
Maintaining a Kingdom in a Tournament

Oren Weimann and Raphael Yuster

University of Haifa, Israel
oren@cs.haifa.ac.il, raphy@math.haifa.ac.il

Abstract. A king in an n-vertex tournament graph G is a vertex that
can reach any other vertex v with a path of length at most two. A
kingdom is a data structure that given any vertex v returns such a path
from a king to v in O(1) time. In this paper, we show how to maintain a
kingdom while the tournament graph G undergoes updates. We consider
both edge updates that flip the direction of an edge, and vertex updates
that insert/delete vertices by activating/deactivating rows and columns
of the graph’s adjacency matrix.
For a single edge-flip, we show that after O(n3/2) preprocessing time, we
can maintain a kingdom in O(1) time following the edge-flip. With Õ(n2)
preprocessing time, we can support any constant number of edge-flips,
vertex insertions, and vertex deletions in O(logn) time per operation.
For an arbitrary number of edge-flips, we present a randomized algorithm
that maintains a kingdom in O(logn) expected time following every edge-
flip, and another algorithm that supports vertex insertions in O(

√
n)

amortized time per insertion.

Keywords: Tournament, king, dynamic graphs, fault tolerance

1 Introduction

A tournament is a directed graph G = (V (G), E(G)) with exactly one edge be-
tween every pair of vertices. Already in 1953, Landau [5] observed that every
tournament has a king – a vertex that can reach any other vertex with a (di-
rected) path of length at most two. Indeed, it is not difficult to see that any
vertex of a tournament with maximum out-degree is a king. Alternatively, the
source of every maximal transitive subtournament is a king. See Maurer [8] for
many basic mathematical properties of kings.

Both Landau and Maurer used kings in tournaments in order to analyze the
mathematical structure of dominance hierarchies in animals. In such applications
(as well as others such as sports competitions or elections), not only the identity
of the king is important, but also the dominance hierarchy that the king induces
(which we call a kingdom). A kingdom, given any vertex v, reveals the path
(of length at most two) from the king to v. Formally, a kingdom is a directed
spanning tree of depth at most 2 rooted at a king x. I.e., for every child u of
x there is an edge (x, u) ∈ E(G), and for every child v of u there is an edge
(u, v) ∈ E(G). Notice that not all out-neighbors of x in G must be children of x
in the kingdom (it is possible that some of them are grandchildren).

https://orcid.org/0000-0002-4510-7552
https://orcid.org/0000-0001-7550-6506
mailto:oren@cs.haifa.ac.il
mailto:raphy@math.haifa.ac.il

2 O. Weimann and R. Yuster

In this paper, we are interested in maintaining a kingdom in a dynamic
tournament G. That is, a tournament that undergoes edge-flips, and vertex in-
sertions/deletions. Maintaining a king itself is actually trivial by simply main-
taining the out-degree of every vertex (and reporting the maximal one as the
king). Maintaining a kingdom however, is much more challenging.

The kingdom structure. There are several combinatorial and algorithmic
questions that naturally arise regarding kingdoms. We call a king plus its chil-
dren a dominating out-star. Notice that a dominating out-star D is a dominating
set in the tournament. Namely, for every vertex v ∈ V (G)\V (D), there is a ver-
tex u ∈ V (D) such that (u, v) ∈ E(G); we say that u dominates v. A natural
question is to determine the smallest size of a dominating out-star. Let f(n)
denote the maximum over all n-vertex tournaments, of the minimum size of a
dominating out-star. It is not difficult to show that f(n) = (1 + o(1)) log n (see
Proposition 1) although an exact formula seems elusive. This problem is nat-
urally related to the well-known problem of Erdős and Moser [4] on determin-
ing h(n), the minimum over all n-vertex tournaments, of the maximum order
of a transitive subtournament. Since every maximal transitive subtournament
contains a dominating out-star, we have f(n) ≤ h(n). It is well known that
2 logn ≥ h(n) ≥ logn [4, 11]; unlike f(n), the exact asymptotics of h(n) is
not known. We mention also that it is known that g(n), the maximum over
all n-vertex tournaments, of the minimum size of a dominating set (so clearly
g(n) ≤ f(n)) also satisfies g(n) = (1 + o(1)) log n [6, 12].

As for the algorithmic side, there are several results on king detection which
also compute a corresponding kingdom [2, 3, 7, 10]. In particular, an O(n3/2)
time algorithm of Shen, Sheng, and Wu [10] computes a king and is easily seen
to also compute a dominating out-star and a kingdom. It is also shown in [10]
that any deterministic algorithm for finding a king requires Ω(n4/3) queries to
the tournament adjacency matrix, hence no deterministic algorithm can run in
o(n4/3) time. Yet, it was observed by Abboud, Grossman, Naor, and Solomon [1]
that there is an O(n) randomized Las Vegas algorithm for detecting a king and
computing a corresponding kingdom.

The main results in this paper extend these algorithms to the dynamic and
fault-tolerant setting. That is, we are allowed to preprocess the graph, such that
we can efficiently (either worst case or amortized) maintain the kingdom after
any vertex/edge change. In a tournament, changing an edge means flipping its
direction, inserting a vertex v additionally inserts an edge between v and every
other vertex, and deleting a vertex v deletes all its incident edges. In a fault
tolerant algorithm, we wish to preprocess the graph efficiently, such that af-
ter a single change (or perhaps constantly many changes) we can maintain the
kingdom efficiently.

It is not difficult to see that a single edge-flip or vertex insertion or vertex
deletion might cause a vertex to no longer be a king and can cause significant
change to the kingdom. As we do not want to compute the new kingdom ex-
plicitly following every change, we will maintain the kingdom implicitly with a
data structure that stores all the structural information of the resulting kingdom.

Maintaining a Kingdom in a Tournament 3

That is, given a vertex v, our data structure supports a constant time query q(v)
which outputs a path of length at most two from the newly computed king x to
v. Formally, for a tournament G, a Kingdom Structure (KS) is a triple (x, Y, S)
such that x is a king of G, Y is a list of (not necessarily all) out-neighbors of x
so that {x}∪Y forms a dominating out-star, and S is a data structure that can
be queried in constant time to return q(v). Notice that a KS encodes the entire
information of a kingdom.

Our results. Our first result is a fault tolerant algorithm that handles any con-
stant number of changes efficiently. As an edge-flip is a special case of two vertex
operations (deletion of a vertex v and reinsertion of v with one incident edge
changed compared to v’s original adjacencies), it suffices to describe the algo-
rithm following only vertex operations. Formally, we assume that the tournament
G is represented by its (binary) adjacency matrix M (indexed by V (G)), and that
M includes additional rows and columns that are initially marked as inactive.
A change (A,R) is given by a list of vertices R (active rows/columns of M that
should be marked as inactive) and a list of vertices A (inactive rows/columns of
M that should be marked as active). We never access an inactive entry in M ,
and accessing an active entry in M is done in constant time.

Theorem 1. Given an n-vertex tournament G, for every constant k, we can
preprocess G in Õ(n2) deterministic time or Õ(n) expected time, so that following
any set (A,R) of changes with |A ∪ R| ≤ k, we can compute a KS for the new
tournament deterministically in O(log n) time. If A = ∅ (only removals are
allowed) then the new KS can be computed in O(1) time.

Our second result is a dynamic algorithm for handling vertex insertions only.
Each insertion is presented by activating a new row/column at the bottom/right
of the current adjacency matrix M . Denoting by n the current number of vertices,
each insertion is performed in amortized O(

√
n) time (i.e., if we start with a

graph that has n vertices and perform t = O(n) subsequent insertions, then the
total time of all insertions is worst case O(t

√
n)).

Theorem 2. Given an n-vertex tournament G, there is a dynamic algorithm
that, after preprocessing G in O(n3/2) deterministic time or Õ(n) expected time,
can compute a KS in O(

√
n) amortized time following every new vertex insertion.

We then move on to consider a dynamic algorithm for handling edge-flips. We
present an algorithm that can handle any number of edge-flips in (nearly optimal)
O(logn) expected time per flip. We assume that the sequence of edge-flips is
chosen in advance by an oblivious adversary as he wishes but only according to
the structure of the initial tournament graph G. The oblivious-adversary model is
standard for measuring the performance of randomized dynamic algorithms. The
sequence of edge-flips is oblivious to the coin tosses made by the algorithm, and
the algorithm is oblivious to the sequence of edge-flips. Handling an adaptive-
adversary is left as an open problem.

4 O. Weimann and R. Yuster

Theorem 3. Given an n-vertex tournament G, there is a dynamic algorithm
that, after preprocessing G in Õ(n) expected time, can compute a KS in O(logn)
expected time following every edge-flip.

Finally, we show how to improve the above O(logn) bound to (optimal) O(1)
deterministic time in the special case where only a single edge-flip is allowed.

Theorem 4. Given an n-vertex tournament G, we can preprocess G in O(n3/2)
time, so that following any single edge-flip, a KS of the resulting tournament can
be computed in O(1) time.

Roadmap. In Section 2 we describe a very simple O(n2) time deterministic
algorithm to obtain a KS for a tournament in which the dominating out-star has
O(logn) vertices. This algorithm is used as an ingredient in the preprocessing
part of Theorem 1 (which is presented in Section 3), and in the dynamic algo-
rithm of Theorem 2 (which is presented in Section 4). The dynamic algorithm
of Theorem 3 for handling edge-flips is presented in Section 5 and the single
edge-flip algorithm of Theorem 4 is presented in Section 6.

2 Computing a KS with a Small Dominating Out-star

Recall that f(n) denotes the maximum over all n-vertex tournaments, of the
minimum size of a dominating out-star. It is easy to see that f(n) ≤ log(n+ 1)
by repeatedly finding a maximum out-degree vertex and eliminating its out-
neighbors. Formally,

Proposition 1. f(n) ≤ log(n+ 1).

Proof. It suffices to prove that every tournament with 2k−2 vertices has a dom-
inating out-star of order at most k− 1. This clearly holds for k = 2. Proceeding
inductively, let G be a tournament with n = 2k−2 vertices and let v be a vertex
with maximum out-degree. Since the maximum out-degree in a tournament is
at least (n − 1)/2, the out-degree of v is at least 2k−1 − 1. Remove v and its
out-neighbors from G to obtain a tournament on at most 2k−1−2 vertices which,
by induction, has a dominating out-star of order at most k−2. Such an out-star,
together with v, is a dominating out-star for G. ⊓⊔

Corollary 1. Given an n-vertex tournament G, we can construct a KS (x, Y, S)
for G with |Y | = O(log n) in O(n2) deterministic time or O(n) expected time.

Proof. Suppose that M is the (binary) adjacency matrix of G (so M(u, v) = 1
if and only if (u, v) ∈ E(G)). Initially, we set all vertices of G as unmarked. Also
we set an array P indexed by V (G) where P (v) is either ∅ or else P (v) = u
such that (u, v) ∈ E(G). Finally, let Y be an (initially empty) list and let x be
a variable that at the end will contain a king.

Notice that at any given time we can compute a vertex of maximum out-
degree in the subtournament of G induced by the unmarked vertices in O(nd)

Maintaining a Kingdom in a Tournament 5

time where d is the number of unmarked vertices. We repeatedly proceed as
in the proof of Proposition 1. We find a vertex of maximum out-degree in the
subtournament of the yet unmarked vertices. Suppose this vertex is y. Set y
as marked. For each unmarked out-neighbor v of y, set P (v) = y and set v as
marked. If all vertices V (G) are now marked, set x = y and halt. Otherwise, add
y to Y and repeat.

As at each round, the number of unmarked vertices reduces by a factor of
at least 2, so the overall runtime is O(n2) as claimed. Alternatively, this can
be done in O(n) expected time, if instead of the maximum-degree vertex we
randomly choose an unmarked vertex (whose degree is expected to be at least
half of the maximum-degree vertex). Notice that (x, Y, P) is indeed a KS, as
given v ∈ V (G), either (x, v) ∈ E(G) and the query q(v) returns the single edge
(x, v) or (v, x) ∈ E(G) and the query q(v) returns the path (x, P (v), v) where
P (v) ∈ Y . ⊓⊔

Recall from the introduction that the algorithm of Corollary 1 is not optimal.
The algorithm from [10] computes a KS in O(n3/2) time. However, that algorithm
only guarantees that |Y | ≤

√
n while the algorithm from Corollary 1 guarantees

|Y | = O(log n); which will be important for us later. The algorithm from [1]
computes a KS in expected O(n) time, but it only guarantees that |Y | has
expected size O(logn). We can use the latter as an alternative for Corollary 1 if
we settle for a randomized algorithm. However, in our applications, the running
time of Corollary 1 will not be a bottleneck as we shall use it as a subroutine
for relatively small subtournaments.

Another noteworthy observation is that in all of these algorithms, the com-
puted dominating out-star is a transitive subtournament of G, and that the king
is the source of that transitive subtournament. One may wonder whether it is al-
ways the case that a smallest dominating out-star can be taken to be a transitive
subtournament. This, however, is false as the following example demonstrates.

Let G be tournament consisting of n vertices, with four vertices designated
a, x1, x2, x3 and the remaining n − 4 vertices are partitioned into three (say
equal) parts V1, V2, V3. Define the edges to be (a, x1), (a, x2), (a, x3), (x1, x2),
(x2, x3), (x3, x1). Further, for i ∈ {1, 2, 3}, all vertices of Vi are in-neighbors of
a and of xj for j ̸= i and are out-neighbors of xi. Finally, orient the edges of
the subtournament induced by V1 ∪V2 ∪V3 at random. Clearly, {a, x1, x2, x3} is
a dominating out-star where a is the king, and {a, x1, x2, x3} is not transitive.
It is easily checked that with high probability (as n grows), there is no domi-
nating out-star with fewer than four vertices and that {a, x1, x2, x3} is the only
dominating out-star with four vertices.

Finally, it is easy to see that f(3) = f(4) = f(5) = f(6) = 2, and that
f(n) = 3 for all n = 7, . . . , 14. To see, say, the latter, notice that f(14) ≤ 3 by
Proposition 1, while f(7) ≥ 3 by considering the so-called Paley tournament [9]
on seven vertices. This is the (unique) regular tournament on seven vertices (i.e.,
the in-degree and out-degree of each vertex is 3) for which the out-neighbors
of every vertex form a directed triangle. Clearly, it cannot be dominated by
two vertices. Thus, for all 2 ≤ n ≤ 14, we have that g(n) = f(n) (recall that

6 O. Weimann and R. Yuster

g(n) ≤ f(n) is the maximum over all n-vertex tournaments of the minimum
size of a dominating set). A simple probabilistic argument shows that g(n) =
(1 + o(1)) logn, hence so does f(n). It seems interesting to determine whether
f(n) = g(n) for all n.

3 A Fault Tolerant Algorithm

Proof of Theorem 1. The idea is to repeatedly apply Corollary 1 and store
the information in a rooted tree T of depth k. The nodes of T correspond
to subgraphs obtained from G by removing at most k vertices. The root of T
corresponds to the entire graph G, and stores a KS (x, Y, S) for G obtained using
Corollary 1. The children of the root are subgraphs of the form G \ {v}. The
crucial observation is that we only need to consider vertices v that belong to Y
(other vertices do not affect the KS), and by Corollary 1 we have |Y | = O(logn).
I.e., the root has only O(logn) children. We repeat this process until depth k.

Formally, the nodes of T are pairs of the form (Q, (xQ, YQ, SQ)) where Q
is a subtournament of G and (xQ, YQ, SQ) is a KS for Q obtained using Corol-
lary 1. The root of T is (G, (xG, YG, SG)). For a node (Q, (xQ, YQ, SQ)) of T
its children are defined as follows: For each v ∈ {xQ} ∪ YQ there is a child
(Qv, (xQv , YQv , SQv)) where Qv = Q \ {v} is the tournament obtained from Q
after removing v. We construct T only until level k (the level of the root is 0).
By Corollary 1, the number of children of a vertex of T at level r is at most
log(n+ 1− r) as every tree vertex at level r corresponds to a tournament with
n − r vertices, whose corresponding KS is constructed in O((n − r)2) = O(n2)
deterministic time or O(n) expected time. Hence, the entire tree T is of size
O(logk n) and is constructed in O(n2 · logk n) = Õ(n2) deterministic time or
Õ(n) expected time, as required.

We next describe how changes are handled. Suppose (A,R) is a set of changes
where A is a set of newly added vertices, R ⊂ V (G) is a set of removed vertices,
and |A ∪ R| ≤ k. We shall first handle the removed vertices R. To this end,
we locate in T a node (Q, (xQ, YQ, SQ)) where V (G) \ V (Q) ⊆ R and ({xQ} ∪
YQ)∩R = ∅. This can be done by traversing T from the root as we next describe:
Initialize R∗ = R and proceed as follows. If the root (G, (xG, YG, SG)) already has
the required property, we halt at the root. Otherwise, let v ∈ ({xG} ∪ YG)∩R∗.
Set R∗ = R∗ \ {v} and traverse to the child (Q, (xQ, YQ, SQ)) where V (G) \
V (Q) = {v}. Now continue in the same manner. Suppose we are now at some
tree node (Q, (xQ, YQ, SQ)). If ({xQ} ∪ YQ)∩R∗ = ∅ we halt at this tree vertex.
Otherwise, let v ∈ ({xQ}∪YQ)∩R∗. Set R∗ = R∗ \{v} and continue to the child
(Qv, (xQv

, YQv
, SQv

)) where V (Q) \V (Qv) = {v}. Notice that since |R| ≤ k and
since |R∗| decreases by 1 as we traverse to the next child, the procedure must
halt at some tree node (Q, (xQ, YQ, SQ)) after k steps as required. Also note that
the time required to traverse the tree is O(logn) as each list YQ has O(log n)
elements. In fact, we may further reduce the traversal time to O(1) since recall
that in the KS of Corollary 1, SQ is just an array P = PQ, where P (v) = ∅ if
v ∈ xQ ∪ YQ. So we just need to query P (v) for every v ∈ R∗ and see if it is
empty.

Maintaining a Kingdom in a Tournament 7

Once we arrive at our desired tree node (Q, (xQ, YQ, SQ)) we have the prop-
erty that V (G) \V (Q) ⊆ R and ({xQ}∪YQ)∩R = ∅. Recall also that SQ is just
an array P = PQ such that P (v) = ∅ for v ∈ {xQ} ∪ YQ and otherwise P (v) is a
vertex of xQ ∪ YQ which dominates v. Let G∗ = G \ R, namely the subtourna-
ment obtained from G after removing R. Define SG∗ = (P,R) (namely, the data
structure has two components, the array P and the set R of removed vertices).
We claim that (G∗, (xQ, YQ, SG∗)) is a KS for G∗. Indeed, given v ∈ V (G) we
wish to return q(v). If v ∈ R then we return that the query q(v) is invalid. Oth-
erwise, if v = xQ we return q(v) = xQ, if (xQ, v) ∈ E(G) then (xQ, v) ∈ E(G∗)
and we return q(v) = (xQ, v). Otherwise, we return q(v) = (xQ, P (v), v) (notice
that this is a valid path of length 2 in G∗). We have proved that a KS for G∗

can be constructed in constant time, as required.
We next need to handle the vertex addition set A. Starting from G∗ (which

is just G with |R| rows and columns of the adjacency matrix of G marked
inactive) we add the vertices of A (recall, this means that we activate a bottom
row and a rightmost column of the adjacency matrix) one by one. We will show
how this can be done in O(log n) time for each addition. To simplify notation,
suppose that A = {a1, . . . , at} where the row/column corresponding to ai is
the n + i row/column of the adjacency matrix. Recall that the KS for G∗ is
the (xQ, YQ, SG∗) = (xQ, YQ, (P,R)) obtained by the deletion procedure above.
Starting with a1, we check whether (y, a1) is an edge for some y ∈ {xQ}∪YQ. If
so, simply set P (a1) = y. This takes O(logn) time since |{xQ}∪YQ| = O(log n).
Otherwise, a1 dominates all vertices of the dominating star {xQ} ∪ YQ of G∗ so
it is a king of G∗ ∪ {a1}. Therefore, we just modify the KS by setting YQ :=
YQ ∪ {xQ} and xQ := a1. Similarly, when adding ai, if (y, ai) is an edge for
some y ∈ {xQ} ∪ YQ then we set P (ai) = y. This search takes O(log n) time
since |YQ| = O(i + log n) = O(log n) since i = O(1). Otherwise, ai dominates
all vertices of the dominating star of G∗ ∪ {a1, . . . , ai−1}, hence it is a king of
G∗ ∪ {a1, . . . , ai−1}, and we modify the KS by setting YQ := YQ ∪ {xQ} and
xQ := ai. As |A| ≤ k is constant, the entire procedure takes O(log n) time and
we arrive at a KS for G∗ ∪A, as required. ⊓⊔

4 A Dynamic Insertion Algorithm

Proof of Theorem 2. Recall that we start from an n-vertex tournament G
given by its adjacency matrix, and we want to support every new insertion by
exposing a new row at the bottom of the matrix and a new column at the right
of the matrix. Our goal is to preprocess G and obtain a KS for it, and then
show that following Θ(n) subsequent insertions, the total number of operations
required for maintaining a KS during t insertions is O(t

√
n).

We initially preprocess G in O(n3/2) time using the algorithm from [10].
Recall that this computes a KS of the form (x, Y, P) where |Y | ≤

√
n and P

is an array indexed by V (G) such that P (v) = ∅ if v ∈ {x} ∪ Y and otherwise
P (v) ∈ {x} ∪ Y and (P (v), v) ∈ E(G).

We insert new vertices one by one. In most cases, an insertion takes only
O(

√
n) time, but from time to time it will take longer, yet still not violate the

8 O. Weimann and R. Yuster

claimed amortized bound. Let Y0 := {x} ∪ Y (as we will modify Y and x, we
need to remember the original dominating out-star). We shall also maintain a
list Z consisting of “worrisome” newly inserted vertices. Initially, Z = ∅. We use
G to refer to the current tournament and its adjacency matrix.

Consider the first vertex v to be inserted. We check in O(
√
n) time whether

there is some y ∈ {x} ∪ Y = Y0 such that (y, v) is an edge. If so, then set
P (v) = y. Otherwise, v dominates the dominating out-star of G, so v is a king
of G ∪ {v}. We then modify Y := {x} ∪ Y , x := v, and P (v) := ∅ to obtain the
new KS for G ∪ {v}. We also add v to Z. We continue in this manner for the
first

√
n insertions. I.e., when inserting v, if there is some y ∈ {x} ∪ Y where

(y, v) is an edge then we set P (v) = y. If y ∈ ({x} ∪ Y) \ Y0 then we add v to
Z. Otherwise, we modify Y := {x} ∪ Y , x := v, and P (v) := ∅ and add v to Z.
After doing

√
n insertions, we have |Y | ≤ 2

√
n and |Z| ≤

√
n, so it takes O(

√
n)

time to do each of the first
√
n insertions.

Once we arrive at insertion number
√
n we “rearrange” our data structure.

Notice that ({x} ∪ Y) \ Y0 ⊆ Z and that Y \ Y0 is a prefix of Y . Using the
algorithm of Corollary 1, we compute a KS for the subtournament G[Z] induced
by Z. Notice that G[Z] is accessible in the bottom right

√
n×

√
n of the present

adjacency matrix (so we have O(1) access to its edges). The time required for
computing the KS of G[Z] is therefore O(

√
n
2
) = O(n) and the resulting domi-

nating out-star is of size at most O(log
√
n) = O(log n). Let the obtained KS of

G[Z] be (xZ , YZ , PZ). We merge it with our current KS (x, Y, P) of G as follows.
We set Y := Y0 ∪ Yz, x := xZ and P (v) := PZ(v) for each v ∈ Z (for v /∈ Z,
we keep P (v) intact). Observe that the entire rearranging operation requires
only O(n) time, which is amortized O(

√
n) time over the previous

√
n “cheap”

insertions. Crucially, however, is that now |Y | ≤
√
n+ log n.

We may now perform
√
n/ logn iterations of

√
n insertions each, where at the

end of each iteration, we perform the rearrangement procedure just described
for the Z vertices inserted during the iteration. Each such iteration extends
the current Y by at most logn vertices, so each insertion still requires O(

√
n)

amortized time. Note that we have now already added n/ log n vertices. We
could have, in fact, performed

√
n iterations to account for n insertions. This is

perfectly fine, but if we do so, the size of Y could be as large as
√
n logn, so

this yields an insertion algorithm with amortized time O(
√
n logn) which is only

slightly larger than what we are claiming. Let us see how we can further avoid
this log n factor.

Once we perform the
√
n/ logn iterations described above (call these “level 1”

iterations), we can rearrange the union of the sets Z of all iterations. Notice that
such union of Z’s has at most n/ logn vertices. We can now use the algorithm of
[10] to obtain a KS with dominating out-star of size (n/ log n)1/2 and the time to
construct it is (n/ log n)3/2 which is only O((n/ log n)1/2) when amortized over all
n/ logn insertions. We then merge it as described earlier with the current KS to
obtain a KS for the current tournament whose Y is only of size

√
n+(n/ logn)1/2.

We can now perform
√
log n “level 2” iterations where each iteration invokes a

“level 1 iteration”. Once done, we have inserted n/
√
log n vertices, and use [10]

Maintaining a Kingdom in a Tournament 9

to rearrange, in (n/
√
log n)3/2 time for a KS of the current tournament whose

Y is of size only
√
n+ (n/

√
log n)1/2. Continuing in this way, we perform “level

t” iterations, to obtain a KS whose dominating out-star is of size at most
√
n+

n1/2/(log n)1/2
t

and the time for rearranging using [10] is (n/(log n)1/2
t−1

)3/2.
Once we have t = O(log log log n), we have inserted Θ(n) vertices and the current
Y is still of size O(

√
n). This is because

∑log log logn
t=1 (1/ logn)1/2

t

= O(1). The
amortized time for each insertion is therefore at most O(

√
n). ⊓⊔

5 A Dynamic Edge-Flip Algorithm

Proof of Theorem 3. We will use the following simple claim.

Claim 1. Given any n-vertex tournament, we can find a vertex with out-degree
at least n/4 in expected O(n) time.

Proof. We claim that in every tournament there are at least (n − 1)/2 vertices
whose out-degree is at least n/4. Suppose not, and let X be the set of vertices
whose out-degree is less than n/4, so we have that |X| ≥ n/2 + 1. Consider
the subtournament induced by X and a vertex with maximum out-degree in it.
Already in that subtournament, the out-degree of this vertex is at least (|X| −
1)/2 ≥ n/4, a contradiction. We therefore conclude that a randomly chosen
vertex v has out-degree at least n/4 with probability at least 1/2− 1/2n ≥ 1/3.
The lemma follows since checking v’s out-degree is done in O(n) time. ⊓⊔

Let F = {f1, . . . , fm} be any sequence of flips. Let Gi be the tournament
obtained from G after performing the flips f1, . . . , fi (so that G0 = G). I.e., if
fi = {x, y} then Gi is obtained from Gi−1 by flipping the edge between x and y.

We first define the components of our data structure that contains the KS
following the i’th flip. Initially, the data structure will contain the KS for G0 = G.

• The adjacency matrix A of the current tournament Gi.
• A variable K holding a king of Gi.
• An array D of vertices forming a dominating out-star of Gi. We call the ver-
tices of D backbone vertices. It will always hold that if D = {vi1, . . . , viti} (i.e.,
D[j] = vij), then ti = O(log n) and (vij , v

i
j′) ∈ E(Gi) if and only if j > j′. Fur-

thermore, the last vertex viti is K.
• An array B of size n such that if v = vij is a backbone vertex, then B[v] = −j.
Otherwise, B[v] is the index of a backbone vertex such that (D[B[v]], v) ∈ E(Gi).
We call the set of all vertices v for which B[v] = j, the bag of vij .
• An array L of size n such that the first segment of L contains all vertices in the
first bag, as well as the first backbone vertex. The second segment of L contains
all vertices in the second bag, as well as the second backbone vertex and so on.
The ordering within each segment is arbitrary.
• An array P such that P [j] is the index in L of the last vertex of the j’th seg-
ment. If j is larger than the number of backbone vertices, then P [j] is irrelevant
(and will not be used).
• An array U of unmarked vertices. These can be in any order. We will only

10 O. Weimann and R. Yuster

use U when updating the data structure after a flip. Once the current update is
complete, U is empty.
• A variable M holding the number of marked vertices (i.e., M = n− |U |).

Let us observe that a query can be performed in O(1) time. Given a vertex v,
we check B[v]. If B[v] is negative (so v is a backbone vertex), then if v ̸= K we
return the path (K, v), and otherwise we return the path (K). If B[v] is positive
(i.e., it is equal to the index of the bag containing v), then let D[B[v]] be its
dominator. If D[B[v]] ̸= K, then return the path (K,D[B[v]], v). Otherwise,
return the path (K, v).

Let us next see how we set our data structure for the initial tournament
G = G0 whose adjacency matrix A is given. We use Claim 1 to locate (in
expected O(n) time) a vertex v (so that v = v01 will be the first backbone vertex
of G0) with out-degree at least n/4. For each out-neighbor u of v, we set B[u] = 1.
We also set B[v] = −1 and set D[1] = v. All out-neighbors of v and v itself are
assigned consecutively to the initial segment of L. We set M to be the number
of out-neighbors of v plus one. We set P [1] = M (since this is the index in L of
the end of the first segment). We set U to be the list of all in-neighbors of v.

Locating the j’th backbone vertex of G0. More generally, we describe how
to locate the j’th backbone vertex v of G0. We will later, during updates, use
this procedure to determine a j′’th backbone vertex of Gi, if necessary. We
repeatedly choose an index p at random in {1, . . . , n −M} (as we must choose
an unmarked vertex, and the number of unmarked vertices is n − M), and let
v = U [p] (so v is a randomly-chosen unmarked vertex). For each vertex u ∈ U
we query A[v, u] to find the out-degree of v in the remaining subtournament on
the unmarked vertices. If this number is larger than (n − M)/4 we are happy
with v, otherwise we choose a different v. By Claim 1, the expected time to
find v is O(n−M). Once v is found we continue as follows: For each unmarked
out-neighbor u of v (i.e., in O(n − M) time), we set B[u] = j. We also set
B[v] = −j and set D[j] = v. All unmarked out-neighbors of v and v itself are
assigned consecutively to the next segment of L. Note that we know that this
segment starts at index P [j − 1] + 1 of L. We increase M by the number of
unmarked out-neighbors of v plus one. We set P [j] = M (since this is now the
index in L of the last vertex of the j’th segment). We set U to be the list of
all unmarked in-neighbors of v (as these now remain unmarked). Note that the
total expected time to locate the j’th backbone vertex and perform the data
structure modifications is O(n−M). Also observe that the case j = 1 described
in the previous paragraph can be merged to the general case if we just initialize
U = [n], M = 0 and P [0] = 0.

We repeatedly apply the above procedure increasing j by one each time,
halting when M = n and set K to be the backbone vertex v in the final iteration.

Notice that after this preprocessing stage, the data structure satisfies all
required properties listed earlier. Furthermore, as in each iteration the number
of unmarked vertices decreases by a fraction of at least 3/4, we have that the
size of the backbone is at most O(log n). Also, the expected runtime of the j’th
iteration is O((3/4)jn) and hence expected O(n) in total.

Maintaining a Kingdom in a Tournament 11

The update procedure. Let Bi
j be the bag of vij , and let Gi

j be the subtour-
nament consisting of all backbone vertices vij , v

i
j+1, . . . , v

i
ti and their bags. In

particular, Gi
1=Gi. We shall maintain the following additional property for our

data structure: if x ∈ Bi
j ∪ {vij}, then there is an edge from x to every backbone

vertex vik with k < j. Clearly, this property holds after the preprocessing stage
(i.e., for i = 0). Let us now describe the update procedure. Suppose we arrive at
flip fi+1 = {x, y} where the current tournament is Gi. We consider three cases:

1. Both x and y are not backbone vertices of Gi. In this case we only need to
modify A[x, y] (in constant time) to obtain the adjacency matrix of Gi+1.
Note that we can tell if a vertex v is backbone or not by just checking if B[v]
is positive or negative.

2. One of {x, y} (say, w.l.o.g x) is a backbone vertex and the other is not, and
it also holds that x = vij , y ∈ Bi

k, and k < j. Again, we modify A[x, y]

to obtain the adjacency matrix of Gi+1. Note that we can determine j as
j = −B[x] and determine k as k = B[y].

3. Otherwise, let k be the smallest index such that vik is a backbone vertex and
vik ∈ {x, y}. Again, k is found by examining B[x] and B[y]. Notice that both
x and y are vertices of Gi

k. We modify A[x, y] to obtain the adjacency matrix
of Gi+1 (in particular, Gi

k becomes Gi+1
k). Next, we recompute a KS and a

backbone of Gi+1
k to obtain a backbone and corresponding bags. Informally,

this is done as in the aforementioned preprocessing algorithm, only we start
at its k’th iteration (see details below). Finally, we concatenate the obtained
backbone and bags to the end of the prefix backbone {vi1, ..., vik−1} and their
bags (this is the prefix backbone of Gi which remains intact) to obtain a
backbone and bags for Gi+1.

It is easy to see that cases 1 and 2 require O(1) time and maintain all the
data structure properties. Let us now be more formal regarding case 3. Notice
that we need to “reset” our data structure such that it looks as if it now starts the
k’th iteration (as the first k − 1 bags and backbone vertices remain intact). Let
w = P [k−1]+1 and let U be all the vertices of L[w, . . . , n] in U (so we effectively
“unmark” all vertices of Gi

k). Also set M = P [k−1] to be the number of marked
vertices. Now set j = k and use the aforementioned procedure locating the j’th
backbone vertex, performing it repeatedly until no unmarked vertices are left.
This will yield the backbone vertices vi+1

k , vi+1
k+1, . . . , v

i+1
ti+1

and their bags, and
modify the data structure accordingly, maintaining its properties.

It remains to analyze the running time of case 3. Note that the running time
is (in expectation) linear in the number of vertices of Gi

k (i.e., O(|V (Gi
k)|) time).

In particular, the larger k is, the less time the update is expected to take, as
the sizes of the bags geometrically decrease (in the worst case, if k = 1, we
actually run the entire preprocessing algorithm from scratch in O(n) time). We
next prove that case 3 is not expected to occur frequently.

For a vertex v, a flip stage i, and an index j, Let p(v, i, j) be the probability
that v is the j’th backbone vertex of Gi, i.e., v = vij . Recall that 1 ≤ j ≤ O(logn).
Consider the last flip-stage that changed vij (this could be at flip-stage i or

12 O. Weimann and R. Yuster

earlier). Then, by Claim 1, vij was chosen at random among a pool of at least
|V (Gi

j)|/4 vertices and the probability that v was chosen to be vij is therefore at
most 4/|V (Gi

j)|. Thus, p(v, i, j) ≤ 4/|V (Gi
j)|.

Fix 1 ≤ k ≤ O(log n). Consider the (i + 1)’th flip fi+1 = {x, y}. The prob-
ability that x = vik or y = vik is therefore at most 4/|V (Gi

k)| + 4/|V (Gi
k)| =

8/|V (Gi
k)|. Hence, the probability that case 3 occurred and the correspond-

ing value of k in it is our chosen k is at most 8/|V (Gi
k)|. The expected run-

time in this case is O(|V (Gi
k)|). Hence, the a priori expected runtime is only

O(|V (Gi
k)| · 8/|V (Gi

k)|) = O(1). As there are O(logn) possible choices for k, the
expected runtime of an update is O(log n), as required. ⊓⊔

6 A Single Edge-Flip Algorithm
Proof of Theorem 4. Let (x, Y, S) be a KS for G. Recall that x is a king,
Y is a list of (some) out-neighbors of x, and S is a data structure such that
given v ∈ V (G) where (v, x) ∈ E(G), S may be queried in constant time to
yield a vertex y ∈ Y such that (x, y, v) is a path of length 2. We next define
the components (and properties) of S. These properties hold after preprocessing
and, when specified, also hold after a single edge-flip.

1. A variable m (meaning marked). After preprocessing, m = empty, but fol-
lowing an edge-flip, m may be assigned a vertex.

2. An array P indexed by V (G), such that P (v) is a list of at most two vertices.
After preprocessing, it holds for each v ∈ {x} ∪ Y that P (v) is empty, and
it holds for v /∈ {x} ∪ Y that P (v) contains at most two vertices, the first
of which, say y, is in {x} ∪ Y such that (y, v) ∈ E(G). After an edge-flip, it
will be the case that if v is not a vertex of the current dominating out-star,
then the first unmarked vertex of P (v) (there will always be such a vertex)
is a vertex of the current dominating out-star.

3. After preprocessing, suppose that Y = {y1, . . . , yt}. Then, if v /∈ {x}∪Y and
the first vertex of P (v) is yj , it shall always be the case that (v, yi) ∈ E(G)
for i < j. Also, if the first vertex of P (v) is x, then (v, yi) ∈ E(G) for all
1 ≤ i ≤ t.

4. An array W indexed by V (G) such that after preprocessing, W (v) is the
list of all vertices in {x} ∪ Y that are in-neighbors of v. Furthermore, if
v /∈ {x} ∪ Y then the first vertex of W (v) is also the first vertex of P (v).

5. After preprocessing, let Z be the set of all vertices v in V (G) \ ({x} ∪ Y)
such that the first vertex of P (v) is x (in particular these vertices are directly
dominated by the original king x, but notice that there may also be other
vertices not in Z which are dominated by the king). Assuming Z ̸= ∅, we
compute a king z for G[Z] (the subtournament induced by Z), a list YZ

such that {z} ∪ YZ is a dominating out-star of G[Z], and an array PZ such
that for each v ∈ Z \ ({z} ∪ YZ), we have that (PZ(v), v) ∈ E(G) and
PZ(v) ∈ ({z} ∪ YZ). In particular, (z, YZ , PZ) is a KS for G[Z]. Now, for
each v ∈ Z \ ({z}∪YZ), we will have that the second vertex of P (v) is PZ(v)
(recall that the first vertex of P (v) is x).

Maintaining a Kingdom in a Tournament 13

We invoke the algorithm of [10] twice to construct the KS specified above on
the original G. We first invoke it for G to obtain x, Y , and the array P where
P (v) = ∅ if v ∈ {x} ∪ Y and otherwise P (v) is a single vertex in {x} ∪ Y which
dominates v. Recall that Item 2 above is an artifact of the algorithm (and that
{x} ∪ Y is a transitive subtournament). We then gather all vertices of Z as in
Item 5 and invoke [10] again on G[Z] to obtain z, YZ , PZ and the modified
two-element lists P (v) for v ∈ Z \ ({z} ∪ YZ). Both invocations require O(n3/2)
time, and the construction of W in Item 4 is done in O(|Y |n) = O(n3/2) time,
since |Y | ≤

√
n. Altogether, the preprocessing takes O(n3/2) time, as claimed.

Let us next be formal about our query procedure that may be used either
on the original graph after preprocessing, or after a single edge-flip (where the
correctness after an edge-flip is proved below). Here we refer to G, x, Y, S as
either the original tournament and its KS or the tournament and its modified
KS after a single flip. Given v ∈ V , if v = x, then return q(v) = (x). Else,
if (x, v) ∈ E(G) return q(v) = (x, v), else return (x, y, v) where y is the first
unmarked vertex of P (v). Clearly this takes O(1) time and is correct for the
original tournament.

Now consider an edge-flip. There are several cases:
– If (u, v) is flipped to (v, u) where both u, v /∈ {x}∪Y . This can be verified in

constant time as for such vertices we have that P (v) and P (u) are both not
empty. In this case we do nothing. We keep the same KS and this is valid
since the dominating out-star has not changed.

– If (v, y) is flipped to (y, v) for v /∈ {x} ∪ Y and y ∈ {x} ∪ Y . Here again we
know that y ∈ {x} ∪ Y since P (y) is empty and again we do nothing. This
is valid since v is still dominated by the first vertex of P (v) (which can’t be
y).

– If (y, y′) is flipped to (y′, y) for y, y′ ∈ Y . Once again, we do nothing, as
{x} ∪ Y is still a dominating out-star.

– If (y, v) is flipped to (v, y) for v /∈ {x}∪Y and for y ∈ {x}∪Y . If y is not the
first vertex of P (v), then we do nothing. If y is the first vertex of P (v), we
must search for another vertex to dominate v. Since the first vertex of W (v)
is also y, we look for the next vertex. If y′ is such, then just set P (v) = y′.
If, however, there is no next vertex, then v dominates all of {x} ∪ Y . Hence,
v is a new king, so we can modify the KS to be Y := {x} ∪ Y , x := v, and
we do not need to change the array P at all (all vertices except v keep their
dominators).

– If (x, y) is flipped for y ∈ Y . Then x is no longer guaranteed to be king. There
are now two possibilities. If Z = ∅ then we can just define P (x) := y, set the
new king as yt (the last vertex of Y ; recall that Y still induces a transitive
subtournament) and modify Y = Y \ {yt}. If, however, Z is not empty, we
mark m = x, add Y := Y ∪ YZ (so that the order of Y is (y1, . . . , yt, YZ)
and note that this takes O(1) time by concatenating lists), and set the new
king to be z. Notice that queries work correctly even for vertices that were
originally in Z, as when scanning their list P (v), the first vertex (i.e., x) is
marked so is not returned, and their second vertex is unmarked and returned
correctly. ⊓⊔

14 O. Weimann and R. Yuster

References

1. A. Abboud, T. Grossman, M. Naor, and T. Solomon. From donkeys to kings in
tournaments. In 32nd ESA, volume 308, pages 3:1–3:14, 2024.

2. M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson. Sorting and selection with
imprecise comparisons. ACM Trans. Algorithms, 12(2):19:1–19:19, 2016.

3. A. Biswas, V. Jayapaul, V. Raman, and S. R. Satti. Finding kings in tournaments.
Discret. Appl. Math., 322:240–252, 2022.

4. P. Erdős and L. Moser. On the representation of directed graphs as unions of
orderings. Math. Inst. Hung. Acad. Sci, 9:125–132, 1964.

5. H. G. Landau. On dominance relations and the structure of animal societies: III
The condition for a score structure. The Bulletin of Mathematical Biophysics,
15:143–148, 1953.

6. X. Lu, D.-W. Wang, and C. K. Wong. On the bounded domination number of
tournaments. Discrete Mathematics, 220(1-3):257–261, 2000.

7. N. S. Mande, M. Paraashar, and N. Saurabh. Randomized and quantum query
complexities of finding a king in a tournament. In P. Bouyer and S. Srinivasan,
editors, 43rd FSTTCS, pages 30:1–30:19, 2023.

8. S. B. Maurer. The king chicken theorems. Mathematics Magazine, 53(2):67–80,
1980.

9. R. E. A. C. Paley. J. math. and phys. The Bulletin of Mathematical Biophysics,
12:311–320, 1933.

10. J. Shen, L. Sheng, and J. Wu. Searching for sorted sequences of kings in tourna-
ments. SIAM Journal on Computing, 32(5):1201–1209, 2003.

11. R. Stearns. The voting problem. The American Mathematical Monthly, 66(9):761–
763, 1959.

12. E. Szekeres and G. Szekeres. On a problem of Schütte and Erdös. The Mathematical
Gazette, pages 290–293, 1965.

	Maintaining a Kingdom in a Tournament

