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CONGEST

• Vertices = computational units

• Unique Θ log 𝑛 -bit ID for vertex

• Synchronous rounds

• Message size = Θ(log 𝑛)-bits

• Complexity = #rounds

• Graph is planar

• 𝐷 ≔ 𝐺’s hop-diameter

• I/O is local
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Motivation

• In general graphs, for various problems 
(e.g., Max-Flow, MST, Min-Cut):

• ෨𝑂 𝐷 + 𝑛  upper bound

• ෩Ω 𝐷 + 𝑛  existential lower bound

• Planar graphs:
• Circumvent lower bound topology

• Rich structure
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Maximum 𝑠𝑡-flow
Find max-flow that can be pushed from 𝑠 to 𝑡 in graph with edge capacities. 

This work

Planar Directed Exact ෨𝑂(𝐷2)

Planar
Undirected, 
𝑠, 𝑡 on same 

face

1 − 𝜖 
approximation

𝐷 ⋅ 𝑛𝑜 1

[GKK+’15] General Undirected
1 + 𝑜(1) 

approximation
𝐷 + 𝑛 𝑛𝑜(1)

[Vos’23] Planar Directed Exact 𝐷 ⋅ 𝑛 ൗ1
2+𝑜(1)
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• The dual graph 𝐺∗. 
• Faces of 𝐺 are nodes in 𝐺∗

• Adjacent faces of 𝐺 are connected in 𝐺∗

• Properties.
• Cuts in 𝐺∗ are cycles in 𝐺

• Distances in 𝐺∗ imply flow in 𝐺

General approach: duality!
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Challenges

• 𝐺∗ is not the communication network. 
• Simulate a face?

• The hop-diameter of 𝐺∗ might be much 
larger than that of 𝐺

6



Warm-up: Minimum Weight Cycle

Dual Minor-Aggregation Dual Recursive Decomposition

Exact Dual SSSP
Approximate Dual 

SSSP
Dual Min-Cut

Dual Min Directed 
Cycle

Primal Max 𝑠𝑡-Flow
Primal Min 

undirected cycle

Primal Min 𝑠𝑡-Cut

Primal Global 
Directed Min Cut

Dual Distance 
Labeling
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Minor-Aggregation Model

• Round:
• contract some edges

• compute aggregate operators over 
vertices’ leaving edges

• Aggregate operator:
• Input: two ℓ-bit strings, 𝑎, 𝑏

• Output: a single ℓ-bit string 𝑎⨁𝑏

• E.g. min, +, arg max.
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• Round:
• contract some edges

• compute aggregate operators over 
vertices’ leaving edges

• Aggregate operator:
• Input: two ℓ-bit strings, 𝑎, 𝑏

• Output: a single ℓ-bit string 𝑎⨁𝑏
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Primal Minor-Aggregations

• Part-wise aggregation.
• Input: disjoint connected subgraphs 𝑆1, 𝑆2, …; 

and inputs 𝑥𝑣 for 𝑣 ∈ 𝐺

• Output: vertices in 𝑆𝑖 know ⨁𝑣∈𝑆𝑖
𝑥𝑣 for all 𝑖

• ෨𝑂(𝐷) rounds via low-congestion shortcuts
[GH’16] in planar graphs

• Minor-aggregation round = ෨𝑂(1) part-wise 
aggregations [ZGY+’22] = ෨𝑂(𝐷) rounds 

𝑆1
𝑆2

𝑆3

𝑆4
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𝑥𝑣 = 4
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𝑣∈𝑆3

𝑥𝑣 = −9
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Dual Minor-Aggregations

• Aggregation on faces?
• Set each 𝑆𝑖  to be a face?

• Faces are not disjoint 

Challenge

• Solution: related graph ෠𝐺 [GP’17] 
• faces of 𝐺 = disjoint subgraphs of ෠𝐺

• ෠𝐺 has small diameter

• ෠𝐺 is planar
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Dual Minor-Aggregations
• [GP’17] implement aggregations on the dual for special cases with ෠𝐺 in 

෨𝑂(𝐷) rounds.

• We generalize ෠𝐺 to allow aggregations over edges of the dual.

Can simulate ෨𝑂(1)-round minor 
aggregation algorithms on 𝐺∗ in 
෨𝑂(𝐷) rounds.

෠𝐺 

Minimum weight cycle of 𝐺 is 
found in ෨𝑂(𝐷) rounds.

෨𝑂(1) round minor-
aggregation min-cut 
algorithm [GZ’22]
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Approximate Maximum 𝑠𝑡-Flow

Dual Minor-Aggregation Dual Recursive Decomposition

Exact Dual SSSP
Approximate Dual 

SSSP
Dual Min-Cut

Dual Min Directed 
Cycle

Primal Max 𝑠𝑡-Flow
Primal Min 

undirected cycle

Primal Min 𝑠𝑡-Cut

Primal Global 
Directed Min Cut

Dual Distance 
Labeling
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Exact Maximum 𝑠𝑡-Flow

Dual Minor-Aggregation Dual Recursive Decomposition

Exact Dual SSSP
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Dual Min-Cut

Dual Min Directed 
Cycle

Primal Max 𝑠𝑡-Flow
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Maximum 𝑠𝑡-Flow via Dual SSSP

• [Ven’83] (non-trivial):
• Maximum 𝑠𝑡-flow in 𝐺 = log 𝜆 SSSPs in 𝐺∗

• Positive and negative edge-lengths

• Arbitrary source

SSSP in 𝐺∗ within 𝑟 rounds = max 𝑠𝑡-
flow in 𝐺 within  ෨𝑂 𝑟  rounds
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Goal: Dual SSSP

• How?: Distance Labeling
• Faces assigned ℓ-bits labels

𝐿𝑎𝑏𝑒𝑙(𝑔) 

𝐿𝑎𝑏𝑒𝑙(𝑓) 
𝑑(𝑓, 𝑔)

𝑓

𝐿𝑎𝑏𝑒𝑙(𝑓) 

𝐿𝑎𝑏𝑒𝑙(𝑓) 
𝐿𝑎𝑏𝑒𝑙(𝑓) 

𝐿𝑎𝑏𝑒𝑙(𝑓) 

𝐿𝑎𝑏𝑒𝑙(𝑓) 𝑔
𝐿𝑎𝑏𝑒𝑙(𝑔) 

𝐿𝑎𝑏𝑒𝑙(𝑓) 
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Primal Recursive Separator Decomposition

• Planar Cycle Separators [LT’79, Mil’86]:
• 𝑆 = cycle of 𝑂(𝐷) vertices

• 𝐺 ∖ 𝑆 is disconnected

• Components’ sizes ≤ ½ |𝐺|

• 𝑆 = two paths of a spanning tree + edge 𝑒 

• Possibly e ∉ 𝐸(𝐺)

• Apply recursively.. 𝐺00 𝐺01 𝐺10 𝐺11

𝐺0
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Primal Distance Labeling

• Labels’ definition [GPP+’04]:
• 𝐿𝑎𝑏𝑒𝑙𝐺(𝑣) = dist(𝑣, 𝑠), dist(𝑠, 𝑣) for all 𝑠 ∈ 𝑆

• If 𝑣 ∉ 𝑆, append to the label 𝐿𝑎𝑏𝑒𝑙𝐺𝑖
(𝑣)

• Label size = ෨𝑂 𝐷

𝐺

𝐺1

𝐺0

𝑣
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Primal Distance Labeling

𝐺

𝐺1

𝐺0

𝑣
𝑢

𝑤
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cases:

I. Path crosses 𝑆



Primal Distance Labeling

• Correctness. Since 𝑆 is a cycle, there are two 
cases:

I. Path crosses 𝑆

II. Path does not cross 𝑆

𝐺

𝐺1

𝑣 𝑢

𝐺0
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Distributed Primal Labeling Algorithm

• Bounded Diameter Decomposition (BDD) [GP’17, 
LP’19]:
• Computed in ෨𝑂(𝐷) rounds

• Subgraphs are of diameter ෨𝑂(𝐷) 

• Same level subgraphs are nearly disjoint

Parallel broadcast of ℓ-bits in all subgraphs of same 
level in ෨𝑂(𝐷 + ℓ) rounds

• Application: distance labeling in 𝐺

𝐺

𝐺0 𝐺1

𝐺00 𝐺01 𝐺10 𝐺11𝐺02
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Distributed Primal Labeling Algorithm

• Compute the labels bottom-up on BDD:
• Collect leaf subgraphs (locally compute labels)

• Non-leaf subgraphs (recursively):

1. Broadcast labels of separator - ෨𝑂(𝐷2) bits

2. Locally construct 𝐶𝑙𝑖𝑞𝑢𝑒(𝑣)

3. Locally compute distances between 𝑣 and separator 
vertices in 𝐶𝑙𝑖𝑞𝑢𝑒(𝑣)

•  ෨𝑂(𝐷2) rounds

𝐶𝑙𝑖𝑞𝑢𝑒(𝑣)

𝑣

23



Distributed algorithm for Dual Labeling

Idea: compute a 
BDD for the dual 

and compute 
labeling (??)
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Try 1: Naïve approach 

• Run same algorithm on 𝐺∗?
• Not the communication network.

• The diameter of 𝐺∗ might be Ω(𝑛) while 𝐷 = 𝑂(1).

=> Does not work :/
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Try 2: Recurse on 𝐺 solve on 𝐺∗

• Key observation: hierarchical decomposition of 𝐺 
is also a decomposition of 𝐺∗

• Assume separator 𝑆𝐺 is cycle in 𝐺

• Cycle-cut duality => 𝑆𝐺 is edge separator of 𝐺∗

• Apply recursively

=> Has a chance but has difficulties
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Try 2: Recurse on 𝐺 solve on 𝐺∗

𝐺

𝐺∗

𝐺0 𝐺1
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Try 2: Recurse on 𝐺 solve on 𝐺∗

𝐺

𝐺∗

𝐺0 𝐺1

𝐺0
∗

28

• Dual subgraphs in decomposition ≠ standard dual of primal



Try 2: Recurse on 𝐺 solve on 𝐺∗

• Dual subgraphs in decomposition ≠ standard dual of primal

𝐺

𝐺∗

𝐺0 𝐺1

𝐺0
∗ 𝐺1

∗

29



Dual Recursive Separator Decomposition

• Dual separator:
• 𝐹 = edges of 𝑆 in 𝐺∗

• 𝐺∗ ∖ 𝐹 is disconnected

• Components are constant factor smaller

• Apply recursively..
𝐺00

∗ 𝐺01
∗ 𝐺10

∗ 𝐺11
∗
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Dual Distance Labeling

• Labels’ definition:
• 𝐿𝑎𝑏𝑒𝑙𝐺∗(𝑔) = dist(𝑔, 𝑓), dist(𝑓, 𝑔) for all 𝑓 ∈ 𝐹

• If 𝑔 ∉ 𝐹, append to the label 𝐿𝑎𝑏𝑒𝑙𝐺𝑖
(𝑔)

• Label size = ෨𝑂 𝐷
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Dual Distance Labeling

• Correctness. Since 𝐹 is a cut, there are two cases:
I. Path crosses 𝐹.

𝐺∗

𝐺1
∗

𝐺0
∗

𝑔

𝑤

ℎ
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Dual Distance Labeling

• Correctness. Since 𝐹 is a cut, there are two cases:
I. Path crosses 𝐹.

II. Path does not cross 𝐹.

𝐺∗

𝐺1
∗

𝑔

ℎ
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Distributed Dual Labeling Algorithm

• Dual properties for BDD.

• Dual separator 𝐹 of size ෨𝑂(𝐷)

• Can be learned in ෨𝑂 𝐷 -rounds

• Takes care of complications

• Application: distance labeling in 𝐺∗

Max 𝑠𝑡-Flow in 𝐺 𝐺00
∗ 𝐺01

∗ 𝐺10
∗ 𝐺11

∗
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Distributed Dual Labeling Algorithm

• Compute the labels bottom-up on Extended BDD:
• Collect leaf subgraphs (locally compute labels)

• Non-leaf subgraphs (recursively):

1. Broadcast labels+ edges of separator - ෨𝑂(𝐷2) bits

2. Locally construct 𝐶𝑙𝑖𝑞𝑢𝑒(𝑔)

3. Locally compute distances between 𝑔 and separator 
vertices in 𝐶𝑙𝑖𝑞𝑢𝑒(𝑔)

•  ෨𝑂(𝐷2) rounds = primal complexity!

𝐶𝑙𝑖𝑞𝑢𝑒(𝑔)

𝑔
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Try 2: Recurse on 𝐺 solve on 𝐺∗

• Key observation: hierarchical decomposition of 𝐺 
is also a decomposition of 𝐺∗

• Assume separator 𝑆𝐺  is cycle in 𝐺
• Cycle-cut duality => 𝑆𝐺 is edge separator of 𝐺∗

• Apply recursively

=> Has a chance but has difficulties
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Difficulties

• Separator 𝑆𝐺  = two BFS paths plus 
virtual edge 𝑒 that may not be in E(𝐺)

37
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Difficulties 

• Separator 𝑆𝐺  = two BFS paths plus 
virtual edge 𝑒 that may not be in E(𝐺)
• 𝑆𝐺  is not a cut in 𝐺∗.
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Difficulties 

• Separator 𝑆𝐺  = two BFS paths plus 
virtual edge 𝑒 that may not be in E(𝐺)
• 𝑆𝐺  is not a cut in 𝐺∗

• Adding 𝑒𝐺  splits a face (dual node)

• 𝑒𝐺  cannot be communicated on

39
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New Dual: work with face-parts, not faces

• Face-part 𝑓𝑖  = subset of edges that belong to 
the same face 𝑓 of 𝐺

40
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New Dual: work with face-parts, not faces

• New dual = node for each face-part as well as faces 
of 𝐺

• This is the standard dual 𝐺∗ when considering 𝐺

41
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New Structural Properties for BDD

• Non-trivial: subgraph in BDD might be broken 
into ෩Θ(𝐷) subgraphs

1) Any subgraph of the BDD contains at most 
𝑂(log 𝑛) face-parts.

42
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New Structural Properties for BDD

• Non-trivial: subgraph in BDD might be broken 
into ෩Θ(𝐷) subgraphs

1) Any subgraph of the BDD contains at most 
𝑂(log 𝑛) face-parts.
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New Structural Properties for BDD

• Non-trivial: subgraph in BDD might be broken 
into ෩Θ(𝐷) subgraphs

• The face that contains 𝑒  might be already 
partitioned

1) Any subgraph of the BDD contains at most 
𝑂(log 𝑛) face-parts.
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New Dual Separator

Separator must cut paths between child 
subgraphs:

(1)Paths can use 𝑆𝑋 edges

(2)Paths can use face-parts or the face that 
contains 𝑒

2) The set 𝐹𝑋 that contains parts and endpoints of 𝑆𝑋 
is a separator of 𝑋 of size ෨𝑂(𝐷).
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𝑔

New Dual 𝐶𝑙𝑖𝑞𝑢𝑒(𝑔)

• Vertices: 𝑔 and node-parts 𝑓′ of 𝑓 ∈ 𝐹𝑋 in subgraphs of 𝑋∗

• Edges:
• 𝑆𝑋 edges in 𝑋∗

• Clique edges between each two node parts 𝑓1, 𝑓2 of 𝑓 ∈
𝐹𝑋

• Clique edges between 𝑓, ℎ in same child subgraph
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Correct Dual Labeling Algorithm

• Learn new decomposition (faces and face-parts)

• Then apply similar algorithm as in simplified case

48

𝐺00
∗ 𝐺01
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Summary

Dual Minor-Aggregation Dual Recursive Decomposition

Exact Dual SSSP
Approximate Dual 

SSSP
Dual Min-Cut

Dual Min Directed 
Cycle

Primal Max 𝑠𝑡-Flow
Primal Min 

undirected cycle

Primal Min 𝑠𝑡-Cut

Primal Global 
Directed Min Cut

Dual Distance 
Labeling
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Open problems

• Max 𝑠𝑡-Flow in ෤𝑜(𝐷2) rounds?

• Directed SSSP in 𝐺 in ෤𝑜(𝐷2) rounds?

• Exact Undirected SSSP in ෨𝑂(𝐷) rounds?

• Extend other planar centralized techniques to 
CONGEST?

• Extension to bounded genus graphs?

Thanks!
Questions?
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