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CONGEST

* Vertices = computational units

* Unique O(log n)-bit ID for vertex
e Synchronous rounds

* Message size = O(log n)-bits

« Complexity = #rounds

e Graph is planar

* D = (G’s hop-diameter

* 1/Oislocal




Motivation

* In general graphs, for various problems
(e.g., Max-Flow, MST, Min-Cut):

« O(D + +/n) upper bound
« Q(D + +/n) existential lower bound

* Planar graphs:

» Circumvent lower bound topology
* Rich structure




Maximum st-flow

Find max-flow that can be pushed from s to t in graph with edge capacities.

Planar Directed Exact 0(D?)

This work
Undirected, 1— ¢
Planar | s,t onsame L D - n°@
approximation
face
) : 1+0(1) o(1)
[GKK+’15] | General | Undirected approximation (D +Vn)n
[Vos23] Planar Directed Exact D - n/2to®

l




General approach: duality!

* The dual graph G™.

e Faces of G arenodes in G*
* Adjacent faces of (G are connected in G*

* Properties.
 CutsinG™ arecyclesinG
e Distancesin G* imply flow in G




Challenges

* (¢ Is not the communication network.
* Simulate a face?

* The hop-diameter of ¢G* might be much
larger than that of



Warm-up: Minimum Weight Cycle
C Dual Minor-Aggregation )

Dual Min-Cut

}

Primal Min
_undirected cycle |




Minor-Aggregation Model

* Round:
e contract some edges

 compute aggregate operators over
vertices’ leaving edges

* Aggregate operator:
* Input: two ¥-bit strings, a, b
* Output: a single ¢-bit string a®b
* E.g. min, +, arg max.
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minx, = 4

Primal Minor-Aggregations ™

* Part-wise aggregation.

 Input: disjoint connected subgraphs S, S,, ...;
and inputs x, forv € G

* Output: vertices in §; know @,,¢g, x,, for all i

 O(D) rounds via low-congestion shortcuts
[GH’16] in planar graphs

* Minor-aggregation round = 0(1) part-wise
aggregations [ZGY+22] = O(D) rounds

minx, = —9
‘UES3
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Dual Minor-Aggregations

* Aggregation on faces?
* Set each S; to be a face?
* Faces are not disjoint
—Challenge

* Solution: related graph G [GP’17]
« faces of G = disjoint subgraphs of G
* G has small diameter
G isplanar
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Dual Minor-Aggregations

« [GP’17]implement aggregations on the dual for special cases with G in
O (D) rounds.

« We generalize G to allow aggregations over edges of the dual.

Can simulate O(1)-round minor
-l aggregation algorithmson G™ in

O(D) rounds.

0(1) round minor-
aggregation min-cut
algorithm [GZ2’22]

v

Minimum weight cycle of G is
found in O(D) rounds.
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Approximate Maximum st-Flow

C Dual Minor-Aggregation )

Approximate Dual
SSSP

\

[ Primal Max st-Flow ]




Exact Maximum st-Flow

CD al Recursive Decompos ition )

Dual Dsta nce
Labeling

[ Exact Dual SSSP ]

—

[ Primal Max st-Flow ]




Maximum st-Flow via Dual SSSP

* [Ven’83] (non-trivial):
* Maximum st-flow in G =log A SSSPsin G*

* Positive and negative edge-lengths

« Arbitrary source ®

SSSP in G* within r rounds = max st-

flow in G within O(r) rounds
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Goal: Dual SSSP

Label(f) f

Label(f)

* How?: Distance Labeling Label(g)

* Faces assigned £-bits labels x

Label(g)
Label(h T d(f.9)

Label(f)

Label(f)

Label(f)

>@
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Primal Recursive Separator Decomposition

* Planar Cycle Separators [LT’79, Mil’86]:
 S=cycleof O(D) vertices
G\ Sisdisconnected
 Components’sizes <2 |G|
e S =two paths of a spanning tree + edge e
* Possiblye & E(G)

* Apply recursively..
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Primal Distance Labeling

e Labels’ definition [GPP+’04]:
* Label;(v) = dist(v, s), dist(s,v) foralls € S
* Ifv €S, append to the label Labelg;, (v)

* Label size = 0(D)
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Primal Distance Labeling

* Correctness. Since S is a cycle, there are two
cases:

. Path crosses S
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Primal Distance Labeling

* Correctness. Since S is a cycle, there are two
cases:

. Path crosses S
[I. Path does not cross S
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Distributed Primal Labeling Algorithm

* Bounded Diameter Decomposition (BDD) [GP’17,

LP’19]:
« Computed in 0(D) rounds / \
» Subgraphs are of diameter O(D)
« Same level subgraphs are nearly disjoint
—Parallel broadcast of £-bits in all subgraphs of same
level in O(D + #) rounds / [ \

« Application: distance labeling in G
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Distributed Primal Labeling Algorithm

* Compute the labels bottom-up on BDD: Clique(v)
* Collect leaf subgraphs (locally compute labels)
* Non-leaf subgraphs (recursively):

1. Broadcast labels of separator - 0(D?) bits

2. Locally construct Clique(v)

3. Locally compute distances between v and separator
vertices in Clique(v)

« 0(D?) rounds
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Distributed algorithm for Dual Labeling

ldea: compute a
BDD for the dual

and compute
labeling (??)
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Try 1: Naive approach

 Run same algorithm on G*?
* Not the communication network.
* The diameter of G* might be Q(n) while D = 0(1).
=> Does not work :/
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Try 2: Recurse on G solveon G~

* Key observation: hierarchical decomposition of G
Is also a decomposition of G*

* Assume separator S; iscycle in G

* Cycle-cut duality => S, is edge separator of G*
* Apply recursively

=> Has a chance but has difficulties
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G*

Try 2: Recurse on G solveon G~

* Dual subgraphs in decomposition 5 standard dual of primal
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G*

Try 2: Recurse on G solveon G~

* Dual subgraphs in decomposition 5 standard dual of primal

GO Gl

-- -y
- -

-
- -
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G*

Try 2: Recurse on G solveon G~

* Dual subgraphs in decomposition 5 standard dual of primal

-- -y
- -
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Dual Recursive Separator Decomposition

e Dual separator:
« F=edgesof SinG"
* G*\ F isdisconnected / \

« Components are constant factor smaller

* Apply recursively..
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Dual Distance Labeling

* Labels’ definition:

* Labelg+(g) = dist(g, f), dist(f,g) forall f € F
 If g € F, append to the label Label;.(g)

 Label size = 0(D)
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Dual Distance Labeling

*
* Correctness. Since F is a cut, there are two cases: G
|. Path crosses F.

v
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Dual Distance Labeling

* Correctness. Since F is a cut, there are two cases:
|. Path crosses F.
ll. Path does not cross F.
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Distributed Dual Labeling Algorithm

e Dual properties for BDD.
» Dual separator F of size 0(D)

« Can be learned in O(D)-rounds /

» Takes care of complications

» Application: distance labeling in G*
—Max st-Flow in ¢
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Distributed Dual Labeling Algorithm

 Compute the labels bottom-up on Extended BDD: Clique(g)
* Collect leaf subgraphs (locally compute labels)

* Non-leaf subgraphs (recursively):

1. Broadcast labels+ edges of separator - O(D?) bits
2. Locally construct Clique(g)

3. Locally compute distances between g and separator
vertices in Clique(g)

« 0(D?) rounds = primal complexity!
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Try 2: Recurse on G solveon G~

* Key observation: hierarchical decomposition of G
Is also a decomposition of G*

* Assume separator S; is cyclein G

e Cycle-cut duality => S is edge separator of G*
* Apply recursively

=> Has a chance but has difficulties
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Difficulties

» Separator S; = two BFS paths plus
virtual edge e that may not be in E(G)
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Difficulties

» Separator S; = two BFS paths plus
virtual edge e that may not be in E(G)

 ScisnotacutinG”.
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Difficulties

» Separator S; = two BFS paths plus
virtual edge e that may not be in E(G)
 SgisnotacutinG”
* Adding e splits a face (dual node)
* e; cannot be communicated on
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New Dual: work with face-parts, not faces

* Face-part f; = subset of edges that belong to G
the same face f of G

Go

Gq
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New Dual: work with face-parts, not faces

* New dual = node for each face-part as well as faces
of G

* This is the standard dual G* when considering G

G, Gy
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New Structural Properties for BDD

1) Any subgraph of the BDD contains at most

O(logn) face-parts.

Non-trivial: subgraph in BDD might be broken
into ©(D) subgraphs
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New Structural Properties for BDD

1) Any subgraph of the BDD contains at most

O(logn) face-parts.
* Non-trivial: subgraph in BDD might be broken
into ©(D) subgraphs

« The face that contains e might be already
partitioned
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New Dual Separator

2) The set Fy that contains parts and endpoints of Sy

is a separator of X of size O(D).

Separator must cut paths between child
subgraphs:

(1) Paths can use Sy edges

(2)Paths can use face-parts or the face that
contains e
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New Dual Clique(g)

* Vertices: g and node-parts f' of f € Fy in subgraphs of X*

* Edges:
 SyedgesinX*®

* Clique edges between each two node parts f1, f, of f €
Fx

* Clique edges between f, h in same child subgraph
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Correct Dual Labeling Algorithm

* Learn new decomposition (faces and face-parts)

* Then apply similar algorithm as in simplified case
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Summary

C Dual Minor-Aggregation ) CDuaI Recursive DecompositiorD

|

Dual Distance

‘/L Labeling
l

.

~ - é . .
Dual Min-Cut Approximate Dual Exact Dual SSSP ] Dual Min Directed
’ SS\/ - CYde g
Primal Min j - 1 : Primal Global
_undirected cycle | . Primal Max st-Flow ) _ Directed Min Cut |
Primal Min st-Cut
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Open problems

« Max st-Flow in (D?) rounds?
* Directed SSSP in G in 6(D?) rounds?
* Exact Undirected SSSP in O(D) rounds?

* Extend other planar centralized techniques to
CONGEST?

» Extension to bounded genus graphs?

Thanks!
Questions?
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