203.4700 (3700)
Semester A
Meeting Times: Monday 10-12
This course will survey algorithms for unsupervised learning and high dimensional data analysis. The course will cover probabilistic/generative models of high dimensional data, such as Gaussian mixture models, factor analysis, probabilistic latent semantic analysis, independent component analysis as well as spectral methods for dimensionality reduction, including multidimensional scaling, Isomap, locally linear embedding, graph Laplacian methods and kernel PCA. The course will provide an introduction to probabilistic graphical models.
Recommended
Prerequisites
The course
assumes some basic knowledge of probability theory and linear algebra;
for example, you should be familiar with
Tutorials of the above topics.
_____________________________________________________________________
____________________________________________________________________
Date |
Topic |
Lecture notes |
Reading material |
31.10 |
Introduction |
Probability Tutorial PDF MLE PDF Bayesian Learning &
Naive Bayes PDF Parzen Windows PDF Hierarchical clustering
PDF |
|
7.11 |
No class |
|
|
14.11 |
Linear Dimensionality Reduction: PCA, MDS |
Min Error Derivation of PCA PDF MDS Tutorial: http://www.mathpsyc.uni-bonn.de/doc/delbeke/delbeke.htm |
|
21.11 |
Manifold Mapping: Isomap,
LLE |
Isomap:
http://isomap.stanford.edu/
LLE: http://cs.nyu.edu/~roweis/lle/papers/lleintroa4.pdf Laplacian Eigenmaps: http://www.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
|
|
28.11 |
Manifold Mapping -- Laplacian
Eigenmaps. KPCA |
|
Laplacian Eigenmaps: http://www.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf KPCA: http://cseweb.ucsd.edu/classes/fa01/cse291/kernelPCA_article.pdf Comparison: here |
5.12 |
Kmeans, Mixture of Gaussians, EM |
|
|
12.12 |
EM derivation, EM for MoG |
|
Lecture notes: EM |
19.12 |
Cont. Laten
Variables: Factor Analysis |
|
Lecture notes: FA, Bishop
PRML Ch. 12.2 |
26.12 |
PPCA, LSI, |
|
|
2.12 |
ICA Intro to Graphical Models Part1 |
Lecture notes: ICA http://research.microsoft.com/en-us/um/people/cmbishop/prml/Bishop-PRML-sample.pdf |
|
9.12 |
Intro to Graphical Models Part I |
http://research.microsoft.com/en-us/um/people/cmbishop/prml/Bishop-PRML-sample.pdf |
|
16.12 |
Intro to Graphical Models part 2 |
http://research.microsoft.com/en-us/um/people/cmbishop/prml/Bishop-PRML-sample.pdf |
|
23.12 |
HMM |
Lecture notes: HMM |
_________________________________________________________________
______________________________________________________________________
http://www.autonlab.org/tutorials/prob18.pdf
- first half
http://www-stat.stanford.edu/~susan/courses/s116/
Linear Algebra
tutorial:
______________________________________________________________________