry and
probability. He publishedmostly in computer vision journals and conferences. Since
2003, he has beenworking closelywith Prof. Assaf Schuster’s group in the Technion,
in the area of distributed monitoring. His main contribution is in the mathematical
aspects of the research such as object modelling, learning, optimization, and
probability. A main novelty of the joint research is the incorporation of such
mathematical tools into the research paradigm; this allowed to develop entirely
newmethodologies, based on geometry, to monitor general functions. Prof. Keren’s
goal is to continue developing the mathematical tools used so far, as well as to
develop new ones, to improve and extend the applications of these tools tomonitor
and mine large, distributed data sets.

Assaf Schuster (http://www.cs.technion.ac.il/~assaf) has established and ismanag-
ing DSL—the Distributed Systems Laboratory http://dsl.cs.technion.ac.il. Several CS
faculty members see DSL as the main scope hosting their applied and systems re-
search, with about 35 graduate and hundreds of undergraduate students working
in the lab during the academic year. DSL is supported by Intel, Microsoft, Sun, IBM,
and other interested partners. Prof. Schuster is well known in the area of parallel,
distributed, high performance, and grid computing. He published over 160 papers
in those areas in high-quality conferences and journals. He regularly participates
in program committees for conferences on parallel and distributed computing. He
consults the hi-tech industry on related issues and holds seven patents. He serves
as an associate editor of the Journal of Parallel and Distributed Computing, and IEEE
Transactions on Computers. He supervises seven Ph.D. students and ten M.Sc. stu-
dents, and takes part in large national and EU projects as an expert on grid and
distributed computing.

http://gregsadetsky.com/aol-data/
http://cs.haifa.ac.il/~dkeren/
http://www.cs.technion.ac.il/~assaf
http://dsl.cs.technion.ac.il

	Top- k vectorial aggregation queries in a distributed environment
	Introduction
	Problem definition and notations
	Related work

	Problem model
	Review of BPA, TPUT and KLEE algorithms
	Our approach

	Top- k vectorial aggregation query algorithm
	Phase I---determining the lower bound
	Phase II---improving the lower bound
	Phase III---local elimination of objects
	Phase IV---determining the top- k scoring objects

	Determining tentative upper bounds
	Definition of tentative upper bounds
	Determining tentative upper bounds at the coordinator

	Minimizing local accesses
	Minimizing computational costs
	The branch-and-bound method

	Communication cost vs. latency
	Data updates and scalability
	Changes in vectors
	Multiple coordinators

	Experimental results
	Communication cost
	I/O cost
	Scalability

	Conclusion and future work
	References

