Complexity Theory : Exercise 3

Submit until 8/6

May 25, 2009

Please write clear and precise answers. A 10 point bonus is given for printed solutions.

1. (Existence of functions that cannot be computed by small circuits)
(a) Show that there are at most $s^{3 s}<2^{s^{2}}$ circuits with fan-in 2 of size s.
(b) Conclude that for any n there are functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by circuits of size $2^{n} / 10 n$. (In fact most functions cannot be computed by such circuits.)
2. (Directed connectivity in NC)
(a) Show that given two $n \times n$ matrices A and B the product $A B$ can be computed in $N C$.
(b) Show that given an $n \times n$ matrix A the matrix A^{n} can be computed in $N C$.
(c) Conclude that $d P A T H$ (which is complete for NL) is in $N C$. (Hint: Consider the matrix A^{n} for the adjacency matrix A of the given graph).
3. (Amplification of RP)
note: This is an easy question and you may skip it and go directly to the next question instead.
Show that $R P_{1 / 2^{2 n}}=R P_{1 / 3}=R P_{1 / 2-1 / n}$
4. (Amplification of BPP using the Chernoff bound) Show that $B P P_{1 / 2^{2 n}}=B P P_{1 / 3}=B P P_{1 / 2-1 / n}$. You probably want to use the following theorem:

Theorem 1 (Additive version of Chernoff's inequality). Let X_{1}, \ldots, X_{n} be independent random variables taking values in $\{0,1\}$. Let $X=\sum X_{i}$, then for every $0 \leq \delta \leq 1$

$$
\operatorname{Pr}[|X-E(X)| \geq \delta n] \leq 2 e^{-\delta^{2} n}
$$

5. Show that $Z P P=R P \cap c o R P$.
