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Abstract

We show how to preprocess a weighted undirected n-vertex planar graph in Õ(n4/3) time, such that
the distance between any pair of vertices can then be reported in Õ(1) time. This improves the previous
Õ(n3/2) preprocessing time [JACM’23].

Our main technical contribution is a near optimal construction of additively weighted Voronoi diagrams
in undirected planar graphs. Namely, given a planar graph G and a face f , we show that one can
preprocess G in Õ(n) time such that given any weight assignment to the vertices of f one can construct

the additively weighted Voronoi diagram of f in near optimal Õ(∣f ∣) time. This improves the Õ(
√
n∣f ∣)

construction time of [JACM’23].

1 Introduction

In this paper we investigate the following question: How fast can you preprocess a planar graph so that
subsequent distance queries can be answered in near-optimal Õ(1) time? Imagine you could do the prepro-
cessing in near-optimal Õ(n) time. This would be truly remarkable, since it would allow us to efficiently
convert between standard graph representations, which support quick local (e.g., adjacency) queries, into
a representation that supports quick non-local distance queries. In a sense, this can be thought of as an
analogue for distances of the Fast Fourier Transform (which converts in Õ(n) time between the time domain
and the frequency domain). Such a tool would allow us to develop algorithms for planar graphs that can
access any pairwise distance in the graph essentially for free! Unfortunately, we are still far from obtaining
Õ(n) preprocessing time. The fastest preprocessing time is Õ(n3/2) [9]. We make a step in this direction by
improving the preprocessing time to Õ(n4/3) in weighted undirected planar graphs.

Formally, a distance oracle is a data structure that can report the distance dist(u, v) between any two
vertices u and v in a graph G. Distance oracles for planar graphs have been studied extensively in the past
three decades both in the exact [2, 4, 9, 10, 14–16, 19, 21, 23, 28, 34, 38, 40, 44] and in the approximate [8, 24–
27,31,42,45] settings. In the approximate setting, Thorup [42] presented a near-optimal oracle that returns
(1 + ε)-approximate distances (for any constant ε) in Õ(1) time and requires Õ(n) space and construction
time (see also [8,24–27,31,45] for polylogarithmic improvements). Is it possible that the same near-optimal
bounds can be achieved without resorting to approximation? We next review the rich history of exact oracles
in planar graphs.

The history of exact planar distance oracles. Let Q and S denote the query-time and the space of an
oracle, respectively. The early planar distance oracles [2, 14, 16] were based solely on planar separators [20,
33, 35] and achieved a tradeoff of Q = Õ(n/

√
S) for S ∈ [n4/3, n2], and Q = O(n2/S) for S ∈ [n,n4/3). In

[19], Fakcharoenphol and Rao introduced the use of Monge matrices to distance oracles, and devised an
oracle with Õ(n) space and Õ(

√
n) query time. By combining their ideas with Klein’s [6,27] multiple source

shortest path (MSSP) data structure, Mozes and Sommer [38] obtained the Q = Õ(n/
√
S) tradeoff for nearly

the full range [n log logn,n2]. Other works [21,38,40,44] focused on achieving strictly optimal query-time or
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strictly optimal space. Namely, Wulff-Nilsen’s work [44] gives optimal O(1) queries with weakly subquadratic
O(n2 log4 logn/ logn) space, whereas Nussbaum [40] and Mozes and Sommer’s [38] oracles give optimal O(n)
space with O(n1/2+ϵ) query-time. Except for [44], all of the above oracles can be constructed in Õ(n) time.
However, none of them provides polylogarithmic Õ(1) query-time using truly subquadratic O(n2−ε) space.

In FOCS 2017, Cohen-Addad, Dahlgaard, and Wulff-Nilsen [15] (inspired by Cabello’s [5] breakthrough
use of Voronoi diagrams for computing the diameter of planar graphs) realized that Voronoi diagrams, when
applied to regions of an r-division, can be used to break the barrier mentioned above. In particular, they
presented the first oracle with Õ(1) query-time and truly subquadratic O(n5/3) space, or more generally,
the tradeoff Q = Õ(n5/2/S3/2) for any S ∈ [n3/2, n5/3]. This came at the cost of increasing the preprocessing
time from Õ(n) to O(n2), which was subsequently improved to match the space bound [22]. In SODA
2018, Gawrychowski, Mozes, Weimann, and Wulff-Nilsen [23] improved the space and preprocessing time
to Õ(n3/2) with Õ(1) query-time (and the tradeoff to Q = Õ(n3/2/S) for S ∈ [n,n3/2]) by defining a dual
representation of Voronoi diagrams and developing an efficient point-location mechanism on top of it. In
STOC 2019, Charalampopoulos, Gawrychowski, Mozes, and Weimann [10] observed that the same point-
location mechanism can be used on the Voronoi diagram for the complement of regions in the r-division.
This observation alone suffices to improve the oracle size to O(n4/3) (while maintaining Õ(1) query-time).
By combining this with a sophisticated recursion (where a query at recursion level i reduces to logn queries
at level i + 1) they further obtained an oracle of size n1+o(1) and query-time no(1). Finally, in SODA 2021,
Long and Pettie [34] showed how much of the point-location work can be done without recursion, and that
only two (rather than logn) recursive calls suffice. This led to the state of the art oracle, requiring n1+o(1)

space and Õ(1) query-time or Õ(n) space and no(1) query-time.1

In terms of space and query time, these latter Voronoi-based oracles are almost optimal. However, their
construction time is Õ(n3/2), and improving it is mentioned in [9] as an important open problem. The
bottleneck behind this Õ(n3/2) bound is the time for constructing Voronoi diagrams as we next explain.

Point-location in Voronoi diagrams. Let X be a planar graph, and let f be a face of X. The vertices of
f are called the sites of the Voronoi diagram, and each site s has a weight ω(s) ≥ 0 associated with it. The
distance between a site s and a vertex v ∈X, denoted by distω(s, v) is defined as ω(s) plus the length of the
s-to-v shortest path in X. The additively weighted Voronoi diagram VD(f,ω) is a partition of X’s vertices
into pairwise disjoint sets, one set Vor(s) for each site s. The set Vor(s), called the Voronoi cell of s, contains
all vertices in X that are closer (w.r.t. distω(⋅, ⋅)) to s than to any other site (we assume that distances are
unique to avoid the need to handle ties2). A point-location query v asks for the site s whose Voronoi cell
Vor(s) contains v. There exists a dual representation VD∗(f,ω) of VD(f,ω). The size of this representation
is O(∣f ∣), and together with an MSSP data structure it supports point-location queries in Õ(1) time.

Figure 1: A graph (piece) X. The vertices of X’s infinite face f are the
sites of the Voronoi diagram VD. Each site is represented by a unique color,
which is also used to shade its Voronoi cell. The dual representation VD∗ is
illustrated as the blue tree. The tree has 7 leaves (corresponding to 7 copies
of f∗) and 5 internal nodes (corresponding to the 5 trichromatic faces of
VD). The edges of the tree correspond to contracted subpaths in X∗.

Our results and techniques. In [9], it was shown that given the MSSP of a graph (piece) X, a face f of X,

and additive weights ω(⋅) to the vertices of f , the Voronoi diagram VD∗(f,ω) can be constructed in Õ(
√
n∣f ∣)

time. In this paper, we show (see Theorem 1) how to construct it in near-optimal Õ(∣f ∣) time when the
graph is undirected. As discussed below, this leads to a static distance oracle of space Õ(n4/3), construction

1A journal version containing all the above Voronoi-based oracles was published in JACM in 2023 [9].
2This assumption can be achieved in O(n) time. With high probability using [36,39], or deterministically using [18].
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time Õ(n4/3), and query-time Õ(1). In addition, it implies a dynamic distance oracle that supports Õ(1)-
time distance queries from a single-source s, and Õ(n2/3)-time updates consisting of edge insertions, edge
deletions, and changing the source s. The dynamic distance oracle is obtained by simply plugging our
construction into the oracle of Charalampopoulos and Karczmarz [12] (thus improving its update time from
Õ(n4/5) to Õ(n2/3)). We note that the current best all-pairs dynamic oracle by Fakcharoenphol and Rao [19]
has Õ(n2/3) update time and Õ(n2/3) query time. Therefore, in undirected graphs, our new oracle achieves
the same bounds but has the benefit that, between source changes, the query takes only Õ(1) time.

Our construction is inspired by Charalampopoulos, Gawrychowski, Mozes, and Weimann who showed in
ICALP 2021 [11] that near-optimal Õ(∣f ∣) construction time is possible for the special case when the planar
graph is an alignment graph of two strings. The alignment graph is an acyclic grid graph of constant degree.
More importantly, shortest paths in this graph are monotone, in the sense that they only go right or down
along the grid. This makes the Voronoi diagram of every piece X much more structured. In particular, one
can find the trichromatic vertices of VD∗ (i.e., the faces of X whose vertices belong to three different Voronoi
cells) by recursively zooming in on them using cycle separators; The intersection of a cycle separator with
each Voronoi cell consists of at most two contiguous intervals of the cycle separator. This partition induced
by these intervals can be found with a binary search approach, whose complexity (up to a logarithmic factor)
is linear in the number of trichromatic vertices enclosed by the cycle. From the partition it is easy to deduce
whether a trichromatic vertex of VD∗ is enclosed by the cycle separator, and infer whether we should recurse
on each side of the separator. In this paper we extend this binary search approach to general undirected
planar graphs.

At a first glance, such an extension seems impossible as the intersection of cycle separators and Voronoi
cells might be very fragmented, even when there are only three sites (see Fig. 2). To overcome this, we
use shortest path separators. Such separators have been widely used in essentially all approximate distance
oracles for planar graphs, but also in exact algorithms (e.g., [3, 7, 30, 37]). These cycle separators may
contain Θ(n) edges (rather than O(

√
n)), but consist of two shortest paths P,P ′, so that, because the graph

is undirected, any other shortest path can intersect each of P,P ′ at most once. In our context, this implies
a monotonicity property when we restrict our attention to shortest paths that enter the cycle separator only
from the left or only from the right. If we only allow paths to enter P from one side, say the left, then
the intersection of each Voronoi cell (with distances now defined under this restriction) with P is a single
contiguous interval.

To better explain the difficulties with this approach and how we overcome them, let us first define some
terminology. We say that vertex v ∈ P prefers a site s if v belongs to Vor(s) (defined without any restrictions).
We say that v ∈ P left-prefers a site s if v belongs to Vor(s) under the restriction that paths are only allowed
to enter P from the left. Repeating the above discussion using this terminology, the partition induced by
the prefers relation may be very fragmented, but the partition induced by the left-prefers relation is not
fragmented. There are two immediate problems with working with the partition induced by left-preference
(or right-preference). First, we are interested in constructing the Voronoi diagram without any restrictions,
and second, we do not know how to efficiently compute shortest paths under restrictions on the direction in
which they enter P .

To address the first difficulty we show that one can infer which sides of the cycle separator contain a
trichromatic vertex of the Voronoi diagram (without restrictions) by inspecting the endpoints of the intervals
of the two partitions - the one with respect to left-preference and the one with respect to right-preference.
This is shown in Section 4. We also show, by adapting the divide-and-conquer construction algorithm of [22],
how to reduce the problem of computing a Voronoi diagram with many sites to the problem of computing
the trichromatic vertex of a Voronoi diagram with only three sites. This is explained in Section 5.

Overcoming the second difficulty is the heart of our technical contribution. We know how to efficiently
determine, by enhancing the standard MSSP data structure, whether the true shortest path from a site s
to a vertex v ∈ P enters P from the right or from the left. However, we do not know how to efficiently
report the shortest path from s to v that enters P from the other side (because that path is not the overall
shortest path from s to v). We observe that we can work with relaxed preferences. If v prefers s (without
restrictions on left/right), then: (1) we might as well say that v both right-prefers and left-prefers s (because
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either way this will point us to s), and (2) if the shortest path from s to v enters P from the right, we do
not really care what the left preference of v is, so we might as well say that v left-prefers s′ for any site s′.
In Section 3 we describe how to compute a partition with respect to such a relaxed notion of left-preference
and right-preference. The exact details are a bit more complicated than described here. In particular we use
the term like rather than prefer to express that the preference is more loose.

Constructing a partition with relaxed preferences turns out to be more complicated than with strict
preferences. One challenge comes from the fact that with relaxed preferences making progress in a binary
search procedure is problematic. This is because a vertex v of P no longer has a unique left-preferred site s.
In fact, when working with relaxed preferences, a vertex v may equally like all sites. Thus, we need to have
some way to recognize a “winner” site with respect to a vertex that does not have a unique preference (see
Fig. 5). Another challenge we encounter is what we call swirly paths - when the s-to-v path goes around P
before entering P (see Fig. 3). Swirly paths make the realizations of many of the arguments outlined here
more complicated. The structure of the shortest paths that allows us to make progress in the binary search
procedure is different and more complicated in the presence of swirly paths. Moreover, we do not always
know how to efficiently identify whether a shortest path is swirly or not. To simplify the presentation we
first explain how to obtain a partition with respect to relaxed preferences when there are no swirly paths,
and in Appendix C describe how to handle swirly paths.

We believe that our result is a promising step toward exact oracles that simultaneously have optimal
space, query-time and preprocessing time. One way to achieve this would be to be able to find a way to use
recursion to obtain the functionality of our enhanced MSSP data structure without actually computing it
over and over in large regions of the graph, in a similar manner to the way this issue was avoided for the
standard MSSP in [9]). This seems to be the only significant obstacle preventing us from pushing our new
ideas all the way through, and obtaining an almost optimal n1+o(1) construction time for undirected planar
graphs.

2 Preliminaries

Representation of Voronoi diagrams. With a standard transformation (without increasing the size of
G asymptotically) we can guarantee that each vertex of G has constant degree and that G is triangulated.
Consider a subgraph X (called a piece) of G whose boundary vertices ∂X (vertices incident to edges in
G ∖X) lie on a single face f of X. Note that f is the only face of X that is not a triangle. The vertices
of f , assigned with weights ω(⋅), are the sites of the Voronoi diagram VD = VD(f,ω) of X. There is a
dual representation VD∗ of VD as a tree with O(∣f ∣) vertices (see Fig. 1): Let X∗ be the planar dual of X.
Consider the subgraph of X∗ consisting of the duals of edges uv of X such that u and v are in different
Voronoi cells. In this subgraph, we repeatedly contract edges incident to degree-2 vertices. The remaining
vertices (edges) are called Voronoi vertices (edges). A Voronoi vertex is dual to a face whose three vertices
belong to three different Voronoi cells. We call such a face (and its corresponding dual vertex) trichromatic.
Finally, we define VD∗ to be the tree obtained from the subgraph by replacing the node f∗ by multiple
copies, one for each edge incident to f∗. The complexity (i.e., the number of vertices and edges) of VD∗ is
O(∣f ∣). For example, in a VD of just two sites s and t, there are no trichromatic faces. In this case, VD∗

is just a single edge corresponding to an st-cut or equivalently to a cycle in the dual graph. We call this
cycle the st-bisector and denote it by β∗(s, t). Note that a trichromatic vertex is a meeting point of three
bisectors. Another important example is a VD of three sites (we call this a trichromatic VD). Such a VD
has at most one trichromatic face (in addition to face f itself).

Using point-location for distance oracles. To see why point-location on Voronoi diagrams is useful
for distance oracles, we describe here the Õ(n4/3)-space Õ(1)-query oracle of [10] that we will be using. It
begins with an r-division of the graph G. This is a partition of G into O(n/r) subgraphs (called pieces)
such that every piece X contains O(r) vertices and O(

√
r) boundary vertices ∂X (vertices shared by more

than one piece). An r-division can be computed in Õ(n) time [29] with the additional property that the
boundary vertices ∂X of every piece X lie on a constant number of faces of the piece (called holes). To
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simplify the presentation, we assume that ∂X lies on a single hole (in general, we apply the same reasoning
to each hole separately, and return the minimum distance found among the O(1) holes). The oracle consists
of the following for each piece X of the r-division:

1. The O(∣X ∣3/2) space, O(∣X ∣3/2) construction time, Õ(1) query-time distance oracle of [23] on the graph
X. In total, these require O(n

√
r) space and construction time.

2. Two MSSP data structures [27], one for X and one for Xout = G ∖ (X ∖ ∂X), both with sources ∂X.
The MSSP for X requires space O(r log r), and the MSSP for Xout requires space O(n logn). Using
these MSSPs, we can then query in Õ(1) time the u-to-v distance for any u ∈ ∂X and v ∈ G. The total
space and construction time of these MSSPs is Õ(n2/r), since there are O(n/r) pieces.

3. For each vertex u of X, compute the Voronoi diagram VDin(u,X) (resp. VDout(u,X)) for X (resp.
Xout) with sites ∂X and additive weights the distances from u to these vertices in G (the additive
weights are computed in Õ(∣∂X ∣) = Õ(

√
r) time using [19]). Each Voronoi diagram can be represented

in O(
√
r) space [23] and can be constructed in Õ(

√
n
√
r) time [10]. Hence, all Voronoi diagrams

require O(n
√
r) space and Õ(n3/2r1/4) construction time.

To query a u-to-v distance, let X be the piece that contains u. If v /∈ X then the u-to-v path must
cross ∂X. We perform a point-location query for v in VDout(u,X) in time Õ(1) [23]. If v ∈ Vor(s) then we
return the u-to-s distance (from the precomputed additive weight) plus the s-to-v distance (from the MSSP
of Xout). Otherwise, v ∈X and we return the minimum of two options: (1) The shortest u-to-v path crosses
∂X. This is similar to the previous case except that the point-location query for v is done in VDin(u,X). (2)
The shortest u-to-v path does not cross ∂X (i.e., the path lies entirely within X). We retrieve this distance
by querying the distance oracle stored for X.

By choosing r = n2/3 we get an oracle of space Õ(n4/3) and query-time Õ(1). The construction time
however is Õ(n5/3). Notice that the only bottleneck preventing Õ(n4/3) construction time is the construction
of the Voronoi diagrams.

Shortest path separators. A shortest path separator Q is a balanced cycle separator consisting of two
shortest paths P and P ′ (emanating at the same vertex) plus a single edge. A complete recursive decompo-
sition tree T of G using shortest path separators can be obtained in linear time [32].

An arc e = uv emanates (enters) left of a simple path P if there exist two arcs e1, e2 in P , such that
u (v) is the head of e1 and the tail of e2, and e appears between e1 and e2 in the clockwise order of arcs
incident to u. Otherwise, e emanates (enters) right of P . Notice that this is not defined for the endpoints
of P , however, in the context in which we will use it, we will always extend P so that its original endpoints
will become internal. Specifically, consider a shortest path separator Q composed of an x-to-y path P , an
x-to-y′ path P ′, and an edge (y, y′). Then, we will extend P on one side with y′ and on the other side with
the vertex following x on P ′. A symmetric extension will be done for P ′.

3 Efficient Computation of a Relaxed Partition

In this section we define a relaxed partition, and introduce an algorithm that computes it in Õ(1) time.

3.1 Definitions and data structures

In our settings, let F denote the face, and let H ⊆ F denote a subset of vertices (sites) of F (for the most
part, we will use ∣H ∣ = 3 in order to find trichromatic faces, see Section 4). We say that vertex v ∈ P prefers a
site c ∈H if v belongs to VorH(c). It is natural to partition the vertices of P according to the site in H that
they prefer. In the case of the alignment graph of [11], each part in this partition is a contiguous interval of
P . In general planar graphs however, this is not the case, and the parts can be very fragmented (see Fig. 2).

We observe that the partition would induce contiguous intervals if we only consider shortest paths that
are allowed to enter P from the right (or only from the left). In that case we can say that a vertex v ∈ P
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Figure 2: The partition of P into parts corresponding to the Voronoi cells
of VD(s1, s2, s3) is very fragmented.

right-prefers (left-prefers) c. We know how to determine efficiently whether the true shortest path from a
site c to a vertex v ∈ P enters P from the right or from the left. But the problem is that then we do not
know how to efficiently report the shortest path from c to v that enters P from the other side (because it is
not the overall shortest path from c to v).

To overcome this issue we observe that we can work with relaxed preferences, which we call like. If v
prefers c (without restrictions on left/right), then we might as well say that v both right-likes and left-likes c
(because either way this will point us to c). Similarly, if v prefers c (again, without restrictions on left/right)
then if the shortest path from c to v enters P from the right, we do not really care what the left like of v is
(since in this case shortest paths entering P from the left are just irrelevant), so we may as well say that v
left-likes c′ for any site c′.

Recall that the endpoints of P are x and y. We denote by sx and sy the sites of H such that x ∈ VorH(sx)
and y ∈ VorH(sy). In practice we will use the left-like (and symmetrically the right-like) relation with respect
to a subset S ⊆H of sites. If the true site in S ∪ {sx, sy} that v prefers (without restrictions on left/right) is
not one of the sites in S then we may as well say that v both left-likes and right-likes all sites in S because
eventually they will have no effect on the true answer.

The following definition formalizes the above discussion.

Definition 1 ((S, left)-like). Let P be an x-to-y shortest path, let H = {h1, h2, . . . h∣H ∣} be a cyclic subsequence
of a face F , and let S = {s1, s2, . . . , s∣S∣} be a subsequence of H. Let sx ∈ H (resp. sy) be the site such that
x ∈ VorH(sx) (resp. y ∈ VorH(sy)). A vertex v ∈ P that belongs to the Voronoi cell VorS∪{sx,sy}(c) is said to
(S, left)-like si if at least one of the following holds: (1) c = si, (2) the shortest path from c to v enters P
from the right, or (3) c ∉ S.

This notion of (S, left)-like, induces a relaxed partition of P , in which the parts do form contiguous
intervals along P . The relaxed partition has the property that for every v ∈ P if v ∈ VorH(c) and c reaches
P from some direction (left or right) then in the (H,direction)-relaxed partition v is in the part of P
corresponding to site c. In other words, together, the (H, left) and (H, right)-relaxed partitions assign to
each vertex of P at most two sites in H, and it is guaranteed that one of these two sites is the true site of v.

Definition 2 (Relaxed Partition). Let P be a shortest path, and let S and H be cyclic subsequences of a
face F with S ⊆H, denoted by S = {s1, s2, . . . , s∣S∣} and H = {h1, h2, . . . h∣H ∣}.

A relaxed (S, left)-partition of P w.r.t. S is a partition of P into ∣S∣ disjoint subpaths Pi = P [ui, vi] such
that every x ∈ Pi is a vertex that (S, left)-likes si.

The definitions of (S, right)-like and of an (S, right)-relaxed partition are symmetric. The main part of
our algorithm is dedicated to finding a relaxed partition. First, in Section 3.3 we will show how to find a
relaxed partition of P w.r.t. S ⊂ H consisting of only two sites. Then, in Section 3.4, we explain how to
obtain a relaxed partition of P w.r.t. H by combining the relaxed partitions of pairs of sites in H.

For two vertices u, v we denote the shortest path in G between u and v as Ru,v. For a site s ∈ F we
denote by Left(P, s) the set of vertices v ∈ P such that Rs,v enters P from the left.

The following lemma describes a data structure that will later (Lemma 2) allow to find an (F, left)-
partition of P . A similar proof finds an (F, right)-partition.
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Lemma 1 (Enhanced MSSP data structure). Given a planar graph G, a face f and a recursive decomposition
T of G, one can construct in Õ(n) time a data structure supporting the following queries, each in Õ(1) time.
For any source s ∈ f , shortest path P ∈ T , and vertex v ∈ P :

1. dist(s, v) - return the distance between s and v in G.

2. direction(s, v,P ) - return whether Rs,v enters P from left or right.

3. count(s,P, i, j) for i, j ∈ P - return the number of vertices x on P [i, j] ∩ Left(P, s).

4. select(s,P, i, j, k) for i, j ∈ P - return the k’th vertex x of P [i, j] ∩ Left(P, s).

5. ancestor(s, v, d) - return the ancestor of v that is in depth d in the shortest paths tree of s.

The proof of Lemma 1 is deferred to Appendix A. In the rest of this section we prove the following lemma.

Lemma 2. Given F , H, and T , together with their enhanced MSSP, and a shortest path P ∈ T , one can
compute an (H, left)-partition of P , in Õ(∣H ∣) = Õ(1) time.

3.2 Setup of the query

Recall that the endpoints of P are x and y, and that sx and sy are the sites of H such that x ∈ VorH(sx) and

y ∈ VorH(sy). Notice that it is straightforward to find sx and sy in Õ(∣H ∣) = Õ(1) time by explicitly checking
the distance from each of the sites in H to x and to y using the enhanced MSSP. We denote Rx = Rsx,x

and Ry = Rsy,y. We assume sx ≠ sy, since the case sx = sy is a degenerated case.3 We also assume that
H ∩ P = ∅, since otherwise we find a partition for H ∖ P , and then add the intervals of the sites in H ∩ P ,
using a binary search along P . The sites sx and sy partition the face F into two intervals which we denote
by Fleft and Fright. In addition, let Hleft = Fleft ∩H and Hright = Fright ∩H. The following lemma (see proof
in Appendix B) states that when computing the (H, left)-partition, we can ignore every s ∈ Hright. Thus,
every time we consider a partition with respect to some S ⊆ Hleft, we consider the vertices of S from the
closest vertex to sx to the closest vertex to sy (on Fleft). In addition, the partition is always such that the
order of the parts corresponding to vertices of S is from the one containing x to the one containing y.

Lemma 3. Every (Hleft, left)-partition is an (H, left)-partition.

Remark 1. When considering a partition of P with respect to a set S ⊆Hleft, the parts of P in our partition
are chosen so that they are consistent with the order of the vertices in S. For example, the first part,
corresponds to the vertex of S closest to sx, contains x (unless it is empty) and the part of the vertex closest
to sy, contains y (unless it is empty).

Trimming P . By definition x ∈ VorH(sx) and for every v ∈ Rx we also have v ∈ VorH(sx). Therefore,
w.l.o.g., we assume that Rx ∩ P contains only the vertex x, since all the vertices of Rx ∩ P are known to
belong to VorH(sx). Similarly, we assume that Ry ∩ P = {y}.

Swirly paths. For vertices s ∈ Fleft and v ∈ P , we say that Rs,v is a swirly path if v ∈ Left(P, s) and Rs,v

crosses Rx or Ry. Moreover, a path is called x-swirly (resp. y-swirly) if the first path it crosses among Rx

and Ry is Rx (resp. Ry). See Fig. 3.
Swirly paths complicate life. We shall first (in Section 3.3) explain how to obtain an (S, left)-partition P

when ∣S∣ = 2 and there are no swirly paths. Next, in Appendix C.1 we show how to obtain an ({sx, sy}, left)
partition. Then, in Appendix C.2, we will show how to use the partition for {sx, sy} to obtain the partition
for any ∣S∣ = 2, even if there are swirly paths. Finally, in Section 3.4 we will show how to obtain an
(H, left)-partition of P , removing the restriction to two vertices and proving Lemma 2.

3If sx = sy one can think of the graph obtained by making an incision along Rx, which allows us to think of sx as being split
into two vertices, where one is the site of x and the other is the site of y, see also Remark 2.
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Figure 3: The path P with endpoints x and y. We think of P as being
oriented from y to x. The corresponding sites sx and sy with Rx = Rsx,x

and Ry = Rsy,y. The site s is on Fleft, the path Rs,v is a non-swirly path,
and the path Rs,u is a y-swirly path.

3.3 Partition with respect to two sites

In this subsection we show how to compute an (S, left)-partition when ∣S∣ = 2. We start with a special case,
where we consider a subpath P̂ of P that is not involved in any swirly paths. Later, in Lemma 5 we introduce
the algorithm for computing an (S, left)-partition when ∣S∣ = 2.

Lemma 4. Let s1, s2 ∈ Fleft ∖P be two sites such that s1 is closer to sx on Fleft than s2. Let P̂ = P [a, b] be a
subpath of P with a being closer to x than b, such that for every i ∈ {1,2} and v ∈ Left(P̂ , si) the path Rsi,v

is non-swirly. One can compute in Õ(1) time an ({s1, s2}, left)-partition of P̂ into P̂1, P̂2 such that a ∈ P̂1

and b ∈ P̂2, unless the partition is trivial.

The proof of Lemma 4 consists of several steps. We first introduce the notion of winning, and show
(Claim 1) that it is a monotone property of vertices of P̂ . We will then use this monotonicity to perform
binary search. For a vertex v ∈ P̂ we say that s1 wins at v if there exists an s1-to-v non-swirly path R that
enters P from the left and len(R) < dist(s2, v). We define s2 winning at v symmetrically.

To avoid clutter we assume P̂ = P , otherwise one just has to change in the following proofs P to P̂ and
x, y to the endpoints of P̂ .

Figure 4: Left: The (orange) cycle C in the proof of Claim 1. The three options for Rs2,u are in red. Dashed
red contradicts v being closer to s1 than to s2, dotted red contradicts x being closer to sx than to s2, and
wavy red contradicts Rs2,u entering P from the left. Right: The (orange) cycle C in the proof of Claim 2.
Since s1 is (strictly) on one side of C and v2 is on the other side of C, the dashed Rs1,v2 path must cross C
in either P [v2, v1) or Rs2,v2 . Both these crosses are impossible.

Claim 1. Let v ∈ P such that s1 wins at v. Then, every u ∈ P [x, v] is a vertex that ({s1, s2}, left)-likes s1.
Symmetrically, if s2 wins at v, then every u ∈ P [v, y] is a vertex that ({s1, s2}, left)-likes s2.
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Proof. We prove the first claim, the proof of the symmetric claim is similar. Since s1 wins at v, there exists
an s1-to-v non-swirly path R that enters P from the left and len(R) < dist(s2, v). Let u ∈ P [x, v]. Assume
by contradiction that u is a vertex that does not ({s1, s2}, left)-like s1. Then Rs2,u must enter P from the
left and len(Rs2,u) < min{dist(s1, u),dist(sx, u)}. Hence, for any z ∈ Rs2,u we have dist(s2, z) < dist(s1, z).
Thus, R ∩Rs2,u = ∅. Similarly, for any z ∈ Rx we have dist(sx, z) < dist(s2, z). Hence, Rx ∩Rs2,u = ∅.

Consider the cycle C composed of R,P [v, x], Rx and the Jordan curve connecting sx and s1 embedded
in the face F . See Fig. 4 (left). Notice that C has no self-crossing since R does not cross Rx as R is a
non-swirly path. We think of C as an oriented cycle whose orientation is consistent with that of P (recall
that the orientation of P is from y to x) so as to define left and right properly (i.e., define what is left and
right w.r.t. C). Observe that s2 is on the right side of C. Since Rs2,u intersects C, but does not intersect
R nor Rx, it must be that Rs2,u intersects only P among the parts of C. Since s2 is on the right side of C,
Rs2,u enters P from the right, a contradiction.

Having proved that the winning property is sufficient to perform a binary search to obtain a partition of
P , we next show how to find a pair (sw, vt) (where w ∈ {1,2} and t ∈ {1,2}) such that sw is a winner at vt.
We distinguish two scenarios that are handled differently (Claims 2 and 3). Later we will put it all together
and show how to make this into an efficient binary search procedure.

Claim 2. Let v1 and v2 be vertices such that v1 ∈ Left(P, s1) and v2 ∈ Left(P, s2). If v1 is closer on P to x
than v2 then there is an Õ(1)-time algorithm that outputs w ∈ {1,2} and t ∈ {1,2} such that sw wins at vt.

Proof. For every w, t, we check if Rsw,vt enters P from the left and whether dist(sw, vt) is smaller than the

distance of the other site to vt. We return a pair w, t satisfying the claim. This takes Õ(1) time using the
enhanced MSSP data structure of Lemma 1.

It remains to prove that at least one such pair exists. Assume by contradiction that no such pair exists.
In particular, since Rs1,v1 enters P from the left, it must be the case that dist(s2, v1) < dist(s1, v1). Moreover,
Rs2,v1 must enter P from the right (otherwise s2, v1 is a valid pair). Similarly, since Rs2,v2 enters P from
the left we have dist(s1, v2) < dist(s2, v2).

We will show that Rs1,v2 enters P from the left, implying that (s1, v2) is a valid pair, contradicting our
assumption. Consider the (non self crossing) cycle C = Rs2,v2 ○P [v2, v1]○Rs2,v1 . We think of C as an oriented
cycle whose orientation is consistent with that of P so as to define left and right properly, see Fig. 4 (right).

Let u be the first vertex of Rs1,v2 that belongs to C. Note that u exists since v2 ∈ C. Since s1 is on
the left side of C, Rs1,v2 enters C from the left at u. We will show that u ∉ Rs2,v1 , which means that
either (i) u ∈ P (v1, v2] or (ii) u ∈ Rs2,v2 . To see that u ∉ Rs2,v1 notice that every z ∈ Rs2,v1 satisfies
dist(s2, z) < dist(s1, z) and every z ∈ Rs1,v2 satisfies dist(s1, z) < dist(s2, z). If (i) u ∈ P (v1, v2] then Rs2,v2

enters P from the left, as it enters C from the left at u. If (ii) u ∈ Rs2,v2 then Rs1,v2[u, v2] = Rs2,v2[u, v2],
meaning that Rs1,v2 enters P from the left. To conclude, in both cases Rs1,v2 enters P from the left, which
contradicts our assumption.

Claim 3. Let v1 and v2 be vertices such that v1 ∈ Left(P, s1) and v2 ∈ Left(P, s2). If v2 is closer on P to x
than v1 then there is an Õ(1)-time algorithm that outputs w ∈ {1,2} and t ∈ {1,2} such that sw wins at vt.

Proof. For every w, t we check if Rsw,vt enters P from the left and whether dist(sw, vt) is smaller than the
distance of the other site to vt. If such a pair is found, we return this pair. Otherwise, it must be that:
(1) dist(s2, v1) < dist(s1, v1), (2) Rs2,v1 enters P from the right, (3) dist(s1, v2) < dist(s2, v2), and (4) Rs1,v2

enters P from the right.
Consider the cycle C composed of Rs2,v1 , P [v1, v2] Rs1,v2 , and the Jordan curve connecting s1 and s2

embedded in the face F . We first claim that all edges entering P from the left are on the left side of C.
To see this, consider making an incision along P (duplicating its vertices and edges). Since both Rs1,v2 and
Rs2,v1 do not cross P and enter P from the right, they both use the right copy of P , and do not intersect
the left copy of P . Hence, the left copy of P , and hence also all edges entering P from the left, are on the
left side of C.
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w

Figure 5: The (orange) cycles C (left image) and C2 (right image) in the proof of Claim 3. The situation
here is that s1 reaches v1 from the left and loses to s2 that reaches v1 from the right, and the symmetric
issue for v2. Thus, v1 and v2 both ({s1, s2}, left)-likes both s1 and s2. To recognize a winner we detect which
site is closer to z.

The path Rs1,v1 does not intersect Rs2,v1 ∖P (since the former enters P from the left and the latter enters
P from the right). Moreover, by uniqueness of shortest paths, Rs1,v1 does not cross Rs1,v2 nor P . Thus,
Rs1,v1 does not cross C. Symmetrically, Rs2,v2 does not cross C. Since both Rs1,v1 and Rs2,v2 start on C,
do not cross C and enter P from the left, they must be on the left side of C.

Since dist(s1, v2) < dist(s2, v2), and dist(s2, v1) < dist(s1, v1) it must be that Rs1,v2 ∩Rs2,v1 = ∅. Hence,
in the counterclockwise cyclic order of C the vertices appear as s2, v1, v2, s1. Therefore, the paths Rs1,v1

and Rs2,v2 form a cross configuration and must cross each other, such that Rs1,v1 crosses Rs2,v2 from left to
right.

For simplicity, we assume that Rs1,v1 ∩Rs2,v2 contains a single vertex z. In the general case, it may be
a contiguous subpath and the proof is similar. Our goal now is to determine whether z is closer to s1 or to
s2. We emphasize that the algorithm does not find z itself at any time.

Consider the path Rs1,v1 and notice that dist(s1, s1) < dist(s2, s1) and dist(s2, v1) < dist(s1, v1). Since
Rs1,v1 is a shortest path, it must be that for some vertex w ∈ Rs1,v1 we have that all vertices in Rs1,v1[s1,w)
are closer to s1 than to s2 and all vertices in Rs1,v1[w, v1] are closer to s2 than to s1. Using ancestor(s1, v1, d)

queries of the enhanced MSSP (in Õ(1) time per query), the algorithm binary-searches for w, checking at
every step which of s1 and s2 is closer to the queried vertex. After finding w, the algorithm uses enhanced
MSSP to check whether w appears to the right, to the left, on Rs2,v2 in the shortest path tree rooted at s2.
We note that w cannot be a descendant of v2 in the tree of s2, since every vertex on Rs2,w is closer to s2
than to s1, while v2 is closer to s1 than to s2. If w is on Rs2,v2 then z = w is closer to s2 than to s1.

We will show that if w is to the right of Rs2,v2 in the tree of s2 then z is closer to s1 than to s2. Consider
the cycle C2 obtained by concatenating Rs2,v2 ,Rv2,s1 and the Jordan curve connecting s1 and s2 embedded
in the face F . We consider C2 to be oriented from s2 to v2. Notice that Rs1,v1[s1, z] does not cross C2 since
Rs1,v1 and Rs2,v2

cross each other only once. Recall that Rs1,v1[s1, z] is to the left of Rs2,v2 , and therefore
to the left of C2. Additionally recall Rs1,v1[z, v1] is to the right of Rs2,v2 , and therefore to the right of C2.
Consider the first vertex u of Rs2,w which is not on Rs2,v2 . Since w is to the right of Rs2,v2 , it holds that u
is to the right of C2. Moreover Q = Rs2,w[u,w] is strictly to the right of C2. This is because Q is disjoint
from Rs2,v2 by uniqueness of shortest paths, and is disjoint from Rs1,v2 since v2 is closer to s1 and w is closer
to s2. Thus, Q is disjoint from C2, and therefore w is to the right of C2 and therefore w ∈ Rs1,v1(z, v1] and
this means z is closer to s1 than to s2 by definition of w. A similar argument shows that if w is to the left
of Rs2,v2 in the shortest paths tree of s2, then z is closer to s2 than to s1.

Thus, the algorithm deduces whether z is closer to s1 or to s2. If z is closer to s1, the algorithm reports
that s1 wins at v2. This is because the path R = Rs1,v1[s1, z] ○ Rs2,v2[z, v2] enters P from the left and
len(R) < dist(s2, v2). Moreover, R is a concatenation of subpaths of two non-swirly paths from vertices on
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Fleft, and therefore R is a non-swirly path. Similarly, if z is closer to s2, the algorithm reports that s2 wins at
v1. This is because the path R = Rs2,v2[s2, z] ○Rs1,v1[z, v1] enters P from the left and len(R) < dist(s1, v1),
and R is a non-swirly path.

Finally, the running time of the algorithm is indeed Õ(1), since all distance queries, and directions can
be answered in Õ(1) time per query by the enhanced MSSP of Lemma 1 and the binary search of w increases
the running time only by an additional Õ(1) factor.

Using Claims 1 to 3 we introduce a recursive binary search partition algorithm, completing the proof of
Lemma 4. In each recursive step, the algorithm works on a subpath P̄ = P [a, b], and returns a partition of
P̄ into a (possibly empty) prefix P̄1 and a (possibly empty) suffix P̄2 such that every v ∈ P̄i is a vertex that
({s1, s2}, left)-likes si (for i ∈ {1,2}).

When working on P̄ = P [a, b], the algorithm starts by finding a ‘left median’ vertex of s1 in P [a, b].
Formally, a left median of s1 in P [a, b] is a vertex v1 ∈ P [a, b] such that the shortest path between s1 and
v1 enters P from the left, and the number of vertices whose shortest path from s1 enters P from the left
in P [a, v1] differs by at most 1 from the number of vertices whose shortest path from s1 enters P from the
left in P [v1, b]. The algorithm finds left medians v1 and v2 for s1 and s2, respectively, in P [a, b] by using a
count query to the enhanced MSSP, and then applying binary search using select and count queries.

If no left-median exists for s1, the algorithm returns the partition P̄1 = ∅ and P̄2 = P̄ = P [a, b]. Similarly,
if no left-median exists for s2, the algorithm returns the partition P̄1 = P̄ and P̄2 = ∅. Otherwise, depending
on the order of v1 and v2 on P , the algorithm either applies Claim 2 or Claim 3 to find w ∈ {1,2} and
t ∈ {1,2} such that sw wins at vt. If w = 1, the algorithm recursively obtains a partition (P ′1, P

′

2) of P (vt, b],
and returns P̄1 = P [a, vt] ○P

′

1 and P̄2 = P
′

2. If w = 2, the algorithm recursively obtains a partition (P ′1, P
′

2) of
P [a, vt) and returns P̄1 = P

′

1 and P̄2 = P
′

2 ○ P [vt, b].

Correctness. The correctness of the halting condition follows from the definition of an ({s1, s2}, left)-
partition. If there is no left-median for s1 (resp. s2), in particular there are no vertices that s1 (resp. s2)
reaches from the left on P̄ . Therefore, every vertex on P̄ is a vertex that ({s1, s2}, left)-likes s2 (resp. s1)
and therefore a partition that sets P2 = P̄ (resp. P1 = P̄ ) is valid. The correctness of the recursive step of
the algorithm follows directly from Claim 1 and the correctness of the recursion.

Complexity. The non-recursive part of the algorithm consists of a polylogarithmic number of queries for the
enhanced MSSP, and therefore takes Õ(1) time. We claim that the recursion depth is bounded by O(logn).
This is because in every recursive step the algorithm either reduces the number of vertices that s1 reaches
from the left or the number of vertices that s2 reaches from the left - by half. Since initially each of these
numbers is bounded by ∣P ∣ ≤ n, a halting condition must be satisfied after at most 2 logn recursive calls.
The overall time complexity is therefore Õ(1) thus completing the proof of Lemma 4.

The following Lemma is the general version of Lemma 4 in the presence of swirly paths. Its proof is in
Appendix C.

Lemma 5. Let s1, s2 ∈ Fleft ∖ P be two sites such that s1 is closer to sx on Fleft than s2. One can compute
in Õ(1) time an ({s1, s2}, left)-partition of P into P1, P2 such that x ∈ P1 and y ∈ P2, unless the partition is
trivial.

3.4 Relaxed partition for H (proof of Lemma 2)

Using Lemma 5 we are finally ready to prove Lemma 2 on the construction of a relaxed partition for H. By
Lemma 3, it is enough to compute an (Hleft, left)-partition. If ∣Hleft∣ = 1 the partition is trivial. If ∣Hleft∣ = 2
we obtain the partition from Lemma 5. When ∣Hleft∣ = 3 with s1, s2, s3 being the three sites according to their
order on Fleft, starting from s1 = sx, we apply Lemma 5 on three pairs (s1, s2), (s2, s3) and (s1, s3). Let P

i,j
i

denote that part corresponds to si in the partition computed for (si, sj). If P 1,2
2 ∩ P 2,3

2 ≠ ∅ the algorithm

returns P 1,2
1 , P 1,2

2 ∩ P 2,3
2 , P 2,3

2 . Otherwise, if P 1,2
2 ∩ P 2,3

2 = ∅ the algorithm returns P 1,3
1 , P 1,3

3 . Clearly, the

algorithm takes Õ(1) time.
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Correctness. We first consider the case where P 1,2
2 ∩ P 2,3

2 = ∅. Let v ∈ P 1,3
1 and assume to the contrary

that v does not ({s1, s2, s3}, left)-like s1. It must be that there exists c ∈ {s1, s2, s3, sx, sy} such that v ∈
Vor{s1,s2,s3,sx,sy}(c) and v ∈ Left(P, c). since v is a vertex that ({s1, s3}, left)-likes s1, it must be that c = s2.
However, this means that v does not ({s1, s2}, left)-like s1 and also v does not ({s2, s3}, left)-like s3. Hence,
v ∈ P 1,2

2 ∩ P 2,3
2 , a contradiction. Thus, v indeed ({s1, s2, s3}, left)-likes s1. The proof for vertices in P 1,3

3 is
similar.

We next consider the case P 1,2
2 ∩ P 2,3

2 ≠ ∅. For this case we first prove that every v ∈ P2 = P 1,2
2 ∩

P 2,3
2 must ({s1, s2, s3}, left)-like s2. Assume to the contrary that there exists some v ∈ P2 such that v ∈

Vor{s1,s2,s3,sx,sy}(c) and v ∈ Left(P, c) and c ∈ {s1, s2, s3} and c ≠ s2. W.l.o.g. we can assume c = s1 (the case

c = s3 is symmetric). However, in this case v does not ({s1, s2}, left)-like s2, contradicting v ∈ P 1,2
2 .

Finally, we prove that every v ∈ P 1,2
1 must ({s1, s2, s3}, left)-like s1 (the proof for P 2,3

3 is symmetric).

Notice that P 1,2
1 ⊂ P 2,3

2 since P 1,2
2 ∩ P 2,3

2 ≠ ∅. Assume to the contrary there exists some v ∈ P 1,2
1 such that

v ∈ Vor{s1,s2,s3,sx,sy}(c) and v ∈ Left(P, c) and c ∈ {s1, s2, s3} and c ≠ s1. It cannot be that c = s2, because

v ∈ P 1,2
1 . Assume c = s3, then we have that v does not ({s2, s3}, left)-like s2, contradicting v ∈ P 1,2

1 ⊂ P 2,3
2 .

Complexity. Finally, the running time of the algorithm is Õ(1) since all distance and direction queries are
answered in Õ(1) time per query by the enhanced MSSP data structure of Lemma 1 and the binary search
of w increases the running time only by additional Õ(1) time. This concludes the proof of Lemma 2.

Remark 2. We note that the proof of Lemma 2 is written for ∣H ∣ = 3. However, the algorithm described
in the proof can be easily generalized to an algorithm that constructs a partition for a set of k sites from a
partition of k−1 sites. A standard amortization argument shows that the total running time for constructing
a partition of k sites is Õ(k).

4 From a Relaxed Partition to a Trichromatic Face

In this section we prove the following lemma, stating that one can find a trichromatic face in Õ(1) time.

Lemma 6. Given a planar graph G, and a face F , one can preprocess G in Õ(∣G∣) time such that given a
subset H ⊆ F of 3 sites, and additive weights w ∶H → R+, one can compute the trichromatic face of VD(H,w)
in time Õ(1).

Proof. Recall that a trichromatic VD (a VD with three sites) has at most one trichromatic face f̂ (apart

from the face containing the three sites). We show how to identify f̂ recursively, starting from the root G
of the recursive decomposition tree T . At a step of the recursion involving a subgraph X, we determine
whether f̂ is enclosed by the cycle separator Q of X or not, and recurse on the appropriate child of X in
T until we get to a subgraph of constant size that contains f̂ (in which we identify f̂ trivially using O(1)
distance queries from the sites using the MSSP data structure in O(logn) time).

We obtain a relaxed partition of Q using Lemma 2. We next explain how to use the relaxed partition to
deduce whether f̂ is enclosed by Q or not. The following immediate consequence of the Jordan curve theorem
implies that it suffices to compute the parity of the number of crossings of the three bisectors forming the
trichromatic VD. The challenge is that each bisector may cross Q many times (even Θ(n) times), so we
cannot afford to actually count all of the crossings in order to compute the parity.

Claim 4. The trichromatic face f̂ is enclosed by Q if and only if each of the 3 bisectors that meet at f̂
crosses Q an odd number of times.

Proof. In the trichromatic VD, each of the three bisectors originates at the face F and terminates at f̂ . The
cycle separator Q partitions the faces of G into two sets, and by definition of F as the infinite face, and of
enclosure, F is not enclosed by Q. By the Jordan Curve theorem, any path in the plane starts at a point
not enclosed by Q and ends at a point enclosed by Q if and only if it crosses Q an odd number of times.
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The relaxed partition of Q consists of O(1) intervals for each of the two paths forming Q, and each of the
two sides of these paths. The O(1) endpoints of all these intervals partition Q into O(1) intervals. Consider
such an interval I of Q. The vertices of I are all assigned by the relaxed partition a single site from each
side. Hence, the vertices of I belong to at most two Voronoi cells in VD. Therefore, the interval I can only
be crossed by the bisector between these two cells. Moreover, the bisector crosses I an even number of times
if and only if both endpoints of I belong to the same cell. We can determine whether this is the case or not
by using O(1) MSSP queries on the endpoints of I.

Thus, we can determine the parity of the number of crossings of Q by each bisector by summing the
parities contributed by each of the O(1) intervals, and deduce if f̂ is enclosed by Q in O(logn) time.

5 Computing the Voronoi Diagram

In this section, we describe an algorithm that, given access to the mechanism for computing trichromatic
faces provided by Lemma 6, computes VD∗(F ) in Õ(∣F ∣) time. Thus, we establish the main theorem of this
paper (note that we use F to denote both the set of sites and the face to which they belong):

Theorem 1. Given a planar graph X, and a face F , one can preprocess X in Õ(∣X ∣) time such that given
additive weights ω ∶ F → R+, one can compute VD∗(F ) in Õ(∣F ∣) time.

Representing the Diagram. We use the definitions of the dual Voronoi diagram VD∗(F ) from [9]. As
was done there, we assume that the graph we work with is triangulated, except for the single face F , whose
vertices are exactly the set of sites of the diagram. We also assume that each site induces a non empty Voronoi
cell (including at least the site itself). Thus, VD∗(F ) is a degree-3 tree with O(∣F ∣) nodes whose leaves are
the copies of the dual vertex F ∗ (corresponding to the face F ). Following [22], we use the Doubly-Connected
Edge List (DCEL) data structure for representing planar maps to represent the tree VD∗(F ).

The Divide-and-Conquer Mechanism. Denote ∣F ∣ = k. We describe a divide-and-conquer algorithm
for constructing VD∗(F ) in Õ(k) time. If k < 3 then VD∗(F ) contains no trichromatic vertices and its
representation is trivial. If k = 3, then VD∗(F ) consists of either no trichromatic faces or just the single

trichromatic face f̂ obtained using Section 4. When k > 3 we partition the set S of sites into two contiguous
subsets along the face F of (roughly) k/2 sites each. For simplicity, we assume that each subset has size
exactly k/2. We call the sites G = g1, . . . , gk/2 in one subset the green sites, listed in counterclockwise order
along F . Similarly, we call the other subset R = r1, . . . , rk/2 the red sites, listed in clockwise order along F .
Note that the ordering is such that g1 and r1 are neighboring sites on the face F . We recursively compute
VD∗(G) and VD∗(R), the Voronoi diagram of G and of R, respectively. We now describe how to merge these
two diagrams into VD∗(F ) in Õ(k) time. The idea is similar to the stitching algorithm used in [22]. The
main differences are that unlike [22] we have not precomputed the bisectors, but on the other hand, we utilize
the point location mechanism of VD∗(G) and VD∗(R), which was not done in [22]. In a nutshell, consider a
super green vertex G connected to all green sites with edges whose lengths correspond to the additive weight
to each green site. Similarly, consider a super red vertex R. Now consider the bisector β∗(G,R). VD∗(F )
is obtained by cutting both VD∗(G) and VD∗(R) along β∗(G,R), ”glueing” the green side (according to
β∗(G,R)) of VD∗(G) with the red side of VD∗(R).

This intuitive process can be performed efficiently using the following procedure. To cut VD∗(G) along
β∗(G,R), we go over the O(k/2) nodes of VD∗(G). Each of these nodes corresponds to a trichromatic face
f (or to an edge of the hole F if the node is a leaf of VD∗(G)). For each vertex v of f (there are 3 or 2
such vertices depending on whether we handle an internal node or a leaf of VD∗(G)), let gi be the green site
closest (in the sense of additive distance) to v (the identity of gi is stored explicitly in the representation
of VD∗(G)). We perform a point location query for v in VD∗(R), obtaining the red site rj closest (in the
sense of additive distance) to v. We compare the distance from rj to v with the distance from gi to v (these
distances are available through the MSSP data structure for F ). If the distance from rj is smaller, we know
that f is not a trichromatic face in VD∗(F ), so we delete the corresponding node from VD∗(G).4

4To be precise, f might be a trichromatic face of VD∗(F ), but it is not an all-green trichromatic face in VD∗(F ), so it is not
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Figure 6: A schematic demonstration of the Voronoi vertex deletion process caused by the interaction of the
β∗(G,R) bisector with the green diagram VD∗(G). Left: the VD∗(G) diagram of the green sites, represented
in dotted green lines, and the bisector β∗(G,R) represented in a dashed purple line. The Voronoi (dual)
vertices are represented in hollow green circles. The Vertices deleted in the process are crossed in red. Right:
the remaining connected components and their respective dangling Voronoi edges after the deletion process.

Some Voronoi edges of VD∗(G) have both their endpoints deleted by this process. These edges are entirely
on the red side of β∗(G,R), and do not participate in VD∗(F ). Other edges have both their endpoints not
deleted. These edges are entirely on the green side of β∗(G,R), and are part of VD∗(F ). We call the Voronoi
edges with one endpoint deleted and the other not deleted dangling edges. The bisector β∗(G,R) intersects
VD∗(G) at the dangling edges. We associate each dangling edge with the two green sites whose Voronoi
cells (in VD∗(G)) are on either side of the dangling edge. The following lemma proves that there is at most
a single dangling edge in each of the components of VD∗(G) obtained by the above deletion process.

Lemma 7. When the deletion process described above terminates, each surviving connected component of
VD∗(G) contains at most a single dangling edge.

Proof. Assume towards contradiction that some connected component of VD∗(G) contains two edges e1, e2
crossed by β∗(G,R). Note that none of the endpoints of e1 and e2 that were not deleted by the process is a
leaf (or else the connected component would consist of just that leaf). Let f1 (resp., f2) be the dual vertex
(primal face) in the intersection of the bisector corresponding to e1 (resp., e2) and β∗(G,R). Consider the
cycle C formed by the unique path in VD∗(G) between f1 and f2, and the portion of β∗(G,R) between f1
and f2. See Fig. 7 (left) for an illustration. Observe that the cycle C encloses no green sites because the
path in VD∗(G) between f1 and f2 contains no leaves of VD∗(G), so it is disjoint from F , and because the
bisector β∗(G,R) is disjoint from F except for its first and last edge by our assumption that the sites are
contiguous along F and that every site is in its own Voronoi cell. A contradiction now arises because the
cycle C encloses some primal vertex v that belongs to a Voronoi cell of some green site gi, but the shortest
path from gi to v cannot cross into C; It cannot cross any bisector of VD∗(G) because one endpoint of such
a crossing edge does not belong to the cell of gi in VD∗(G). It cannot cross β∗(G,R) because one endpoint
of such a crossing edge does not belong to the green cell of VD∗({G,R}).

Having found the components of VD∗(G) (and by a similar process of VD∗(R)) that form VD∗(F ), we
trace β∗(G,R), and stitch the components of VD∗(G) and VD∗(R) at new trichromatic vertices that we
identify along the way. The first endpoint of β∗(G,R) (which is a leaf of VD∗(F )) is a copy of F ∗ that lies
at the end of a dual of the edge of F separating between the sites gi = g1 and rj = r1. The next trichromatic
vertex along β∗(G,R) occurs when β∗(G,R) intersects the boundary of the Voronoi cell of either gi or of rj .

Recall that each dangling edge with the two green sites whose Voronoi cells (in VD∗(G)) are on either
side of the dangling edge. We shall prove in Lemma 8, that the sites g1 and gk/2 are associated with exactly

contributed to VD∗(F ) by VD∗(G).
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Figure 7: Left: The cycle C (enclosing the shaded green area) for the contradiction in the proof of Lemma 7.
Right: Enforcing the assumptions before the recursive call that computes VD∗(G). The bold black edge
guarantees that the green sites are exactly the sites of a face (the face F ′). The blue artificial edges guarantee
triangulation.

one dangling edge, and all other sites are associated with either exactly two or exactly zero dangling edges.
To identify the next trichromatic vertex of VD∗(F ) along β∗(G,R), we inspect the dangling edge associated
with gi. When gi = g1, there is only one associated dangling edge. In general, there are two associated
dangling edges, but only one was not yet handled by the stitching process. The dangling edge that was not
yet handled represents a bisector between two green sites. One of them must be gi (since the intersection
is a trichromatic face on the boundary of the Voronoi cell of gi). Denote the other one by gi′ . Similarly,
a possible candidate for the next trichromatic vertex of VD∗(F ) along β∗(G,R) may come from the yet
unhandled dangling edge of a connected component of VD∗(R) that is associated with rj , which represents
a bisector between rj and some other red site rj′ .

We use Lemma 6 to find the two possible candidates: the trichromatic face fg of (rj , gi, gi′) and the
trichromatic face fr of (rj , rj′ , gi). Only one of them is a true trichromatic vertex of VD∗(F ), which can be
decided by using the same point location process we had used in the deletion process above for each of its
incident primal vertices. Suppose w.l.o.g. that we identified that the next trichromatic face is the face fg
of (rj , gi, gi′) (the procedure for fr is symmetric). We connect in VD∗(S) the previous trichromatic face on
β∗(G,R) with fg via a new Voronoi edge, and make fg the new endpoint of the dangling edge associated
with gi.

Next, we infer the identity of the edge of the β∗(G,R) bisector leaving fg via which the traversal of
β∗(G,R) continues. Since fg was the new trichromatic face, then β∗(G,R) just crossed in VD∗(G) from the
cell of gi to the cell of gi′ , so we repeat the process of finding the next trichromatic face along β∗(G,R) with
sites rj and g′i. The process terminates when it has handled all of the dangling edges in all the components
of VD∗(G) and VD∗(R).

To complete the correctness argument it remains to prove the bound on the association between sites and
dangling edges (Lemma 8). However, before doing that, we need to elaborate on a technical issue we had
glossed over in the description of the recursive approach. We had assumed that in any VD∗ in the recursion,
the sites are exactly the vertices of some face F of the graph X in which VD∗ is computed, and that F is
the only face of X that is not a triangle. To satisfy this requirement, before making the recursive call that
computes VD∗(G), we add to X an artificial infinite-length edge connecting g1 and gk/2. This artificial edge
is embedded in the face F , splitting it into two new faces F ′ and F ′′, such that the vertices of F ′ are exactly
the green sites. We triangulate F ′′ with infinite length edges. Let X ′ denote the resulting graph. See Fig. 7
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(right). Note that X ′ now satisfies the assumptions so we can invoke the construction algorithm recursively
on X ′ and obtain VD∗(G). In VD∗(G), the boundary of the Voronoi cell of each gi forms a simple path
between the two leaves (copies of F ′ corresponding to dual edges of F ′ between gi−1gi and gigi+1) in VD∗(G),
which we associate with gi. Note that for sites gi for 1 < i < k/2, both associated leaves are real edges of P ,
whereas for g1 and gk/2 one leaf is real, but the other is dual to an artificial edge of X ′.

Since VD∗(G) may contain (dual) artificial vertices (i.e., faces X ′ that are not faces of X), at the
beginning of the deletion process we delete all artificial vertices of VD∗(G), and then apply the deletion
process described above. Observe that exactly one of the leaves corresponding to g1 and gk/2 is deleted by
the deletion process, and none of the two leaves associated with the other sites is deleted. This is because
each Gi is in its own Voronoi cell in VD∗(F ).

Lemma 8. When the deletion process of VD∗(G) described above terminates, sites g1 and gk/2 are associated
with exactly one dangling edge, and all other sites are associated with either two or zero dangling edges.

Proof. The deletion process deletes a single contiguous subpath from the boundary of each Voronoi cell.
This is because otherwise, there would be a resulting connected component that contains two dangling
edges, contradicting Lemma 7. Thus, since the dangling edges associated with site gi are the dangling edges
on the boundary of the Voronoi cell of gi, each site is associated with at most two dangling edges. Since
for g1 and gk/2 exactly one of the corresponding leaves are deleted, the process results in a single dangling
edge associated with each of these two sites. For all the other sites, none of the two corresponding leaves are
deleted, hence there are two associated dangling edges with each site other than g1 and G∣k/2.
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A The Enhanced MSSP Data Structure (proof of Lemma 1)

In this section we prove Lemma 1 by extending the seminal MSSP data structure[6, 27]. Let s1, . . . , s∣f ∣ be
the vertices of the face f in cyclic order. The MSSP is initialized with the shortest paths tree T1 rooted
at s1 (computed in O(n logn) time using Dijkstra). Then, T2 is computed from T1 using pivots. A pivot
is the process of replacing an edge of T1 with an edge not in T1. Then, T3 is computed from T2 and so on
until T∣f ∣ is computed. Klein showed that: (1) over the entire process of computing T1, . . . , T∣f ∣ there are only
O(n) pivots, (2) every pivot can be found and executed in O(logn) time by maintaining the dual tree of
the current Tk in a dynamic tree data structure [41]. Finally, by using the persistence technique of [17], all
the Tk’s can be recorded in (n logn) space so as to permit dist(s, v) queries. We slightly modify the MSSP
data structure, such that the dynamic trees would be implemented with top-trees of Alstrup et al. [1]. This
retains all features of the original implementation while additionally supporting ancestor(s, v, d) queries in
O(logn) time per query.

In order to implement direction(s, v,P ) queries, we additionally maintain a persistent [17] range data
structure [13, 43] LeftP for every shortest path P in the decomposition tree. The data structure LeftP
stores, throughout the running of MSSP, the set of vertices (ordered by their order on P ) that the current
source vertex si reaches from the left. Once LeftP is maintained properly, count(s,P, i, j) queries can be
supported in Õ(1) time by accessing LeftP at the time in which the stored MSSP tree is the shortest path
tree rooted at s. Moreover, select queries can be supported via binary search that utilizes count queries.

Initially, LeftP is obtained in O(∣P ∣) time by checking the parent of every vertex v ∈ P in the shortest
paths tree of s1 (if the parent is on P , then v inherits the direction from its parent). In order to maintain
LeftP , we store an additional range data structure Cross(u) for every vertex u ∈ G. For a vertex u, let
e1, e2, . . . ed be the edges incident to u in clockwise order. For every separator path P such that u ∈ P , there
is a cyclic interval of the edges of u that are on the left of P , and a cyclic interval that is on the right. The
data structure Cross(u) stores the left and right cyclic intervals of all paths P containing u such that given
two edges ei and ej incoming to u, it returns the set of paths P such that ei and ej are on different sides of
P . Since each vertex u of G has constant degree, implementing the Cross(u) data structures is trivial and
requires Õ(∣P ∣) time for each P . This sums up to Õ(n).

To maintain LeftP during the MSSP execution, while obtaining Tk from Tk−1, whenever a pivot is
performed, we apply the following: Let u be the vertex such that the pivot changes u’s incoming edge from
ei to ej . It is possible that the Left/Right status of u has been changed with respect to (possibly several)
paths P containing u. Notice that if such a status change occurs for u, it also occurs for all descendants
of u in Tk that lie on P (since P is a shortest path, and due to the uniqueness of shortest paths, those
descendants all lie on a single subpath of P that contains u). We need to find the set of paths P for which
the Left/Right status of u changes. We do this by querying Cross(u) to obtain all paths P such that ei and
ej are on different sides of P . If ei or ej are on P , the new/old type of u is determined by its first ancestor in
Tk/Tk−1 that is not on P (which can be found by binary search on P and the tree edges of Tk/Tk−1). If the
type of u changes, we remove/insert u from LeftP (depending on the new type). We also run the following
procedure in order to update the Left/Right status of all descendants of u in P , if necessary. Starting from
u, we traverse P twice, once in each direction of P . As long as a descendant of u is met, we update the
traversed vertex with the new type of u. We halt when we reach a vertex of P that is not an ancestor of u.

Correctness: We claim that all LeftP data structures are updated correctly after every pivot. Clearly,
if both ei and ej are left or right edges, the left/right status of the vertex u does not change, so only the
set of paths returned from Cross(u) needs to be checked. This set is updated naively - both u and all of
its decedents on P are updated one by one. Due to the uniqueness of shortest paths, the decedents of u
on P form a consecutive subpath of P . Therefore, the algorithm did not miss any descendants of u on P
as a result of halting when encountering a non-descendant in each direction. Finally, vertices that are not
decedents of u did not have their shortest path change as a result of the pivot, and therefore their Left/Right
status did not change with respect to any path P .

Running time. The algorithm queries a Cross(u) data structure per pivot, which sums up to Õ(n) across
the run of MSSP. As for the updates to LeftP , we claim that every vertex u is accessed in this way O(1)

19



times per path P containing it. Let us consider the event in which a vertex u is accessed because ej is not of
the same type as ei with respect to the path P . We distinguish between two types of vertex access events:
an event in which u changes its Left/Right status with respect P , and an event in which it does not. If u
does not change its status, we necessarily have that either the old edge ei or the new edge ej is on the path
P (as otherwise one is a right edge and the other is a left edge, leading to a status change of u with respect
to P ). It immediately follows from the fact that every edge participates in O(1) pivots that this event occurs
at most once per u ∈ P , and therefore the number of occurrences of this event is proportional to the total
length of all paths P , which is Õ(n). If on the other hand u does change its status, then by the following
claim this can happen at most two times throughout the running of the algorithm.

Claim 5. Let P be a separator path and let u be a vertex of P . The set of source vertices sk such that sk
reaches u from the left with respect to P form a cyclic interval on the face f .

Proof. Let si and sj be two sites such that si and sj reaches u from the left. We prove that either all vertices
in the cyclic interval f[si, sj] reach s from the left, or all vertices in the cyclic interval f[sj , si] reach s from
the left, which leads to the claim. Consider the cycle C formed by (1) the shortest path Ri from si to u, (2)
the shortest path Rj from sj to u, and (3) the Jordan Curve connecting si and sj embedded on f . Clearly,
all right edges of P are on one side of the cycle C, as Ri and Rj enter P from the left and do not cross P
due to uniqueness of shortest paths. Let us denote the side of the cycle that contains the right edges of P as
the ‘out’ side, and the other as the ‘in’ side. Consider the case in which f(si, sj) is on the ‘in’ side of C (the
other case is symmetric). We claim that every vertex in sk ∈ f(si, sj) reaches u from the left. Assume to the
contrary that there is a vertex sk ∈ f(si, sj) that reaches u from the right. Since the shortest path Rk from
sk to u starts on the ‘in’ side of C, and enters P from the ‘out’ side of C, it must cross the C before reaching
a vertex of P . In particular, it must either cross Ri or Rj (say, Ri) at some vertex z. Then, according to
the uniqueness of shortest paths, we have that Rk[z, u] = Ri[z, u], which means that sk reaches u from the
left, a contradiction.

To summarize, it follows from Claim 5 that u changes its Left/Right status with respect to P at most
twice throughout the algorithm (namely, when the boundaries of the cyclic interval indicated by Claim 5
are processed). Therefore, the number of times the algorithm processes a vertex that changes its status is
bounded by the total size of all paths in the decomposition, which is O(n). Since a vertex is processed in
Õ(1) time, the total running time is bounded by Õ(n) as required.

B Proof of Lemma 3

Assume to the contrary that an (Hleft, left)-partition is not an (H, left)-partition. In particular, it must be
that there exists some v ∈ P such that v (Hleft, left)-likes some site sleft ∈Hleft but does not (H, left)-like sleft.
This means that for some c ∈H we have that (1) v ∈ VorH∪{sx,sy}(c), (2) c ≠ sleft, and (3) v ∈ Left(P, c).

We first claim that c ∈ H ∖Hleft. Assume to the contrary that c ∈ Hleft, and recall that v ∈ Left(P, c).
Therefore, it must be that v ∈ Pc in the (Hleft, left)-partition. Since Pc ∩Psleft = ∅, we obtain a contradiction.
Thus, c ∈H ∖Hleft.

Consider the cycle C obtained by concatenating Ry, P,Rx and the Jordan curve connecting sx and sy
embedded in the face F . We think of C as an oriented cycle whose orientation is consistent with that of
P so as to define left and right properly. Notice that Rx and Ry do not cross each other. Therefore, C
is non-self crossing. Since c ∈ H ∖Hleft, c is to the right of C. Therefore, Rc,v must cross C (recall that
v ∈ Left(P, c)). By uniqueness of shortest paths Rc,v does not cross P . Therefore, it must cross either Rx or
Ry. Contradicting v ∈ VorH(c).

C Partition of Two Sites with Swirly Paths

In this section we prove Lemma 5. We first (in Appendix C.1) prove the lemma for the special case where
s1 = sx and s2 = sy. Then (in Appendix C.2), we utilize the partition obtained for sx, sy to compute a
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partition for any pair s1, s2 ∈ Fleft.

C.1 Partition for sx and sy

To prove Lemma 5 we begin with the simpler case of s1 = sx and s2 = sy. We start by proving the following
structure regarding sx and sy.

The following lemma shows that for s ∈ {sx, sy} we can recognize swirly and non-swirly paths to vertices
in Left(P, s) by comparing their position in the shortest paths tree of s compared to x or y.

Lemma 9. Let v ∈ Left(P, sy) be a vertex, if v is to the right of y in the shortest paths tree of sy, then
dist(sy, v) > dist(sx, v) and v ∈ Left(P, sx). Otherwise, sy reaches v via a non-swirly path.

Similarly, for a vertex v ∈ Left(P, sx), if v is to the left of x in the shortest paths tree of sx, then
dist(sx, v) > dist(sy, v) and v ∈ Left(P, sy). Otherwise, sx reaches v via a non-swirly path.

(a) C (b) C2

Figure 8: The cycles for the proof of Lemma 9.

Proof. We only prove the first statement, the second statement is symmetric. Consider the cycle C obtained
by concatenating Ry, P ,Rx and the Jordan curve connecting sx and sy embedded in the face F . Notice that
Rx ∩Ry = ∅ (since we have dist(sx, z) < dist(sy, z) and dist(sx, t) > dist(sy, t) for every z ∈ Rx, t ∈ Ry) and
therefore C is a non-self-crossing cycle. We think of C as an oriented consistently with P so as to define left
and right properly. Notice that all edges entering P ∖{x, y} from the left are on the left side of C. Let (w′,w)
be the first edge on Rsy,v that is not on Ry. We start by proving the first claim, where v is to the right of
y in the shortest paths tree of sy. We distinguish between two cases. If w′ ∈ P , then Rsy,v[w

′, v] = P [w′, v]
and in this case Ry reaches P from the right and therefore Rsy,v reaches V from the right, a contradiction.
If w′ ∉ P , w is on the right side of C. Let Q = Rs2,v[w, v]. Since v ∈ C, Q must intersect C. Let u be the
first vertex in Q that is on C. Clearly, u ∉ Ry by uniqueness of shortest paths. Moreover, u ∉ P ∖ (Rx ∪Ry)

since Rsy,v enters P from the left. It follows that u ∈ Rx and therefore dist(sx, v) < dist(sy, v) as required.
We next prove that v ∈ Left(P, sx). Consider the cycle C2 composed of the concatenation of Ry, P [y, v]

and Rv,sy . We think of C2 as an oriented cycle whose orientation is consistent with that of P so as to
define left and right properly. Notice that C2 has no self crossing. Notice that sx is on the left side of C2

and every right edge of P is on the right side of C2. Assume by contradiction that v ∉ Left(P, sx), then
Rsx,v must cross the C2. By uniqueness of shortest paths, Rsx,v does not cross P nor Rsy,v. Thus, Rsx,v

must cross Ry. Let z be a vertex on Ry ∩Rsx,v. Since z ∈ Ry we have dist(sy, z) < dist(sx, z) and therefore
dist(sy, v) ≤ dist(sy, z) + dist(z, v) < dist(sx, z) + dist(z, v) = dist(sx, v) a contradiction to what we already
proved. Therefore it must be that v ∈ Left(sx, v).

Regarding the second claim, if v is not to the right of y in the shortest path tree of sy then it must be
either to the left, an ancestor of y, or a decedent of y. Clearly, the case of v being an ancestor of y, then Rsy,v
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is a subpath of Ry, that is disjoint from Rx and therefore it is non-swirly. In addition, v being a decedent
of y means that Rsy,v = Ry ○ P [y, v] which crosses neither Rx nor Ry. Finally, consider the case where v
is to the left of y in the shortest path tree of sy. If w′ ∈ P then Rsy,v = Ry[sy,w] ○ P [w, v] which crosses
neither Rx nor Ry. Otherwise, w must be in the left side of C. By uniqueness of shortest paths, Q = R[w, v]
cannot cross Ry or P . Assume to the contrary that Q crosses Rx, and let t be the first vertex on Q after
crossing Rx. Notice that t is on the right side of C. The path Q′ = Q[t, v] cannot intersect with Rx or Ry

by uniqueness of shortest paths. Therefore Q′ must enters P from the right, a contradiction.

Lemma 10. Given sx and sy, there is an algorithm that outputs in Õ(1)-time a partition of P into two
(possibly empty) parts P = P x

1 ○ P
x
2 such that:

1. Every vertex v ∈ Left(P x
1 , sx) is reached from sx via a non-swirly path.

2. For every vertex v ∈ Left(P x
2 , sx) we have dist(sx, v) > dist(sy, v).

Similarly, the algorithm outputs a partition of P into two (possibly empty) parts P = P y
1 ○ P

y
2 such that:

1. For every vertex v ∈ Left(P y
1 , sy) we have dist(sy, v) > dist(sx, v).

2. Every vertex v ∈ Left(P y
2 , sy) is reached from sy via a non-swirly path.

(a) Partition of P to P x
1 and P x

2 . (b) Partition of P to P y
1 and P y

2 .

Figure 9: Figures for the statement of Lemma 10.

Proof. We prove the second claim of the lemma, the proof of the first claim is similar.
The algorithm works in a binary search fashion to find a partition P = P y

1 ○P
y
2 such that every vertex in

Left(P y
1 , sy) is to the right of y in the shortest paths tree of sy, and every vertex in Left(P y

2 , sy) is not to the
right of y in the shortest paths tree of sy. We first claim that such a partition exists (Claim 6), and then we
show that this partition satisfies the conditions of the lemma.

The following claim shows that the sought partition exists (see Fig. 9b).

Claim 6. There is a vertex v ∈ P such that every u ∈ Left(P [y, v], sy) is not to the right of y in the shortest
path tree of sy, and every vertex in Left(P (v, x], sy) is to the right of y in the shortest paths tree of sy.

Proof. Let v be the last vertex on Left(P, sy) that is not to the right of y in the shortest paths tree of
sy. Notice that v is well defined, as y ∈ P is not to the right of y. By definition of v, every vertex
u ∈ Left(P (v, x], sy) is to the right of y in the shortest paths tree of sy. It remains to show that every vertex
in Left(P [y, v], sy) satisfies the claim. Assume to the contrary that there is a vertex u ∈ Left(P [y, v], sy)
that is to the right of y in the shortest paths tree of sy.
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Figure 10: The (orange) cycle C in the proof of Claim 6. The dotted red path is impossible since it implies
that u is not to the right of y in the shortest paths tree of sy. The dashed red path is impossible since it
implies that u is reached from the right.

Consider the cycle C that consists of the concatenation of Ry, P [y, v], and Rv,sy in that order. We
consider C to be oriented in a way that is consistent with Ry (from sy to y) and with P . Let (w′,w) be the
first edge of Rsy,u that is not in Ry. If w

′ ∈ P , uniqueness of shortest paths implies that Rsy,u[w
′, u] = P [w,u]

and Ry[w
′, y] = P [w′, y]. Since u is to the right of y, we get that Ry[sy,w

′] = Rsy,u[sy,w
′] must enter P

from the right, a contradiction to u being reached from the left by sy. We therefore have that w′ ∉ P , and
therefore w is strictly on the right side of C. The path R = Rsy,u[w,u] must intersect the cycle C. Due to
uniqueness of shortest paths, R cannot intersect Ry. If R intersects Rsy,v ∖Ry, uniqueness of shortest paths
implies that Rsy,u agrees with Rsy,v at least on the first edge that is in Rsy,v and not on Ry. This leads to
a contradiction, as it indicates that u is not to the right of y (in particular, u has the same tree relationship
with y as v). The only remaining option is for R to intersect P ∖ (Ry ∪ Rsy,v), but all the left edges of
P ∖(Ry ∪Rsy,v) are on the left side of C, so this leads to u being reached from the right, a contradiction.

With Lemma 9 and Claim 6, we are finally ready to describe the algorithm. The algorithm simply applies
a binary search to find the vertex v specified in Claim 6. Using count and select queries of the enhanced
MSSP, the algorithm finds the median vertex u ∈ Left(P, sy), and checks if u is to the right of y in the
shortest paths tree of sy. According to the answer, the algorithm decides if u is before or after the sought
vertex v in P and proceeds to the relevant half of P . The recursion halts when there is only a single vertex
in Left(P ′, sy). Clearly, the recursion has logarithmic depth, and each recursive call is implemented in Õ(1)
time. Upon finding v, the algorithm returns the partition P y

1 = P [y, v] and P y
2 = P (v, x]. It follows directly

from Claim 6 and Lemma 9 that this partition satisfies the conditions of the lemma.

Lemma 11. There is an Õ(1) algorithm that given sx and sy outputs an ({sx, sy}, left)-partition of P .

Proof. The algorithm starts by applying Lemma 10 to both sx and sy, obtaining partitions P = P x
1 ○ P

x
2 =

P y
1 ○ P

y
2 . Let a, b be the unique vertices such that P y

1 = P [x, a) and P x
2 = P (b, y]. Notice that every vertex

in P [a, b] = P y
2 ∩ P

x
1 that is reached from the left by sx or by sy, is reached from the left via a non-swirly

path. Therefore, Lemma 4 can be applied to P [a, b]. The algorithm applies Lemma 4 to P [a, b], obtaining a
partition P [a, b] = P̂1 ○ P̂2 and returns Px = P

y
1 ○ P̂2 and Py = P̂2 ○P

x
2 . Clearly, the algorithm takes Õ(1) time.

The correctness follows from the correctness of Lemma 4 and from the fact that every vertex v ∈ P y
1 that sy

reaches from the left has dist(sx, v) < dist(sy, v) and therefore ({sx, sy}, left)-likes sx and every vertex v ∈ P x
2

that sx reaches from the left has dist(sy, v) < dist(sx, b) and therefore ({sx, sy}, left)-likes sy, as required.
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C.2 Partition for s1, s2 ∈ Fleft

In this section we show how to compute the relaxed partition for any pair of vertices s1, s2 ∈ Fleft in Õ(1)
time, thus proving Lemma 5. The main idea is to recognize, separately for each s ∈ {s1, s2}, one of two cases:
Either that s is not the site of any vertex in Left(P, s) which means we can assign all P to the other site.
Or, recognize a partition of Left(P, s) into up to two intervals, where one interval contains only vertices v
with Rs,v being non-swirly, and the other interval with all vertices v with Rs,v being swirly. To use these
partition we exploit the partition of P with respect to {sx, sy} (Appendix C.1). We then show that when
considering both s1 and s2, we can identify a prefix and a suffix of P that contains all swirly paths and are
assigned to s1 and s2. Between the prefix and suffix there is an interval that does not contain any swirly
path from s1 or s2, and we use Section 3.3 to partition it. By combining the prefix-suffix with the partition
for the middle part, we obtain the desired partition for P with respect to {s1, s2}.

Let Px = P left
x (resp. Py) be the prefix (resp. suffix) of P computed by Lemma 11. We note that by

definition of ({sx, sy}, left)-like, for every v ∈ Left(P, sx)∩Left(P, sy) we have v ∈ Px if and only if dist(sx, v) <
dist(sy, v). The following lemma shows that for sx, all the shortest paths to vertices of Left(Px, sx) are non-
swirly.

Lemma 12. If v ∈ Left(Px, sx) then Rsx,v is a non-swirly path. Similarly, if v ∈ Left(Py, sy) then Rsy,v is a
non-swirly path.

Proof. We prove the first claim, the proof of the second claim is symmetric. If v appears to the right of
x in the shortest paths tree of sx, then the lemma follows from Lemma 9. If v appears to the left of x in
the shortest paths tree of sx, then by Lemma 9 we have that v ∈ Left(P.sy) and dist(sx, v) > dist(sy, v),
contradicting the assumption that v ∈ Px.

Recall that a path Rs,v from s ∈ Fleft to v ∈ Left(P, s) is swirly if it crosses either Rx or Ry. The following
lemma states that a swirly path must cross Rx or Ry from left to right, and must intersect the second path
(among Rx and Ry).

Lemma 13. Let s ∈ Fleft ∖(P ∪{sx, sy}), and let v ∈ Left(P, s). If Rs,v is an x-swirly path, then Rs,v crosses
Rx from left to right (when considering Rx as being oriented from x to sx). Moreover, Rs,x must intersects
Ry.

Similarly, if Rs,v is a y-swirly path, then Rs,v crosses Ry from left to right (when considering Ry as being
oriented from sy to y). Moreover, Rs,y must intersects Rx.

Figure 11: The cycle C in the proof of Lemma 13.

Proof. We prove the first statement, the proof of the second statement is symmetric. Consider the cycle C
obtained by concatenating Ry, P ,Rx and the Jordan curve connecting sx and sy embedded in the face F .
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Notice that Rx∩Ry = ∅ (since each one of them belongs to a different Voronoi cell) and therefore C is a non-
self-crossing cycle. We think of C as being oriented consistently with P so as to define left and right properly.
Notice that all edges entering P ∖ {x, y} from the left are on the left side of C. Since s ∈ Fleft ∖ (P ∪ {sx, sy})
it must be on the left side of C. Thus, when a path starting at s first crosses C it must cross C from left
to right. By uniqueness of shortest paths Rs,v does not cross P , and since Rs,v is an x-swirly path, the first
time Rs,v crosses C it must cross Rx. Thus, Rs,v crosses Rx from left to right.

Let w be the first vertex of Rs,v strictly in the right side of C (w exists since Rs,v crosses C). Since Rs,v

first crosses Rx, we have that Rs,v[s,w) ∩ Rx ≠ ∅. Therefore, by uniqueness of shortest paths, Rs,v[w, v]
cannot intersect Rx. All the edges entering P on the right side of C enter P from the right. Therefore,
Rs,v[w, v] ∩Ry must be non-empty, since otherwise v ∉ Left(P, s).

The following lemma and corollary show that a swirly path Rs,v is y-swirly if and only if v ∈ Px.

Lemma 14. Let s ∈ Fleft ∖ {sx, sy} and let v ∈ Left(P, s) such that Rs,v is an x-swirly path. Then, v appears
to the left of x in the shortest paths tree of sx, v ∈ Left(P, sx), v ∈ Left(P, sy) and dist(s, v) > dist(sx, v) ≥
dist(sy, v).

Similarly, if Rs,v is a y-swirly path, then, v appears to the right of y in the shortest paths tree of sy,
v ∈ Left(P, sy), v ∈ Left(P, sx) and dist(s, v) > dist(sy, v) ≥ dist(sx, v). .

Proof. We prove the first statement, the proof of the second statement is symmetric. By Lemma 13, Rs,v

crosses Rx from right to left (when considering Rx oriented from sx to x). For simplicity of the proof, we
assume that Rs,v ∩Rx contains exactly one vertex, z. Let w be the last (farthest from sx) vertex on Rsx,v

that is on Rx. We first note that if w = z then Rsx,v[w, v] = Rs,v[z, v] and therefore the lemma holds.
Moreover, by uniqueness of shortest paths, it cannot be the case that w appears after z on Rx. Thus, it
remains to consider the case where w appears strictly before z on Rx. For this case, we prove the two claims
separately.

(a) The cycle C. The dotted black
path is Rsx,v.

(b) The cycle C2. The dotted and
the dashed black paths are the two
options for Rsx,v.

Figure 12: Figures for the proof of Lemma 14.

If v appears to the left of x in the shortest paths tree of sx. Let w′ be the following vertex of w on
Rsx,v. Assume by contradiction that v appears to the right of x. This means that Rsx,v exits Rx to the
right. Consider the cycle C composed of the concatenation of Rx[sx, z], Rv,s[z, s] and the Jordan curve
connecting s and sx embedded in the face F (see Fig. 12a). We think of C as oriented consistently with
Rx (from sx to z). Clearly, w′ is in the right side of C. On the other hand, v is in the left side C. To see
this, consider the path Rs,v[z, v]. Notice that by uniqueness of shortest paths Rsx,v[w

′, v] cannot cross Rx.
Assume Rsx,v[w

′, v] intersects with Rs,v[s, z], then by uniqueness of shortest paths, it must reach z, thus
crosses Rx, a contradiction.
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If v ∈ Left(P, sx). Recall that we consider the case where w is strictly before z on Rx and w′ is to the left
of Rx. Consider the cycle C2 composed of the concatenation of P [v, x], Rx[x, z], Rs,v[z, v] (see Fig. 12b).
We think of C as an oriented cycle whose orientation is consistent with P . Notice that all the right-entering
arcs of P ∖ (Rx ∩Rs,v) are in the right side of C2 and that w is on the left side of C2. Since v is on the cycle
and w is strictly to the left of the cycle, Rsx,v[w

′, v] must intersect C2 at some point, let u be the first vertex
of Rsx,v[w

′, v] on C2. Clearly, u ∉ Rx[z, x], by uniqueness of shortest paths. If u ∈ Rs,v then by uniqueness
of shortest paths sx reaches v from the left. Otherwise, if u ∈ P ∖ (Rx ∪Rs,v), then Rsx,v enters P in u from
the left. Since v ∈ Left(P, sx) and v appears to the left of x in the shortest paths tree of sx, by Lemma 9 we
have that v ∈ Left(P, sy), as required. Moreover, by Lemma 9 we also have dist(sx, v) > dist(sy, v). Finally,
by the triangle inequality we have dist(s, v) = dist(s, z) + dist(z, v) > dist(sx, z) + dist(z, v) ≥ dist(sx, v), as
required.

The following is a direct consequence of Lemmas 9 and 14.

Corollary 1. Let s ∈ Fleft∖{sx, sy} and let v ∈ Left(Px, s). If Rs,v is a swirly path, then it is a y-swirly path.
Furthermore, if v ∈ Left(Px, sx) then Rsx,v is a non-swirly path.

Similarly for v ∈ Left(Py, s), if Rs,v is a swirly path, then it is an x-swirly path. Furthermore, if v ∈
Left(Py, sy) then Rsy,v is a non-swirly path.

In the following Lemmas (Lemmas 15 to 19) we show that for any s ∈ Fleft ∖{sx, sy} we can either deduce
that s is not the site of any v ∈ Left(P, s) or a partition of Left(P, s) into an interval of non-swirly paths, and
an interval of swirly paths.

Lemma 15. Let s ∈ Fleft∖P and vtop, vbottom ∈ Left(P, s) such that vtop is closer to x than vbottom and in the
shortest paths tree of s, vbottom appears not to the left of vtop. Then, for every u ∈ Left(P [vtop, vbottom], s)
we have that u appears not to the left of vtop in the shortest paths tree of s.

Figure 13: The cycle C for the proof of Lemma 15.

Proof. Assume to the contrary that there is a vertex u ∈ P [vtop, vbottom] that s reaches u from the left and
v is to the left of vtop in the shortest paths tree of s.

Consider the cycle C composed of the concatenation of Rs,vbottom , P [vbottom, vtop], and Rvtop,s (see
Fig. 13). We think of C as oriented consistently with P . Notice that C has no self crossing, since it
consists of three shortest paths with shared endpoints. Let (w′,w) be the first edge of Rs,u that is not on
Rs,vtop . Since u is to the left of vtop in the shortest paths tree of s, w is on the right side of C (notice that
Rs,vtop is reversely oriented in C). The path Rs,u[w,u] ends on C, so it must intersect C. Let z be the first
vertex of Rs,u[w,u] that is on C. By uniqueness of shortest paths, z cannot be on Rs,vtop . Moreover, we
claim that z is not on Rs,vbottom as well. If w is not on Rs,vbottom , this follows from uniqueness of shortest
paths. Otherwise, we have that Rs,vbottom[s,w] = Rs,u[s,w] which implies that u is not to the left of vtop in
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the shortest paths tree of s, a contradiction. We conclude that z is on P ∖ (Rs,vtop ∪Rs,vbottom). Recall that
all left edges of P ∖ (Rs,vtop ∪Rs,vbottom) are on the left side of C. It follows that s reaches u from the right,
a contradiction.

A subpath of P [a, b] is called (s, left) swirly (resp. x-swirly, y-swirly, non-swirly) if for every v ∈
Left(P [a, b], s), the path Rs,v is a swirly (resp. x-swirly, y-swirly, non-swirly) path.

Lemma 16. Let s ∈ Fleft∖(P ∪{sx, sy}) and vtop, vbottom ∈ Left(P, s) such that vtop is closer to x than vbottom
and vbottom appears not to the left of vtop in the shortest paths tree of s, then P [vtop, vbottom] is either a
(s, left) non-swirly, a (s, left) x-swirly or a (s, left) y-swirly subpath.

Proof. Let u ∈ Left(P [vtop, vbottom], s) be a vertex. We prove that Rs,vtop and Rs,u are both of the same
type (non-swirly, x-swirly, or y-swirly). By Lemma 15 we have that u appears not to the left of vtop in the
shortest paths tree of s. We distinguish between three cases:

(a) The cycle C. (b) The cycle C2. (c) The cycle C3.

Figure 14: Figurs for the proof of Lemma 16.

1. If Rs,vtop is non-swirly. Consider the cycle C obtained by concatenating Rs,vtop , P [vtop, y],Ry and
the Jordan curve connecting sy and s embedded in the face F . See Fig. 14a. We think of C as oriented
consistently with that of P . Notice that Rs,vtop and Ry do not cross each other since Rs,vtop is a non-swirly
path, therefore C is non-self crossing. Moreover, Rs,vtop and Rx do not cross each other either, and therefore
Rx is fully contained in the (weakly-)right side of C. Let (w′,w) be the first edge of Rs,u that is not on
Rs,vtop . If w

′ ∈ P then Rs,u = Rs,vtop[s,w
′] ○P [w′, u] is non-swirly. Otherwise, if w′ ∉ P , since u is not to the

left of vtop in the shortest paths tree of s, w is on the left side of C (notice that Rs,vtop is reversely oriented
in C). Assume by contradiction that Rs,u is a swirly path. Thus, Rs,u must cross either Rx or Ry. Since Rx

is in the right side of C, Rs,u must cross C to cross Rx or Ry (for Ry it is straightforward). By uniqueness
of shortest paths Rs,u[w

′, u] cannot cross P or Rs,vtop thus it must cross Ry. Let z be the first vertex of
Rs,u after Ry. However, since the left edges of P [y, vtop] ∖ (Rs,vtop ∪Ry) are all in the left side of C, and
u ∈ Left(P [y, vtop], s) it must be that Rs,u[z, u] crosses C. By uniqueness of shortest paths Rs,u[z, u] does
not cross Rs,vtop , P , or Ry, n a contradiction.

2. If Rs,vtop is y-swirly. For simplicity of the proof, we assume that Rs,vtop∩Ry contains a single vertex, z.
In the general case, it may be a continuous subpath but the proof is similar. Consider the cycle C2 composed
of the concatenation of Rs,vtop[s, z], Ry[sy, z], and the Jordan curve connecting sy and s embedded in the
face F . See Fig. 14b. We think of C2 as oriented consistently with that of Ry from sy to z. Notice that C2

is non self-crossing, and that both P and Rx are on the right side of C2.
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Let (w′,w) be the first edge of Rs,u that is not on Rs,vtop . If w′ appears after z in Rs,vtop then Rs,u

crosses Ry at z (and before crossing Rx), which means that Rs,u is y-swirly. Otherwise, if w′ appears before
z on Rs,vtop , since u is not to the left of vtop in the shortest paths tree of s, w is on the left side of C2 (notice
that Rs,z is reversely oriented in C2). Thus, in order to reach u ∈ P Rs,u[w,u] must cross C2. By uniqueness
of shortest paths, Rs,u[w,u] cannot cross Rs,vtop , therefore it crosses Ry. Since Rs,u cannot cross Rx before
crossing C2, we conclude that Rs,u is indeed a y-swirly path.

3. If Rs,vtop is an x-swirly path. For simplicity of the proof, we assume that Rs,vtop ∩Rx contains a single
vertex, z. In the general case, it may be a continuous subpath but a similar proof still exists. Consider the
cycle C3 = Rs,vtop[z, vtop] ○ P [vtop, x] ○ Rx[x, z]. See Fig. 14c. We think of C3 as an oriented cycle whose
orientation is consistent with that of P so as to define left and right properly. Notice that C3 has no self
crossing, and that the left side of P [y, vtop] ∖Rs,vtop are on the right side of C3.

Let (w′,w) be the first edge of Rs,u that is not on Rs,vtop . If w′ appears after z in Rs,vtop then Rs,u

crosses Rx at z (and before crossing Ry), which means Rs,u is x-swirly. Otherwise, w′ is on the left side
of C3. Thus, in order to reach u ∈ P [y, vtop), Rs,u[w,u] must cross C3. By uniqueness of shortest paths
Rs,u[w,u] cannot cross either Rs,vtop or P , therefore, it must cross Rx. Moreover, it must cross Rx from left
to right, and therefore Rs,u must cross Rx before crossing Ry. Thus, Rs,u is indeed x-swirly path.

Lemma 17. There exists an algorithm that given s ∈ Fleft∖(P ∪{sx, sy}) and vtop, vbottom ∈ P such that vtop
is closer to x than vbottom and in the shortest paths tree of s, vtop appears to the left of vbottom, reports in

Õ(1) time one of the following:

1. Reports that P [vtop, vbottom] is an (s, left) non-swirly subpath.

2. Reports that for every v ∈ Left(P [vtop, vbottom], s) we have, dist(s, v) >min{dist(sx, v),dist(sy, v)}.

Proof. The algorithm first computes a partition of P into Px and Py, using Lemma 11. Then, the algorithm
checks if P [vtop, vbottom] is fully contained in either Px or Py. If it is not, the algorithm reports Case
1. Otherwise, if P [vtop, vbottom] ⊆ Px (the case where P [vtop, vbottom] ⊆ Py is treated symmetrically), the
algorithm checks if vbottom ∈ Left(P, sx) . If vbottom ∉ Left(P, sx) or dist(s, vbottom) < dist(sx, vbottom), the
algorithm reports Case 1. Otherwise, if vbottom ∈ Left(P, sx) and dist(s, vbottom) > dist(sx, vbottom), the
algorithm reports Case 2. Clearly, the running time of the algorithm is Õ(1).

Correctness. If the algorithm reports Case 1 due to P [vtop, vbottom] being not fully contained in either Px

or Py. In this case, it must be that vtop ∈ Px and vbottom ∈ Py. However, by Corollary 1 it must be that
Rs,vtop is not an x-swirly path, and Rs,vbottom is not a y-swirly path. The only remaining option according
to Lemma 16, is that both Rs,vtop and Rs,vbottom

are non-swirly paths.
Otherwise, we have P [vtop, vbottom] ⊆ Px. If the algorithm reports Case 1 due to sx reaches vbottom

from the right or dist(s, vbottom) < dist(sx, vbottom), by Corollary 1 it must be that R = Rs,vbottom
is not a

y-swirly path. Since v ∈ Px, R is also not an x-swirly path, thus R is a non-swirly path. Thus, for every
v ∈ P [vtop, vbottom], by Lemma 16, we have that Rs,v is also a non-swirly path.

Finally, if the algorithm reports Case 2 due to vbottom ∈ Left(P, sx) and dist(sx, vbottom) < dist(s, vbottom),
there are two cases, based on the type of Rs,vbottom

(which the algorithm never recognizes).

1. If Rs,vbottom
is a y-swirly path, then by Lemma 16, for every v ∈ Left(P [vtop, vbottom], s) we have that

Rs,v is y-swirly. Thus, by Lemma 14 we have dist(s, v) > dist(sx, v) .

2. If Rs,vbottom is a non-swirly path, then by Lemma 16 for every v ∈ Left(P [vtop, vbottom], s) we have that
Rs,v is a non-swirly path. Moreover, by Lemma 12, for every v ∈ Left(P [vtop, vbottom], sx) we have
Rsx,v is a non-swirly path. Thus, by Claim 1, since dist(sx, vbottom) < dist(s, vbottom) and vbottom ∈
Left(P, sx), we have that every u ∈ P [vtop, vbottom] is a vertex that ({sx, s}, left)-likes sx. In particular,
for every v ∈ Left(P [vtop, vbottom]s), we have dist(s, v) > min{dist(s, v),dist(sx, v),dist(sy, v)} which
means dist(s, v) >min{dist(sx, v),dist(sy, v)} as required.
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Lemma 18. There is an algorithm that given s ∈ Fleft ∖ (P ∪ {sx, sy}) outputs in Õ(1) time at most two
subpaths P [a1, b1] and P [a2, b2] such that all vertices in Left(P, s) ⊆ P [a1, b1]∪P [a2, b2], and b1 (resp. b2) is
not to the left of a1 (resp. a2) in the shortest paths tree of s. In addition, s reaches a1, b1, a2, b2 ∈ Left(P, s)
and a1 is closer to x than a2. Moreover, if one of the two subpaths is non-swirly, then the other one is swirly.

Proof. Let vtop and vbottom respectively be the first (closest to x) vertex on P and the last (closest to y)
vertex on Left(P, s). The algorithm starts by finding vtop and vbottom using count and select queries.

The algorithm then checks if vbottom does not appear to the left of vtop in the shortest paths tree of s,
then P [vtop, vbottom] is reported as one interval.

Otherwise, the algorithm executes a binary search on the range Left(P [vtop, vbottom], s) for the last
(furthest from x) vertex v′ such that v′ does not appear to the left of vtop in the shortest paths tree of s.
Notice that by Lemma 15 a binary search indeed finds this last vertex.

Let v′′ be first vertex after v′ on Left(P, s). The algorithm reports P [a1, b1] = P [vtop, v
′] and P [a2, b2] =

P [v′′, vbottom]. Clearly, every vertex that s reaches from the left is in P [a1, b2] ∪ P [a2, b2]. Moreover, by
definition of v′ we have that b1 is not to the left of a1 in the shortest paths tree of s. We prove that b2 = vbottom
is not to the left of a2 = v

′′ in the shortest paths tree of s. Assume by contradiction that vbottom is to the
left of v′′ in the shortest paths tree of s. Consider the cycle C composed of the concatenation of Rs,v′′ ,
P [v′′, vtop] and Rvtop,s. We think of C as oriented consistently with P . Notice that C has no self-crossing.
Let (w′,w) be the first edge on Rs,vbottom

that is not Rs,v′′ . Due to our assumption that vbottom appears to
the left of v′′, such an edge must exist. Since v′′ is to the left of vtop, it also must be that w ∉ Rs,vtop . By
uniqueness of shortest paths, Rs,vbottom[w, vbottom] cannot intersect neither Rs,vtop nor Rs,v′′ . On the other
hand, one can prove that all the vertices of P are not on the left side of P . In particular, vbottom ∈ P is
not to the left of C. Since Rs,vbottom[w, vbottom] cannot cross P , it must be that vbottom ∈ P (v

′′, vtop). Thus,
v′′ is in Left(P, s) and is closer to y than Vbottom, contradicting the definition of vbottom. We conclude that
b2 = vbottom is not to the left of a2 = v

′′.

If one of the two subpaths is non-swirly, then the other is a swirly subpath. To prove the suffix
of the lemma, by Lemma 16 it is enough to show that if one of Rs,vtop and Rs,vbottom is non-swirly, then
the other is swirly. Assume w.l.o.g. that Rs,vtop is a non-swirly path. Consider the cycle C2 obtained by
concatenating Rs,vtop , P [vtop, x],Rx, and the Jordan curve connecting sx and s embedded in the face F . We
think of C as an oriented consistently with P . Notice that Rs,vtop and Rx do not cross each other since
Rs,vtop is a non-swirly path, therefore C2 is non-self crossing. Recall that vbottom appears to the left of vtop
in the shortest paths tree of s. Consider the first edges (w′,w) on Rs,vbottom that is not on Rs,vtop , it must be
that w is to the left of C2. On the other hand, vbottom is on the right side of C2, as one can see by following
the path Rs,vtop ○ P [vtop, vbottom]. Thus, Rs,vbottom

[w, vbottom] must cross C2. However, by uniqueness of
shortest paths, Rs,vbottom does not cross nor Rs,vtop nor P , therefore it must cross Rx, which means that
Rs,vbottom is indeed a swirly path, as required.

Lemma 19. There exists an algorithm that given s ∈ Fleft ∖ (P ∪ {sx, sy}) outputs in Õ(1) time one of the
following:

1. At most two subpaths P [a1, b1] and P [a2, b2] such that Left(P, s) ⊆ P [a1, b1]∪P [a2, b2], and a1, b1, a2, b2 ∈
Left(P, s), and flags f1, f2 ∈ {‘N

′, ‘X ′, ‘Y ′} such that:

(a) If fi = ‘N
′, then P [ai, bi] is an (s, left) non-swirly subpath.

(b) If fi = ‘Y
′, then P [ai, bi] is an (s, left) y-swirly subpath.

(c) If fi = ‘X
′,then P [ai, bi] is an (s, left) x-swirly subpath.

2. Reports that for every v ∈ Left(P, s), we have dist(s, v) >min{dist(sx, v)dist(sy, v)}.

Proof. The algorithm first computes a partition of P into Px and Py, using Lemma 11. Then, the algorithm
applies Lemma 18 to obatin at most two subpaths P [a1, b1] and P [a2, b2] such that all vertices that s reaches
from the left on P are in P [a1, b1] ∪ P [a2, b2], and b1 (resp. b2) is not to the left of a1 (resp. a2) in the
shortest paths tree of s. Moreover, if one of the two subpaths is non-swirly, then the other one is swirly.
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First, consider the case where Lemma 18 reports only one subpath, P [a1, b1]. In this case, notice that
P [a1, b1] is a valid input for Lemma 17. If Lemma 17 finds that P [a1, b1] is an (s, left) non-swirly subpath,
the algorithm reports f1 = ‘N

′. Otherwise, the algorithm reports Case 2. Observe that every vertex outside
of P [a1, b1] is reached by s from the right, so it trivially satisfies any of the possible classifications.

In the other case, we obtain two disjoint subpaths P [a1, b1] and P [a2, b2] from Lemma 18. Each one of
those subpaths is a valid input for Lemma 17. So, the algorithm applies Lemma 17 on both subpaths.

1. If both subpaths are found to be in Case 2 of Lemma 17 (i.e. for every v ∈ Left(P [ai, bi], s) we have,
dist(s, v) > min{dist(sx, v),dist(sy, v)}) we report Case 2 (i.e. that that for every v ∈ Left(P, s), we
have dist(s, v) > min{dist(sx, v),dist(sy, v)}). This reports indeed holds, since Left(p, s) ⊆ P [a1, b1] ∪
P [a2, b2].

2. If one of the subpaths is found to be (s, left) non-swirly, it is guaranteed (by Lemma 18) that the other
one is swirly. Let Pj = P [aj , bj] be the subpath that is (s, left) swirly. By Corollary 1, it must be that
Pj is contained in either Px or Py. Thus, the algorithm checks whether Pj ⊆ Px or Pj ⊆ Py and deduces
whether the corresponding subpath of P is (s, left) x-swirly or (s, left) y-swirly. Finally, the algorithm
returns P [a1, b1] and P [a2, b2] and the corresponding flags (one is ‘N ′ and the other is ‘X ′ or ‘Y ′ as
we describe).

In the following two lemmas, we show that we can utilize swirly paths in each of s1 and s2 to deduce that
a prefix or suffix of P can be assigned in the relaxed partition with respect to {s1, s2} with one site. More
specifically, the prefix (that contains x can be associated with s1 and the suffix can be associated with s2.

Figure 15: The cycle C for the proof of Lemma 20.

Lemma 20. Let s ∈ Fleft ∖ (P ∪ {sx, sy}) and let v ∈ Left(P, s) such that Rs,v is a y-swirly path. Then for
every u ∈ Left(P [x, v], s) we have that Rs,u is also a y-swirly path.

Similarly, if Rs,v is an x-swirly path, then for every u ∈ Left(P [v, y], s) we have that Rs,u is also an
x-swirly path.

Proof. We prove the first statement, the proof of the second statement is similar. Let z be some vertex in
Rs,v ∩Rx (z exists by Lemma 13). Consider the cycle C obtained by concatenating P [v, x],Rx[x, z], and
Rs,v[z, v] (see Fig. 15). We think of C as oriented consistently with P . Notice that C is composed of three
shortest paths and therefore C is non-self crossing. Let u ∈ Left(P [x, v), s). Since u is on C, Rs,u must
intersects C. Let (w′,w) be the first (closest to s) vertex of Rs,u which is not on Rs,v. If Rs,v[s,w

′] crosses
Ry, then Rs,u is an x-swirly path, as required. Otherwise, w′ is on the right side of C. Assume to the
contrary that Rs,u is a non-swirly path. We get a contradiction since Rs,u is entirely on the right side of C
but all edges entering P [x, v) from the left are in the left side of C. Assume to the contrary that Rs,u is an
x-swirly path, then by Lemma 13 it must cross Rx from left to right which means it first cross Rx[sx, z).

30



Then, by uniqueness of shortest paths it cannot cross C again, which means that Rs,u reaches u from the
left, a contradiction.

Lemma 21. Let s1 and s2 be two vertices on Fleft such that s1 is closer to sx than s2 on Fleft. For every
w ∈ {1,2} and v ∈ Px, if sw reaches v via a y-swirly path, every vertex on Px[ax, v] ({s1, s2}, left)-likes s1.

Similarly, for every w ∈ {1,2} and v ∈ Py, if sw reaches v via a x-swirly path, every vertex on Px[v, bx]
({s1, s2}, left)-likes s2.

Figure 16: The cycles C and C2 for the proof of Lemma 21.

Proof. We prove the first statement, the proof of the second statement is symmetric. First, oversevere that
the lemma follows for w = 2, as the path Rs2,v crosses Rx, and therefore dist(sx, v) < dist(s2, v), and sx ≠ s2.
It follows that v indeed ({s1, s2}, left)-likes s1. Moreover, by Lemma 20 the same argument holds for any
u ∈ Left(Px[ax, v], s2), and the claim is trivial for u ∈ Px[ax, v]∖ Left(Px[ax, v], s2). Thus, we focus on w = 1
- i.e. Rs1,v is a y-swirly path.

For simplicity of the proof, we assume thatRs1,v∩Ry contains a single vertex, z. In the general case, it may
be a continuous subpath but a similar proof still exists. Consider the cycle C composed of the concatenation
of Rs1,v[s1, z], Ry[z, sy] and the Jordan curve connecting s1 and sy embedded in the face F . Notice that C
has no self crossing, since Ry[z, sy] and Rs1,v[s1, z] are both shortest paths outgoing from z. Assume to the
contrary that for some vertex u ∈ Px[ax, v] that does not ({s1, s2}, left)-like s1. Consider the path Rs2,u. It
follows from our assumption that Rs2,u enters P from the left, and that dist(s2, u) <mins∈{s1,sx,sy}(dist(s, u)).
Notice that s2 is on the left side of C because, notice that P and u are on the right side of C. Therefore,
there must be a first vertex c on Rs2,u that is on C. Notice that c cannot be on Rx, as that would lead to
dist(sx, u) < dist(s2, u), a contradiction. We therefore have that c ∈ Rs1,v[s1, z].

For simplicity of the proof, we assume that Rs1,v ∩Rx contains a single vertex, z2. In the general case,
it may be a continuous subpath but a similar proof still exists. Consider the cycle C2 composed of the
concatenation of Rs1,v[z2, v], P [v, x], Rx[x, z2] and the Jordan curve connecting s1 and sy embedded in the
face F . We think of C2 as oriented consistently with P . Notice that C2 is non-self crossing. Notice that c
is on the right side of C2 and that every left edge of P ∖ (Rs1,v ∪ Ry) is on the left side of C2. It follows
that Rs2,u[c, u] must intersect C2, and that the first intersection is not on P ∖ (Ry ∪Rs1,v) (as this would
lead to Rs2,u entering P from the right). Notice that Rs2,u[c, u] cannot intersect Ry, as this would lead to
dist(sy, u) < dist(s2, u), a contradiction. We conclude that Rs2,u(c, u) intersects C2 on Rs1,v[z2, v] on some
vertex c2. It follows from uniqueness of shortest paths that Rs2,u[c, c2] = Rs1,v[c, c2]. This is a contradiction,
as Rs1,v[c, c2] crosses Ry follows from the definition of z and z2.

Finally, we are ready to prove Lemma 5 by combining all the above. This way we obtain a relaxed
partition for any two sites s1.s2 ∈ Fleft. As described above, the idea is to assign a prefix and suffix of P to
s1 and s2 respectively, exploiting information on swirly paths. Then the relaxed partition of P is obtained
by partition the remaining interval using the non-swirly algorithm (Section 3.3).
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Lemma 5. Let s1, s2 ∈ Fleft ∖ P be two sites such that s1 is closer to sx on Fleft than s2. One can compute
in Õ(1) time an ({s1, s2}, left)-partition of P into P1, P2 such that x ∈ P1 and y ∈ P2, unless the partition is
trivial.

Proof. We distinguish between three cases.

1. If s1 = sx and s2 = sy, the lemma is easily proved by Lemma 11.

2. Next, consider the case where {s1, s2} ∩ {sx, sy} = ∅. In this case, the algorithm first computes a
partition of P into Px and Py, using Lemma 11. Then, the algorithm applies Lemma 19 both on s1 and on s2.
If one of them reports Case 2 (i.e. that for every v ∈ Left(P, s) it holds dist(s, v) >min{dist(sx, v),dist(sy, v)}),
the algorithm outputs a trivial partition of P into P1 = P and P2 = ∅ (if Lemma 19 reports Case 2 for s2)
or P1 = ∅ and P2 = P (if Lemma 19 reports Case 2 for s1). Clearly, in this case it is a valid ({s1, s2}, left)-
partition.

Consider the case where Lemma 19 reports Case 1 (at most two subpaths of P ) for both s1 and s2.
Let a ∈ Left(P, s1) ∪ Left(P, s2) be the closest vertex to y such that Rs1,a or Rs2,a is y-swirly. Then, by
Lemma 21 every vertex v ∈ P [x, a] is ({s1, s2}, left)-likes s1. We note that if the vertex a exists, it is the
endpoint of one of the intervals reported by Lemma 19. If the vertex a does not exist we consider P [x, a]
as an empty subpath. Similarly, let b ∈ Left(P, s1) ∪ Left(P, s2) be the closest vertex to y such that Rs1,b or
Rs2,b is x-swirly. Then, by Lemma 21 every vertex v ∈ P [b, y] is ({s1, s2}, left)-likes s2. If the vertex b does
not exist we consider P [b, y] as an empty subpath. Finally, let P [a′, b′] be the subpath of P obtained by
removing P [x, a] (if a exists) and P [b, y] (if b exists), for every vertex v ∈ Left(P [a′, b′], si) we have Rsi,v is

non-swirly path for i ∈ {1,2}. Thus, we apply Lemma 4 on P̂ = P [a′, b′] and obtain P̂1 and P̂2. Finally, the
algorithm returns P1 = P [x, a] ○ P̂1 and P2 = P̂2 ○ P [b, y].

3. Finally, consider the case s1 = sx and s2 ≠ sy (the case s1 ≠ sx and s2 = sy is symmetric). This case
is similar to the previous one, except that for now we have that Px is an (s1, left)-non-swirl subpath (by
Lemma 12 and every v ∈ Py is ({s1, s2}, left)-likes s2. So the rest of the computation has to take care only on
Px. In details, the algorithm applies Lemma 19 on s2. If it reports Case 2, the algorithm outputs a trivial
partition P1 = P and P2 = ∅. Assume Lemma 19 reports Case 1, with the parts P [a1, b1] and P [a2, b2]. By
Corollary 1, Px does not contain any v with Rs2,v being x-swirly. Let P [ai, bi] be an (s2, left) non-swirly
subpath, and let Px = P [x, v]. If ai ∉ Px we return P1 = Px and P2 = Py. Otherwise, if ai ∈ Px it must be
that for every v ∈ Left(P [ai, v], s2) we have that Rs2,v is a non-swirly path. To see this, Rs2,v cannot be
a x-swirly path by Corollary 1 since v ∈ Px. Assume to the contrary that Rs,v is a y-swirly path, then we
have ai ∈ P [x, v] and by Lemma 20 we have Rs2,ai is a y-swirly path, a contradiction. Moreover, since ai
is the closest to x vertex in Left(P, s2) with Rs2,v is non-swirly, we have that every u ∈ P [x, ai) is a vertex

that ({s1, s2}, left)-likes s1. Therefore, we apply Lemma 4 on P̂ = P [ai, v] and return P1 = P [x, ai) ○ P̂1 and
P2 = P̂2 ○ P (v, y].

In all three cases the running time of the algorithm is clearly Õ(1), and the correctness follows our
discussion.
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