Complexity Theory : Exercise 3

Submit until 8/6

May 25, 2009

Please write clear and precise answers. A 10 point bonus is given for printed solutions.

- 1. (Existence of functions that cannot be computed by small circuits)
 - (a) Show that there are at most $s^{3s} < 2^{s^2}$ circuits with fan-in 2 of size s.
 - (b) Conclude that for any n there are functions $f : \{0,1\}^n \to \{0,1\}$ that cannot be computed by circuits of size $2^n/10n$. (In fact most functions cannot be computed by such circuits.)
- 2. (Directed connectivity in NC)
 - (a) Show that given two $n \times n$ matrices A and B the product AB can be computed in NC.
 - (b) Show that given an $n \times n$ matrix A the matrix A^n can be computed in NC.
 - (c) Conclude that dPATH (which is complete for NL) is in NC. (Hint: Consider the matrix A^n for the adjacency matrix A of the given graph).
- 3. (Amplification of RP)

note: This is an easy question and you may skip it and go directly to the next question instead.

Show that $RP_{1/2^{2n}} = RP_{1/3} = RP_{1/2-1/n}$

4. (Amplification of BPP using the Chernoff bound) Show that $BPP_{1/2^{2n}} = BPP_{1/3} = BPP_{1/2-1/n}$. You probably want to use the following theorem:

Theorem 1 (Additive version of Chernoff's inequality). Let X_1, \ldots, X_n be independent random variables taking values in $\{0, 1\}$. Let $X = \sum X_i$, then for every $0 \le \delta \le 1$

$$\Pr[|X - E(X)| \ge \delta n] \le 2e^{-\delta^2 n}$$

5. Show that $ZPP = RP \cap coRP$.