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used to estimate the ‘‘roughness’’ of a grey-level image,
was replaced by a three-dimensional Laplacian, which alsoThe problem addressed in this work is restoration of images

that have several channels of information. We have studied incorporates between-channel smoothness. Also, the GCV
color images so far, but hopefully the ideas presented here method for estimating the regularization parameter (see
apply to other types of images with more than one channel. Section 4) was extended to handle multichannel regular-
The suggested method is to use a probabilistic scheme which ization.
proved rather useful for image restoration and to incorporate Our approach resembles that of [24]; however, we sug-
into it an additional term which results in a better correlation

gest measuring the smoothness in color space by differentbetween the color bands in the restored image. Results obtained
methods. This is motivated by the observation that spatialso far are good; typically, there is a reduction of 20 to 40% in
smoothness and ‘‘color smoothness’’ are, in our opinion,the mean square error, compared to standard restoration car-
rather different entities. For instance, an image can haveried out separately on each color band. The contributions sug-
a very rough spatial structure, but be very smooth in colorgested in this work are the introduction of ‘‘correlation terms,’’

which augment ‘‘standard’’ regularization, and the process of space, and vice versa. ‘‘Color smoothness’’ is naturally
choosing two regularization hyperparameters. Also, a relation defined by the change in the chrominance, not the
between the algorithm suggested here and the recently intro- brightness.
duced ideas of smoothing by diffusion in color space is The difference between spatial smoothness and color
explored.  1998 Academic Press smoothness can be demonstrated by a simple example.

Suppose P1 and P2 are adjacent pixels. In case (a), let the
color values of P1 , in the red-green-blue (RGB in the

1. INTRODUCTION AND PREVIOUS WORK
sequel) channels, be (r, g, b), and those of P2 be (r 1 d,
g 1 d, b 1 d). In case (b), the values are (r, g, b) andThe last years have witnessed a growth in the amount
(r 1 d, g 2 d, b 1 d), respectively. In both cases, the spatialof research on multichannel image restoration; see, for
smoothness, as measured separately in the three colorinstance, [24, 10, 18, 11, 4, 5, 9, 16, 13, 14]. In these works,
channels, is the same; however, in case (b), the clique ofthe between-channel correlation was used to restore multi-
P1 and P2 is less smooth in color space.channel images. Various tools were called to task, including

We applied two different tools to measure colorregularization [24, 10, 9], Kalman filtering [4], least square
smoothness:restoration [5], Wiener filtering [16], stochastic methods

using Markov random fields [18], differential geometry [13, • A Bayesian measure. Here, the average colors and
color covariance matrix at each pixel were estimated from14, 17], and total variation methods [1].

Difficulties in some of the aforementioned approaches a small neighborhood; the process was bootstrapped from
the ‘‘simple’’ denoised image, that is, the image consistingare the necessity of manipulating very large matrices of a

nontrivial structure, and the problem of estimating the of the three color channels obtained by independently de-
noising each channel of the original image. Then, the ‘‘colorimage’s autocorrelation function. In [24], it was suggested

overcoming these problems by using regularization. This smoothness’’ was estimated by computing the probability
of each color pixel in the Gaussian distribution with thewas accomplished by adjusting the ‘‘smoothness term’’ so

that it will force smoothness not only in the spatial domain aforementioned average and covariance.
• A ‘‘geometric measure.’’ Here, the following intuitiveof each color, but also between the distinct color channels.

Specifically, the Laplacian operator, whose norm is often idea was adopted: an image is smooth in color space if, on
the average, the angle between adjacent color pixels—
when viewed as vectors in RGB space—is small. As a1 Corresponding author. E-mail: dkeren@mathcs2.haifa.ac.il.
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measure of the angle, the squared norm of the vector the color correlation terms introduced here, is noted. How-
ever, on the images tested, restoration by using the surfaceproduct between adjacent pixels was used. The advantage

over using the angle itself is that this norm is a more area as a measure for image quality resulted in inferior
results (according to the mean square error criterion) asmanageable function of the color values. In the Appendix,

we offer a possible explanation as to why the geometric compared to those obtained when using the correlation
terms. This may be due to the fact that the expression formeasure is suitable for restoring color images; namely, it

is shown that it may be viewed as a natural extension of the area contains the squared first derivatives of the color
values (or the so-called first-order smoothness term); it has‘‘standard’’ regularization, which was extensively used to

restore gray level images. been our experience that using this term is too restrictive
and that better results on natural images are obtained

While the two methods are different, they share a similar when the second-order term (using second derivatives) is
feature: the ‘‘cost functional’’ to be minimized is the sum used [12].
of the standard ‘‘data fidelity’’ and ‘‘spatial smoothness’’ However, the results obtained by using the surface area
terms, and a novel ‘‘color correlation term.’’ The difference as a measure for image quality are, in general, pleasing to
is in the latter; the Bayesian measure is image (and spatial) the eye. This touches a fascinating and yet unresolved
dependent and uses an estimate of the local image struc- question in image processing—by what criterion should
ture. The geometric measure is defined globally and is different restoration methods be compared?
more closely related to standard regularization terms—
although it introduces a more complicated, nonquadratic 2. EXTENDING THE BAYESIAN PARADIGM TO
cost functional. COLOR IMAGES

The geometric measure was clearly superior to the
Bayesian measure; in all the images we tested, it yielded A rather general formulation of the restoration problem
restorations which were better both according to the mean is the following: Given some partial information D on an
square error criterion and appearance. This may well indi- image F, find the best restoration for F. Obviously, there
cate that the geometric measure is quite suitable to mea- are many possible ways in which to define ‘‘best.’’ One
sure smoothness in color space.2 way, which proved quite successful for a wide range of

applications, is probabilistic in nature: Given D, one seeks
1.1. A Relation between ‘‘Correlation Terms’’ and the restoration F̂ which maximizes the probability

Smoothing by Diffusion Pr(F/D). Following Bayes’ rule, this is equivalent to max-
imizing Pr(D/F) Pr(F)/Pr(D). The denominator is a con-Recently, it was proposed to process color images by
stant once D is measured; Pr(D/F) is usually easy to com-subjecting them to a diffusion process [13, 14, 17]. The
pute. Pr(F) is more interesting and more difficult to define.color image is viewed as a two-dimensional manifold in
Good results have been obtained by following the physicalfifth-dimensional Euclidean space (two dimensions for the
model of the Boltzman distribution, according to whichspatial coordinates of the image, and three for the RGB
the probability of a physical system to be at a certain statevalues). In [13, 14], the image is then subjected to a diffu-
is proportional to the exponent of the negative of the state’ssion process (the ‘‘Beltrami flow’’) and, in the limit, con-
energy—that is, low-energy, or ‘‘ordered’’ states, are as-verges to a minimal surface—that is, a surface whose mean
signed higher probabilities than high-energy, or ‘‘disor-curvature is everywhere zero. Such surfaces are known to
dered,’’ states [6, 20]. It is common to define the energybe extremal points of the area function [2]. The intuitive
of a signal by its ‘‘smoothness’’; the energy of a two-dimen-idea is that the smaller the area, the ‘‘nicer’’ the image is;
sional signal F is often defined as ee (F 2

xx 1 2F 2
xy 1 F 2

yy)hence, this diffusion process is a natural generalization of
dx dy. Such integrals are usually called ‘‘smoothing terms,’’regularization to higher dimensions. The results are supe-
as they force the resulting restoration to be smooth [12,rior to those obtained by applying regularization separately
21, 8, 19].in every channel.

To see how the probabilistic approach naturally leadsIn the Appendix we implement this idea, by directly
to restoration by so-called ‘‘smoothing,’’ or regularization,optimizing a cost functional which includes the surface
let us look at the problem of restoring a two-dimensionalarea as a summand. A relation between the surface area
image from samples which are corrupted by additive noise.and the augmented ‘‘smoothness term,’’ which includes
Suppose the image is sampled at the points h(xi , yi)j, the
sample values are zi , and the measurement noise is

2 It is interesting to note here that we have also applied this geometric Gaussian with variance s 2. Then
measure to the Demosaicing problem, in which the color image is subsam-
pled in color space—only one color is given at each pixel, in a mosaic
pattern. For this problem, too, the geometric measure yielded better Pr(D/F) Y exp S2 On

i51

[F(xi , yi) 2 zi]2

2s 2 D
results than other methods we tested.
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and, based on the idea of the Boltzman distribution, one RGB channels are usually highly correlated. The ‘‘correla-
tion term’’ penalizes deviations from this correlation, thuscan define Pr(F) as being proportional to
‘‘pushing’’ the restored image towards one whose channels
are ‘‘correctly correlated.’’

exp S2l EE (F 2
xx 1 2F 2

xy 1 F 2
yy) dx dyD The combined expression to minimize is the following

extension of Eq. (1):

for some positive constant l. So, the overall probability to
maximize is

iF 2 Hi2 1 l1 SEE (R2
xx 1 2R2

xy 1 R2
yy) dx dy

exp S2 SOn
i51

[F(xi , yi) 2 zi]2

2s 2 1 EE (G2
xx 1 2G2

xy 1 G2
yy) dx dy

1 l EE (F 2
xx 1 2F 2

xy 1 F 2
yy) dx dyDD 1 EE (B2

xx 1 2B2
xy 1 B2

yy) dx dyD (2)

1 l2 EE (R(x, y) 2 R, G(x, y) 2 G, B(x, y) 2 B)C21
x,ywhich is, of course, equivalent to minimizing

(R(x, y) 2 R, G(x, y) 2 G, B(x, y) 2 B)t dx dy.On
i51

[F(xi , yi) 2 zi]2

2s 2 1 l EE (F 2
xx 1 2F 2

xy 1 F 2
yy) dx dy. (1)

Here, H is the measured (noised) color image and F is the
restoration, which is composed of the R, G, and B channels.This leads, via calculus of variations, to a partial differential
l1 and l2 are positive constants (see Section 4 for a discus-equation, which can be effectively solved using finite ele-
sion on how to choose these ‘‘hyperparameters’’).ment methods [21].

We have implemented a straightforward iterativeNow, suppose we are given a color image, with RGB
scheme for minimizing this functional. The covariance ma-channels, which was corrupted by additive noise with
trices are estimated, in a bootstrapping fashion, from theknown variance s 2 (assume for the meantime that s 5 1).
color image obtained by restoring each channel separately.One obvious way to restore the image is to apply the
Further iterations using the covariance matrices of the newdenoising algorithm described above for each of the sepa-
images have not improved the results.rate channels and to combine the restored channels into

We do not include results obtained when using thea color image. Such an approach, however, does not work
Bayesian color correlation term, as they were inferior towell in general. Usually, the resulting image is of low qual-
those obtained using the method presented below. None-ity, and contaminated by false colors; that is, certain areas
theless, the Bayesian paradigm justifies the use of ‘‘colorcontain streaks of colors which do not exist in the original
correlation terms.’’ The method described in the followingimage. This problem is more acute in highly textured areas.
section can be derived from the Bayesian paradigm byThe proposed solution is to incorporate into the probabi-
using a different measure for the ‘‘energy’’ of a color im-listic scheme a ‘‘correlation term,’’ which will result in a
age—one determined by the angles between adjacent pix-better correlation between the RGB channels. If Cx,y is
els when viewed as vectors in RGB space.the covariance matrix of the RGB values at a pixel (x, y),

and (R, G, B) the average colors in the pixel’s vicinity,
then, assuming a normal distribution, the probability for 3. THE GEOMETRIC COLOR CORRELATION TERM
the combination of colors (R(x, y), G(x, y), B(x, y)) is
proportional to exp(2As(R(x, y) 2 R, G(x, y) 2 G, A substantial improvement—both in quality and

speed—over using the Bayesian color correlation term,B(x, y) 2 B)C21
x,y(R(x, y) 2 R, G(x, y) 2 G, B(x, y) 2 B)t.

Multiplying over all the pixels results in adding these terms was obtained by using a different term, defined as the
sum of squared norms of the vector products betweenin the exponent’s power. Exactly as in the interpolation

problem above, this exponential term combines with the neighboring pixels, when viewed as vectors in R 3. The
underlying intuition is straightforward: since natural im-other exponentials, and we get a combined exponential

that has to be maximized; therefore, we have to minimize ages are generally smooth both in the spatial and color
spaces, one can expect that neighboring color pixels willthe negative of the power, which simply results in adding

the ‘‘correlation term,’’ ee (R(x, y) 2 R, G(x, y) 2 G, have similar directions in color space—hence, their vector
product will be small. We have tried using the scalar prod-B(x, y) 2 B)C21

x,y(R(x, y) 2 R, G(x, y) 2 G, B(x, y) 2 B)t dx
dy, to the expression of Eq. (1). In effect, this term makes uct for the same goal; however, the results were inferior

to those obtained with the vector product. In the Appendix,use of the fact that, in natural and synthetic images, the
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a more concrete relation between the vector products and 15, 3, 23, 22, 20]. In [24], regularization is extended to deal
with color images, and the generalized cross validationthe geometric properties of the color image is derived.

The functional to minimize is (as defined on the dis- (GCV) method is also extended to choose an appro-
priate l.crete image)

The idea of cross validation is to choose a l so that the
data points ‘‘predict one another.’’ Using the notations ofiF 2 Hi2 1 l1 SO

i, j
(Rxx(i, j)2 1 2Rxy(i, j)2 1 Ryy(i, j)2)

Section 2, one proceeds as follows: for each sample point
(xk , yk), 1 # k # n, F̂k is defined as the function minimizing

1 O
i, j

(Gxx(i, j)2 1 2Gxy(i, j)2 1 Gyy(i, j)2)

(3) On
i?k

[F(xi , yi) 2 zi]2 1 l EE (F 2
xx 1 2F 2

xy 1 F 2
yy) dx dy,

1 O
i, j

(Bxx(i, j)2 1 2Bxy(i, j)2 1 Byy(i, j)2)D
i.e. the restoration obtained by considering all the data

1 l2 O
i, j

O
k,l/(k,l)[N(i, j)

iPi, j 3 Pk,li2, points but the ‘‘removed’’ kth point. A function V0(l) is
then defined as on

k51 [F̂k(xk , yk) 2 zk]2, and the l chosen
is the one minimizing V0( ). This algorithm is called ordi-where F is the sought image, H is the measured image,
nary cross validation (OCV).Pi, j 5 (R(i, j), G(i, j), B(i, j)) is the pixel of F at location

An improvement of this method is the GCV algorithm;(i, j), the xx, xy, yy subscripts denote the partial derivatives
see [3, 24] for further details. Here, we have applied OCV.by x and y, and N(i, j) is the 3 3 3 set of Pi, j’s neighbors.

A more straightforward method can be used if s 2, theThis functional resembles the one in Eq. (2), but it uses
variance of the noise N, is known: if H 5 F 1 N is thethe new correlation term. Both correlation terms force a
measured signal, choose a l which results in a restoration‘‘nice’’ behavior on the image in color space; however, the
F̂ such that E(iF̂ 2 Hi2) 5 s 2.second one is universal in nature and does not depend on

For the method suggested in this work, we need tothe color covariance matrices of the specific image.
find two hyperparameters, l1 and l2 . Using only oneIt is interesting to note that both correlation terms are
of the criteria will, therefore, not suffice, as it willnonquadratic; the Bayesian one uses the pixel’s values to
give a curve in l1 2 l2 space. In order to solve thisdetermine the covariance matrices, and the geometric one
problem, we have used the two criteria simulta-contains fourth powers of the color values. This may be
neously. First, the pairs of hyperparameters for whichviewed as a liability, since it is more difficult to minimize
E(iF̂ 2 Hi2) 5 s 2 were found. Among them, we chosesuch expressions; however, in all the examples we tested,
the pair which minimizes the OCV function.the iterative minimization scheme converged quite fast

The OCV idea of ‘‘leaving one out’’ was implemented(Section 5.1). This is probably due to the fact that the set
as follows. In the functional of Eq. (3), every color elementof measurements is dense.
(every color in every pixel), in turn, was ‘‘removed’’; thatOur experiments suggest that the advantage of using a
is, the corresponding term in the sum which compromisesmore general optimizing functional outweighs the difficulty
the data fidelity term iF 2 Hi2 was taken out. Then, theincurred by minimizing the nonquadratic expression.
image was restored, and the resulting value in that locationWe note here that the vector product term is biased
was subtracted from the original value. These differencestowards areas with higher color values. This can be over-
are squared and summed to obtain the OCV function.come, for instance, by restoring the logarithm of the image.

This process is, however, very time-consuming for largeExperiments have not shown any significant difference
images, as it requires restoring the entire color image 3Nwhen this is done. Also, it may be argued that this bias is
times, where N is the number of image pixels. A heuristicpossibly an advantage, as the areas with the higher color
which worked quite well was to confine the restoration tovalues are the more important ones.
a small (for instance, 11 3 11) neighborhood of the pixel
whose color element is currently removed. This consider-4. CHOOSING THE HYPERPARAMETERS l1 AND l2

ably speeded up the computation of the OCV function.
However, choosing the correct hyperparameters is still,A problem which attracted a great deal of attention in

regularization theory is the choice of the regularization computationally, a nontrivial problem (see Section 5.2). It
is not clear if the sophisticated techniques used to recoverhyperparameter, usually denoted by l, which determines

the trade-off between the smoothness and the fidelity to the correct l [24, 3] can be directly applied here, if at all,
due to the complicated, nonquadratic form of the costthe data (see Eq. (1)); as l increases, the solution becomes

smoother, but may diverge from the measured data. If l functional. At the end of Section 5.2, we offer a very quick
heuristic for choosing good values for the hyperpara-is too small, the solution may ‘‘overfit’’ the noise. Some

approaches for choosing the correct l are presented in [7, meters.
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FIG. 1. (a) Red channel of original tiger image; (b) after addition of noise; (c) result of separate regularization in every channel; (d)
result after incorporating the color correlation term.

5. IMPLEMENTATION AND RESULTS to annihilate the derivatives of the cost functional, it is
enough to look at the neighborhood of a pixel P which

In this section, the derivation of the iterative restoration consists of pixels that appear in the partial derivatives of
scheme will be presented, as well as some results on run- the cost functional by the RGB values at P:
ning the algorithm with the aforementioned method for
choosing the hyperparameters. In the images we tested,
the OCV criterion chose ‘‘good’’ values from those satis-

0 1 2 3 4
fying iF̂ 2 Hi2 5 s 2, in the sense that they give good

0 r00 , g00 , b00 r01 , g01 , b01 r02 , g02 , b02 r03 , g03 , b03 r04 , g04 , b04 ? ? ?approximations to the original image in the mean square
1 r10 , g10 , b10 r11 , g11 , b11 r12 , g12 , b12 r13 , g13 , b13 r14 , g14 , b14 ? ? ?error norm (see Figs. 7b and 7d). 2 r20 , g20 , b20 r21 , g21 , b21 (P) r22 , g22 , b22 r23 , g23 , b23 r24 , g24 , b24 ? ? ?

3 r30 , g30 , b30 r31 , g32 , b31 r32 , g32 , b32 r33 , g33 , b33 r34 , g34 , b34 ? ? ?
5.1. Deriving the Iterative Scheme 4 r40 , g40 , b40 r41 , g42 , b41 r42 , g42 , b42 r43 , g43 , b43 r44 , g44 , b44 ? ? ?

? ? ? ? ? ?
The iterative scheme is derived using a simple finite ? ? ? ? ? ?

? ? ? ? ? ?element method. Since the finite-element paradigm tries
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FIG. 2. Same as Fig. 1, for green channel.

the vector products of P with its neighbors, for instance,The cost functional of Eq. (3), restricted to that small
i(r22 , g22 , b22) 3 (r21 , g21 , b21)i2.neighborhood, is the sum of following terms:
Adding all these terms gives the relevant part of the cost

• Data fidelity term is equal to the sum of the squared functional. Annihilating the partial derivatives by P’s com-
differences between the candidate image F and the mea- ponents (r22 , g22 , b22) gives a set of equations, and solving
sured image H; the only part which has a nonzero partial these equations using a Gauss–Seidel iterative method re-
derivative with respect to P is (r22 2 R22)2 1 (g22 2 G22)2 1 sults in the iterative scheme for restoring the color image.
(b22 2 B22)2, where r, g, b denote the sought values, and Since the resulting expressions are nontrivial, the Maple
R, G, B the measured values. symbolic computation package was used to derive them.

• Smoothness term is equal to the sum of squared discrete The resulting iterative step for updating the value of r22 ,
approximations to the second partial derivatives. For P’s red component, is given below, r(n11)

22 is the new value,
instance, R2

xx at P is represented as (r21 2 2r22 1 r23)2, while the (n) superscript denotes the previous iteration. If
etc. one substitutes l2 5 0 in this expression, it reduces to a

standard iterative scheme for denoising:• Color correlation term is the sum of squared norms of
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FIG. 3. Same as Fig. 1, for blue channel.
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21 b(n)
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21 1 l2b(n)2

21 1 l2g(n)2

11 1 l2b(n)2
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21 1 1
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21 g(n)22g(n)21 1 2l2r(n)
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31 1 l2b(n)2
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32 Similar expressions were derived for the green and blue
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FIG. 4. (a) Red channel of original airplane image; (b) after addition of noise; (c) result of separate regularization in every channel;
(d) result after incorporating the color correlation term.

components. The iterative scheme can be stopped when binary search over E(iF̂l1,0 2 Hi2); denote this l1 by l1
0 .

there is no significant change between successive iterations; Next, for a fixed m (we have used m 5 30), the values
for the images we tested, this was usually after 20 iterations il1

0/m, for 0 # i , m, are each chosen as l1 , and, for each
or so. of them, the value of l2 satisfying E(iF̂l1,l2

2 Hi2) 5 s 2 is
found by binary search. The set of m points thus obtained

5.2. Choosing the Hyperparameters defines the sought curve in l1 2 l2 space (see Figs. 7a and
7c). We have not succeeded in deriving an analytic formLet F̂l1,l2

denote the restoration obtained using the afore-
for this curve, and it is not clear if it exists at all (evenmentioned iterative scheme, with l1 , l2 as hyperparamet-

ers. The first step in the process of choosing the optimal choosing a single l using the OCV or GCV criterion is a
non-trivial numerical task; moreover, the color correlationhyperparameters is the construction of the curve in l1 2

l2 space, for which E(iF̂l1,l2
2 Hi2) 5 s 2. This proceeds term is non-quadratic, and therefore difficult to analyze).

After the m points on the l1 2 l2 curve are found, theas follows: first, the l1 for which E(iF̂l1,0 2 Hi2) 5 s 2 is
determined. The most straightforward way to do this is by OCV function is computed at each. The one yielding the
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FIG. 5. Same as Fig. 4, for green channel.

minimal value is chosen as the optimal pair of hyperpara- rather different behavior in the frequency domain (the
tiger image has much more energy in the high frequencies).meters used to restore the color image. In the case we tested,

there was a rather good correlation between the OCV func- The image of the tiger was corrupted by noise with s 2 5
1200, the airplane with s 2 5 33 (these are for the noise attion and the mean square error; that is, the chosen hyperpar-

ameters resulted in a restoration which gave nearly the mini- each channel; from here on we shall refer to the mean
square error summed over the three channels).mal mean square error, among the pairs which satisfy E(

iF̂l1,l2
2 Hi2) 5 s 2 (see Figs. 7b and 7d). In Fig. 7a, the curve in hyperparameter space which

satisfies E(iF̂l1,l2
2 Hi2) 5 s 2 for the tiger image is shown,A ‘‘quick and dirty’’ heuristic for a good value of the

hyperparameters, is to choose l1 as l1
0/3, and then to choose together with the curve showing the OCV function and

the mean square error (y-axis) versus l1 (x-axis) (Fig. 7b).l2 satisfying E(iF̂l1,l2
2 Hi2) 5 s 2. In all our experiments,

this gave a value not far from the optimal one in terms of The optimal parameters (that is, minimal value of the OCV
function) selected were l1 5 0.06 and l2 5 0.00023. Notethe mean square restoration error.
the good correlation between the OCV and mean square

5.3. Some Results
error function; the chosen hyperparameters result in a
value of the mean square error which is very close to theResults are presented for two color images, one of a

tiger’s face and one of an airplane. The two images display optimal one.
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FIG. 6. Same as Fig. 4, for blue channel.

In Figs. 7c and 7d, the l1 2 l2 and mean square error the color correlation term was incorporated are much
sharper. Intuitively, this isbecauseasmallerl1 isused,whichand OCV curves are shown for the airplane image. The
results in a smaller penalty on image sharpness; however, ifoptimal values were l1 5 0.12 and l2 5 0.00005.
l2 5 0, these small values of l1 will result in a very noisyThe restoration results are presented in Figs. 1–6 and
restoration. The color correlation term reduces the noise by8. For comparison, we show the original image, the noised
forcing a ‘‘good’’ correlation between the channels.image, the optimal restoration result without the color

In Fig. 8, we show, for the tiger image, the same set ofcorrelation term (that is, l2 5 0, and l1 the one satisfying
four images (but in color), together with the result obtainedE(iF̂l1,0 2 Hi2) 5 s 2), and the restoration with the optimal
when using the surface area of the color image in fifth-hyperparameters. The advantage in incorporating the color
dimensional Euclidean space as a quality measure (seecorrelation term is obvious, both in terms of the mean
Sections 1.1 and 7).square error (a reduction of 18.6% for the tiger image and

40.4% for the airplane image; the difference is probably 6. CONCLUSIONS AND FURTHER RESEARCH
due to the fact that the tiger image is harder to restore
because of its substantial high frequency content), and in A novel method for denoising color images was pre-

sented. The two suggested contributions are the incorpora-the appearance of the images: the resulting images when
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FIG. 7. (a) The curve in l1 2 l2 space, for tiger image, for which E(iF̂l1,l2
2 Hi2) 5 s 2 (the x-axis represents l1 , y-axis represents l2).

(b) The mean square error (summed over the RGB channels) for the curve in (a), normalized by 0.001 (lower), and the OCV function
curve (upper). The x-axis represents l1 . (c) and (d) are the same as (a) and (b), respectively, for the airplane image. In (d) the mean square
error is normalized by 0.1. For both images, the OCV function attains its minimum for a (l1 , l2) pair very close to the one for which the
mean square error is minimal.

tion of ‘‘color correlation terms,’’ two of which were inves- APPENDIX: THE ‘‘GEOMETRIC MEASURE’’ AND
SURFACE AREAtigated, and a method for choosing two regularization

hyperparameters, by incorporating two previous methods
In this section, we first show how ‘‘standard’’ regulariza-for choosing a single hyperparameter. A simple iterative

tion can be seen in the context of reducing the area of ascheme was then derived for the denoising problem. Re-
restored gray level image, when it is viewed as a surfacesults were presented for two color images, which represent
in R 3. Then, it is shown that when the idea of reducingtypical results for the method described here.
the surface area is extended to a color image, the resultingIn the future, we hope to address the following issues:
expression bears a resemblance to the ‘‘geometric mea-

• Search for a more efficient method to determine the sure’’ approach presented in this work. A short comparison
two optimal hyperparameters. of the methods follows.

• How to proceed when the noise variance is not known? Let F(x, y) be a gray level image, or any single-channel
In that case, minimizing the OCV function may yield a signal for that matter. Some times, instead of the second-
curve of possible solutions in hyperparameter space, but order smoothness term used here, ee (F 2

xx 1 2F 2
xy 1 F 2

yy)
dx dy, the simpler first-order term, ee (F 2

x 1 F2
y) dx dy, isit is not clear which point on that curve should be used.

• Apply the paradigm offered here to the more difficult used to measure the image’s smoothness. It is well known
from elementary calculus that the area of the graph of Fproblem of restoring a blurred and noised color image.
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FIG. 8. (a) Original color image; (b) after adding noise; (c) result of optimal denoising in each channel separately; (d) result of optimal
denoising using surface area in R 5 as quality measure; (e) result of optimal denoising using the geometric correlation term suggested in
this work.
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(that is, the set of triplets h(x, y, F(x, y))j, when viewed as the condition E(iF̂ 2 Hi2) 5 s 2 holds; so, the duration of
time during which the flow is applied is the analogue ofa surface in R 3), equals eeÏ1 1 F 2

x 1 F 2
y dx dy; thus, the

smoothness is related to the area of the graph of the image, the regularization constant l. See also [17] for other work
on diffusion in color space.when viewed as a function from R 2 to R . It is interesting

to note that this expression is related to ee (uFxu 1 uFyu) On the examples we tested, the approach based on min-
imizing the surface area gave results which were, in general,dx dy, which is used in total variation methods, that were

also applied to restore color images [1]. pleasing to the eye; however, the mean square error was
larger than the error when using the correlation term withThis notion of surface area can be extended to a color

image (R(x, y), G(x, y), B(x, y)) [13, 14]. Its graph, the set vector products: for the airplane image the optimal l cho-
sen was 1.52; and the mean square error was 58.8 (47%of quintuplets h(x, y, R(x, y), G(x, y), B(x, y))j, is a surface

in R 5. Its area can be determined using tools from differen- higher than for the result presented in Section 6). For the
tiger image, the l chosen was 0.82, and the mean squaretial geometry, namely, the first fundamental form [2]. The

area turns out to be error 2660 (89% higher than for the result presented in
Section 6). This may well be due to the fact that the first-
order smoothness term is not a good measure for naturalEE (1 1 R2

y 1 G2
y 1 B2

y 1 R2
x 1 R2

xG2
y 1 R2

xB2
y 1 G2

x
images—the second-order term is far better [12]. This
problem is more acute in textured regions: see results for1 G2

xR2
y 1 G2

xB2
y 1 B2

x 1 B2
xR2

y 1 B2
xG2

y 2 2RxRyGxGy
the tiger image (Fig. 8). The area-based approach does not

2 2RxRyBxBy 2 2GxGyBxBy)1/2 dx dy. provide a good restoration in highly textured areas. It gave
better results for the airplane image.

Let us denote the expression in the square root of the However, the area-based approach has an important
integrand by Aelement (for ‘‘area element’’). It can be veri- advantage—it can be implemented even when the noise
fied by a straightforward computation that variance is not known. Also, as noted, it usually produces

results which are pleasing to the eye; and it can be argued
Aelement 5 1 1 R2

x 1 R2
y 1 G2

x 1 G2
y 1 B2

x 1 B2
y that, depending on the client for the restored image, this

1 i(Rx , Gx , Bx) 3 (Ry , Gy , By)i2. is a criterion no less important than the mean square error.
The search for criterions to image quality and similarity is
an exciting one, which is guaranteed to occupy researchersHence, the integrand in the expression for the area of the

color image, viewed as a surface in R 5, is the square root of in the vision community for a long time.
Aelement—an expression consisting of a spatial smoothness
term R2

x 1 R2
y 1 G2

x 1 G2
y 1 B2

x 1 B2
y , and the squared norm ACKNOWLEDGMENTS
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