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Subset Selection Techniques for Deep/Machine Learning

Applications: From Theory to Practice

Loay Mualem

Abstract

We address a broad class of machine learning and optimization problems centered around
selecting compact, informative subsets of data for efficient training, inference, and decision-
making. In modern large-scale AI systems, both the computational and memory require-
ments of learning algorithms often render full-data processing impractical. To this end, our
work explores both algorithmic and theoretical foundations for subset selection through the
lens of coresets and (robust) submodular optimization.

Our contributions span five main directions:

1. We develop a coreset-inspired pruning framework for deep neural networks that iden-
tifies and removes redundant parameters with minimal impact on accuracy, enabling
faster and more resource-efficient deployment.

2. We introduce a refined analysis of partially monotone submodular functions, showing
that they admit improved approximation guarantees compared to general submodu-
lar functions. Our results provide a stronger theoretical foundations for submodular
maximization in real-world settings.

3. We conducted an empirical analysis of state-of-the-art algorithms for maximizing con-
tinuous DR-submodular functions under general convex constraints, extended them
to the online setting, and provided new bounds on the best possible approximation
guarantees.

4. We propose a novel decomposition-based approach that bridges the gap between down-
closed and general convex constraints in DR-submodular maximization, allowing smooth
transitions between the two theoretical regimes. Our approach applies to both the of-
fline and online settings.

5. We formulate and approximately solve minimax submodular optimization problems
to model uncertainty and adversarial scenarios, providing scalable algorithms with

VI



provable worst-case guarantees.

Throughout the thesis, we emphasize both theoretical rigor and practical applicability.
Our methods combine tools from convex analysis, combinatorial optimization, and machine
learning theory. The proposed frameworks contribute to improving the scalability, adapt-
ability, and robustness of modern AI systems across a variety of domains.
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Chapter 1

Introduction

Artificial Intelligence (AI) is rapidly transforming nearly every domain of modern life, from

revolutionizing healthcare [Sha21, ERR+19] and autonomous systems [WMX+24] to en-

abling scientific discovery [WFD+23], financial decision-making [ID23], and personalized

learning [GBK+24]. Advances in deep learning and large scale models—such as Large Lan-

guage Models (LLMs), Graph Neural Networks (GNNs), and generative models have made

these breakthroughs possible. However, alongside this progress lie critical challenges: these

models are often computationally expensive, data intensive, and offer limited the-

oretical understanding or guarantees on their behavior, generalization, accuracy and

efficiency, making their deployment in real world, resource constrained, or safety critical

environments difficult.

My research focuses on building AI systems that are efficient and scalable

through algorithms with strong theoretical guarantees. I aim to reduce the compu-

tational and data demands of deep learning models while maintaining their performance and

generalization capabilities. To this end, I design optimization-driven methods that accelerate

training and inference while offering provable guarantees on approximation quality. These

methods provide a principled foundation for improving efficiency without relying solely on

empirical heuristics, enabling more reliable and interpretable deployment across a variety of

real-world tasks.
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To achieve these goals, I leverage two key tools: submodular optimization and core-

sets. Submodularity captures the principle of diminishing returns and has proven to be a

powerful framework for data selection, summarization, and diversity. Coresets provide small,

weighted approximations of large datasets or models while preserving essential properties for

learning and inference. While both techniques offer formal guarantees and scalability, they

differ in applicability. Coresets often provide strong approximation bounds for specific opti-

mization problems; however, they may not exist or be practical for many problems. In fact,

many well-known coresets took years to develop, and designing a coreset for a new problem

typically requires deep, problem-specific insight. On the other hand, submodular functions

arise more naturally across many machine learning settings where the diminishing returns

property offers a principled and often model-agnostic structure. Submodular objectives can

thus capture essential structural properties of the data without being tailored to a specific

model.

Coresets. Coresets were initially introduced to address problems in computational geome-

try [AHPV04] and have since gained considerable attention across various domains [BLK18,

BLL18, BC08, BEL13, BJKW19, CIM+19, JTMF20, MJTF21, FMSW10, FRVR14, KL19];

comprehensive surveys can be found in [Fel20, MSSW18, Phi16]. Informally, a coreset is a

small, weighted subset of the input data (unlike sketches or dimensionality reduction tech-

niques) that approximates the loss of the full dataset 𝑃 for every feasible query 𝑥, with

provable guarantees—typically within a factor of 1±𝜀 for an error parameter 𝜀 ∈ (0, 1). The

size of such coresets is usually polynomial in 1/𝜀 and often independent of the input size or

logarithmic in it. Because coresets approximate all possible queries (not just the optimal

one), they support constrained optimization and enable efficient computational models such

as merge-and-reduce trees [Fel20]. Importantly, coresets can often be computed in near-

linear time, even for many NP-hard problems, allowing expensive or heuristic algorithms to

be applied repeatedly on a compact representation of the data.
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Coresets are Typically Problem Dependent. Most coresets in the literature are tai-

lored to specific problems, loss functions, or data distributions. That is, the coreset is

designed to preserve the structure and optimization landscape of the particular problem at

hand. In this sense, the coreset encapsulates the statistical or geometric properties that the

target task imposes on the data.

Submodular Functions. Submodular functions provide a powerful and flexible tool for

data summarization and subset selection. A set function 𝑓 : 2𝒩 → R is called submodular if

it exhibits the diminishing returns property: for every 𝐴 ⊆ 𝐵 ⊆ 𝒩 and 𝑠 ∈ 𝒩 ∖ 𝐵, it holds

that 𝑓(𝑠 | 𝐴) ≥ 𝑓(𝑠 | 𝐵), where 𝑓(𝑠 | 𝐴) ≜ 𝑓({𝑠} ∪ 𝐴)− 𝑓(𝐴) denotes the marginal gain of

the element 𝑠 with respect to the set 𝐴. This naturally models the intuition that the benefit

of adding a new element to a smaller set is greater than to a larger one, due to overlapping

or redundant information. Submodular functions arise in many applications, such as sensor

placement, document summarization, influence maximization, and data selection. For ex-

ample, in coverage functions, where 𝑓 measures how well a subset represents or covers the

full dataset, the marginal gain of adding a data point decreases as more of the dataset is

already covered—which makes coverage functions submodular.

Submodular Functions for Problem-Agnostic Subset Selection. In contrast to core-

sets, which are typically tailored to specific optimization problems and loss functions, sub-

modular optimization offers a general-purpose and modular framework for selecting effective

subsets. Once an appropriate submodular objective is defined, it can be applied across a

wide range of tasks and datasets, often with strong theoretical guarantees on the quality

of the selected subset. This versatility makes submodular functions especially attractive in

large-scale settings, where a single selection strategy can support multiple downstream ap-

plications without the need for task-specific redesign. In this way, submodular optimization

serves as a bridge between problem-specific accuracy and broad applicability.
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1.1 Overview

The thesis is composed of five papers, each contributing to the development of efficient and

theoretically grounded AI systems through model compression techniques and submodular

optimization methods for data and model selection. My main results are five-fold, and are

detailed across the following chapters:

Chapter 2 introduces our coreset-inspired pruning method for deep neural networks. This

work is driven by the need to accelerate and enhance the training and inference of large-scale

models, enabling practical deployment without significant loss in performance.

Chapter 3 focuses on improving the theoretical guarantees for submodular maximization

in discrete settings. Specifically, we study partially monotone functions—commonly arising

in real-world applications—and demonstrate how leveraging their monotonicity structure

enables stronger approximation bounds than those achievable in the general non-monotone

case.

Chapters 4 and 5 are devoted to DR-submodular maximization. In Chapter 4, we inves-

tigate continuous DR-submodular functions under general convex constraints, and develop

principled algorithms with provable guarantees. Building on this foundation, Chapter 5

presents a novel decomposition framework that bridges the gap between general and down-

closed convex constraints, enabling smooth interpolation between existing guarantees for

these types of constraints and extending the applicability of DR-submodular optimization

in both offline and online settings.

Chapter 6 addresses robust submodular optimization under uncertainty. We formulate

the problem as minimax optimization over submodular functions and develop scalable algo-

rithms with theoretical approximation guarantees, with applications in adversarial learning

scenarios and robustness to uncertainty.

Finally, Chapter 7 summarizes the key contributions and outlines promising directions

for future research.
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Chapter 2

Pruning Neural Networks via Coresets

and Convex Geometry: Towards No

Assumptions

In this chapter, we present a coreset-based framework for compressing deep neural networks,

aimed at reducing training and inference costs while preserving model accuracy. Our ap-

proach leverages data summarization techniques to construct small, high-quality subsets that

approximate the original training distribution.

The following paper [TMM22] was published at the Conference on Neural Information

Processing Systems (NeurIPS 2022).
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Pruning Neural Networks via Coresets and Convex
Geometry: Towards No Assumptions

Murad Tukan∗†

muradtuk@gmail.com
Loay Mualem∗†

loaymua@gmail.com
Alaa Maalouf∗†

alaamaalouf12@gmail.com

Abstract

Pruning is one of the predominant approaches for compressing deep neural net-
works (DNNs). Lately, coresets (provable data summarizations) were leveraged
for pruning DNNs, adding the advantage of theoretical guarantees on the trade-off
between the compression rate and the approximation error. However, coresets in
this domain were either data-dependent or generated under restrictive assumptions
on both the model’s weights and inputs. In real-world scenarios, such assumptions
are rarely satisfied, limiting the applicability of coresets. To this end, we suggest a
novel and robust framework for computing such coresets under mild assumptions
on the model’s weights and without any assumption on the training data. The idea
is to compute the importance of each neuron in each layer with respect to the output
of the following layer. This is achieved by a combination of Löwner ellipsoid and
Caratheodory theorem. Our method is simultaneously data-independent, applicable
to various networks and datasets (due to the simplified assumptions), and theoreti-
cally supported. Experimental results show that our method outperforms existing
coreset based neural pruning approaches across a wide range of networks and
datasets. For example, our method achieved a 62% compression rate on ResNet50
on ImageNet with 1.09% drop in accuracy.

1 Introduction and Backround

Deep neural networks (DNNs) achieved state-of-the-art (SOTA) performance on a large variety of
tasks, e.g., in computer vision [33, 50] and natural language processing (NLP; [87, 20]). However,
DNNs usually contain millions or even billions of parameters in order to achieve SOTA performances
resulting in large storage requirements and long inference time. This is obstructive when, e.g., dealing
with limited hardware or real-time systems such as autonomous cars and text/speech translation. To
this end, a large body of research is dedicated to reducing the size and inference costs of DNNs.

Pruning. A dominant approach widely used for reducing the size of DNNs is to utilize a pruning
algorithm to remove redundant parameters from the original, over-parameterized network. In general,
pruning can be categorized into two main types: (i) Unstructured pruning [31, 6] reduces the
number of non-zero parameters by inducing sparsity into weight parameters, which can achieve
high compression rates but requires specialized software and/or hardware in order to achieve faster
inference times. (ii) Structured pruning [35, 60, 77] modifies the structure of the underlying weight
tensors, by removing filters/neurons from each layer, usually resulting in smaller compression rates
while directly achieving faster inference times with no specialized software; see section 4

∗These authors equally contributed to this paper.
†Department of Computer Science, University of Haifa

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



1.1 Coresets for Pruning

Notably, many recent papers focused on various types of filter pruning [88, 79] potentially due
to the empirical observation that existing filter pruning approaches consistently yield impressive
results. However, most pruning methods are based on heuristics, lacking theoretical guarantees on
the trade-off between the compression rate and the approximation error. This was the motive for
introducing coresets [82, 60] to the world of pruning.

Coresets. In machine learning, we are (usually) given an input set P ⊆ Rd of n points, its
corresponding weights function w : P → R, a feasible set of queries X , and a loss function
ϕ : P ×X → [0,∞). The tuple (P,w,X, ϕ) is called query space, and it defines the optimization
problem at hand. For a given problem that is defined by its query space (P,w,X, ϕ), and an error
parameter ε ∈ (0, 1), an ε-coreset is is a small weighted subset of the input points that approximates
the loss of the input set P for every feasible query x, up to a provable bound of 1 + ε.

Since coresets approximate the cost of every query, traditional (possibly inefficient) algorithms/solvers
can be applied on coresets to obtain an approximation of the optimal solution on the full data, using
less time and memory; see Section B.2 in the appendix for more details.

Figure 1: Illustration of our neuron coreset construction on a toy example.

Pruning via coresets. Recently, some inspiring innovative frameworks [82, 60, 5, 7] leveraged the
idea of coresets for pruning DNNs. Any layer ℓ can be represented as a set P = {p1, · · · , pn} of
n > 1 points in Rd, where d is the number of input neurons, and n in the number of output neurons,
i.e., each point p ∈ P , represents a specific neuron using its d weights (parameters). When the layer
receives an input vector x ∈ Rd, it outputs the vector (ϕ(pT1 x), · · · , ϕ(pTnx)), where ϕ : R→ R is
an activation function which defines a non-linear mapping. Focusing on a single neuron η in the
layer that follows ℓ, defined by its corresponding vector of weights w = (w1, · · · , wn), we set in
the context of coresets, w(pi) := wi for every i ∈ {1, · · · , n} - this is just a mapping from pi to
wi to simplify the writing and reading. Note that the output of this neuron is

∑
p∈P w(p)ϕ

(
pTx

)
.

Assuming that we are given an ε-coreset (C, u) for the query space
(
P,w,Rd, ϕ

)
where C ⊆ P , and

u : C → R, we have that (C, u) approximates the output of this specific neuron η for every query
using less parameters; see Figure 1. To formalize the stated above, we now define coresets in the
context of activation functions.

Definition 1.1 (Coreset for activation functions). Let ε ∈ (0, 1), and let
(
P,w,Rd, ϕ

)
be a query

space. Then the pair (C, u), is an ε-coreset for
(
P,w,Rd, ϕ

)
if (i) C ⊆ P , (ii) u : C → [0,∞), and

(iii) for every x ∈ X ,
∣∣∣∣1−

∑
q∈C u(q)ϕ(qT x)∑
p∈P w(p)ϕ(pT x)

∣∣∣∣ ≤ ε.

Since C is a subset of P , we can remove (assign zero to) all weights from w that corresponds to
points not chosen to be in C from P , and replace the weights of the chosen points in C with the new
weights vector u; see Figure 1 in [82] for a visual illustration. To prune neurons, we refer the reader
to Section 2.5 as it is a simple extension. Prior work showed that such approaches successfully result
in high compression rates across a wide range of networks and datasets, and even achieves SOTA
performance on a verity of them.

The main (strong) advantage of the coreset approach over others was the provided provable theoretical
guarantees on the tradeoff between the compression rate and the approximation error, which supports

2



worse case scenarios. In addition, coresets play an important role in improving the generalization
properties of the trained networks [5, 78].

Sensitivity sampling for constructing pruning coresets. To compute such coresets, both [60, 82]
utilised the known sensitivity sampling framework [9, 52]. In short the sensitivity of a point p ∈ P in
some query space (P,w,X, ϕ) corresponds to the importance of this point with respect to the query
space at hand, and it is defined as s(p) = supx∈X

w(p)ϕ(p,x)∑
q∈P w(q)ϕ(q,x) - where the denominator is not

equal to zero. Once we bound these sensitivities, we can sample points (neurons) from P according
to sensitivity bounds, and re-weight the sampled points to obtain a coreset. The size of the sample is
proportional to the sum of these bounds. See Section B.1 and Theorem B.2 for more details in the
Appendix.

1.2 Our contribution

Prior coreset methods for pruning DNNs either (i) imposed restrictive assumptions both on the
model’s weights and inputs [82], i.e., the input set P representing the neurons, and the query set X
which represents the inputs of the layer, are enclosed in a ball in Rd of radius r1 and r2, respectively,
or (ii) the methods are data-dependent, i.e., use a mini-batch of the input set to measure the influence
of each parameter on the loss function [5, 60].

To this end, in this work, we take coresets a step further into the realm of pruning by introducing
a unified framework with provable guarantees for pruning DNNs (weights and neurons/filters)
while minimally affecting the generalization error. Our main improvement is that our framework is
simultaneously (i) data-independent, (ii) requires a single assumption on the model’s weights,
and (iii) provably guarantees a multiplicative factor approximation, which is favourable upon
additive approximations; see Theorem 2.6. The approach is based on the widely used theory of
coresets allowing us to suggest a provable guarantee on the tradeoff between the approximation error
and compression rate for each layer.

We conducted experimental results which established new SOTA benchmarks for structured pruning
via coresets across a wide range of networks and datasets. We share all of our resulted models [14].

2 Method

In general, the coreset (for pruning) technique hinges upon the insight that any linear layer such as
convolutions, can be casted as a matrix multiplication [82]. Hence, we focus in what follows on fully
connected (FC) layers, while the details holds for any linear layer. Furthermore, for simplicity, we
assume in what follows that the weights of P are all equal to 1 and thus our query space is denote by(
P,Rd, ϕ

)
, and the sensitivity of a point p ∈ P is simply s(p) = supx∈X

ϕ(p,x)∑
q∈P ϕ(q,x) . Note that our

proofs are easily extended to the general case where we are given a weight function w : P → R as
discussed in Section 2.5.

2.1 Preliminaries

Notations. For a positive integer n, we use [n] to denote the set {1, . . . , n}. For c ∈ Rd and a symmet-
ric positive definite matrix G ∈ Rd×d, we define E (G, c) :=

{
x ∈ Rd

∣∣∣(x− c)T G (x− c) ≤ 1
}

to be the ellipsoid defined by c and G. For an ellipsoid E (G, c), each endpoint of a semi principal
axis is called a vertex of E (G, c). We define rank (P ) for any set P ⊆ Rd to be the dimension of
the affine subspace that P lies on. For a set P ⊂ Rd the convex hull of P is denoted by Conv(P ).
Finally, vectors are treated as column vectors.

2.2 Novelty - Löwner ellipsoid meets Carathéodory

Our method hinges upon a combination of two known tools from convex geometry. The novelty
of our approach exploits the following observation. Most activation functions ϕ are continuous
non-decreasing functions, which indicate that for every query x and a set of points P , the maximal
contribution to

∑
p∈P ϕ(p

Tx) with respect to such activation function is associated to a point on
the convex hull of P . By finding a geometrical body B of bounded number of vertices, that is (i)
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Figure 2: Our novelty in a nut-shell: The very first steps of our technique rely on bounding the ReLu
activation function by the ℓ1-regression loss function, e.g., for ReLU

(
pTx

)
, where p = (1, 0) in

this example (shown in (i)), we first bound it by the ℓ1-regression loss function (shown in (ii)) using
Definition 2.3. Following this step, a set of points P can be projected into a low dimensional subspace
of dimension rank (P ) using any dimensionality reduction algorithm as presented in (iii), resulting
in the set P ′. (iv) The convex hull (blue dashed lines) P ′ (red points) is enclosed by its Löwner
ellipsoid (depicted in green). (v) Finally, for each vertex (magenta star) of the enclosed ellipsoid
(black ellipsoid), its Carathédory set is found (red points connected by cyan dashed lines).

enclosed in Conv (P ) and (ii) with some dilation factor (expanding) B enclose Conv (P ), we will
be able to represent each point p on the boundary of the convex hull of P as a convex combination of
two points p1, p2, one of each (p1) on B and the second (p2) on its dilated form, which is formalized
as the set {α(x− c) + c | x ∈ B, ∀α ∈ [0, 1]}, where c here denotes the center of B. For such task,
Löwner ellipsoid is leveraged.

Theorem 2.1 (John-Löwner ellipsoid[42]). Let L ⊆ Rd be a set of points such that the convex
hull of L has a nonempty interior. Then, there exists an ellipsoid E (G, c) (also known as the
MVEE), where G ∈ Rd×d is a positive definite matrix and c ∈ Rd, of minimal volume such that
1
d (E (G, c)− c) + c ⊆ Conv (L) ⊆ E (G, c) . If L is symmetric around the center c, then the
dilation factor can be reduced to 1√

d
.

Algorithm 1: ℓ∞-CORESET (P,m)

Input :P ⊆ Rd of n points with rank r
Output :A subset S ⊆ P that satisfies

Lemma 2.5
1 (Y, z) := affine subspace that P lies on,

i.e. P ⊆
{
xY Y T + z

∣∣x ∈ Rd
}

2 P ′ :=
{
p′ := pY T

}

3 Let map : P ′ → P a function that maps
every p′ ∈ P ′ to its corresponding point
p ∈ P

4 S := ∅;K := ∅
5 E (G, c) := MVEE (Conv (P ′))
6 V := the vertices of ellipsoid

1
r (E (G, c)− c) + c

7 for every v ∈ V do
8 K :=

K∪CARATHEODORY-SET (v, P ′)
// See Algorithm 4 in the
supplementary material.

9 end
10 S := {map (q)|q ∈ K}
11 return S

Algorithm 2: CORESET (P,m)

input :A set P ⊆ Rd of n points, and a
sample size m

output : A weighted set (C, u)
1 Q := P , i := 1, C := ∅
2 while |Q| ≥ 2rank (Q)

2 do
3 Si := ℓ∞-CORESET (Q)
4 for every p ∈ Si do
5 s(p) := 2rank(Q)1.5

i
6 end
7 Q := Q \ Si, i := i+ 1
8 end
9 for every p ∈ Q do

10 s(p) := 2rank(Q)1.5

i
11 end
12 t :=

∑
p∈P s(p)

13 C := an i.i.d sample of m points from P ,
where each p ∈ P is sampled with
probability s(p)

t .
14 u(p) := t

m·s(p) for every p ∈ C
15 return (C, u)

Afterwards, p1 and p2 should be represented by points from P . Each point on B (specifically, p1)
can be represented via a convex combination of d+ 1 points from P . The same holds for points on
the dilated form of B (e.g., p2) but via a conical combination (linear combination where the weights
are non-negative and the sum of weights is not necessarily 1). This problem is solved by invoking
Carathéodory theorem.
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Theorem 2.2 ([10, 95]). For any A ⊂ Rd and p ∈ Conv(A), there exists m ≤ d + 1 points
p1, . . . , pm ∈ A (denoted by a Carathéodory set of p) such that p ∈ Conv ({p1, . . . , pm}).

Finally, it is known that some functions, including the ReLU function, do not admit an ε-coreset of
size o(n) [82, 81]. Thus, we use a generalized form of what is known as the complexity measure of a
set of points, which was first introduced in [81] and later leveraged in [76]. This measure is used to
determine the complexity of a given set P with respect to ReLU, and the coreset size theoretically.

Definition 2.3 (Regression Complexity Measure). Let P ⊆ Rd × {1}, the regression complexity

measure of P is defined as µ (P ) = supx∈Rd+1

∑
q∈{p∈P |pT x≤0}|qT x|∑
q∈{p∈P |pT x>0}|qT x| , where the denominator is ≥ 0,

and the last entry of every p ∈ P is 1, reserved for the bias/intercept term.

2.3 Our Pruning Scheme

In what follows, we present our data summarization technique for ReLU on the dot product function.
Then in Section 2.5, we discuss that our results can be easily extended to a wide family of activation
functions including the Sigmoid function, as recently shown in [76]. First we present Algorithm 1,
which serves as a stepping stone towards bounding the sensitivities.

Overview of Algorithm 1. The algorithm receives as input a set P ⊂ Rd whose rank is r ∈ [d] and
deterministically finds a subset S ⊆ P which satisfies that for every j ∈ [d], X ∈ Rd×j and v ∈ Rd,
maxp∈P ∥(p−v)X∥1

maxp∈S∥(p−v)X∥1
≤ r1.5. To do so, first, we find the affine hyperplane that P lies on, followed by

computing the low dimensional representation of P , denoted by P ′; see Lines 1–2. Note that if
rank(P ) = d, then we can either keep P as it is (i.e., P ′ := P ), or use dimensionality reduction
tricks as detailed in Section 2.5. To compute the output S, we first bound the convex hull of P ′ by its
Löwner ellipsoid E(G, c) in Line 5, followed by computing the dilated ellipsoid of E(G, c), namely,
1
r (E − c) + c. Let V be the set of vertices of such ellipsoid; see Line 6. Now, for each point v ∈ V ,
we represent it as a convex combination of r+1 points from P ′ via Theorem 2.2, and store the union
of such sets (each of size at most r + 1) of points into K as done in Lines 7–9. For each point in K,
we map it back to Rd to satisfy Lemma 2.5. To sum up Algorithm 1, we observe that the vertices can
be used via canonical combinations with their dilated form to describe every point on the convex hull
of the input data (in our end, it would the network’s weights). Hence the Carathéodory set of these
vertices from the input points lying on the convex hull can be further used to also represent points
lying on the convex hull. This is the core idea which enable us in forming our ℓ∞ coreset for any ℓρ
regression problem where ρ ∈ (0,∞).

We now discuss Algorithm 2 which is responsible for constructing an ε-coreset with respect to
activation functions. Its input is a set P ⊂ Rd and a sample size m ≥ 1.

Overview of Algorithm 2. First set Q := P . At each iteration i, the algorithm obtains a subset
Si ⊆ Q as an output to a call to ℓ∞-CORESET(Q) as stated in Line 3 of Algorithm 1 such that for

every x ∈ Rd, it holds that
maxp∈P |pT x|
maxp∈Si

|pT x| ≤ r1.5 with r being the rank of Q. The sensitivity of each

point in Si is bounded from above by 2d1.5

i as stated in Lines 4–6. The idea behind these bounds
lies in our proof of Theorem 2.6. The set Si is removed from Q, and this procedure is repeated with
respect to Q until the size of Q is small enough. The obtained sensitivities are the ones needed for
computing the pruning coresets. Finally, we utilize the sensitivity sampling framework of [9] to
obtain the desired coreset; see Lines 13–14.

2.4 Analysis

In this section, we prove the correctness of our algorithms. The following lemma shows that for each
point p that is inside some convex hull S, its ℓ1 distance to any affine subspace is always bounded
from above by ℓ1 distance from the same affine subspace, of some other point q ∈ S.

Lemma 2.4. Let d, ℓ,m ≥ 1 be integers. Let p ∈ Rd and A ⊆ Rd be a set of m points with
p ∈ Conv(A) so that there exists α : A→ [0, 1] such that

∑
q∈A α(q) = 1 and

∑
q∈A α(q) · q = p.

Then for every Y ∈ Rd×ℓ and v ∈ Rℓ, ∥(p− v)Y ∥1 ≤ maxq∈A ∥(q − v)Y ∥1.

The following states the provable guarantees of Algorithm 1.
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Lemma 2.5 (ℓ∞-coreset for ℓ1-regression). Let P ⊆ Rd be a set of points, and r be the rank of P .
Let j ∈ [d − 1] and let S be the output of a call to ℓ∞-CORESET(P ). Then (i) |S| ∈ O

(
r2
)
, and

(ii) for every X ∈ Rd×j and v ∈ Rd, maxq∈P ∥(q−v)X∥1

maxq∈S∥(q−v)X∥1
∈
[
1, 2r1.5

]
.

The following theorem states our main result.
Theorem 2.6 (ReLU ε-coreset). Let P ⊆ Rd, ε, δ ∈ (0, 1), r = rank (P ), µ (P ) be as in Def-

inition 2.3, and let m ∈ O
(

µ(P )r3.5 logn
ε2

(
d (log (µ (P ) r log n)) + log

(
1
δ

)))
. Let (C,w) be the

output of a call to CORESET(P,m); see Algorithm 2. Then, with probability at least 1− δ, (C,w) is
an ε-coreset for

(
P,Rd,ReLU (·)

)
; see Definition 1.1.

Time analysis. Letting r be the rank of P , the time complexity of Algorithm 1 can be dissected
to two main parts: (i) Computing the Löwner ellipsoid in O(nr2 log n) time using the method
proposed in [98] and (ii) computing the Carathédory set in O(nr + r4 log n) time via [70]. Since V
can contain up to O(r2) points, the overall time for Algorithm 1 is O(nr2 log n+ nr3 + r6 log n).
As for Algorithm 2, it takes O(n2r2 log n + nr4 log n). Indeed, as explained in Section 2.5, a
dimensionality reduction algorithm may be applied to improve the run time (reducing the r6 factor).
Furthermore, the run time of our algorithm can be improved, using the merge-and-reduce tree from
the literature of coresets to reduce the n2 terms to n log n, i.e., the running time can be reduced to
O(n log2(n)r2 + nr4). For a data-independent provable method, this running time is reasonable.

Our advantages over previous results. Our coreset supports different activation functions without
the need to change the sensitivity that much. Specifically, it will only be multiplied by some scalar,
unlike previous coresets where different losses impose drastically different sensitivities/leverage
scores and algorithms. This is since our coreset unlike other coresets is in its essence a framework
of coresets for different ℓρ losses, as it can be used as is for different ℓρ losses and yet still attain
ϵ-approximation. In addition, when the rank of the input points is small, then our method outperforms
previous methods.If the input data is of full rank, previous methods obtain faster coresets construction.

On the boundness of the regression complexity measure. First of all, there exists an example
where the complexity measure is unbounded, e.g., consider a set of points distributed evenly on
a unit ball. In this case, you can always find a point where a hyperplane separating it from the
rest of the points can be found such that the one half-space of this hyperplane contains only this
point while the other half-space contains the rest of the points. This leads to an infinite complexity
measure. Such an example is also mentioned in [82], when assessing the hardness of generating
multiplicative-approximation coresets for ReLU functions.

Theoretically, the complexity measure is influenced by how free can the bias term be (the last entry of
x); see Definition 2.3. This term is the only thing that can ensure that one point can be separated from
the rest in the sense of finding a separating hyperplane, leading to an infinite complexity measure.
Bounding on this term, leads to bounded complexity measure from a theoretical point of view.

In the context of model pruning, from the perspective of the complexity measure, the model’s weights
are the input denoted by a matrix P ∈ Rn×(d+1), while the query is now Rd × {1}. Thus the

complexity measure is now µ (P ) := supx∈Rd×{1}

∑
q∈{p∈P |pT x≤0}|qT x|∑
q∈{p∈P |pT x>0}|qT x| . With this in mind, we

observe that the complexity measure is now an instance of the complexity measure used in [76]. The
complexity measure now relies entirely on the structure of the model’s weights, where the goal is to
find the largest ratio between the sum of the absolute of the values inside the rectified neurons prior
to applying the rectification, and the sum values of non-rectified neurons. To bound this measure, we
can use a variant of the algorithm described in the proof of Theorem 3 in [81].

2.5 Extensions

Our suggested scheme can be extended to support many other variants of the pruning problem.

Various activation functions. Our result can be extended to a family of activation functions called
“Nice hinge functions”; see Definition D.1. Let (P,X, ϕ) be a query space, where ϕ is a “Nice hinge
functions”. To bound the sensitivity of a point p, we first bound the nominator of s(p) by proving
that ∀x ∈ X : ϕ(pTx) <

∣∣pTx
∣∣. For bounding the denominator from below, recently [76] proved

that ∀x ∈ X :
∑

p∈P ReLU
(
pTx

)
⪅
∑

p∈P ϕ(p
Tx); see full detail in Section D.3.
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Weighted Input. In the context of deep learning, the output of each neuron is multiplied with a scalar
which brings the necessity of having the ability to deal with weighted set of points. Algorithm 2 can
be extended easily to the case as generously detailed in Section D.1 in the Appendix.

Dimensionality reduction. All coreset-based pruning methods rely heavily on the dimensionality of
the model’s layers, as well as our method. To ensure sufficient pruning ratio, we apply either PCA,
TSNE, MDS, or the JL transform on the weights of each layer prior to generating its coreset.

From weight to neuron pruning. Most coreset-based pruning methods, e.g., [5, 82], first provide a
scheme for (provable) weight pruning, which is then used as a stepping stone towards pruning neurons
as follows. [5] first suggested coreset-based neuron pruning via the use of a generated controled set of
queries to evaluate the importance of weights. Any neuron that has a maximal activation value lower
or equal to zero, will be pruned from the network as its impact on the rest of the neurons is minimal.
On the other hand [82] altered the definition of sensitivity such that it takes into account the sensitivity
of a neuron in a layer ℓ with respect to all the neurons in the layer ℓ + 1, which basically means
that the sensitivity of each neuron is taken be the maximal sensitivity over every weight function
(neuron in the next layer) defined by the layer. Hence, we follow the same logic for such method; see
Section D.2 in the supplementary material.

From neuron to filter pruning. Convolutions can be expressed as matrix multiplications, which
enables our method to prune filters from any model as done by [60, 82, 61].

3 Experimental Results

In this section, we study various widely used network architectures and benchmark data-sets. Fol-
lowing [82], to test the robustness of our methods on each of the neuron and filter pruning tasks
independently, two sets of experiments are conducted. The first focuses on pruning neurons (Sec-
tion 3.1) whereas the second focuses on pruning filters (Section 3.2), both via our coreset method.

The setting. In all experiments we report the Pruning ratio – the percentage of the parameters that
were removed from the original mode. Here, PR stands for pruning ratio, FR stands for floating-point
reduction ratio and Err – the percentage of misclassified test instances of our method compared to
coreset-based pruning methods and more. Baseline Err is the error of the original uncompressed
network, while Pruned Err is the classification error of the compressed model. In our experiment
we compress and fine-tune the network once, no iterative pruning was applied, thus, the compared
methods also satisfy this setting. Each experiment was conducted 5 times, in the tables, we report
for our method the best error achieved and we highlight in parentheses next to it the average error
and standard deviation across the 5 trails. In all of our experiments, the models are fine-tuned till
convergence (after pruning). Implementation details are given in Section E in the Appendix.

Software/Hardware. Our algorithms were implemented in Python 3.6 [108] using Numpy [83], and
Pytorch [84]. Tests were performed on NVIDIA DGX A100 servers with 8 NVIDIA A100 GPUs
each, fast InfiniBand interconnect and supporting infrastructure.

Baselines. Our results are compared to (i) PFP [60], (ii) FT [58], (iii) SoftNet [34], (iv) ThiNet [68],
and (v) PvC [82], (vi) Soft Pruning [34], (vii) CCP [85], (viii) FPGM [36], (ix) ThiNet-70, (x)
ThiNet-50 [68], (xi) Pruning via Coresets (PvC) [82], (xii) Pruning from Scratch (PfS) [111], and
(xiii) Rethinking the value of network pruning (Rethink) [65].

3.1 Neuron Pruning

We test our method on VGG16 [92] using CIFAR10 [49], and LeNet300-100 using MNIST [55].

Discussion. Table 1 present the results of LeNet300-100 and VGG16. Observe that in both architec-
tures, our method outperformed the competing methods under the same compression scenarios. For
example, we pruned roughly 90% of the parameters of the LeNet-300-100 model while improving
the accuracy of the original model. We witness a similar phenomena on the VGG16 model, where we
pruned roughly 90% of the parameters of the dense layers resulting in accuracy improvement. This
confirms the insights in [5] that coresets help in improving the generalization properties of DNNs.
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Table 1: Pruning of LeNet-300-100 architecture on the MNIST dataset and of VGG-16 on the
CIFAR-10 dataset. Here, we report the compression with respect to the fully connected layers only.

Model Method Baseline Err. (%) Pruned Err. (%) PR (%)

LeNet-300-
100

PFP 1.59 2.00 84.32
FT 1.59 1.94 81.68

SoftNet 1.59 2.00 81.69
ThiNet 1.59 12.17 75.01

PvC 2.16 2.03 90
Our method (90) 2.07 1.98 (2.02± 0.04) 90

Our method (92.6) 2.07 2.64 (2.74± 0.1) 92.6
Our method (94.6) 2.07 3.51 (3.58± 0.07) 94.6

VGG-16 PvC 8.95 8.16 75
Our method 5.9 5.9 (6.2± 0.3) 90

3.2 Filter pruning

We compressed the convolutional layers of (i) ResNet50 [33] on ILSVRC-2012 [18], (ii)
ResNet56 [33], (iii) VGG19 [92] on CIFAR10 and (iv) VGG16 [92] on CIFAR10.

Table 2: Filter pruning results on different neural networks with respect to the CIFAR10 dataset.

Model Method Baseline Err. (%) Pruned Err. (%) PR (%) FR (%)

VGG-19

PfS 6.4 6.29 52 NA
Rethink 6.5 6.22 80 NA

Structured Pruning 6.33 6.20 88 NA
PvC 6.33 6.02 88 NA

Our method (88) 6.33 5.85 (6.03± 0.18) 88 NA
Our method (91.28) 6.33 6.23 (6.35± 0.12) 91.28 NA

VGG-16

ThiNet 7.11 9.24 63.95 64.02
FT 7.11 8.22 80.09 80.14

SoftNet 7.11 7.92 63.95 63.91
PFP (94) 7.11 7.61 94.32 85.03
PFP (87) 7.11 7.17 87.06 70.32
PFP (80) 7.11 7.06 80.02 59.21

Our method (95.32) 7.11 7.31 (7.55± 0.24) 95.32 85.09
Our method (87) 7.11 6.63 (6.76± 0.13) 87 68.2

Our method (79.53) 7.11 6.3 (6.38± 0.08) 79.53 59.14

ResNet56

ThiNet 7.05 8.433 49.23 49.74
Channel Pruning 7.2 8.2 N/A 50

AMC 7.2 8.1 64.78 50
CCP 6.5 6.42 57 52.6
PvC 6.21 7.0 55 N/A

Our method 6.61 7.26 (7.56± 0.3) 63.95 50

Table 3: Filter pruning of ResNet50 on ImageNet (ILSVRC-2012).
Method Baseline Err. (%) Pruned Err. (%) PR (%) FR (%)

PFP 23.87 24.79 44.04 30.05
Soft Pruning 23.85 25.39 49.35 41.80

CCP 23.85 24.5 56 48.8
FPGM 23.85 25.17 62 53.5

ThiNet-70 27.72 26.97 33.72 36.78
ThiNet-50 27.72 28.0 51.5 55.82

PvC 23.78 25.11 62 N/A
Our method 23.78 24.87 (25.07± 0.2) 62 61.5

Our method (18.01) 23.78 24.1 (24.2± 0.1) 18.01 10.82
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Filter pruning of DNNs on CIFAR10 and ImageNet (ILSVRC-2012). For Cifar10, we used
PyTorch implementations of VGG19 and VGG16. We compressed both models using our approach
by different compression rates as shown in Table 2 with a comparison to other methods. For
ImageNet, we compressed the baseline model of ResNet50 [33] roughly by 62% in terms of number
of parameters. Table 3 provides comparison between our method and other baselines.

Discussion. As can be seen in Tables 1, 2, and 3, our method either outperforms the competing
methods or achieves comparable results. As for the coreset methods, our algorithm achieves better
result than all of them in this setting, e.g., we compressed 62% of ResNet50 trained on ImageNet
while incurring 1.09% drop in accuracy, improving the recent coreset result of PvC [82] for the same
compression ratio, while PFP [60] compressed 44.04% to achieve comparable results.

4 Related work

DNNs can be compressed before training [97, 110, 57], during training [118, 115, 51], or after
training [93]. Furthermore, such procedures may also be repeated iteratively [88]. As previously
noted pruning can be categorized into structured and unstructured pruning.

Unstructured pruning. Weight pruning [56] techniques aim to reduce the number of weights
in a layer while approximately preserving its output. Approaches of this type include the works
of [54, 21, 39, 1, 62], where the desired sparsity is embedded as a constraint or via a regularizer into
the training pipeline, and those of [31, 88, 30], where weights with absolute values below a threshold
are removed. The approaches of [5, 6] use a mini-batch of data points to approximate the influence of
each parameter on the loss function. Other data-informed techniques include [28, 63, 80, 79, 116]. A
thorough overview of recent pruning approaches is given by [27, 8]. However, unlike our approach,
weight-based pruning approaches generate sparse models instead of smaller ones thus requiring
specialized hardware and sparse linear algebra libraries in order to speed up inference.

Structured pruning. Pruning entire neurons and filters directly shrinks the network leading to smaller
storage requirements and improved inference-time performance on any hardware [59, 67]. Lately,
these approaches were investigated in many papers [64, 59, 11, 36, 22, 46, 114, 113]. Usually, filters
are pruned by assigning an importance score to each neuron/filter, either solely weight-based [37, 35]
or data-informed [116, 60], and removing those with a score below a threshold. The procedure can
be embedded into an iterative pruning scheme [88] that requires potentially expensive retrain cycles.

Tensor decomposition. Some of the work in DNN compression entails decomposing the layer
into multiple smaller ones, e.g., via low-rank tensor decomposition [19, 41, 74, 48, 96, 40, 2, 105,
117, 53, 61]. Other approaches to tensor decomposition include weight sharing, random projections,
and feature hashing [112, 3, 91, 12, 13, 107]. However, such techniques usually require expensive
approximation algorithms or use heuristics since tensor decomposition is generally NP-hard.

Coresets. In the recent years, coresets got increasing attention, and where leveraged to compress the
input datasets of many machine learning algorithms, improving there performance, e.g., regression [72,
38, 81, 47, 103], decision trees [44], matrix approximation [26, 70, 25, 89, 73], data discretization [75],
clustering [24, 29, 66, 4, 45, 90, 106], ℓz-regression [16, 17, 94], SVM [32, 101, 99, 100, 102], deep
learning models [69, 5, 60] and even for path planning in the field of robotics [104]. For extensive
surveys on coresets, we refer the reader to [23, 86, 43, 71].

5 Conclusions and Future Work

In this paper, we provided a coreset-based pruning technique that hinges upon a combination of
tools from convex geometry, while achieving SOTA results with respect to coreset-based structured
pruning approaches on a variety of networks. Our main improvement is that our coreset is (training)
data-independent and assumes a single assumption on the models weights.

Future work includes (i) suggesting a coreset based budget allocation framework, to determine the
(optimal) per layer prune ratio while achieving an overall desired compression rate, (ii) extending our
coreset technique to other layers such as attention layers, and (iii) bridging the gap between coreset
based pruning approaches and tensor-decomposition methods, as both techniques are theoretically
supported by bounding the approximation error given specific compression rate, we can leverage these
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bounds to formulate the compression problem as an optimization problem which iterates between the
two approaches to search for the local minimum.
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A Computing the Carathéodory set

Overview of Algorithm 4. First, a convex combination of v with respect to P is formulated as a linear
programming problem. This is done by reformulating the input set of points P as a matrix denoted as
A ∈ R(d+1)×n (see Line 1). We then formulate the goal vector b ∈ Rd+1 to be v concatenated with
an entry of 1 which serves to make sure that the solution to

minimize
x∈Rn+1

1T
n+1x

subject to Ax = b,

xi ∈ [0, 1] ∀i ∈ [d]

satisfies that
∑

i∈[n]

xiPi = v and
∑

i∈[n]

xi = 1. Solving this problem takes roughly O∗ (nω+o(1)
)

where ω is the matrix multiplication exponent as elaborated in [15]; see Lines 2–3. We observe that x
from Line 3 might be dense, i.e., the number of non-zero entries exceeds d+ 1. To ensure that we
have at max d + 1 non-zero entries, we use Algorithm 1 of [70] which aims to find a set of d + 1
points, where their weighted average is the desired v given the initial weight vector x; see Line 4.

Algorithm 3: CARATHEODORY-SET (v, P )

Input :A point v ∈ Rd and a set P ⊆ Rd of n points
Output :A subset C ⊆ P of at max d+ 1 points such that p ∈ Conv (C)

1 A :=

[[
P1

1

]
,

[
P2

1

]
, . . . ,

[
Pn

1

]]
/* Pi here denotes the ith point in P */

2 b :=

[
v
1

]

3 x := arg min
x∈[0,∞)d

Ax=b

1T
d x // 1d denotes a d dimensional vector of 1s

4 C := FAST-CARATHEODORY-SET
(
P, x, d2 + 2

)
/* See Algorithm 1 of [70] */

5 return C

B Coreset-Related Technical Details

Definition B.1 (VC-dimension [9]). For a query space (P,w,Rd, f) and r ∈ [0,∞), we define

ranges(x, r) = {p ∈ P | w(p)f(p, x) ≤ r} ,
for every x ∈ Rd and r ≥ 0. The dimension of (P,w,Rd, f) is the size |S| of the largest subset
S ⊂ P such that ∣∣{S ∩ ranges(x, r) | x ∈ Rd, r ≥ 0

}∣∣ = 2|S|,

where |A| denotes the number of points in A for every A ⊆ Rd.

B.1 Sensitivity Sampling Missing Details

We want to use the sensitivity sampling framework to compute a coreset for a set of points P in Rd.

First, we need to bound the sensitivity of each point p ∈ P . The sensitivity pf a point p ∈ P is
defined as s(p) = supx∈X

ϕ(p,x)∑
q∈P ϕ(q,x) where the denominator is not zero.

Hence, for every p ∈ P , we wish to compute a number s′(p), such that s′(p) ≥ s(p). Once the bound
s′(p) on the sensitivity s(p) of each point p is computed, we define T =

∑
p∈P s

′(p) as the total
sensitivity. Now, to obtain a coreset, we can sample points according to the distribution s′(p)/T ,
i.e., we sample m > 0 points from P , where at each sample, the point p ∈ P is sampled i.i.d with
probability s′(p)/T . We also re-weight the sampled points to obtain a coreset.

As the bound s′(p) (on s(p)) is tighter, the total sensitivity T gets smaller, and then the coreset size
(required number of sampled points) gets smaller, and vice versa.
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Theorem B.2 (Restatement of Theorem 5.5 in [9]). Let P ⊆ Rd be a set of n points, w : P → [0,∞)
be a weight function , and let f : P × Rd → [0,∞) be a loss function. For every p ∈ P define the
sensitivity of p as

sup
x∈Rd

w(p)f(p, x)∑
q∈P w(q)f(q, x)

,

where the sup is over every x ∈ Rd such that the denominator is non-zero. Let s : P → [0, 1] be
a function such that s(p) is an upper bound on the sensitivity of p. Let t =

∑
p∈P s(p) and d′ be

the VC dimension of the quadruple
(
P,w,Rd, f

)
; see Definition B.1. Let c ≥ 1 be a sufficiently

large constant, ε, δ ∈ (0, 1), and let S be a random sample of |S| ≥ ct
ε2

(
d′ log t+ log 1

δ

)
i.i.d points

from P , such that every p ∈ P is sampled with probability s(p)
t . Let v(p) = tw(p)

s(p)|S| for every p ∈ S.
Then, with probability at least 1− δ, (S, v) is an ε-coreset for

(
P,w,Rd, f

)
.

B.2 From Coresets to Approximating the Optimal Solution

In optimization problems (or machine learning in general), the goal is usually to find a query
that minimizes (or maximizes) some cost function. In the context of coresets, the goal is to find
a small weighted subset such that for a given cost function, the cost of applying any solution
(hypotheses/query) on the coreset approximates the cost of applying the same solution on the whole
data. Since a coreset approximates the cost of every query, we do note that in many cases, coresets
are applied for approximating the optimal solution. Specifically, solving the desired optimization
problem on the whole data can be a hard problem when the time needed for such a solution is either
polynomial or exponential in the size of the whole data, or when the required memory is too high. In
this case, coresets can be leveraged, by computing the the optimal solution of fitting an ε-coreset and
applying it on the original data. If the computed coresets gives worst-case (1 + ε)-approximation
error, then we provably (1 + 4ε)-approximation towards the optimal cost of solving the optimization
on the whole data (the proof is very easy, it is done by applying the triangle inequality few times). In
other words, we can solve the problem on the coreset to obtain a solution x∗, and then apply x∗ to
the whole data giving a good approximation for solving the problem from the beginning on the whole
data.

C Proofs of Technical Results

C.1 Proof of Lemma 2.4

Lemma C.1. Let d, ℓ,m ≥ 1 be integers. Let p ∈ Rd and A ⊆ Rd be a set of m points with
p ∈ Conv(A) so that there exists α : A→ [0, 1] such that

∑
q∈A α(q) = 1 and

∑
q∈A α(q) · q = p.

Then for every Y ∈ Rd×ℓ and v ∈ Rℓ, ∥(p− v)Y ∥1 ≤ maxq∈A ∥(q − v)Y ∥1.

Proof. Since we can write p as the convex combination of points q ∈ A with weight α(q), we have

∥∥pTY − v
∥∥
1
=

∥∥∥∥∥∥


∑

q∈A

α(q)qT


Y − v

∥∥∥∥∥∥
1

.

Moreover, we have
∑

q∈A α(q) = 1, so we can decompose v into

∥∥pTY − v
∥∥
1
=

∥∥∥∥∥∥
∑

q∈A

α(q)
(
qTY − v

)
∥∥∥∥∥∥
1

.

By triangle inequality (or Jensen’s inequality),
∥∥pTY − v

∥∥
1
≤
∑

q∈A

α(q)
∥∥qTY − v

∥∥
1
≤ max

q∈A

∥∥qTY − v
∥∥
1
.
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C.2 Proof of Lemma 2.5

Lemma C.2 (ℓ∞-coreset for ℓ1-regression). Let P ⊆ Rd be a set of points, and r be the rank of P .
Let j ∈ [d − 1] and let S be the output of a call to ℓ∞-CORESET(P ). Then (i) |S| ∈ O

(
r2
)
, and

(ii) for every X ∈ Rd×j and v ∈ Rd, maxq∈P ∥(q−v)X∥1

maxq∈S∥(q−v)X∥1
∈
[
1, 2r1.5

]
.

Proof. Let Y, z, P ′,K, S and map be defined as in Algorithm 1. Since P lies on a r-dimensional
affine subspace, it holds that for every p ∈ P , p = (p − z)Y Y T + z. Note that Y ∈ Rd×r is an
orthogonal matrix (i.e., Y TY is the identity matrix in Rr×r) and z ∈ Rd denotes the translation of
the affine subspace that P lies on.

Claim (i). E(G, c) is the Löwner ellipsoid of P ′, which has 2r vertices. Since V is the set of vertices
of the shrunk form of E(G, c) that is contained in Conv (P ′), each point from V can be represented
as convex combination of r + 1 points from P ′ by Carathéodory’s Theorem. Then the number of
points in K is at most 2r (r + 1), i.e., |K| ∈ O

(
r2
)
. Thus, |S| ∈ O

(
r2
)

due to the fact that it can
be constructed from K through the use of map.

Claim (ii). First put X ∈ Rd×j and v ∈ Rd, and let p ∈ arg sup
q∈P

∥(p− v)X∥1. Since S ⊆ P , it

holds that maxq∈P ∥(q−v)X∥1

maxq∈S∥(q−v)X∥1
≥ 1. Let a := zY Y T + z − v, we have

∥(p− v)X∥1 =
∥∥((p− z)Y Y T + z − v

)
X
∥∥T
1
=
∥∥(pY Y T + a

)
X
∥∥
1
=
∥∥(p′Y T + a

)
X
∥∥
1
,

(1)

where the first equality holds since rank(P ) = r, the second holds by definition of a, and the last
equality holds by the construction of p′ = pY at Line 2 of Algorithm 1.

Note that since V is the set of vertices of 1
r (E(G, c)− c) + c, by the definition of the Löwner

ellipsoid,

V ⊆ Conv (V ) ⊆ 1

r
(E(G, c)− c) + c ⊆ Conv (P ′) ⊆ E(G, c) ⊆ Conv

(
r1.5 (V − c) + c

)
.

Since Conv (P ′) enclose Conv (V ), and is enclosed by Conv
(
r1.5 (V − c) + c

)
, then there exists a

point q ∈ Conv (V ) and γ ∈ [0, 1] such that p′Y T = γqY T +(1− γ)
(
r1.5 (q − c) + c

)
Y T , where

by definition it holds that r1.5 (q − c) + c ∈ Conv
(
r1.5 (V − c) + c

)
, and p′ = pY .

By invoking Lemma 2.4, we obtain that
∥∥(p′Y T + a

)
X
∥∥
1
≤ max

{∥∥(qY T + a
)
X
∥∥
1
,
∥∥(r1.5 (q − c) + c+ a

)
Y TX

∥∥
1

}
. (2)

We note that ∥∥(qY T + a
)
X
∥∥
1
≤ max

q̃∈V

∥∥(q̃Y T + a
)
X
∥∥
1
≤ max

q̃∈K

∥∥(q̃Y T + a
)
X
∥∥
1
, (3)

where the first inequality follows from plugging p := q and A := V into Lemma 2.4, and the second
inequality holds similarly since every point V lies in Conv (K). By invoking triangle inequality, we
obtain that

∥∥(r1.5 ((q − c) + c)Y T + a
)
X
∥∥
1
=
∥∥(r1.5qY T +

(
1− r1.5

)
cY T + a

)
X
∥∥
1

(4)

=
∥∥(r1.5qY T + r1.5a+

(
1− r1.5

)
cY T +

(
1− r1.5

)
a
)
X
∥∥
1

≤ r1.5
∥∥(qY T + a

)
X
∥∥
1
+
(
r1.5 − 1

) ∥∥(cY T + a
)
X
∥∥
1
,

where the first equality follows by a simple rearrangement, and the second holds since r1.5a +(
1− r1.5

)
a = a. Observe that c ∈ Conv (V ). Hence, by Lemma 2.4,

∥∥(cY T + a
)
X
∥∥
1
≤ max

q̃∈K

∥∥(q̃Y T + a
)
X
∥∥
1
. (5)

By the construction of S, it holds that for every p ∈ S, pY ∈ K. Thus, combining (2), (3), (4) and (5)
yields 1

2r1.5

∥∥(p′Y T + a
)
X
∥∥
1
≤ maxq̃∈K

∥∥(q̃Y T + a
)
X
∥∥
1
= maxq̃∈S

∥∥(q̃Y Y T + a
)
X
∥∥
1
=

maxq̃∈S ∥(q̃ − v)X∥1 where the last equality holds by (1). This concludes Lemma 2.5.
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C.3 Proof of Theorem 2.6

Proof. For space constraints let ϕ denote the ReLU function. To obtain a coreset, we first need

to bound the sensitivity of each p ∈ P . Put p ∈ P and let x ∈ arg sup
x′∈Rd

ϕ(pT x′)∑
q∈P ϕ(qT x′) where the

supremum is over every x′ ∈ Rd such that the denominator is not zero. Observe that
∑
q∈P

∣∣qTx
∣∣

∑
q∈P

ϕ (qTx)
=

∑
q∈P

ϕ
(
qTx

)
+
∑
q∈P

ϕ
(
−qTx

)

∑
q∈P

ϕ (qTx)
= 1 +

∑
q∈P

ϕ
(
−qTx

)

∑
q∈P

ϕ (qTx)
≤ 1 + µ (P ) ,

where the last inequality follows from Definition 2.3. Thus

∑

q∈P

ϕ
(
qTx

)
≥ 1

1 + µ (P )

∑

q∈P

∣∣qTx
∣∣ . (6)

Let β = (1 + µ (P )). We next observe that
ϕ(pT x)∑

q∈P ϕ(qT x)
≤ |pT x|∑

q∈P ϕ(qT x)
≤ β

|pT x|∑
q∈P |qT x| , where

the first inequality holds by properties of ϕ, and the second is by (6). Hence the sensitivity of p is
bounded by

s(p) =
ϕ
(
pTx

)
∑

q∈P ϕ (q
Tx)
≤ β

∣∣pTx
∣∣

∑
q∈P |qTx|

. (7)

Let i be the iteration counter from Algorithm 2 as defined in Line 1, used in Line 5 and incremented
in Line 7. The idea follows that of [109] where points being discarded from P at lower levels (smaller
i’s) have higher sensitivity. This notion also resembles that of the “Onion sampling” of [45]. Now,
assume that p ∈ Si at iteration i of the while loop (Line 3 of Algorithm 2). In this case, observe that
by plugging P := Q \⋃i−1

î=1
Sî, j = 1 and v = −b x

∥x∥2
into Lemma 2.5, we obtain a subset Si ⊆ Q

such that
max
q∈P

∣∣qTx
∣∣ ≤ max

q∈S
2r1.5

∣∣qTx
∣∣ . (8)

Thus for every q ∈ Si,

s(p)

(1 + µ (P ))
≤

∣∣pTx
∣∣

∑
q∈P |qTx|

≤
∣∣pTx

∣∣
∑i

î=1 maxq∈Sî
|qTx|

≤ 2r1.5
∣∣pTx

∣∣
∑i

î=1 |pTx|
=

2r1.5

i
,

where the first inequality is by (7), the second inequality follows from the observation that{
argmaxq∈Sî

∣∣qTx
∣∣}i

î=1
⊆ P and the last inequality holds by (8). Hence, we have obtained a bound

on the sensitivity of each point p ∈ P . As for the total sensitivity, we observe that t =
∑

p∈P s(p) ∈
O
(
(1 + µ (P )) r3.5 log n

)
. Theorem B.2 states that to obtain an ε-coreset with probability at least

1− δ, the sample size m must be O
(

µ(P )r3.5 logn
ε2

(
d (log (µ (P ) r log n)) + log

(
1
δ

)))
.

D Extension

D.1 Handling Weighted Sets of Points

Similarly to [5, 60], we split the input data P into two sets P+, P− ⊆ P such that P+ =
{p ∈ P |w(p) ≥ 0}while P− = {p ∈ P |w(p) < 0}. Following this step we call Algorithm 4 for each
of the two sets with corresponding weights and corresponding sample sizes. To account for proper
sample sizes, we split our theoretical bound of the required sample size for generating ε-coreset into
two terms for both P+ and P− respectively, i.e., we formulate m = m+ +m− where m+ = |P−|

|P | m

(similarly for m−). Hence, we obtain an ε-coreset for each of the query spaces
(
P+, w,Rd, ϕ

)
and(

P−, w,Rd, ϕ
)
.
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D.2 From Weight to Neuron Pruning

Most coreset-based pruning methods, e.g., [5, 82], first provide a scheme for (provable) weight
pruning, which is then used as a stepping stone towards pruning neurons as follows. To prune neurons
from a layer, post to computing the coreset-based weight pruning for each neuron, ideally we would
have that at certain layer, for all neurons, the generated coreset contains the same set of neurons from
previous layers, which in this case we can remove the neurons which are not in the coreset. However,
such scenario is almost implausible. To deal with such problem, we discuss two ways to do so. The
first method to deal with such problem is inspired by the technique used in [82] which alters the
definition of sensitivity such that it takes into account the sensitivity of a neuron in a layer ℓ with
respect to all the neurons in the layer ℓ+ 1, basically the sensitivity of each neuron is taken be the
maximal sensitivity over every weight function (neuron in the next layer) defined by the layer. Hence,
we follow the same logic for such method, more details .

Algorithm 4: GENERALIZED-CORESET (P,w,m)

input :A set P ⊆ Rd of n points, a weight function w(p) : P → [0,∞) and a sample size m
output : A weighted set (C, u)

1 Q := P , i := 1, C := ∅
2 while |Q| ≥ 2rank (Q)

2 do
3 Q′ := {w(q)q|q ∈ Q}
4 mapw : Q′ → Q a map that maps from Q′ to Q
5 Si := ℓ∞-CORESET (Q′)
6 for every p ∈ Si do
7 s (mapw (p)) := 2r1.5

i
8 end
9 Q := Q \ {mapw (q)|q ∈ Si}, i := i+ 1

10 end
11 for every p ∈ Q do
12 s(p) := 2r1.5

i
13 end
14 t :=

∑
p∈P s(p)

15 C := an i.i.d sample of m points from P , where each p ∈ P is sampled with probability s(p)
t .

16 u(p) := tw(p)
m·s(p) for every p ∈ C

17 return (C, u)

D.3 Other Activation Functions

[76] recently showed that there exists a family of functions F called “Nice hinge functions” such

that for any query x ∈ Rd and a set of points P ⊆ Rd, for any ϕ ∈ F , it holds that

∑
p∈P

ϕ(pT x)
∑

q∈P

ReLU(qT x)
is

bounded from below. Formally speaking, below is the definition of a “nice hinge function”.

Definition D.1 (Restatement of Definition 7 of [76]). We call f : R → [0,∞) an (L, a1, a2)-nice
hinge function if for a fixed constant L, a1 and a2,

(i) f is L-Lipschitz,

(ii) |f(z)− ReLU (z)| ≤ a1 for all z, and

(iii) f(z) ≥ a2 for all z ≥ 0.

As noted by [76], the hinge and log losses are (1, 1, 1)-nice and (1, ln 2, ln 2)-nice hinge func-
tions respectively. Similarly, it is easy to show that the activation function ϕ(x) = ln (1 + ex) is
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(1, ln 2, ln 2)-nice hinge functions. Following the same steps applied by [76], we obtain that

∑

p∈P

ϕ
(
pTx

)
≥ min

{
a2
2a1

,
1

2

}
∑
q∈P

∣∣qTx
∣∣

µ (P ) + 1
,

where ϕ (·) is a (L, a1, a2) where a2 is assumed to be positive.

Unlike the ReLU activation function, to support for other activation functions, we need to restrict our
query space to contain queries such that ∀p ∈ P : ϕ

(
pTx

)
≤ r

∣∣pTx
∣∣ where r denotes the rank of P .

Let X ′ denote the set of all such queries.

Hence, under this additional assumption, we obtain that for every p ∈ P and x ∈ X ′

ϕ
(
pTx

)
∑
q∈P

ϕ (qTx)
≤ (1 + µ (P ))ϕ

(
pTx

)

min
{

a2

2a1
, 12

} ∑
q∈P

|qTx|
≤ (1 + µ (P )) r

∣∣pTx
∣∣

min
{

a2

2a1
, 12

} ∑
q∈P

|qTx|
.

Following the same steps done at the proof of Theorem 2.6, we can generate an ε-coreset with respect
to (P, ϕ,X ′).

E Implementation Details

First observe that the map function in Line 3 of Algorithm 1 is hard to implement if all we have
is Y and P ′ (see Lines 1–2) due to the fact that when the rank of P is not d, then Y becomes a
singular matrix. A way around such problem (practically speaking yet also theoretically sound) is
to reformulate P and P ′ as matrices, where our ℓ∞-coreset will now be regarded as a set of indices
of the rows selected as the desired coreset. Note that while we relied on an “accurate” measure
of the rank of points in Algorithm 1, in our experiments, we used the rank function from Numpy,
and still produced favorable results. Furthermore, our algorithms work also when the input has full
rank. In addition, we can still obtain an ε-coreset when using approximated algorithms for the rank
computation problem, where the error associated with our coreset may increase. In this case, we can
increase our coreset size to reduce our approximation error to be the original desired error.

F Complexity Measure - Clarification

First, Note that while the complexity measure was first defined for construction of coresets with
respect to the logistic regression problem, it also has been used for the ReLU regression problem
(minimizing the sum of ReLU losses) [76].

The complexity is expected to be small other than in some cases [81, 76]. We also operate under the
same assumption, i.e., the complexity measure is reasonably small.

Specifically speaking, when given a set P (expressing our neurons) containing points in R3 (for
example), such that point in P lie on a 2-dimensional affine subspace parallel to the xy-plane, notice
that in our setting, the complexity measure is defined as the maximal value of an optimization problem
involving our vectors and a set of queries X := R2 × {1}.
The existing of a hyperplane whose normal in X such that one point from P can be separated from
the rest of the points in P , leads to large complexity measure.

In Figure 3, a clear separation can be made between one point and the rest leading to two sets of
points: The first set contains one single point that has a positive dot product with the normal x to
the separating hyperplane, while the other set contains the remaining point each with negative dot
product with x. This leads to a large complexity measure, and as the separating hyperplane gets
closer and closer to the set containing the single point, the complexity measure increases, as it can
tend to infinity.

On the other hand, when one can not separate a single point or minimal set of points from the rest of
the data, we expect the complexity measure to be small; see Figure 4.
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Figure 3: Linearly separable data leading to sufficiently large complexity measure.

Figure 4: Non-linearly separable data leading to sufficiently small complexity measure.

Notice that in Figure 4, the input data is centered around the origin, which means that the data is not
linearly separable. Thus leading to small complexity measure, since x represents the normal to a
hyperplane emerging from the origin.

In fact, during our experiments, the complexity measure in the case of LeNet300-100 was around 15
when the input data (matrix representing the neurons) had 300 rows (points).

It is common in coreset literature from a practical point of view, sample sizes that are smaller than
the bound on the coreset size are being used. This is due to the fact that such bounds are pessimistic
in nature.

This motivated the choice of not incorporating the complexity measure in our sample size nor the
sensitivity sampling since such a term will be eliminated when computing the sampling probability;
see Theorem B.2. Our experiments confirmed such an observation, i.e., our coreset lead to favorable
results when the complexity measure was not incorporated in our computations, or when the sample
size was much smaller than the bound on the coreset size.
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The appendix in the supplementary material has been modified in light of this.

G Additional Experiments

In all of our experiments, our hyper-parameters were drawn from [60].

G.1 The effect of fine-tuning

In this experiment, we aim to show the effect of fine-tuning on our compressed model. Specifically,
Figure 5 shows VGG19’s network accuracy over fine-tuning, where we start better than previous
methods, followed by a slow incline in accuracy until we outperform previous models (around epoch
18).

Figure 5: Accuracy of our proposed framework in comparison to previous methods and training the
pruned network from scratch. The results above reflect the accuracy of VGG19 on CIFAR10.

G.2 Sensitivity based distribution

At Figure 6, we plot the sensitivity distribution of our sampling method in comparison to the sampling
probabilities achieved by [82]. Our advantage lies in the observation that our induced probability
distribution entails longer tails, i.e., important point are scarce.

G.3 Comparison with PvC

In this experiment, we aim to show the efficacy of our approach against that of [82]. We considered
a single neuron in LeNet-300-100 where we computed the average additive error of the cost of the
coreset from the cost of taking all the samples (neurons from previous layer), over set of 1000 queries.
As shown in Figure 7, for very small coreset sizes, PvC [82] attains smaller error, however as we
increase the sample size, our coreset outperforms that of [82].
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Figure 6: A comparison against [82] with respect to the distribution of the sampling probabilities of
weights of a single neuron at some layer of LeNet-300-100. Here the x-axis denotes the sampling
probability of points, while the y-axis presents the number of points with certain probability.

Figure 7: Average additive error of our coreset and that of [82] on LeNet-300-100.
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Chapter 3

Using Partial Monotonicity in

Submodular Maximization

In this chapter, we explore the role of partial monotonicity in submodular functions and

demonstrate how it can be leveraged to achieve improved approximation guarantees in prac-

tical machine learning settings. Our work introduces a principled framework for identifying

and exploiting near-monotone structure in otherwise non-monotone objectives, leading to

more efficient optimization strategies.

The following paper [MF22] was published at the Conference on Neural Information

Processing Systems (NeurIPS 2022).
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Abstract

Over the last two decades, submodular function maximization has been the
workhorse of many discrete optimization problems in machine learning appli-
cations. Traditionally, the study of submodular functions was based on binary
function properties, but recent works began to consider continuous function proper-
ties such as the submodularity ratio and the curvature. The monotonicity property
of set functions plays a central role in submodular maximization. Nevertheless, no
continuous version of this property has been suggested to date (as far as we know),
which is unfortunate since submoduar functions that are almost monotone often
arise in machine learning applications. In this work we fill this gap by defining the
monotonicity ratio, which is a continuous version of the monotonicity property. We
then show that for many standard submodular maximization algorithms one can
prove new approximation guarantees that depend on the monotonicity ratio; leading
to improved approximation ratios for the common machine learning applications
of movie recommendation, quadratic programming, image summarization and
ride-share optimization.

1 Introduction

Over the last two decades, submodular function maximization has been the workhorse of many
discrete optimization problems in machine learning applications such as data summarization [17,
19, 31, 32, 41, 50], social graph analysis [45], adversarial attacks [36], dictionary learning [15],
sequence selection [42, 51], interpreting neural networks [18] and many more. Traditionally, the
study of submodular functions was based on binary properties of functions. A function can be either
submodular or non-submodular, monotone or non-monotone, etc. Such properties are simple, but
they have an inherit weakness—if an algorithm assumes functions that have a particular property,
then it provides no guarantee for functions that violate this property, even if the violation is slight.

Given the above situation, recent works began to consider continuous versions of function properties.
Probably the most significant among these continuous versions so far are the submodularity ratio and
the curvature. The submodularity ratio (originally defined by Das and Kempe [16]) is a parameter
γ ∈ [0, 1] replacing the binary submodularity property that a set function can either have or not
have. A value of 1 corresponds to a fully submodular function, and lower values of γ represent some
violation of submodularity (the worse the violation, the lower γ). Similarly, the curvature (defined
by Conforti and Cornuéjol [13]) is a parameter c ∈ [0, 1] replacing the binary linearity property that
a set function can either have or not have. A value of 1 corresponds to a fully linear function, and
lower values of c represent some violation of linearity.

A central conceptual contribution of Das and Kempe [16] was that they were able to demonstrate
that continuous function properties further extend the usefulness of submodular maximization to new
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machine learning applications (such as subset selection for regression and dictionary selection). This
has motivated a long list of works on such properties (see [3, 25, 26, 29, 34] for a few examples),
including works that combine both the submodularity ratio and the curvature (see, e.g., [3]). However,
to the best of our knowledge, no continuous version of the binary monotonicity property has been
suggested so far.1 See Appendix A for additional related work.

We note that the monotonicity property of set functions plays a central role in submodular maximiza-
tion, and basically every problem in this field has been studied for both monotone and non-monotone
objective functions. Naturally, monotone objective functions enjoy improved approximation guaran-
tees compared to general functions, and it is natural to ask how much of this improvement applies
also to functions that are almost monotone (in some sense). Since such functions often arise in
machine learning applications when a diversity promoting component is added to a basic monotone
objective, obtaining better guarantees for them should strongly enhance the usefulness of submodular
maximization as a tool for many machine learning applications.

Formally, a non-negative set function f : 2N → R≥0 over a ground set N is (increasingly) monotone
if f(S) ⊆ f(T ) for every S ⊆ T ⊆ N . Similarly, we define the monotonicity ratio of such a function
f as the maximum value m ∈ [0, 1] such that m · f(S) ≤ f(T ) for every two sets S ⊆ T ⊆ N .
Equivalently, one can define the monotonicity ratio m by m ≜ minS⊆T⊆N [f(T )/f(S)], where the
ratio f(T )/f(S) is assumed to be 1 whenever f(S) = 0. Intuitively, the monotonicity ratio measures
how much of the value of a set S can be lost when additional elements are added to S. One can view
m as the distance of f from monotonicity. In particular, m = 1 if and only if f is monotone.

Our main contribution in this paper is demonstrating the usefulness of the monotonicity ratio in
machine learning applications, which we do in two steps.

• First, we show (in Sections 3, 4 and 5) that for many standard submodular maximization
algorithms one can prove new approximation guarantees that depend on the monotonicity
ratio. These approximation guarantees interpolate between the known approximation ratios
of these algorithms for monotone and non-monotone submodular functions.

• Then, using the above new approximation guarantees, we derive new approximation ratios
for the standard applications of movie recommendation, quadratic programming, image
summarization and ride-share optimization. Our guarantees improve over the state-of-the-art
for most values of the problems’ parameters. See Section 6 for more detail.

Remark. Computing the monotonicity ratio m of a given function seems to be difficult. Thus, the
algorithms we analyze avoid assuming access to m, and the value of m is only used in the analyses of
these algorithms. Nevertheless, in the context of particular applications, we are able to bound m, and
plugging this bound into our general results yields our improved guarantees for these applications.

1.1 Our Results

Given a ground set N , a set function f : 2N → R is submodular if f(S ∪ {u}) − f(S) ≥ f(T ∪
{u}) − f(T ) for every two sets S ⊆ T ⊆ N and element u ∈ N \ T . Submodular maximization
problems ask to maximize such functions subject to various constraints. To allow for multiplicative
approximation guarantees for these problems, it is usually assumed that the objective function f is
non-negative. Accordingly, we consider in this paper the following three basic problems.

• Given a non-negative submodular function f : 2N → R, find a set S ⊆ N that (approxi-
mately) maximizes f . This problem is termed “unconstrained submodular maximization”,
and is studied in Section 3.

• Given a non-negative submodular function f : 2N → R and an integer parameter 0 ≤ k ≤
|N |, find a set S ⊆ N of size at most k that (approximately) maximizes f among such
sets. This problem is termed “maximizing a submodular function subject to a cardinality
constraint”, and is studied in Section 4.

• Given a non-negative submodular function f : 2N → R and a matroidM over the same
ground set, find a set S ⊆ N that is independent inM and (approximately) maximizes f

1Following the appearance of the pre-print version of this paper, we learned that Iyer defined in his Ph.D.
thesis [30] such a property, which is identical to the one we define. However, Iyer only used this property to
prove the result appearing below as Theorem 4.1; thus, our work is the first to systematically study this property.
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among such sets. This problem is termed “maximizing a submodular function subject to a
matroid constraint”, and is studied in Section 5 (see Section 5 for the definition of matroids).

We present both algorithmic and inapproximability results for the above problems. Our algorithmic
results reanalyze a few standard algorithms, and surprisingly show that almost all these algorithms
guarantee an approximation ratio of m ·αmon +(1−m) ·αnon-mon, where m is the monotonicity ratio,
αmon is the approximation ratio known for the algorithm when f is monotone, and αnon-mon is the
approximation ratio known for the algorithm when f is a general non-negative submodular function.

While the above mentioned algorithmic results lead to our improved guarantees for applications,
our inapproximability results represent our main technical contribution. In general, these results are
based on the symmetry gap framework of Vondrák [52]. The original version of this framework is
able to deal both with the case of general (not necessarily monotone) submodular functions, and with
the case of monotone submodular functions; which in our terms correspond to the cases of m ≥ 0
and m ≥ 1, respectively. However, to prove our inapproximability results, we had to show that the
framework extends to arbitrary lower bounds on m, which was challenging because the original
proof of the framework is highly based on derivatives of continuous functions. From this point of
view, submodularity is defined as having non-positive second-order derivatives, and monotonicity is
defined as having non-negative first-order derivatives. However, the definition of the monotonicity
ratio cannot be easily restated in terms of derivatives;2 and thus, handling it required us to come up
with a different proof approach.

Interestingly, our results for unconstrained submodular maximization proves that the optimal ap-
proximation ratio for this problem does not exhibit a linear dependence on m. Thus, the nice linear
dependence demonstrated by almost all our algorithmic results is probably an artifact of looking
at standard algorithms rather than representing the true nature of the monotonicity ratio, and we
expect future algorithms tailored to take advantage of the monotonicty ratio to improve over this
linear dependence. The reason that we concentrate in this work on reanalyzing standard submodular
maximization algorithms rather than inventing new ones is that we want to stress the power obtained
by using the new notion of monotonicity ratio, as opposed to power gained via new algorithmic
innovations. This is in line with the research history of the submodularity ratio and the curvature.
For both of these parameters, the original works concentrated on reanalyzed the standard greedy
algorithm in view of the new suggested parameter; and the invention of algorithms tailored to the
parameter was deferred to later works (see [49] and [12] for examples of such algorithms for the
curvature and submodularity ratio, respectively).

Over the years, the standard submodular maximization algorithms have been extended and improved
in various ways. Some works presented accelerated and/or parallelized versions of these algorithms,
while other works generalized the algorithms beyond the realm of set functions (for example, to
(DR-)submodular functions over lattices or continuous domains). Since our motivation in this paper is
related to the monotonicity ratio, which is essentially independent of the extensions and improvements
mentioned above, we mostly analyze the vanilla versions of all the algorithms considered. This
keeps our analyses relatively simple. However, our experiments are based on more state-of-the-art
versions of the algorithms. Similarly, many continuous properties (including the submodularity ratio)
have weak versions that only depend on the behavior of the function for nearly feasible sets, and
immediately enjoy most of the results that apply to the original strong property. The definition of such
weak versions is useful for capturing additional application, but often add little from a theoretical
perspective. Therefore, in the theoretical parts of this paper we consider only the monotonicity ratio
as it is defined above; but for the sake of one of our applications we later define also the natural
corresponding weak property.

2 Preliminaries and Basic Observations

In this section we define the notation used in this paper, and then state some useful basic observations.
Given an element u ∈ N and a set S ⊆ N , we use S + u and S − u as shorthands for S ∪ {u} and
S \{u}. Additionally, given a set function f : 2N → R, we define f(u | S) ≜ f(S+u)−f(S)—this
value is known as the marginal contribution of u to S with respect to f . Similarly, given an additional

2To see why that is the case, notice that a function can have a monotonicity ratio close to 1, even in the
presence of very negative derivatives, as long as these derivatives do not occur over too long sections.
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set T ⊆ N , we define f(T | S) ≜ f(S ∪ T ) − f(S). We also use 1S to denote the characteristic
vector of the set S, i.e., a vector in [0, 1]N that has 1 in the coordinates corresponding to elements that
appear in S and 0 to the other coordinates. Finally, if f is non-negative, we say that it is m-monotone
if its monotonicity ratio is at least m; and given an event E , we denote by 1[E ] the indicator of this
event, i.e., a random variable that takes the value 1 when the event happens, 0 otherwise .

Next, we present a well-known continuous extension of set functions. Given a set function f : 2N →
R, its multilinear extension is a function F : [0, 1]N → R defined as follows. For every vector
x ∈ [0, 1]N , let R(x) to be a random subset ofN that includes every element u ∈ N with probability
xu, independently. Then, F (x) = E[f(R(x))]. Another extension of set functions is central to the
proof of the next lemma, which generalizes Lemma 2.2 of [6]—see Appendix B for the proof.

Lemma 2.1. Let f : 2N → R≥0 be a non-negative m-monotone submodular function. For every
deterministic set O ⊆ N and random set D ⊆ N , E[f(O ∪D)] ≥ (1− (1−m) ·maxu∈N Pr[u ∈
D]) · f(O).

We conclude this section with the following observation, which we view as evidence that the class of
non-negative m-monotone functions is a natural class for every m ∈ [0, 1].

Observation 2.2. For every two non-negative m-monotone functions f, g : 2N → R≥0 and constant
c ≥ 0, the following functions are also m-monotone: (i) h(S) = f(S) + g(S), (ii) h(S) = f(S) + c,
and (iii) h(S) = c · f(S).

3 Unconstrained Maximization

Recall that in the unconstrained submodular maximization problem, we are given a non-negative
submodular function f : 2N → R≥0, and the objective is to find a set S ⊆ N that (approximately)
maximizes f(S). Buchbinder et al. [7] gave the first 1/2-approximation algorithm for this problem,
known as the (randomized) double greedy algorithm. As its name suggests, double greedy maintains
two solutions: one starting as the empty set, and one starting as the entire ground set. Then, it
considers all elements, and greedily decides for each element either to add it to the originally empty
set, or remove it from the other set. When the algorithm terminates, the two sets are identical, and
their common value is the output of the algorithm. The 1/2-approximation guarantee of double greedy
is known to be optimal in general due to a matching inapproximability result due to Feige et al. [21].
Nevertheless, in this section we determine the extent to which one can improve over this guarantee as
a function of the monotonicity ratio m of f .

Theorem 3.1. The double greedy algorithm of Buchinder et al. [7] guarantees [1/(2 − m)]-
approximation for unconstrained submodular maximization, and no polynomial time algorithm
obtains an approximation ratio of 1/(2−m) + ε for any constant ε > 0.3

Interestingly, Theorem 3.1 shows that the optimal approximation ratio for unconstrained submodular
maximization does not have a linear dependence on m. The first part of Theorem 3.1 is proved
in Appendix C.1. Below, we concentrate on proving the second part of Theorem 3.1. We do this
using a generalization of the symmetry gap framework of Vondrák [52] that is informally stated as
Theorem 3.2 (see Appendix C.2 for the formal statement of the theorem). The fractional solution
mentioned in this informal statement is evaluate using the multilinear extension of the submodular
objective function.

Theorem 3.2. Consider a non-negativem-monotone submodular function f and a collectionF ⊆ 2N

of feasible sets such that the problem max{f(S) | S ∈ F} is symmetric with respect to some group
G of permutations over N . If the best fractional solution for this problem which is symmetric with
respect to G is worse by a factor of γ compared to the optimal solution, then we say that the problem
has a symmetry gap of γ. In this case, exponentially many value oracle queries are required to
obtain (1 + ε)γ-approximation for the class of problems max{f̃(S) | S ∈ F̃} in which f̃ is a
non-negative m-monotone submodular function, and F̃ is some generalization of F (in particular, if
F is a matroid/cardinality constraint, then so is F̃ ).

3In the second part of Theorem 3.1, like in all the other inapproximability results in this paper, we make the
standard assumption that the objective function f can be accessed only through a value oracle that given a set
S ⊆ N returns f(S).
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To use Theorem 3.2, we need to define a submodular maximization problem with a significant
symmetry gap. Let us choose N = {u, v}, f(S) = m · 1[S ̸= ∅] + (1 −m) · (|S| mod 2) and
F = 2N , where m is an arbitrary constant m ∈ [0, 1]. One can verify that f is submodular and
non-negative, that its monotonicity ratio is exactly m, and that the problem max{f(S) | S ∈ F} is
symmetric with respect to the group G of the two possible permutations of N . The following lemma
calculates the symmetry gap of this problem, and its proof can be found in Appendix C.3. The second
part of Theorem 3.1 follows from this lemma and Theorem 3.2.

Lemma 3.3. The problem max{f(S) | S ∈ F} has a symmetry gap of 1
2−m .

4 Maximization with a Cardinality Constraint

In this section we consider the problem of maximizing a non-negative submodular function f : 2N →
R≥0 subject to a cardinality constraint. In other words, we are given an integer value 1 ≤ k ≤ |N |,
and the objective is to output a set S ⊆ N of size at most k (approximately) maximizing f among
such sets. A standard greedy algorithm for this problem starts with the empty set, and then iteratively
adds elements to this set, choosing in each iteration the element whose addition increases the value of
the set by the most. When the objective function f is guaranteed to be monotone, it is long known
that this greedy algorithm guarantees (1− 1/e)-approximation for the above problem [44], and that
this is essentially the best possible for any polynomial time algorithm [43]. However, the greedy
algorithm has no constant approximation guarantee when the objective function is not guaranteed to
be monotone (see [4] for an example demonstrating this). In Appendix D.1 we prove Theorem 4.1,
which generalizes the result of [44], and proves an approximation guarantee for the greedy algorithm
that deteriorates gracefully with the monotonicity ratio m.

Theorem 4.1. The Greedy algorithm (Algorithm 2) has an approximation ratio of at least m(1−
1/e) for the problem of maximizing a non-negative m-monotone submodular function subject to a
cardinality constraint.

Following a long line of works [35, 22, 46, 52, 6, 20], the state-of-the-art approximation guarantee
for the case in which the objective function f is not guaranteed to be monotone is currently 0.385 [5].
However, the algorithm obtaining this approximation ratio is quite involved, which limits its prac-
ticality. Arguably, the state-of-the-art approximation ratio obtained by a “simple” algorithm is the
1/e ≈ 0.367-approximation obtained by an algorithm called Random Greedy, which adds to its
solution, in each iteration, a uniformly random element out of the k elements that can (individually)
add the most to the value of this solution. Random Greedy has the nice property that for monotone
objective functions it recovers the optimal 1− 1/e approximation guarantee. In Appendix D.2 we
prove Theorem 4.2, which gives an approximation guarantee for Random Greedy that smoothly
changes as a function of m and recovers both the above mentioned 1/e and 1− 1/e guarantees.

Theorem 4.2. Random Greedy (Algorithm 3) has an approximation ratio of at least m(1− 1/e) +
(1 −m) · (1/e) for the problem of maximizing a non-negative m-monotone submodular function
subject to a cardinality constraint.

There is still a gap between the state-of-the-art 0.385-approximation for non-monotone objectives
and the state-of-the-art inapproximability result due to Oveis Gharan and Vondrák [46], which only
shows that no polynomial time algorithm can guarantee a better than roughly 0.491-approximation.
In Appendix D.3 we give Theorem D.4, which uses Theorem 3.2 to prove an inapproximability result
that smoothly depends on m and recovers the above mentioned inapproximability results for m = 0
and m = 1.

To get an intuitive understanding of Theorem D.4, we numerically evaluated it for various values ofm.
The plot obtained in this way appears in Figure 1a. For context, this figure also includes all the other
results proved in this section. As is evident from Figure 1a, Theorem D.4 improves over the 1− 1/e
inapproximability result of Nemhauser and Wolsey [43] only for m that is smaller than roughly 0.56.
This is surprising since, intuitively, one would expect the best possible approximation ratio to be
strictly worse than 1− 1/e for any m < 1. However, we were unable to prove an inapproximability
that is even slightly lower than 1− 1/e for any m > 0.56. Understanding whether this is an artifact
of our proof or a real phenomenon is an interesting question that we leave open.
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Figure 1: Graphical representation of the results of Sections 4 and 5

5 Maximization with a Matroid Constraint

In this section we consider the problem of maximizing a non-negative submodular function subject to
a matroid constraint. A matroidM over the ground set N is defined as a pairM = (N , I), where I
is a non-empty subset of 2N obeying two properties for every two sets S, T ⊆ N : (i) if S ⊆ T and
T ∈ I, then S ∈ I; and (ii) if S, T ∈ I and |S| < |T |, then there exists an element u ∈ T \ S such
that S + u ∈ I. A set S ⊆ N is called independent with respect to a matroidM if it belongs to I
(otherwise, we say that S is dependent with respect toM); and the matroid constraint corresponding
to a given matroidM allows only independent sets with respect to this matroid as feasible solutions.
Hence, we can restate the problem we consider in this section in the following more formal way.
Given a non-negative submodular function f : 2N → R≥0 and a matroidM = (N , I), output an
independent set S ∈ I (approximately) maximizing f among all such sets. It is also useful to note
that an independent set S ∈ I is called a base ofM if it is an inclusion-wise maximal independent
set, i.e., S is not a subset of any other independent set.

A standard greedy algorithm for the above problem starts with the empty set, and then iteratively
adds to it elements, choosing in each iteration the element that increases the value of the solution by
the most among the elements whose addition to the solution does not violate the matroid constraint.
When the objective function f is guaranteed to be monotone, this greedy algorithm guarantees
1/2-approximation [24]. Our first result for this section (proved in Appendix E.1) shows how this
approximation guarantee changes as a function of m (the greedy algorithm has no constant guarantee
for non-monotone functions in this case as well).

Theorem 5.1. The Greedy algorithm (Algorithm 4) has an approximation ratio of at least m/2 for
maximizing a non-negative m-monotone submodular function subject to a matroid constraint.

The approximation ratio of the greedy algorithm was improved over by the seminal work of Călinescu
et al. [9], who described the Continuous Greedy algorithm whose approximation ratio is 1−1/e when
f is monotone; matching the inapproximability result of Nemhauser and Wolsey [43]. In contrast,
when f is not guaranteed to be monotone, the approximability of the problem is less well-understood.
On the one hand, after a long line of works [35, 22, 46, 52, 20], the state-of-the-art approximation
ratio for the problem is 0.385 [5], but on the other hand, it is only known that no polynomial time
algorithm for the problem can guarantee 0.478-approximation [46].

Unfortunately, the above mentioned state-of-the-art 0.385-approximation algorithm is quite involved.
Therefore, we chose to consider in this work two other algorithms. The first algorithm is Measure
Continuous Greedy (due to [22]) which guarantees an approximation ratio of 1/e− o(1) ≈ 0.367.
This algorithm performs only slightly worse than the above state-of-the-art, and is a central component
of all the currently known algorithms achieving better than 1/e-approximation. Measured Continuous
Greedy is also known to guarantee (1−1/e−o(1))-approximation when the objective f is monotone,
and the next theorem (proved in Appendix E.2) shows that its approximation guarantee changes
smoothly with the monotonicity ratio of f .
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Theorem 5.2. Measured Continuous Greedy (Algorithm 5) has an approximation ratio of at least
m(1 − 1/e) + (1 − m) · (1/e) − o(1) for maximizing a non-negative m-monotone submodular
function subject to a matroid constraint, where the o(1) term diminishes with the ground set’s size.4

The other algorithm we consider is an algorithm called Random Greedy for Matroids (due to [6]).
Unlike Measured Continuous Greedy and almost all the other algorithms suggested for non-monotone
objectives to date, this algorithm is combinatorial, which makes it appealing in practice. It starts with
a base solution consisting of dummy elements representing empty slots, and iteratively performs
swaps on this base solution in the following way. In each iteration, the algorithm picks a base M
maximizing the (individual) marginal value of the elements within it with respect to the current base
solution. For every element in M , the algorithm identifies a distinct element of the current base
solution with which it can be swapped, and then for a uniformly random element of M such a swap is
indeed done. Buchbinder et al. [6] proved an approximation ratio of roughly (1+e−2)/4 for Random
Greedy for Matroids. The next theorem shows how this approximation guarantee improves as a
function of the monotonicity ratio. In this theorem we refer to the rank k of the matroid constraint
M, which is the size of the largest independent set with respect to this matroid. We also note that the
algorithm we analyze is identical to the algorithm of [6] up to two modifications: our algorithm makes
more iterations, and it updates the solution in an iteration only when this increases the solution’s
value.

Theorem 5.3. For every ε ∈ (0, 1), Random Greedy for Matroids (Algorithm 6) has an approximation
ratio of at least 1+m+e−2/(1−m)

4 − ε − ok(1) for the problem of maximizing a non-negative m-
monotone submodular function subject to a matroid constraint (except in the case of m = 1 in which
the approximation ratio is 1/2− ε− ok(1)), where ok(1) represents a term that diminishes with k.

Theorem 5.3 is proved in Appendix E.3. Let us also mention Theorem E.8, which appears in
Appendix E.4 and uses Theorem 3.2 to generalize the 0.478 inapproximability result of Oveis Gharan
and Vondrák [46]. To get an intuitive understanding of Theorem E.8, we numerically evaluated it for
various values of m, and depict the results in Figure 1b. For context, this figure also includes all the
other results proved in this section. Somewhat surprisingly, Figure 1b shows that Theorem E.8 does
not generalize the 1 − 1/e inapproximability result of Nemhauser and Wolsey [43] for monotone
functions despite the fact that this inapproximability result holds for every monotonicity ratio
m ∈ [0, 1]. This resembles the inability of Theorem D.4 to improve over the same inapproximability
result for large values of m.

6 Applications and Experiment Results

Many machine learning applications require optimization of non-monotone submodular functions
subject to some constraint. Unfortunately, such functions enjoy relatively low approximation guaran-
tees. Nevertheless, in many cases the non-monotone objective functions have a significant monotone
component that can be captured by the monotonicity ratio. In this section, we discuss two concrete
applications with non-monotone submodular objective functions. For each application we provide a
lower bound on the monotonicity ratio m of the objective function, which translates via our results
from the previous sections into an improved approximation guarantee for the application.

To demonstrate the value of our improved guarantees in experiments, we took the following approach.
The output of an approximation algorithm provides an upper bound on the value of the optimal
solution for the problem (formally, this upper bound is the value of the output over the approximation
ratio of the algorithm). Thus, we plot in each experiment the upper bound on the value of the optimal
solution obtained with and without taking into account the monotonicity ratio, which gives a feeling
of how the magnitude of our improvements compare to other values of interest (such as the gaps
between the performances of the algorithms considered). In Appendix F we give a third application
(Image summarization) that we study in the same way; and in Appendix G we lower bound the
monotonicity ratio of a fourth application (Ride-Share Optimization).

4Technically, Measured Continuous Greedy is an algorithm for maximizing the multilinear extesnion of a
non-negative submodular function subject to a general solvable down-closed convex body P constraint, and we
prove in Appendix E.2 that it guarantees the approximation ratio stated in Theorem 5.2 for this setting. However,
this implies the result stated in Theorem 5.2 using a standard reduction (see Appendix E.2 for further detail).
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Figure 2: Experimental results for Personalized Movie Recommendation (a–c) and Quadratic Pro-
gramming (d–f). Each plot includes the output of the algorithms we consider as well the previous and
improved upper bounds on the optimal value (the area between these two bounds is shaded).

6.1 Personalized Movie Recommendation

The first application we consider is Personalized Movie Recommendation. Consider a movie
recommendation system where each user specifies what genres she is interested in, and the system
has to provide a representative subset of movies from these genres. Assume that each movie is
represented by a vector consisting of users’ ratings for the corresponding movie. One challenge here
is that each user does not necessarily rate all the movies, hence, the vectors representing the movies
do not necessarily have similar sizes. To overcome this challenge, a low-rank matrix completion
techniques [10] can be performed on the matrix with missing values in order to obtain a complete
rating matrix. Formally, given few ratings from k users to n movies we obtain in this way a rating
matrix M of size k × n. Following [40], to score the quality of a selected subset of movies, we
use the function f(S) =

∑
u∈N

∑
v∈S su,v − λ

∑
u∈S

∑
v∈S su,v. Here, N is the set of n movies,

λ ∈ [0, 1] is a parameter and su,v denotes the similarity between movies u and v (the similarity su,v
can be calculated based on the matrix M in multiple ways: cosine similarity, inner product, etc).
Note that the first term in f ’s definition captures coverage, while the second term captures diversity.
Thus, the parameter λ denotes the importance of diversity in the returned subset.

One can verify that the above defined function f is non-negative and submodular. The next theorem,
proved in Appendix H.1, analyzes the monotonicity ratio of this function. In this theorem we assume
that the similarity scores su,v are non-negative and obey su,v = sv,u for every u, v ∈ N . Note
that the above mentioned ways to define these scores have these properties. Interestingly, it turns
out that the function f is monotone when λ is small enough despite the fact that this function is
traditionally treated as non-monotone (e.g., in [40, 23]). This is a nice unexpected result of the use
of the monotonicity ratio, which required us to really understand the degree of non-monotonicity
represented by the objective function.

Theorem 6.1. The objective function f is monotone for 0 ≤ λ ≤ 1/2 and 2(1 − λ)-monotone for
1/2 ≤ λ ≤ 1.

To demonstrate the value of our lower bound on the monotonicity ratio, we followed the experimental
setup of [40] and used a subset of movies from the MovieLens data set [28] which includes 10,437
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movies. Each movie in this data set is represented by a 25 dimensional feature vector calculated using
user ratings, and we used inner products to obtain the similarity values si,j based on these vectors.

In our experiment we employed accelerated versions of the algorithms analyzed in Section 4 for a
cardinality constraint. Specifically, instead of the Greedy algorithm we used Threshold Greedy [1]
and Sample Greedy [39]; and instead of Random Greedy we used a threshold based version of this
algorithm due to [8] that we refer to as Threshold Random Greedy (Algorithm 6 in [8]). All three
algorithms had almost identical performance in our experiments (see Appendix I), thus, to avoid
confusion, in Figure 2 we draw only the output of Threshold Random Greedy.

Each plot of Figure 2 depicts the outputs of Threshold Random Greedy and a scarecrow algorithm
called Random that simply outputs a random subset of movies of the required size. Each point in the
plots represents the average value of the outputs of 10 executions of these algorithms. We also depict
in each plot the upper bound on the value of the optimal solution based on the general approximation
ratio of Random Greedy and the improved approximation ratio implied by Theorems 4.2 and 6.1—the
area between the two upper bounds is shaded. In Figure 2a we plot these values for the case in which
we asked the algorithms to pick at most 10 movies, and we vary the parameter λ. In Figures 2b
amd 2c we plotted the same values for a fixed parameter λ, while varying the maximum cardinality
(number of movies) allowed for the output set. Since the height of the shaded area is on the same
order of magnitude as the values of the solutions produced by Threashold Random Greedy (especially
when λ is close to 1/2), our results demonstrate that the improved upper bound we are able to prove
is much tighter than the state-of-the-art. Furthermore, our improved upper bound shows that the gap
between the empirical outputs of Threshold Random Greedy and Random is much more significant as
a percentage of the value of the optimal solution than one could believe based on the weaker bound.

6.2 Quadratic Programming

Consider the function

F (x) =
1

2
xTHx+ hTx+ c . (1)

By choosing appropriate matrix H, vector h and scalar c, this function can be made to have var-
ious properties. Specifically, we would like to make it non-negative and DR-submodular (DR-
submodularity is an extension of submodularity to continuous functions—see Appendix J for
more detail). Our goal in this section is to maximize F under a polytope constraint given by
P = {x ∈ Rn

≥0 | Ax ≤ b,x ≤ u, A ∈ Rm×n
≥0 ,b ∈ Rm

≥0} for some dimensions n and m.

Following Bian et al. [2], we set m = n, choose the matrix H ∈ Rn×n to be a randomly generated
symmetric matrix whose entries are drawn uniformly at random (and independently) from [−1, 0],
and choose A ∈ Rm×n to be a randomly generated matrix whose entries are drawn uniformly at
random from [v, v + 1] for v = 0.01 (this choice of v guarantees that the entries of A are strictly
positive). We also set b = 1̄ (i.e., b is the all ones vector), and u to be the upper bound on P given
by uj = minj∈[m] bi/Ai,j for every j ∈ [n]. Finally, we set h = −β ·HTu for a parameter β > 0.

The non-positivity of H guarantees that f is DR-submodular. To make sure that f is also non-negative,
the value of c should be at least −min0̄≤x≤u

1
2x

THx+ hTx (where 0̄ is the all zeros vector). This
value can be approximately obtained by using QUADPROGIP5 [53]. Let the value of this minimum be
M ; then we set c = −M + α|M | for some parameter α > 0.

The definition of the monotonicity ratio can be extend to the continuous setting we consider in this
section using the formula m = inf 0̄≤x≤y≤u

F (y)
F (x) , where the ratio F (y)/F (x) is understood as 1

whenever F (x) = 0. The following theorem analyzes the monotonicity ratio of the function F given
in Equation (1) based on this definition. The proof of this theorem can be found in Appendix H.2.

Theorem 6.2. For β ∈ (0, 1/2), the objective function F given by Equation (1) is (1−2β)·α
1+α -monotone.

Furthermore, when min0̄≤x≤u(
1
2x

THx+ hx) ≥ 0, F is even (1− 2β)-monotone.

We applied the Non-monotone Frank-Wolfe algorithm of Bian et al. [2] to the above defined op-
timization problem (we refer the reader to Appendix J for further detail about this algorithm and

5We have used IBM CPLEX optimization studio https://www.ibm.com/products/ilog-cplex-
optimization-studio.
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its analysis). Figures 2d, 2e and 2f depict the results we obtained. Specifically, Figure 2d shows
the value of the solution obtained by Non-monotone Frank-Wolfe for α = 0.3 and β = 0.2 as
the dimensionality n varies. The shaded area is the area between the previous upper bound on the
optimal value, and our upper bound that takes advantage on the monotonicity ratio bound given by
Theorem 6.2. Figures 2e and 2f are similar, but they fix the dimensionality n to be 4, and vary α
or β instead. Let us discuss now some properties of Figures 2d, 2e and 2f. (i) Each data point in
these figures corresponds to a single instance drawn from the distribution described above. This
implies that the plots in these figures vary for different runs of our experiment, but the plots that we
give represent a (single) typical run. (ii) The size of the the shaded area depends on α and β, but
also on the sign of min0̄≤x≤u(

1
2x

THx+ hx). This is the reason that this size behaves somewhat
non-continuously in Figure 2f. Interestingly, the sign of this minimum is mostly a function of β. In
other words, there are values of β for which the minimum is non-negative with high probability, and
other values for which the minimum is negative with high probability. (iii) One can see that the use
of the monotonicity ratio significantly improves the upper bound on the optimal value, especially
when min0̄≤x≤u(

1
2x

THx+ hx) happens to be non-negative.

7 Conclusion

In this paper we have defined the monotonicity ratio, analyzed how the approximation ratios of
standard submodular maximization algorithms depend on this ratio, and then demonstrated that
this leads to improved approximation guarantees for the applications of movie recommendation,
image summarization and quadratic programming. We believe that the monotonicity ratio is a natural
parameter of submodular maximization problems, refining the binary distinction between monotone
and non-monotone objective functions and improving the power of submodular maximization tools in
machine learning applications. Thus, we hope to see future work towards understanding the optimal
dependence on m of the approximation ratios of various submodular maximization problems.

An important take-home message from our work is that, at least in the unconstrained submodular
maximization case, the optimal algorithm has an approximation ratio whose dependence on m is
non-linear. Such algorithms are rarely obtained using current techniques, which might be one of
the reasons why these techniques have so far failed to obtain tight approximation guarantees for
constrained non-monotone submodular maximization.
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[1] Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular

functions. In SODA, pages 1497–1514, 2014. doi: 10.1137/1.9781611973402.110. URL
https://doi.org/10.1137/1.9781611973402.110.

[2] An Bian, Kfir Yehuda Levy, Andreas Krause, and Joachim M. Buhmann. Non-
monotone continuous DR-submodular maximization: Structure and algorithms. In NeurIPS,
pages 486–496, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
58238e9ae2dd305d79c2ebc8c1883422-Abstract.html.

[3] Andrew An Bian, Joachim M. Buhmann, Andreas Krause, and Sebastian Tschiatschek. Guaran-
tees for greedy maximization of non-submodular functions with applications. In ICML, pages
498–507, 2017. URL http://proceedings.mlr.press/v70/bian17a.html.

[4] Niv Buchbinder and Moran Feldman. Submodular functions maximization problems. In
Teofilo F. Gonzalez, editor, Handbook of Approximation Algorithms and Metaheuristics, Second
Edition, Volume 1: Methologies and Traditional Applications, pages 753–788. Chapman and

10



Hall/CRC, 2018. doi: 10.1201/9781351236423-42. URL https://doi.org/10.1201/
9781351236423-42.

[5] Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a nonsymmet-
ric technique. Math. Oper. Res., 44(3):988–1005, 2019. doi: 10.1287/moor.2018.0955. URL
https://doi.org/10.1287/moor.2018.0955.

[6] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In Chandra Chekuri, editor, SODA, pages 1433–1452. SIAM, 2014.
doi: 10.1137/1.9781611973402.106. URL https://doi.org/10.1137/1.9781611973402.
106.

[7] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput., 44(5):1384–
1402, 2015. doi: 10.1137/130929205. URL https://doi.org/10.1137/130929205.

[8] Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query
trade-off in submodular maximization. Math. Oper. Res., 42(2):308–329, 2017. doi: 10.1287/
moor.2016.0809. URL https://doi.org/10.1287/moor.2016.0809.
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A Additional Related Work

Lin and Bilmes [37] described an algorithm that takes advantages of a continuous partial monotonicity
property, but unlike the monotonicity ratio, their property was defined in terms of the particular
submodular objective they were interested in. More recently, Cui et al. [14] considered a weaker, but
still binary, version of monotonicity called weak-monotonicity.

B Proof of Lemma 2.1

In this section we prove Lemma 2.1.

Lemma 2.1. Let f : 2N → R≥0 be a non-negative m-monotone submodular function. For every
deterministic set O ⊆ N and random set D ⊆ N , E[f(O ∪D)] ≥ (1− (1−m) ·maxu∈N Pr[u ∈
D]) · f(O).

To prove this lemma we first have to define the Lovász extension of set functions. The Lovász
extension of a set function f : 2N → R is a function f̂ : [0, 1]N → R defined as follows. For every
vector x ∈ [0, 1]N ,

f̂(x) =

∫ 1

0

f(Tλ(x))dλ ,

where Tλ(x) ≜ {u ∈ N | xu ≥ λ}. The Lovász extension of a submodular function is known to
be convex. More important for us is the following known lemma regarding this extension. This
lemma stems from an equality, proved by Lovász [38], between the Lovász extension of a submodular
function and another extension known as the convex closure.

Lemma B.1. Let f : 2N → R be a submodular function, and let f̂ be its Lovász extension. For
every x ∈ [0, 1]N and random set Dx ⊆ N obeying Pr[u ∈ Dx] = xu for every u ∈ N (i.e., the
marginals of Dx agree with x), f̂(x) ≤ E[f(Dx)].

Using the last lemma, we can now prove Lemma 2.1.

Proof of Lemma 2.1. Let x be the vector of marginals of O ∪D, i.e., xu = Pr[u ∈ O ∪D] for every
u ∈ N . Then, by Lemma B.1,

E[f(O ∪D)] ≥ f̂(x) =
∫ 1

0

f(Tλ(x))dλ

=

∫ maxu∈N Pr[u∈D]

0

f(Tλ(x))dλ+

∫ 1

maxu∈N Pr[u∈D]

f(Tλ(x))dλ

=

∫ maxu∈N Pr[u∈D]

0

f(O ∪ Tλ(x))dλ+ (1−max
u∈N

Pr[u ∈ D]) · f(O) ,

where the last equality holds since the elements of O appear in Tλ(x) for every λ ∈ [0, 1], and no
other element appears in Tλ(x) when λ > Pr[u ∈ D]. Using the definition of the monotonicity ratio,
the expression f(O ∪ Tλ(x)) on the rightmost side of the previous equation can be lower bounded by
m · f(O), which yields

E[f(O ∪D)] ≥
∫ maxu∈N Pr[u∈D]

0

m · f(O)dλ+ (1−max
u∈N

Pr[u ∈ D]) · f(O)

= m ·max
u∈N

Pr[u ∈ D] · f(O) + (1−max
u∈N

Pr[u ∈ D]) · f(O)

= (1− (1−m) ·max
u∈N

Pr[u ∈ D]) · f(O) .

C Proofs of Section 3

In this section we give the proofs of Section 3.
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C.1 Proof of the first part of Theorem 3.1

In this section we prove the first part of Theorem 3.1, which is restated by the following theorem.
Theorem C.1. The double greedy algorithm of Buchinder et al. [7] guarantees [1/(2 − m)]-
approximation for unconstrained submodular maximization.

Let f : 2N → R≥0 be an arbitrary non-negative m-monotone submodular function over the ground
set N . To prove Theorem C.1, we need to show that given f , the double greedy algorithm of
Buchinder et al. [7] outputs a (random) set S obeying E[f(S)] ≥ f(OPT )/(2−m), where OPT is
some subset ofN maximizing f . Therefore, we start by looking at the approximation guarantees that
are known for double greedy when ignoring the monotonicity ratio.

Buchinder et al. [7] proved that the output S of double greedy always obeys

E[f(S)] ≥ 2f(OPT ) + f(∅) + f(N )

4
.

However, it turns out that this guarantee is only a special case of a more general guarantee that can be
proved. Specifically, we prove below the following guarantee.
Proposition C.2. The (random) output set S of double greedy obeys

E[f(S)] ≥ 2r

(r + 1)2
· f(OPT ) + 1

(r + 1)2
· f(∅) +

r2

(r + 1)2
· f(N )

for every value r > 0, simultaneously (i.e., the algorithm need not know r).

Proposition C.2 is based on ideas first used by Buchbinder et al. [6] in the context of an algorithm
that is related to double greedy. Recently, Qi [47] observed that these ideas are useful also in the
context of the double greedy algorithm, and used them to derive an improved result for a related
problem termed “Regularized Unconstrained Submodular Maximization”. Proposition C.2 is another
consequence of the application of these ideas to double greedy.

Before getting to the proof of Proposition C.2, let us show that it implies Theorem C.1.

Proof of Theorem C.1. Since f ismmonotone andOPT ⊆ N , f(N) ≥ m ·f(OPT ). Additionally,
the non-negativity of f guarantees f(∅) ≥ 0. Plugging both these observations into the guarantee of
Proposition C.2, we get

E[f(S)] ≥ 2r

(r + 1)2
· f(OPT ) + 1

(r + 1)2
· f(∅) +

r2

(r + 1)2
· f(N )

≥ 2r

(r + 1)2
· f(OPT ) + r2

(r + 1)2
· [m · f(OPT )] = 2r + r2m

(r + 1)2
· f(OPT ) .

Since the above inequality holds for every r > 0, we can choose r = 1/(1−m), and get

E[f(S)] ≥ 2r + r2m

(r + 1)2
· f(OPT ) = 2/r +m

(1 + 1/r)2
· f(OPT )

=
2(1−m) +m

(1 + (1−m))2
· f(OPT ) = 2−m

(2−m)2
· f(OPT ) = 1

2−m · f(OPT ) .

The rest of this section is devoted to proving Proposition C.2. To prove this proposition, we first need
to describe the double greedy algorithm that it analyzes, which appears as Algorithm 1. In a nutshell,
this algorithm maintains two solutions X and Y that are originally the empty set and entire ground
set, respectively. In every iteration, the algorithm considers a different element of the ground set, and
either adds it to X , or removes it from Y . Once all the elements have been considered, the sets X
and Y become identical, and they are the output of the algorithm. Note also that Algorithm 1 uses n
to denote the size of the ground set N .

The heart of the analysis of Algorithm 1 is Lemma C.3, which was proved by Qi [47], and we prove
here in more detail for completeness. To state Lemma C.3, we need to define for every integer
0 ≤ i ≤ n the set OPTi = (OPT ∪ Xi) ∩ Yi. Notice that OPTi agrees with Xi and Yi on all
the elements on which these two sets agree (i.e., elements that Algorithm 1 considered in its first i
iterations). On the remaining elements, OPTi agrees with OPT . Thus, as i increases, OPTi evolves
from being equal to OPT to being equal to the output set Xn = Yn of Algorithm 1.
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Algorithm 1: Double-Greedy
1 Denote the elements of N by u1, u2, . . . , un in an arbitrary order.
2 Let X0 ← ∅ and Y0 ← ∅.
3 for i = 1 to n do
4 Let ai ← f(ui | Xi−1) and bi ← −f(ui | Yi−1 − ui).
5 if bi ≤ 0 then Let Xi ← Xi−1 + ui and Yi ← Yi−1.
6 else if ai ≤ 0 then Let Xi ← Xi−1 and Yi ← Yi−1 − ui.
7 else
8 with probability ai

ai+bi
do Let Xi ← Xi−1 + ui and Yi ← Yi−1.

9 otherwise Let Xi ← Xi−1 and Yi ← Yi−1 − ui. // Occurs with prob. bi
ai+bi

.

10 return Xn(= Yn).

Lemma C.3. For every integer 1 ≤ i ≤ n and r > 0,

E[f(OPTi−1)− f(OPTi)] ≤
1

2
E[r−1(f(Xi)− f(Xi−1)) + r(f(Yi)− f(Yi−1))] .

Proof. By the law of total expectation, it suffices to prove the lemma conditioned on any particular
choice for the random bits tossed in the first i− 1 iterations of Algorithm 1. Notice that once these
random bits are fixed, OPTi−1, Xi−1 and Yi−1 become deterministic sets, and so do the numbers ai
and bi calculated by Algorithm 1. We now need to consider three cases based on the values of these
numbers.

The first case is the case of bi ≤ 0. In this case Algorithm 1 deterministically set Xi ← Xi−1 + ui
and Yi ← Yi−1, which reduces the inequality that we need to prove to

f(OPTi−1)− f(OPTi−1 + ui) ≤ 1
2r [f(Xi−1 + ui)− f(Xi−1)] . (2)

Observe that the description of Algorithm 1 implies Xi−1 ⊆ Yi−1, ui ̸∈ Xi−1 and ui ∈ Yi−1 (see
Buchinder et al. [7] for a formal proof of these properties). Given these properties, the submodularity
of f shows that the right hand side of Inequality (2) is non-negative because

f(Xi−1 + ui)− f(Xi−1) ≥ [f((Xi−1 + ui) ∪ (Yi−1 − ui))
+ f((Xi−1 + ui) ∩ (Yi−1 − ui))− f(Yi−1 − ui)]− f(Xi−1)

= f(Yi−1) + f(Xi−1)− f(Yi−1 − ui)− f(Xi−1) = −bi ≥ 0 .

To complete the proof of the first case, it remains to show that the left hand side of Inequality (2) is non-
positive. If ui ∈ OPTi−1, then this left hand side is trivially 0. Otherwise, since OPTi−1 ⊆ Yi−1 by
definition, the submodularity of f shows that this left hand side is non-positive because

f(OPTi−1)− f(OPTi−1 + ui) ≤ f(Yi−1 − ui)− f(Yi−1) = bi ≤ 0 .

The second case that we need to consider is the case of bi > 0 and ai ≤ 0. However, since the
analysis of this case is analogous to the analysis of the previous case, we omit it. Thus, we are left
with the case in which both ai and bi are positive. The analysis of this case consists of two sub-cases
depending on whether ui ∈ OPT or not. Since the proofs of these sub-cases are analogous to each
other, we assume from this point on that ui ̸∈ OPT .

In the case we consider, Algorithm 1 sets Xi ← Xi−1 + ui and Yi ← Yi−1 with probability
ai/(ai + bi), and otherwise it sets Xi ← Xi−1 and Yi ← Yi−1 − ui. Thus, the law of total
expectation implies

E[f(OPTi−1)− f(OPTi)] =
ai

ai + bi
· [f(OPTi−1)− f(OPTi−1 + ui)]

+
bi

ai + bi
· [f(OPTi−1)− f(OPTi−1)]

=
ai

ai + bi
· [f(OPTi−1)− f(OPTi−1 + ui)] ,
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and

E[r−1(f(Xi)− f(Xi−1)) + r(f(Yi)− f(Yi−1))]

=
ai

ai + bi
· [r−1(f(Xi−1 + ui)− f(Xi−1)) + r(f(Yi−1)− f(Yi−1))]

+
bi

ai + bi
· [r−1(f(Xi−1)− f(Xi−1)) + r(f(Yi−1 − ui)− f(Yi−1))]

=
r−1a2i
ai + bi

+
rb2i

ai + bi
.

Plugging both these equalities into the inequality that we need to prove, we get that this inequality is
equivalent to

ai
ai + bi

· [f(OPTi−1)− f(OPTi−1 + ui)] ≤
1

2

[
r−1a2i
ai + bi

+
rb2i

ai + bi

]
.

Furthermore, like in the first case, we have f(OPTi−1)− f(OPTi−1 + ui) ≤ bi, and therefore, it
suffices to prove the inequality

aibi
ai + bi

≤ 1

2

[
r−1a2i
ai + bi

+
rb2i

ai + bi

]
,

which holds since

r−1a2i + rb2i = (ai/
√
r − bi

√
r)2 + 2(ai/

√
r)(bi

√
r) ≥ 2aibi .

Using Lemma C.3, we can now prove Proposition C.2.

Proof of Proposition C.2. Throughout this proof, r is an arbitrary positive number. Summing up the
guarantees of Lemma C.3 for all integers 1 ≤ i ≤ n yields

n∑

i=1

E[f(OPTi−1)−f(OPTi)] ≤
1

2
E

[
r−1 ·

n∑

i=1

(f(Xi)− f(Xi−1)) + r ·
n∑

i=1

(f(Yi)− f(Yi−1))

]
.

Using the linearity of expectation, we can collapse the telescopic sums in the last inequality, and get

E[f(OPT0)− f(OPTn)] ≤
1

2
E[r−1(f(Xn)− f(X0)) + r(f(Yn)− f(Y0))] .

As explained above, OPT0 = OPT and OPTn = Xn = Yn. Additionally, X0 and Y0 are set by
Algorithm 1 to ∅ and N , respectively. Plugging all these equalities into the previous inequality
reduces it to

E[f(OPT )− f(Xn)] ≤
1

2
E[r−1(f(Xn)− f(∅)) + r(f(Xn)− f(N ))] .

The proposition now follows by rearranging the above inequality, and observing that Xn is the output
set S mentioned in the statement of the proposition.

C.2 Proof of Theorem 3.2

In this section, we show how the proof of the symmetry gap technique due to Vondrák [52] can be
adapted to prove Theorem 3.2. Let us begin the section by stating some definitions that are required
in order to formally state Theorem 3.2.

Definition C.4. [Strong symmetry] Consider a non-negative submodular function f and a collection
F ⊆ 2N of feasible sets. The problem max{f(S) | S ∈ F} is strongly symmetric with respect
to a group of permutations G on N , if (1) f(S) = f(σ(S)) for all S ⊆ N and σ ∈ G, and
(2) S ∈ F ⇐⇒ S′ ∈ F whenever Eσ∈G [1σ(S)] = Eσ∈G [1σ(S′)], where Eσ∈G represents the
expectation over picking σ uniformly at random out of G.
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Definition C.5. [Symmetry gap] Consider a non-negative submodular function f and a collection
F ⊆ 2N of feasible sets. Let F (x) be the multilinear extension of f and P (F) ⊆ [0, 1]N be the
convex hull of F . Then, if the problem max{f(S) | S ∈ F} is strongly symmetric with respect to a
group G of permutation, then its symmetry is defined as

max{F (x̄) | x ∈ P (F)}
max{F (x) | x ∈ P (F)} ,

where x̄ ≜ Eσ∈G [σ(x)].

Definition C.6. [Refinement] Consider a setF ⊆ 2N , and letX be some set. We say that F̃ ⊆ 2N×X

is a refinement of F if

F̃ =
{
S ⊆ N ×X

∣∣∣ x ∈ P (F), where xu = |S∩({u}×X)|
|X| for every u ∈ N

}
.

Using the above definitions, we can now formally state the theorem that we want to prove.
Theorem 3.2. Consider a non-negativem-monotone submodular function f and a collectionF ⊆ 2N

of feasible sets such that the problem max{f(S) | S ∈ F} is strongly symmetric with respect to
some group G of permutations over N and has a symmetry gap γ. Let C be the class of problems
max{f̃(S) | S ∈ F̃} in which f̃ is a non-negative m-monotone submodular function, and F̃ is a
refinement of F . Then, for every ε > 0, any (even randomized) (1 + ε)γ-approximation algorithm
for the class C would require exponentially many value queries to f̃ .

The crux of the symmetry gap technique is two lemmata due to [52] that we restate below. Lemma C.7
shows that given a non-negative set function f , one can obtain from it two continuous versions: a
continuous version F̂ that resembles f itself, and a continuous version Ĝ that resembles a symmetrized
version of f . Distinguishing between F̂ and Ĝ is difficult, however, this does not translate into an
hardness for discrete problems since F̂ and Ĝ are continuous. Therefore, Vondrák [52] proved also
Lemma C.8, which shows how these continuous functions can be translated back into set functions
with appropriate properties.
Lemma C.7 (Lemma 3.2 of [52]). Consider a function f : 2N → R≥0 invariant under a group
of permutations G on the ground set N . Let F (x) be the multilinear extension of F , define x̄ =

Eσ∈G [1σ(x)] and fix any ε > 0. Then, there is δ > 0 and functions F̂ , Ĝ : [0, 1]N → R≥0 (which are
also symmetric with respect to G), satisfying the following:

1. For all x ∈ [0, 1]N , Ĝ(x) = F̂ (x̄).

2. For all x ∈ [0, 1]N , |F̂ (x)− F (x)| ≤ ε.

3. Whenever ∥x− x̄∥2 ≤ δ, F̂ (x) = Ĝ(x) and the value depends only on x̄.

4. The first partial derivatives of F̂ and Ĝ are absolutely continuous.

5. If f is monotone, then, for every element u ∈ N , ∂F̂
∂xu
≥ 0 and ∂Ĝ

∂xu
≥ 0 everywhere.

6. If f is submodular then, for every two elements u, v ∈ N , ∂2F̂
∂xu∂xv

≤ 0 and ∂2Ĝ
∂xu∂xv

≤ 0
almost everywhere.

Lemma C.8 (Lemma 3.1 of [52]). Let n be a positive integer, and let F : [0, 1]N → R and X = [n].
If we define f : 2N×X → R≥0 so that f(S) = F (x), where xu = 1

n |S ∩ ({u} ×X)|. Then,

1. if ∂F
∂xu
≥ 0 everywhere for each element u ∈ N , then f is monotone,

2. and if the first partial derivatives of F are absolutely continuous and ∂2F
∂xu∂xv

≤ 0 almost
everywhere for all elements u, v ∈ N , then f is submodular.

One can note that the above lemmata have the property that if the function f plugged into Lemma C.7
is monotone, then the discrete functions obtained by applying Lemma C.8 to the functions F̂ and
Ĝ are also monotone. This is the reason that the framework of [52] applies to monotone functions
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(as well as general, not necessarily monotone, functions). Therefore, to get the proof of [52] to
yield Theorem 3.2, it suffices to prove the following two modified versions of Lemmata C.7 and C.8.
These modified versions preserve m-monotonicity for any m ∈ [0, 1], rather than just standard
monotonicity.
Lemma C.9 (modified version of Lemma C.7). Consider a function f : 2N → R≥0 that is m-
monotone and invariant under a group of permutations G on the ground set N . Let F (x) be the
multilinear extension of F , define x̄ = Eσ∈G [1σ(x)] and fix any ε > 0. Then, there is δ > 0

and functions F̂ , Ĝ : [0, 1]N → R≥0 (which are also symmetric with respect to G), satisfying the
following:

1. For all x ∈ [0, 1]N , Ĝ(x) = F̂ (x̄).

2. For all x ∈ [0, 1]N , |F̂ (x)− F (x)| ≤ ε.

3. Whenever ∥x− x̄∥2 ≤ δ, F̂ (x) = Ĝ(x) and the value depends only on x̄.

4. For every two vectors x,y ∈ [0, 1]N obeying x ≤ y, m · F (x) ≤ F (y).

5. If f is submodular then, for every two elements u, v ∈ N , ∂2F̂
∂xu∂xv

≤ 0 and ∂2Ĝ
∂xu∂xv

≤ 0
almost everywhere.

Lemma C.10 (modified version of Lemma C.8). Let n be a positive integer, and let F : [0, 1]N → R
and X = [n]. If we define f : 2N×X → R≥0 so that f(S) = F (x), where xu = 1

n |S ∩ ({u} ×X)|.
Then,

1. if for some value m ∈ [0, 1] the inequality m · F (x) ≤ F (y) holds for any two vectors
x,y ∈ [0, 1]N that obey x ≤ y, then f is m-monotone,

2. and if the first partial derivatives of F are absolutely continuous and ∂2F
∂xu∂xv

≤ 0 almost
everywhere for all elements u, v ∈ N , then f is submodular.

The proof of Lemma C.9 is quite long and appears below. However, before getting to this proof, let
first give the much simpler proof of Lemma C.10.

Proof of Lemma C.10. The second point in Lemma C.10 follows immediately from Lemma C.8, so
we concentrate on proving the first point. In other words, we assume that m · F (x) ≤ F (y) for every
two vectors x,y ∈ [0, 1]N obeying x ≤ y, and we need to show that m · f(S) ≤ f(T ) for every two
sets S ⊆ T ⊆ N .

Let us define two vectors x(S),x(T ) ⊆ [0, 1]N as follows. For every u ∈ N ,

x(S)
u =

1

n
|S ∩ ({u} ×X)| and x(T )

u =
1

n
|T ∩ ({u} ×X)| .

Since S ⊆ T , we get x(S) ≤ x(T ), which implies m · F (x(S)) ≤ F (x(T )); and the last inequality
proves the lemma since f(S) = F (x(S)) and f(T ) = F (x(T )) by the definition of f .

We now get to the proof of Lemma C.9. We use in this proof functions F̂ and Ĝ that are similar to the
ones constructed by Vondrák [52] in the proof of Lemma C.7. Specifically, like in the proof of [52],
we define

Ĝ(x) = G(x) + 256M |N |αJ(x) ,
where M is the maximum value that the function f takes on any set, G is a symmetrized version
of the multilinear extension F of f defined as G(x) = F (x̄), J(x) ≜ |N |2 + 3|N | ·∑u∈N xu −(∑

u∈N xu
)2

, and α is a positive value that is independent of x. Similarly, the function F̂ was
defined by Vondrák [52] as

F̂ (x) = F̃ (x) + 256M |N |αJ(x) ,
where the function F̃ interpolates between the multilinear extension F of f and its symmetrized
version G, and is given by

F̃ (x) = (1− ϕ(D(x))) · F (x) + ϕ(D(x)) ·G(x) .
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Here, D(x) ≜ ∥x − x̄∥22, and ϕ : R≥0 → [0, 1] is a function which is defined using the following
lemma.

Lemma C.11 (Lemma 3.7 of [52]). For any α, β > 0, there is δ > (0, β) and a function ϕ : R≥0 →
[0, 1] with an absolutely continuous first derivative such that

• For t ∈ [0, δ], ϕ(t) = 1.

• For t ≥ β, ϕ(t) < e−1/α.

• For all t ≥ 0, |tϕ′(t)| ≤ 4α.

• For almost all t ≥ 0, |t2ϕ′′(t)| ≤ 10α.

Vondrák [52] proved that the above functions F̂ and Ĝ have all the properties guaranteed by
Lemma C.7 for the δ whose existence is guaranteed by Lemma C.11 when the values of α and
β are set to be α = ε

2000M |N |3 and β = ε
16M |N | . Moreover, the proof of [52] continues to work as

long as α ≤ ε
2000M |N |3 and β ≤ ε

16M |N | . Therefore, we assume below that α = min{1, ε
2000M |N |3 }

and β = min{α2, ε
16M |N |}, and we prove only the part of Lemma C.9 that is not stated in the

guarantees of Lemma C.7, which is Property 4 of the lemma. We begin by showing that the function
Ĝ indeed has this property.

Lemma C.12. For every two vectors x,y ∈ [0, 1]N obeying x ≤ y, m · Ĝ(x) ≤ Ĝ(y).

Proof. Consider the random sets R(x̄) and R(ȳ). Since x̄ ≤ ȳ, the set R(ȳ) stochastically dominates
R(x̄). In other words, one can correlate the randomness of these sets in a way that does not alter their
distributions, but guarantees that the inclusion R(x̄) ⊆ R(ȳ) holds deterministically. Assuming this
done, we get

m ·G(x) = m · F (x̄) = m · E[f(R(x̄))] ≤ E[f(R(ȳ))] = F (ȳ) = G(y) , (3)

where the inequality follows from the linearity of the expectation and the m-monotonicity of f .

Observe now that for every element u ∈ N , the partial derivative of J with respect to zu at any point
z ∈ [0, 1]N is

∂J(z)

∂zu
= 3|N | − 2

∑

v∈N
zv ≥ |N | ≥ 0 .

Hence, the inequality x ≤ y implies m · J(x) ≤ J(x) ≤ J(y). Together with Inequality (3), this
implies the lemma.

One can observe that the arguments used to prove Inequality(3) in the proof of the last lemma also
show that m ·F (x) ≤ F (y), which is a fact that we use below. However, proving that F̂ also has this
property (and therefore, obeys Property 4 of Lemma C.9) is more involved. As a first step towards
this goal, we bound the gradient of

F̃ (x)− F (x) = ϕ(D(x)) · [G(x)− F (x)] .
The following lemma does that in the regime in which D(x) is small, and the next lemma handles
the other regime.

Lemma C.13. For every element u ∈ N and vector x ∈ [0, 1]N obeying D(x) ≤ β, the absolute
value of the partial derivative ∂{ϕ(D(x))·[G(x)−F (x)]}

∂xu
is at most 72

√
βM |N | ≤ 72αM |N |.

Proof. Observe that

∂{ϕ(D(x)) · [G(x)− F (x)]}
∂xu

= ϕ′(D(x)) · ∂D(x)

∂xu
· [G(x)− F (x)]

+ ϕ(D(x)) ·
[
∂G(x)

∂xu
− ∂F (x)

∂xu

]
.
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To use this equation to bound the absolute value of the left hand side, we need to make some
observations. First, Lemma 3.6 of [52] shows that ∥∇D(x)∥2 = 2

√
D(x), which implies

∂D(x)

∂xu
≤ ∥∇D(x)∥2 = 2

√
D(x) .

Additionally, Lemma 3.5 of [52] shows that |G(x)− F (x)| ≤ 8M |N | ·D(x), and therefore,∣∣∣∣ϕ′(D(x)) · ∂D(x)

∂xu
· [G(x)− F (x)]

∣∣∣∣ ≤ |ϕ′(D(x))| ·
∣∣∣∣
∂D(x)

∂xu

∣∣∣∣ · |G(x)− F (x)|

≤ |ϕ′(D(x))| · 2
√
D(x) · 8M |N | ·D(x)

= |D(x) · ϕ′(D(x))| · 16M |N | ·
√
D(x)

≤ 64α
√
βM |N | ,

where the second inequality follows from Lemma C.11 and our assumption that D(x) ≤ β.

We now observe that∣∣∣∣ϕ(D(x)) ·
[
∂G(x)

∂xu
− ∂F (x)

∂xu

]∣∣∣∣ = ϕ(D(x)) ·
∣∣∣∣
∂G(x)

∂xu
− ∂F (x)

∂xu

∣∣∣∣

≤ ϕ(D(x)) · ∥∇G(x)−∇F (x)∥2 ≤ ϕ(D(x)) · 8M |N | ·
√
D(x) ≤ 8

√
βM |N | ,

where the second inequality holds since Lemma 3.5 of [52] shows that ∥∇G(x) − F (x)∥2 ≤
8M |N | ·

√
D(x); and the last inequality holds by our assumption that D(x) ≤ β and by recalling

that the range of ϕ is [0, 1].

Combining all the above yields∣∣∣∣
∂{ϕ(D(x)) · [G(x)− F (x)]}

∂xu

∣∣∣∣ ≤ 64α
√
βM |N |+ 8

√
βM |N | ≤ 72

√
βM |N | ,

where the second inequality holds since α ≤ 1.

Lemma C.14. For every element u ∈ N and vector x ∈ [0, 1]N obeying D(x) ≥ β, the absolute
value of the partial derivative ∂{ϕ(D(x))·[G(x)−F (x)]}

∂xu
is at most 72αM |N |3/2.

Proof. Repeating the proof of Lemma C.13, except for the use of the inequality D(x) ≤ β (which
does not hold in the current lemma) and the inequality ϕ(x) ≤ 1 (which too weak for our current
purpose), we get∣∣∣∣ϕ(D(x)) ·

[
∂G(x)

∂xu
− ∂F (x)

∂xu

]∣∣∣∣ ≤ 64αM |N | ·
√
D(x) + |ϕ(D(x))| · 8M |N | ·

√
D(x) .

The expression ϕ(D(x)) can be upper bounded by e−1/α ≤ α by Lemma C.11. Also, D(x) =
∥x − x̄∥22 ≤ |N |. The lemma now follows by plugging these two upper bounds into the previous
inequality.

Corollary C.15. For every element u ∈ N and vector x ∈ [0, 1]N , the absolute value of the partial
derivative ∂{ϕ(D(x))·[G(x)−F (x)]}

∂xu
is at most 72αM |N |3/2.

The last corollary implies that F̃ can be presented as the sum of F and a component that changes
slowly. Therefore, if we add to F̃ a function that increases quickly enough (as is done to define F̂ ),
then we should get a function that can be represented as F plus a monotone component. This is the
intuition formalized in the proof of the next lemma.

Lemma C.16. The function F̂ (x)−F (x) has non-negative partial derivatives for every x ∈ [0, 1]N .

Proof. By the definition of F̂ (x),

F̂ (x)− F (x) = F̃ (x)− F (x) + 256M |N |αJ(x) .
By Corollary C.15 and the observation that all the partial derivatives of J(x) are at least |N | (see the
proof of Lemma C.12), the last equality implies, for every element u ∈ N ,

∂[F̂ (x)− F (x)]
∂xu

≥ −72αM |N |3/2 + 256αM |N |2 ≥ 0 .
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We are now ready to show that F̂ obeys Property 4 of Lemma C.9.

Lemma C.17. For every two vectors x,y ∈ [0, 1]N obeying x ≤ y, m · F̂ (x) ≤ F̂ (y).

Proof. Note that 1∅ = 1∅, which implies that G(1∅) = F (1∅), and therefore,

F̃ (1∅)− F (1∅) = ϕ(D(1∅)) · [G(1∅)− F (1∅)] = 0 .

Plugging this observation into the definition of F̂ now gives

F̂ (1∅)− F (1∅) = F̃ (1∅)− F (1∅) + 256M |N |αJ(1∅) = 256M |N |αJ(1∅) .

Since all the first partial derivatives of F̂ (z) − F (z) are non-negative by Lemma C.16, the last
inequality implies

F̂ (y)− F (y) ≥ F̂ (x)− F (x) ≥ 256M |N |αJ(x) ≥ 0 .

Hence,

m·F̂ (x) ≤ m·[F (x)+F̂ (y)−F (y)] ≤ F (y)+m·[F̂ (y)−F (y)] ≤ F (y)+[F̂ (y)−F (y)] = F̂ (y) ,

where the second inequality holds by the discussion immediately after the proof of Lemma C.12, and
the last inequality holds since m ≤ 1 and F̂ (y)− F (y) ≥ 0.

C.3 Proof of Lemma 3.3

Lemma 3.3. The problem max{f(S) | S ∈ F} has a symmetry gap of 1
2−m .

Proof. Observe that our definition of F implies that P (F) = [0, 1]N . Therefore,

max{F (x) | x ∈ P (F)} = max{F (x) | x ∈ [0, 1]N } = max{f(S) | S ⊆ N} = 1 , (4)

where the second equality holds since, for every vector x, F (x) is a convex combination of values of
f for subsets of N ; and on the other hand, for every set S ⊆ N , f(S) = F (1S).

Observe now that the definition of f implies that

F (x) = m[1− (1− xu)(1− xv)] + (1−m) · [xu(1− xv) + xv(1− xu)]
= xu + xv − xuxv(2−m) .

Since x̄ is a vector that has the value (xu + xv)/2 in both its coordinates, if we we use the shorthand
y = (xu + xv)/2, then we get

F (x̄) = 2y − (2−m)y2 .

This expression is maximized for y = 1/(2−m), and the maximum attained for this y is

2

2−m −
(2−m)

(2−m)2
=

1

2−m .

Since the value y = 1/(2 − m) is obtained, for example, when x = (y, y) ∈ [0, 1]N , the above
implies

max{F (x̄) | x ∈ P (F)} = 1

2−m .

Together with Equation (4), this implies the lemma.

D Inapproximability and Proofs of Section 4

In this section we state and analyze the algorithms used to prove the results given in Section 4. We
also state and prove in Section D.3 the inapproximability result mentioned in Section 4.
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D.1 Analysis of the Greedy Algorithm

In this section we prove Theorem 4.1, which we repeat here for convenience.

Theorem 4.1. The Greedy algorithm (Algorithm 2) has an approximation ratio of at least m(1−
1/e) for the problem of maximizing a non-negative m-monotone submodular function subject to a
cardinality constraint.

The greedy algorithm starts with an empty solution, and then augments this solution in k iterations
(recall that k is the maximum cardinality allowed for a feasible solution). Specifically, in iteration i,
the algorithm adds to the current solution the element ui with the best (largest) marginal contribution
with respect to the current solution—but only if this addition does not decrease the value of the
solution. A formal description of the greedy algorithm appears as Algorithm 2. Note that in this
description the solution of the algorithm after i iterations, for every integer 0 ≤ i ≤ n, is denoted by
Ai.

Algorithm 2: The Greedy Algorithm (f, k)

1 Let A0 ← ∅.
2 for i = 1 to k do
3 Let ui be the element of N \Ai−1 maximizing f(ui | Ai−1).
4 if f(ui | Ai−1) ≥ 0 then Let Ai ← Ai−1 + ui.
5 else Let Ai ← Ai−1.
6 return Ak.

Our first step towards proving Theorem 4.1 is the following lemma, which lower bounds the increase
in the value of f(Ai) as a function of i. Specifically, the lemma shows that this increase is significant
as long as there is a significant gap between between f(Ai−1) and m · f(OPT ), where OPT is an
arbitrary optimal solution.

Lemma D.1. For every integer 1 ≤ i ≤ k, f(Ai)− f(Ai−1) ≥ k−1[m · f(OPT )− f(Ai−1)].

Proof. We need to distinguish between two cases. Consider first the case in which f(ui | Ai−1) ≥ 0.
In this case,

f(Ai)− f(Ai−1) = f(ui | Ai−1) ≥
|OPT \Ai−1|

k
· f(ui | Ai−1)

≥ |OPT \Ai−1|
k

· max
u∈OPT\Ai−1

f(u | Ai−1) ≥
∑

u∈OPT\Ai−1
f(u | Ai−1)

k

≥ f(OPT ∪Ai−1)− f(Ai−1)

k
≥ m · f(OPT )− f(Ai−1)

k
,

where the first inequality holds since |OPT \ Ai−1| ≤ |OPT | ≤ k because OPT is a feasible
solution, the second inequality is due to the way used by the greedy algorithm to choose the element
ui, the penulatimate inequality follows from the submodularity of f , and the last inequality holds
since f is m-monotone.

Consider now the case in which f(ui | Ai−1) < 0. In this case, f(Ai) − f(Ai−1) = 0 because
Ai = Ai−1. Furthermore, repeating the arguments used to prove the above inequality yields

m · f(OPT )− f(Ai−1) ≤ |OPT \Ai−1| · max
u∈OPT\Ai−1

f(u | Ai−1)

≤ |OPT \Ai−1| · max
u∈N\Ai−1

f(u | Ai−1) ≤ 0 .

Rearranging the last lemma, we get the following inequality.

m · f(OPT )− f(Ai) ≤ (1− 1/k) · [m · f(OPT )− f(Ai−1)] . (5)

This inequality bounds the rate in which the gap between m · f(OPT ) reduces as a function of i.
This allows us to prove Theorem 4.1.
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Proof of Theorem 4.1. Combining Inequality (5) for every integer 1 ≤ i ≤ k yields

m · f(OPT )− f(Ak) ≤ (1− 1/k)k · [m · f(OPT )− f(A0)] .

Rearranging this inequality, we get

f(Ak) ≥ m · f(OPT )−m · (1− 1/k)k · [f(OPT )− f(A0)] ≥ m ·
(
1− 1

e

)
· f(OPT ) ,

where the last inequality follows from the non-negativity of f and the inequality (1−1/k)k ≤ 1
e .

D.2 Analysis of Random Greedy

In this section we prove Theorem 4.2, which we repeat here for convenience.

Theorem 4.2. Random Greedy (Algorithm 3) has an approximation ratio of at least m(1− 1/e) +
(1 −m) · (1/e) for the problem of maximizing a non-negative m-monotone submodular function
subject to a cardinality constraint.

Like the standard greedy algorithm from Section D.1, the Random Greedy algorithm starts with an
empty solution, and then augments it in k iterations. Specifically, in iteration i the algorithm finds a
set Mi of at most k elements whose total marginal contribution with respect to the current solution is
maximal. Then, at most one element of Mi is added to the algorithm’s current solution in a random
way guaranteeing that every element of Mi is added to the solution with probability exactly 1/k.
A formal presentation of the Random Greedy algorithm appears as Algorithm 3. Note that in this
presentation the solution of the algorithm after i iterations is denoted by Ai.

Algorithm 3: Random Greedy (f, k)

1 Let A0 ← ∅.
2 for i = 1 to k do
3 Let Mi ← argmaxB⊆N\Ai−1,|B|≤k{

∑
u∈B f(u | Ai−1)}.

4 with probability (1− |Mi|/k) do
5 Ai ← Ai−1.
6 otherwise
7 Let ui be a uniformly random element of Mi.
8 Set Ai ← Ai−1 + ui.

9 return Ak.

We start the analysis of the Random Greedy algorithm with the following lemma.

Lemma D.2. For every integer 0 ≤ i ≤ k and element u ∈ N , Pr[u ∈ Ai] ≤ 1− (1− 1/k)i.

Proof. Note that in each iteration i of Algorithm 3, any element u ∈ N \Ai−1 is added to the current
solution with probability of at most 1/k. Hence,

Pr[u ∈ Ai] = 1− Pr[u /∈ Ai] = 1−
i∏

j=1

Pr[u ̸∈ Aj | u ̸∈ Aj−1] ≤ 1− (1− 1/k)i .

Plugging the guarantee of the last lemma into Lemma 2.1 yields the following lower bound on the
expected value of Ai ∪OPT .

Corollary D.3. For every integer 0 ≤ i ≤ k, E[f(Ai ∪OPT )] ≥ [1− (1−m) · (1− (1− 1
k )

i)] ·
f(OPT ) = m · f(OPT ) + (1−m)(1− 1

k )
i · f(OPT ).

Using the last corollary we are now ready to prove Theorem 4.2.
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Proof of Theorem 4.2. Let Ei−1 be an arbitrary possible choice for the random decisions of Random
Greedy during its first i− 1 iterations. Observe that, conditioned on Ei−1 happening,

E[f(Ai)− f(Ai−1)] =

∑
u∈Mi

f(u | Ai−1)

k

≥
∑

u∈OPT\Ai−1
f(u | Ai−1)

k
≥ f(Ai−1 ∪OPT )− f(Ai−1)

k
,

where the first inequality follows from the choice of Mi by the algorithm, and the second inequality
follows from submodularity. Taking now expectation over the choice Ei−1 that realized, the last
inequality yields

E[f(Ai)− f(Ai−1)] ≥
E[f(Ai−1 ∪OPT )]− E[f(Ai−1)]

k
(6)

≥ m · f(OPT ) + (1−m)(1− 1
k )

i−1 · f(OPT )− E[f(Ai−1)]

k
,

where the second inequality is due to Corollary D.3.

The last inequality lower bounds the expected increase in the value of the solution of Random Greedy
in every iteration. This implies also a lower bound on the expected value of f(Ai). To complete the
proof of the theorem, we need to prove a closed form for this implied lower bound, which we do by
induction. Specifically, let us prove by induction on i that

E[f(Ai)] ≥
[
m ·

(
1−

(
1− 1

k

)i
)

+ (1−m) · i
k
·
(
1− 1

k

)i−1
]
· f(OPT ) (7)

for every integer 0 ≤ i ≤ k, which implies the theorem by plugging i = k because (1 − 1/k)k ≤
1/e ≤ (1− 1/k)k−1.

For i = 0, Inequality (7) holds since the non-negativity of f guarantees that f(A0) ≥ 0 = [(1−m) ·
( 0k ) · (1− 1

k )
−1 +m · (1− (1− 1

k )
0)] · f(OPT ). Consider now some integer 0 < i ≤ k, and let us

prove Inequality (7) for this value of i assuming that its holds for i− 1. By Inequality (6),

E[f(Ai)] = E[f(Ai−1)] + E[f(Ai)− f(Ai−1)]

≥ E[f(Ai−1)] +
m · f(OPT ) + (1−m)(1− 1

k )
i−1 · f(OPT )− E[f(Ai−1)]

k

=

(
1− 1

k

)
· E[f(Ai−1)] +

m+ (1−m)(1− 1
k )

i−1

k
· f(OPT ) .

Plugging the induction hypothesis into the last inequality, we get

E[f(Ai)] ≥
(
1− 1

k

)
·
[
m ·

(
1−

(
1− 1

k

)i−1
)

+ (1−m) · i− 1

k
·
(
1− 1

k

)i−2
]
· f(OPT )

+
m+ (1−m)(1− 1

k )
i−1

k
· f(OPT )

=

[
m

(
1−

(
1− 1

k

)i
)

+ (1−m) · i
k
·
(
1− 1

k

)i−1
]
· f(OPT ) .

D.3 Inapproximability for a Cardinality Constraint

In this section we state and prove the inapproximability result stated in Section 4.
Theorem D.4. For any constant ε > 0, no polynomial time algorithm can obtain an approximation
ratio of

min
α∈[0,1]

maxx∈[0,1]{α(mx2 + 2x− 2x2) + 2(1− α)(1− ex−1)(1− (1−m)x)}
max{1, 2(1− α)} + ε

for the problem of maximizing a non-negative m-monotone submodular function subject to a cardi-
nality constraint.
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We prove Theorem D.4 using the symmetry gap technique, and specifically, via our extension of
this technique proved in Theorem 3.2. To use this theorem, we need to construct an instance of our
problem in which there is a large gap between the values of the best (general) solution and the best
symmetric solution. Our instance is based on an instance constructed by Oveis Gharan and Vondrák
[46]. However, the objective function in the original instance of [46] is not m-monotone for any
m > 0, and therefore, we need to modify it so that it becomes m-monotone for a value m ∈ [0, 1] of
our choosing.

Fix some positive integer value r to be determined later and some value α ∈ [0, 1]. The ground set of
the instance we construct is N = {a, b} ∪ {ai, bi | i ∈ [r]}, and the constraint of the instance is a
cardinality constraint allowing a feasible solution to include up to 2 elements. The objective function
of our instance is the function f : 2N → R≥0 defined by f(S) = α ·f1(S)+(1−α)[f2(S)+f3(S)],
where

f1(S) = m · 1[S ∩ {a, b} ≠ ∅] + (1−m) · (|S ∩ {a, b}| mod 2) ,

f2(S) = 1[S ∩ {ai | i ∈ [r]} ≠ ∅] · (1− (1−m) · 1[a ∈ S])
and

f3(S) = 1[S ∩ {bi | i ∈ [r]} ≠ ∅] · (1− (1−m) · 1[b ∈ S]) .

Let us denote the above described instance of submodular maximization subject to a cardinality
constraint by I. We begin the analysis of I by proving some properties of its objective function.

Lemma D.5. The objective function f of I is non-negative, m-monotone and submodular.

Proof. We prove below that the functions f1, f2 and f3 have the properties stated in the lemma. This
implies that f also has these properties by Observation 2.2 and the well-known closure of the class of
submodular functions to multiplication by a non-negative constant and addition (see, e.g., Lemma 1.2
of [4]). The function f1 is identical to the function proved in Section 3 to have the properties stated
in the lemma, and the functions f2 and f3 are identical to each other up to switching the roles of a
with b and ai with bi. Therefore, to prove that both f2 and f3 have the properties stated by the lemma
it suffices to show that f2 has these properties, which we do in the rest of this proof.

Clearly, f2 is non-negative. To see that f2 is a submodular function, note that

• For every set S ⊆ N − a, f2(a | S) = −1[S ∩ {ai | i ∈ [r]} ≠ ∅] · (1−m).

• For every integer 1 ≤ i ≤ r and set S ⊆ N − ai, f2(ai | S) = 1[S ∩ {ai | i ∈ [r]} =
∅] · (1− (1−m) · 1[a ∈ S]).

• For every element u ∈ (N − a) \ {ai | i ∈ [r]} and set S ⊆ N − u, f2(u | S) = 0.

Since all the above marginal contributions are down-monotone functions of S (i.e., functions whose
value can only decrease when elements are added to S), the function f2 is submodular.

It remains to argue why f2 is m-monotone. Consider any two sets S ⊆ T ⊆ N . If f2(S) = 0, then
the inequality m · f(S) ≤ f(T ) follows from the non-negativity of f2. Therefore, consider the case
in which f2(S) > 0, which implies that S ∩ {ai | i ∈ [r]} ̸= ∅; and therefore, f2(S) = (1− (1−
m) · 1[a ∈ S]) ≤ 1. Since S is a subset of T , we also get f2(T ) = (1− (1−m) · 1[a ∈ T ]) ≥ m,
and hence, m · f2(S) ≤ m · 1 = m ≤ f2(T ).

A cardinality constraint is symmetric in the sense that the feasibility of a set depends only on the
number of elements in it, and is completely independent of the identity of these elements. Let us
now denote by G the group of permutations of N that are equivalent to applying any number of the
following two steps: (1) switching a with b and ai with bi for every i ∈ [r], or (2) switching ai with
aj for two integers i, j ∈ [r]. The first step preserves the value of f because it simply switches the
values of f2 and f3, while leaving the value of f1 unaffected; and the second step preserves the value
of f since it deals with elements that both f1 and f3 ignore, and f2 treats in the same way. Hence, for
every set S ⊆ N and permutation σ ∈ G, we have f(S) = f(σ(S)), which implies the following
observation.

Observation D.6. The instance I is strongly symmetric with respect to G.
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To use Theorem 3.2, we still need to bound the symmetry gap of I, which we do next.

Lemma D.7. The symmetry gap of I is at most

maxx∈[0,1]{α(mx2 + 2x− 2x2) + 2(1− α)[1− (1− (1− x)/r)r](1− (1−m)x)}
max{1, 2(1− α)}

≤ maxx∈[0,1]{α(mx2 + 2x− 2x2) + 2(1− α)(1− ex−1)(1− (1−m)x)}
max{1, 2(1− α)} + 2/r .

Proof. Two possible feasible solutions for I are the sets {a, b1} and {a1, b1} whose values according
to f are 1 and 2(1− α), respectively. Therefore, the value of the optimal solution for I is at least
max{1, 2(1 − α)}. Since the symmetry gap is the ratio between the value of the best symmetric
solution and the value of the best solution, to prove the lemma it remains to argue that the best
symmetric solution for I has a value of maxx∈[0,1]{α(mx2 + 2x− 2x2) + 2(1− α)[1− (1− (1−
x)/r)r](1− (1−m)x)}.
We remind the reader that a symmetric solution for I is ȳ = Eσ∈G [y] for some vector y ∈ [0, 1]N

obeying ∥y∥1 ≤ 2. Since a and b can be exchanged with each other by the permutations of G, the
values of the coordinates of a and b in ȳ must be equal to each other. Similarly, every two elements
of {ai, bi ∈ i ∈ [r]} can be exchanged by the permutations of G, and therefore, the values of the
coordinates of these elements in ȳ must all be identical. Thus, any symmetric solution ȳ can be
represented as

ȳu =

{
x if u = a or u = b ,

z if u ∈ {ai, bi | i ∈ [r]}
for some values x, z ∈ [0, 1] obeying 2x+ 2rz ≤ 2 (or equivalently, z ≤ (1− x)/r). The value of
this solution (according to the multilinear extension F of f ) is

α[m(1− (1− x)2) + 2(1−m)x(1− x)] + 2(1− α)(1− (1− z)r)(1− (1−m)x)

= α(mx2 + 2x− 2x2) + 2(1− α)(1− (1− z)r)(1− (1−m)x) .

Since this expression is a non-decreasing function of z, the maximum value of any symmetry solution
for I is

max
x,z∈[0,1]

z≤(1−x)/r

{α(mx2 + 2x− 2x2) + 2(1− α)(1− (1− z)r)(1− (1−m)x)}

= max
x∈[0,1]

{α(mx2 + 2x− 2x2) + 2(1− α)[1− (1− (1− x)/r)r](1− (1−m)x)} .

Since any refinement of a cardinality constraint is a cardinality constraint over a larger ground set,
plugging Lemma D.5, Observation D.6 and Lemma D.7 into Theorem 3.2 yields the following
corollary.

Corollary D.8. For every constant ε′ > 0, no polynomial time algorithm for maximizing a non-
negative m-monotone submodular function subject to a cardinality contraint obtains an approxima-
tion ratio of

maxx∈[0,1]{α(mx2 + 2x− 2x2) + 2(1− α)(1− ex−1)(1− (1−m)x)}
max{1, 2(1− α)} + 2/r + ε′ .

Theorem D.4 now follows from the last corollary by choosing ε′ = ε/2, r = ⌈4/ε⌉ and

α = argmin
α′∈[0,1]

maxx∈[0,1]{α′(mx2 + 2x− 2x2) + 2(1− α′)(1− ex−1)(1− (1−m)x)}
max{1, 2(1− α′)} .

E Inapproximability and Proofs of Section 5

In this section we state and analyze the algorithms used to prove the results given in Section 5. We
also state and prove in Section E.4 the inapproximability result mentioned in Section 5.
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E.1 Analysis of the Greedy algorithm

A version of the greedy algorithm designed for matroid constraints appears as Algorithm 4. This
algorithm starts with an empty solution, and then iteratively adds elements to this solution, where the
element added in each iteration is the element with the largest marginal contrition with respect to the
current solution among all the elements whose addition to the solution does not violate feasibility. The
algorithm terminates when no additional elements can be added to the solution without decreasing its
value.

Algorithm 4: The Greedy Algorithm (for a Matroid Constraint) (f,M = (N , I))
1 Let A0 ← ∅, and i← 0.
2 while true do
3 Let ui+1 be the element of {v ∈ N \Ai | Ai + v ∈ I} maximizing f(ui+1 | Ai).
4 if f(ui+1 | Ai) ≥ 0 then Let Ai+1 ← Ai + ui+1, and then, increase i by 1.
5 else return Ai.

Theorem 5.1. The Greedy algorithm (Algorithm 4) has an approximation ratio of at least m/2 for
maximizing a non-negative m-monotone submodular function subject to a matroid constraint.

Proof. Lemma 3.2 of [27] shows that the greedy algorithm outputs a solution S of value at least
f(S ∪OPT )/2 for the problem of maximizing a non-negative submodular function f subject to a
matroid constraint, where OPT is an optimal solution for the problem.6 The theorem now follows
since for an m-monotone function f we are guaranteed to have f(S ∪OPT ) ≥ m · f(OPT ).

E.2 Analysis of Measured Continuous Greedy

In this section, we reanalyze the Measured Continuous Greedy algorithm of [22] in view of the
monotonicity ratio. Given a non-negative submodular function f : 2N → R≥0 and a down-closed
solvable7 convex body P ⊆ [0, 1]N , Measured Continuous Greedy is an algorithm designed to
find a vector x ∈ P that approximately maximize F (x), where F is the multilinear extension of f .
Specifically, we prove the following theorem.
Theorem E.1. Given a non-negative m-monotone submodular function f : 2N → R≥0, a solvable
down-close convex body P ⊆ [0, 1]N and a parameter T ≥ 0, Measured Continuous Greedy outputs
a vector x ∈ [0, 1]N obeying F (x) ≥ [m(1 − e−T ) + (1 −m)Te−T ] · f(OPT ), where F is the
multilinear extension of f and OPT is the set maximizing f among all sets whose characteristic
vectors belong to P . Furthermore, x ∈ P whenever T ∈ [0, 1].

We note that Feldman et al. [22] discussed conditions that guarantee that x belongs to P also for
some values of T that are larger than 1. However, the above stated form of Theorem E.1 already
suffices to prove Theorem 5.2. Let us explain why this is the case. When P is the matroid polytope
PM of a matroidM, there are algorithms called Pipage Rounding [9] and Swap Rounding [11]
that, given a vector x ∈ P produce a set S that is independent inM and also obeys E[f(S)] ≥
F (x) − o(1) · f(OPT ). Therefore, one can obtain an algorithm for maximizing f subject to the
matroidM by executing Measured Continuous Greedy with P = PM and T = 1, and then applying
either Pipage Rounding or Swap Rounding to the resulting vector; which yields an algorithm with the
properties specified by Theorem 5.2.

We now describe the version of Measured Continuous Greedy that we analyze (given as Algorithm 5).
For simplicity, we chose to analyze a continuous version of this algorithm that assumes direct access
to the multilinear extension F of the objective function rather than just to the objective function itself.
We refer the reader to [22] for details about discretizing the algorithm and avoiding the assumption of
direct access to F . We also note that the o(1) error term in the approximation guarantee stated in

6In fact, Lemma 3.2 of [27] proves a more general result for p-set systems, but it implies the stated result
since matroids are 1-set systems.

7A body P ⊆ [0, 1]N is solvable if one can efficiently optimize linear functions subject to it, and is down-
closed if y ∈ P implies x ∈ P for every vector x ∈ [0, 1]N obeying x ≤ y (this inequality should be
understood to hold coordinate-wise).
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Theorem E.1 is due to these issues. Our description of Measured Continuous Greedy requires some
additional notation, namely, given two vectors x and y, we denote by x ∨ y their coordinate-wise
maximum and by x⊙ y their coordinate-wise multiplication.

Measured Continuous Greedy starts at “time” 0 with the empty solution, and improves this solution
during the time interval [0, T ]. We denote the solution of the algorithm at time t by y(t). At every time
t ∈ [0, T ], the algorithm calculates a vector w whose u-coordinate is the gain that can be obtained
by increasing this coordinates in the solution y(t) to be 1 (i.e., wu(t) = F (y(t) ∨ 1{u})− F (y(t))).
Then, the algorithm finds a vector x(t) ∈ P that maximizes the objective function w(t) · x(t), and
adds to the solution y(t) an infinitesimal part of (1N − y(t))⊙ x(t) (to understand where the last
expression comes from, we note that when x is integral, fully adding (1N −y(t))⊙x(t) to y(t) sets
to 1 all the coordinates that are 1 in x(t), which matches the “spirit” of the definition of w).

Algorithm 5: Measured Continuous Greedy(f, P, T )
1 Let y(0)← 1∅.
2 foreach t ∈ [0, T ) do
3 For each u ∈ N , let wu(t)← F (y(t) ∨ 1{u})− F (y(t)).
4 Let x(t)← argmaxx∈P {w(t) · x}.
5 Increase y(t) at a rate of dy(t)

dt = (1N − y(t))⊙ x(t).
6 return y(T ).

The first step in the analysis of Measured Continuous Greedy is bounding the maximum value of the
coordinates of the solution y(t).

Lemma E.2. For every t ∈ [0, T ], ∥y(t)∥∞ ≤ 1− e−t.

Proof. Fix an arbitrary element u ∈ N , and let us explain why yu(t) ≤ 1 − e−t. By Line 5 of
Algorithm 5, yu(t) obeys the differential inequality

dyu(t)

dt
= (1− yu(t)) · xu(t) ≤ 1− yu(t) ,

and the solution of this differential inequality for the initial condition yu = 0 is

yu(t) ≤ 1− e−t .

We are now ready to prove Theorem E.1

Proof of E.1. Recall that x(t) is a vector inside P for every time t ∈ [0, T ], and since P is down-
closed, (1N − y(t))⊙ x(t) and 1∅ both belong to P as well. This means that for T ≤ 1 the vector
y(T ) = (1 − T ) · 1∅ +

∫ T

0
(1N − y(t)) ⊙ x(t)dt is a convex combination of vectors in P , and

therefore belongs to P by the convexity of P .

It remains to lower bound the value of F (y(T )). By the chain rule,

dF (y(t))

dt
=
∑

u∈N

(
dyu(t)

dt
· ∂F (y)
∂yu

∣∣∣
y=y(t)

)
=
∑

u∈N

(
(1− yu(t)) · xu(t) ·

∂F (y)

∂yu

∣∣∣
y=y(t)

)
.

Since F is multilinear, its partial derivative with respect to a single coordinate is equal to the
difference between the value of the function for two different values of this coordinate over the
difference between these values. Plugging this observation into the previous inequality yields

dF (y(t))

dt
=
∑

u∈N

(
(1− yu(t)) · xu(t) ·

F (y(t) ∨ 1{u})− F (y(t))
1− yu(t)

)
= x(t) ·w(t) .
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One possible candidate to be x(t) is 1OPT . Hence, by the definition of x(t), x(t) · w(t) ≥
1OPT ·w(t). Combining this inequality with the previous one, we get

dF (y(t))

dt
≥ 1OPT ·w(t) =

∑

u∈OPT

[
F (y(t) ∨ 1{u})− F (y(t))

]

≥ F (y(t) ∨ 1OPT )− F (y(t)) ≥ [1− (1−m) · ∥y(t)∥∞] · f(OPT )− F (y(t))
≥ [1− (1−m)(1− e−t)] · f(OPT )− F (y(t))
= [m+ (1−m)e−t] · f(OPT )− F (y(t)) ,

where the second inequality holds by the submodularity of f , the penultimate inequality holds by
Lemma 2.1, and the last inequality follows from Lemma E.2.

Solving the differential inequality that we got for the initial condition F (y(0)) ≥ 0 (which holds by
the non-negativity of f ) yields

F (y(t)) ≥
[
m(1− e−t) + (1−m)te−t

]
· f(OPT ) ,

and the theorem now follows by plugging t = T .

E.3 Analysis of Random Greedy for Matroids

In this section we prove Theorem 5.3, which we repeat here for convenience.
Theorem 5.3. For every ε ∈ (0, 1), Random Greedy for Matroids (Algorithm 6) has an approximation
ratio of at least 1+m+e−2/(1−m)

4 − ε − ok(1) for the problem of maximizing a non-negative m-
monotone submodular function subject to a matroid constraint (except in the case of m = 1 in which
the approximation ratio is 1/2− ε− ok(1)), where ok(1) represents a term that diminishes with k.

To prove the theorem, we first need to state the algorithm it refers to. Towards this goal, let us assume
that the ground set N contains a set D of 2k “dummy” elements that are known to the algorithm and
have the following two properties.

• f(S) = (S \D) for every set S ⊆ N .
• S ∈ I if and only if S \D ∈ I and |S| ≤ k.

This assumption is useful since it allows us to assume that the optimal solution OPT is a base ofM,
and thus, simplifies the description of our algorithm (Random Greedy for Matroids). We can justify
our assumption using the following procedure: (i) add 2k dummy elements to the ground set, (ii)
extend f and I according to the above properties, (iii) execute Random Greedy for Matroids on the
resulting instance, and (iv) remove from the output of the algorithm any dummy elements that end up
in it. This procedure guarantees that any approximation guarantee obtained by Random Greedy for
Matroids using our assumption can be obtained also without the assumption.

Our version of the Random Greedy for Matroids algorithm is given as Algorithm 6. Like the original
version of the algorithm (due to [6]), our version starts with a base ofM consisting only of dummy
elements, and then modifies it in a series of iterations. In each iteration i, the algorithm starts with a
solution Si−1, and then identifies a base Mi ofM whose elements have the largest total marginal
contribution with respect to Si−1 (Mi is also required to be disjoint from Si−1). The algorithm then
picks a uniformly random element ui ∈ Si−1, and adds it to the solution Si−1 at the expense of
an element gi(ui) of Si−1 given by a function gi that is chosen carefully (the existence of such a
function follows, for example, from Corollary 39.12a of [48]).

As mentioned above, our version of Random Greedy for Matroids differs compared to the version
of [6] in two respects. The first modification is in the number of iterations that the algorithm makes.
To get the result of Buchbinder et al. [6], it suffices to use k iterations. However, the optimal number
of iterations increases with m, and therefore, our version of the algorithm uses k/ε iterations for
some parameter ε ∈ (0, 1) (we assume without loss of generality that k/ε is integral; otherwise, we
can replace ε with a value which is smaller than ε by at most a factor of 2 and has this property).
Furthermore, since we do not want to assume knowledge of m in the algorithm, we use a number of
iterations that is appropriate for m = 1, which requires us to make the second modification to the
algorithm; namely, we check whether replacing g(ui) with ui is beneficial, and make the swap only
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Algorithm 6: Random Greedy for Matroids(f,M = (N , I), ε)
1 Initialize S0 to be an arbitrary base containing only elements of D.
2 for i = 1 to k/ε do
3 Let Mi ⊆ N be a base ofM that contains only elements of N \ Si−1 and maximizes∑

u∈Mi
f(u | Si−1) among all such bases.

4 Let gi be a function mapping each element of Mi to an element of Si−1 obeying
Si−1 − gi(u) + u ∈ I for every u ∈ Si−1.

5 Let ui be a uniformly random element from Mi. if f(Si−1 − gi(ui) + ui) > f(Si−1)
then Let Si ← Si−1 − gi(ui) + ui.

6 else Let Si ← Si−1.
7 return Sk/ε.

if this is indeed the case. This guarantees that doing more iterations can never decrease the value of
the algorithm’s solution.

Since Theorem 5.3 is trivial for a constant k, we can assume in the analysis of Algorithm 6 that k is
larger than any given constant. The first step in this analysis is proving the following lower bound on
the expected value of OPT ∪ Si.

Observation E.3. For every integer 0 ≤ i ≤ k/ε, E[f(OPT ∪ Si)] ≥ 1
2 (1 +m + (1 −m)(1 −

2/k)i) · f(OPT ).

Proof. For every integer 0 ≤ i ≤ k/ε and element u ∈ N \ D, let pu,i denote the probability u
belongs to Si. We would like to argue that when i > 0, we have pu,i ≤ pu,i−1(1− 2/k) + 1/k. To
see why this is the case, note that u belongs to Si only if one of the following happens: (i) u belongs
to Si−1 and is not removed from the solution (happens with probability pu,i−1(1− 1/k) since gi(ui)
is a uniformly random element of Si−1), or (ii) u belongs to Mi−1 and is chosen as ui (happens with
probability at most (1− pu,i)/k). Therefore,

pu,i ≤ pu,i−1 · (1− 1/k) + (1− pu,i−1)/k = pu,i−1 · (1− 2/k) + 1/k . (8)

Next, we aim to prove by induction that pu,i ≤ 1
2 (1− (1− 2/k)i) for every integer 0 ≤ i ≤ k/ε. For

i = 0, this is true since u ∈ N \D implies that pu,0 = 0 = 1
2 (1− (1− 2/k)0). Assume now that the

claim holds for i− 1, and let us prove it for i ≥ 1. By the induction hypothesis and Inequality (8),

pu,i ≤ pu,i−1(1− 2/k) + 1/k ≤ 1
2 (1− (1− 2/k)i−1)(1− 2/k) + 1/k = 1

2 (1− (1− 2/k)i) .

The observation now follows since Lemma 2.1 guarantees that E[f(OPT ∪ Si)] = E[f(OPT ∪
(Si \D))] ≥ (1− (1−m) ·maxu∈N\D pi,u) · f(OPT ).

Below we prove a lower bound on the value of the solution of Algorithm 6 after any number
of iterations. However, to prove this lower bound we first need to prove the following technical
observation.

Observation E.4. For every positive integer i,
(
1− 2

k

)i−1

≥ e− 2i
k − k

i
· ok(1) .

Proof. Note that

e−
2i
k =

(
e−

2
k

)i
≤
(
1− 2

k
+

4

k2

)i

≤
(
1− 2

k

)i

+
4

k2
· i
(
1− 2

k
+

4

k2

)i−1

≤
(
1− 2

k

)i

+
4i

k2

(
1− 1

k

)i−1

≤
(
1− 2

k

)i

+
4i

k2
· e− i−1

k ,
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where the third inequality holds for k ≥ 4, and the second inequality holds since the derivative of the
function (1− 2/k + x)i is i(1− 2/k + x)i−1, which implies

(
1− 2

k
+

4

k2

)i

=

(
1− 2

k

)i

+

∫ 4/k2

0

i(1− 2/k + x)i−1dx

≤
(
1− 2

k

)i

+
4i

k2
(1− 2/k + 4/k2)i−1dx .

To complete the proof of the observation, it remains to note that, since the maximum of the function
x2e−x for x ≥ 0 is 4e−2,

4i

k2
· e− i−1

k ≤ 16e−2

i
· e 1

k =
k

i
· ok(1) .

We are now ready to prove the promised lower bound on the value of the solution Si of Algorithm 6
after any number of iterations.

Lemma E.5. For every integer 0 ≤ i ≤ k/ε,

E[f(Si)] ≥
[
1 +m

4
·
(
1− e− 2i

k

)
+

(1−m)i

2k
· e− 2i

k − ok(1)
]
· f(OPT ) .

Proof. For i = 0 the lemma follows from the non-negativity of f since the right hand side of the
inequality that we need to prove is non-positive for i = 0. Together with Observation E.4, this implies
that it suffices to prove the following inequality

E[f(Si)] ≥
[
1 +m

4
·
(
1−

(
1− 2

k

)i
)

+
(1−m)i

2k
·
(
1− 2

k

)i−1
]
· f(OPT ) , (9)

and the rest of the proof is devoted to this goal.

Fix an arbitrary integer 1 ≤ i ≤ k/ε. We would like to derive a lower bound on the expected
marginal contribution of the element ui to the set Si−1, and an upper bound on the expected marginal
contribution of the element g(ui) to the set Si−1 \ g(ui). Let Ai−1 be an event fixing all random
choices of Algorithm 6 up to iteration i− 1 (including), and let Ai−1 be the set of all possible Ai−1

events. Conditioned on any event Ai−1 ∈ Ai−1, the sets Si−1 and Mi becomes deterministic, and
we can define M ′

i as a set containing the elements of OPT \ Si−1 plus enough dummy elements of
D \ Si−1 to make the size of M ′

i exactly k. Then,

E[f(u | Si−1) | Ai−1] =

∑
u∈Mi

f(u | Si−1)

k
≥
∑

u∈M ′
i
f(u | Si−1)

k

=

∑
u∈OPT\Si−1

f(u | Si−1)

k
≥ f(OPT ∪ Si−1)− f(Si−1)

k
,

where Si, Mi and M ′
i represent here their values conditioned on Ai, the first inequality follows from

the definition of Mi and the second inequality holds by the submodularity of f . Similarly,

E[f(g(ui) | Si−1 − g(ui)) | Ai−1] =

∑
u∈Mi

f(g(ui) | Si−1 − g(u))
k

≤ f(Si−1)− f(∅)

k
≤ f(Si−1)

k
,

where the first inequality follows from the submodularity of f . Taking expectation over the event
Ai−1, we get

E[f(ui | Si−1)] ≥
E[f(OPT ∪ Si−1)]− E[f(Si−1)]

k

≥
1
2 (1 +m+ (1−m)(1− 2/k)i−1) · f(OPT )− E[f(Si−1)]

k
,
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where the last inequality is due to Observation E.3, and

E[f(g(ui) | Si−1 − g(ui))] ≤
E[f(Si−1)]

k
.

Combing the last two inequalities now yields

E[f(Si)] ≥ E[f(Si−1 − g(ui) + ui)] (10)
= E[f(Si−1)] + E[f(ui | Si−1 − g(ui))]− E[f(g(ui) | Si−1 − g(ui)]
≥ E[f(Si−1)] + E[f(ui | Si−1)]− E[f(g(ui) | Si−1 − g(ui)]

≥
(
1− 2

k

)
· E[f(Si−1)] +

1
2 (1 +m+ (1−m)(1− 2/k)i−1) · f(OPT )

k
,

where the first inequality follows from the submodularity of f since g(ui) ̸= ui because g(ui) ∈ Si−1

and ui ∈Mi.

Since Inequality (10) holds for every integer 1 ≤ i ≤ k/ε, we can use it repeatedly to get, for every
integer 0 ≤ i ≤ k/ε,

E[f(Si)] ≥
1

2k


(1 +m)

i∑

j=1

(
1− 2

k

)i−j

+ (1−m)
i∑

j=1

(
1− 2

k

)i−1

 · f(OPT )

+

(
1− 2

k

)i

· f(S0) .

Since the non-negativity of f guarantees that f(S0) ≥ 0, the last inequality implies Inequality (9),
and therefore, completes the proof of the lemma.

One can show that the lower bound for f(Si) proved by Lemma E.5 is maximized when i = k/(1−m).
Unfortunately, we cannot simply plug this i value into the lower bound due to two issues: this value
of i might not be integral, and this value of i might be larger than the number k/ε of iterations. The
following two lemmata prove the approximation guarantee of Theorem 5.3 despite these issues, and
together they complete the proof of the theorem.
Lemma E.6. When m ≤ 1− ε, the approximation ratio of Algorithm 6 is at least

1 +m+ e−2/(1−m)

4
− ok(1) .

Proof. Let i′ = ⌊k/(1 −m)⌋. Due to the condition of the lemma, Algorithm 6 makes at least i′
iterations. Furthermore, since Algorithm 6 makes a swap in its solution only when this swap is
beneficial, the expected value of the output of the algorithm is at least

E[f(Si′)] ≥
[
1 +m

4
·
(
1− e− 2i′

k

)
+

(1−m)i′

2k
· e− 2i′

k − ok(1)
]
· f(OPT )

≥
[
1 +m

4
·
(
1− e 2

k− 2
1−m

)
+
k − 1

2k
· e− 2

1−m − ok(1)
]
· f(OPT )

≥
[
1 +m

4
·
(
1− e− 2

1−m

)
− e

2
k − 1

2
+

1

2
· e− 2

1−m − 1

2k
− ok(1)

]
· f(OPT ) ,

where the first inequality follows from Lemma E.5, and the second inequality holds since k/(1−
m)−1 ≤ i′ ≤ k/(1−m). Since the terms e2/k−1

2 and 1
2k are both diminishing with k (and therefore,

can be replaced with ok(1)), the last inequality implies the lemma.

Lemma E.7. When 1− ε ≤ m < 1, the approximation ratio of Algorithm 6 is at least

1 +m+ e−2/(1−m)

4
− ε− ok(1) ,

and when m = 1 the approximation ratio of this algorithm is at least 1/2− ε− ok(1).
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Proof. The output set of Algorithm 6 is f(Sk/ε). By Lemma E.5, the expected value of this set is at
least

E[f(Sk/ε)] ≥
[
1 +m

4
·
(
1− e− 2

ε

)
+

1−m
2ε

· e− 2
ε − o1(k)

]
· f(OPT )

≥
[
1 +m

4
·
(
1− e− 2

ε

)
− ok(1)

]
· f(OPT )

≥
[
1 +m

4
·
(
1− 1

1 + 2/ε

)
− ok(1)

]
· f(OPT )

=

[
1 +m

2(ε+ 2)
− ok(1)

]
· f(OPT ) ≥

[
1 +m

4
− ε

4
− ok(1)

]
· f(OPT ) ,

where the third inequality holds since for every x ≥ 0, ln(1/(1 + x)) = ln(1 − x/(1 + x)) ≥
− x/(1+x)

1−x/(1+x) = −x.

The above inequality completes the proof for the case of m = 1. To complete the proof also for the
case of 1− ε ≤ m < 1, it suffice to observe that in this case

e−2/(1−m) ≤ e−2/ε ≤ 1

1 + 2/ε
≤ ε

2
.

E.4 Inapproximability for a Matroid Constraints

In this section we state and prove the inapproximability result mentioned in Section 5.
Theorem E.8. For any constant ε > 0, no polynomial time algorithm can obtain an approximation
ratio of

min
α∈[0,1]

max
x∈[0,1/2]

{α(mx2 + 2x− 2x2) + 2(1− α)(1− e−1/2)(1− (1−m)x)}+ ε

for the problem of maximizing a non-negative m-monotone submodular function subject to a matroid
constraint.

The proof of Theorem E.8 is very similar to the proof of Theorem D.4. Recall that in Section D.3,
we proved Theorem D.4 by constructing an instance I of submodular maximization subject to a
cardinality constraint, and then applying Theorem 3.2 to this instance. The proof of Theorem E.8 is
based on an instance I ′ of submoduar maximization subject to a matroid constrained that is identical
to I except for the following difference. In I, the constraint is a cardinality constraint allowing the
selection of up to 2 elements from the ground set N = {a, b} ∪ {ai, bi | i ∈ [r]}. In I ′, we have
instead a (simplified) partition matroid constraint allowing the selection of up to 1 element from
{a, b} and up to 1 element from {ai, bi | i ∈ [r]}.
Since the instances I and I ′ have the same objective function, the properties of this function stated in
Lemma D.5 apply to both of them. Furthermore, one can verify that I ′ is strongly symmetric with
respect to the group G of permutation defined in Section D.3. Therefore, we concentrate on analyzing
the symmetry gap of I ′.
Lemma E.9. The symmetry gap of I ′ is at most

max
x∈[0,1/2]

{α(mx2 + 2x− 2x2) + 2(1− α)[1− (1− 1/(2r))r](1− (1−m)x)}

≤ max
x∈[0,1/2]

{α(mx2 + 2x− 2x2) + 2(1− α)(1− e−1/2)(1− (1−m)x)}+ 1/(2r) .

Proof. One possible feasible solution for I ′ is the set {a, b1} whose value according to f is 1.
Therefore, the value of the optimal solution for I ′ is at least 1. Since the symmetry gap is the ratio
between the value of the best symmetric solution and the value of the best solution, to prove the lemma
it remains to argue that the best symmetric solution for I has a value of at most maxx∈[0,1/2]{α(mx2+
2x− 2x2) + 2(1− α)[1− (1− 1/(2r))r](1− (1−m)x)}.
We remind the reader that a symmetric solution for I ′ is ȳ = Eσ∈G [y] for some vector y ∈ [0, 1]N

obeying ya + yb ≤ 1 and
∑r

i=1 yai
+ ybi ≤ 1. Since a and b can be exchanged with each other
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by the permutations of G, the values of the coordinates of a and b in ȳ must be equal to each other.
Similarly, every two elements of {ai, bi ∈ i ∈ [r]} can be exchanged by the permutations of G, and
therefore, the values of the coordinates of all these elements in ȳ must be all identical. Thus, any
symmetric solution ȳ can be represented as

ȳu =

{
x if u = a or u = b ,

z if u ∈ {ai, bi | i ∈ [r]}

for some values x ∈ [0, 1/2] and z ∈ [0, 1/(2r)]. The value of this solution (according to the
multilinear extension F of f ) is

α[m(1− (1− x)2) + 2(1−m)x(1− x)] + 2(1− α)(1− (1− z)r)(1− (1−m)x)

= α(mx2 + 2x− 2x2) + 2(1− α)(1− (1− z)r)(1− (1−m)x)

≤ α(mx2 + 2x− 2x2) + 2(1− α)(1− (1− 1/(2r))r)(1− (1−m)x) .

Therefore, one can obtain an upper bound on the value of the best symmetric solution for I ′ by taking
the maximum of the last expression over all the values that x can take, which completes the proof of
the lemma.

Since any refinement of a (simplified) partition matroid constraint is a (generalized) partition matroid
constraint on its own right, plugging Lemmata D.5 and Lemma E.9 into Theorem 3.2 yields the
following corollary.

Corollary E.10. For every constant ε′ > 0, no polynomial time algorithm for maximizing a non-
negative m-monotone submodular function subject to a matroid contraint obtains an approximation
ratio of

max
x∈[0,1/2]

{α(mx2 + 2x− 2x2) + 2(1− α)(1− e−1/2)(1− (1−m)x)}+ 1/(2r) + ε′ .

Theorem E.8 now follows from the last corollary by choosing ε′ = ε/2, r = ⌈ε−1⌉ and

α = argmin
α′∈[0,1]

max
x∈[0,1/2]

{α′(mx2 + 2x− 2x2) + 2(1− α′)(1− e−1/2)(1− (1−m)x)} .

F Personalized Image Summarization

Consider a setting in which we get as input a collection N of images from ℓ disjoint categories (e.g.,
birds, dogs, cats) and the user specifies r ∈ [ℓ] categories, and then demands a subset of the images
in these categories that summarize all the images of the categories. Following [40] again, to evaluate
a given subset of images we use the function f(S) =

∑
u∈N maxv∈S su,v − 1

|N |
∑

u∈S

∑
v∈S su,v ,

where su,v is a non-negative similarity between u and v.

One can verify that the above function f is non-negative and submodular. Unfortunately, this function
can have a very low monotonicity ratio. To compensate for this, we observe that most the analyses we
described in the previous sections use the monotonicity ratio only to show that f(S ∪ T ) ≥ m · f(S)
for sets S and T that are feasible. This motivates the following weak version of the monotonicity ratio.
We note that many continuous properties of set functions have such weak versions. For example,
the original paper presenting the submodularity-ratio [16] presented in fact the weak version of this
property, and the non-weak version was only formulated at a later point.

Definition F.1. Consider maximization of a non-negative function f subject to some constraint. In
the context of this constraint, we say that f is m-weakly monotone if f(S ∪ T ) ≥ m · f(S) holds for
every two feasible sets S and T .

Theorem F.2. The objective function f of personalized image summarization is 1 − 2k
|N | -weakly

monotone when the size of feasible solutions is at most k for some 1 ≤ k ≤ |N |.
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Figure 3: Personalized Image Summerization Results

Proof. When k ≥ |N |/2, the theorem is trivial. Thus, we can assume below k < |N |/2. Consider
two feasible sets S, T ∈ N , and let us lower bound f(S ∪ T ).

f(S ∪ T ) =
∑

u∈N
max

v∈S∪T
su,v −

1

|N |
∑

u∈S∪T

∑

v∈S∪T

su,v

≥
∑

u∈N
max

v∈S∪T
su,v −

|S ∪ T |
|N |

∑

u∈S∪T

max
v∈S∪T

su,v

≥
∑

u∈N
max

v∈S∪T
su,v −

2k

|N |
∑

u∈S∪T

max
v∈S∪T

su,v

=

(
1− 2k

|N |

) ∑

u∈N
max

v∈S∪T
su,v ≥

(
1− 2k

|N |

) ∑

u∈N
max
v∈S

su,v .

Using this lower bound, we now get

f(S) =
∑

u∈E

max
v∈S

su,v −
1

|N |
∑

u∈S

∑

v∈S

su,v ≤
∑

u∈E

max
v∈S

su,v ≤
f(S ∪ T )
1− 2k/|N | ,

which completes the proof of the theorem since S and T have been chosen as arbitrary feasible
sets.

Our experiments for this setting are based on a subset of the CIFAR-10 dataset [33] including 10,000
Tiny Images. These images belong to 10 classes, with 1000 images per class. Each image consists
of 32 × 32 RGB pixels represented by a 3072 dimensional vector. To compute the similarity su,v
between images, we used the dot product.

In our first experiment, we simply looked for a summary consisting of a limited number of images.
Since this is a cardinality constraint, we again used the scarecrow algorithm Random and the
accelerated versions mentioned in Section 6.1 of the algorithms from Section 4. In Figure 3a we
depict the outputs of Threshold Random Greedy and Random for various limits on the number of
images in the summary (like in Section 6.1 we omit the other non-scarecrow algorithms since their
performance is essentially identical to the one of Threshold Random Greedy, and we refer the reader
to Appendix I for more detail). Figure 3a also includes the upper bounds on the optimal solution
obtained via the previous approximation ratio for Random Greedy and our improved approximation
ratio (the area between the two upper bounds is shaded). We can see that the upper bound obtained
via our improved approximation ratio is much tighter, and this upper bound also demonstrates that the
gap between the non-scarecrow and the scarecrow algorithms is significant compared to the optimal
solution.

In our second experiment, we looked for a summary containing up to k images from each category
selected by the user for some parameter k (we assumed in the experiment that the user chose the
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categories: “airplane”, “automobile” and “bird”). Since this is a (generalized partition) matroid
constraint, in this experiment we used versions of the algorithms from Section 5. Specifically, we
used Random Greedy for Matroids and an accelerated version of Measured Continuous Greedy based
on the acceleration technique underlying the Accelerated Continuous Greedy of [1]. Additionally, we
used in this experiment a scarecrow algorithm called Random that outputs a set containing a random
selection of k images from each one of the chosen categories. The values of the outputs of all these
algorithms are depicted in Figure 3b (values shown are averaged over 10 executions).

Figure 3b also includes upper bounds on the value of the optimal solution. The previous upper bound
is computed based on the previously known approximation ratios of the algorithms, and our upper
bound is computed based on the approximation ratios proved in Theorems 5.2 and 5.3 and the weak
monotonicity ratio proved in Theorem F.2.8 As is evident from the similarity between Figures 3a
and 3b, our observations from the first experiment extend also the more general constraint considered
in the current experiment.

G Ride-Share Optimization

In this application, given a set R of possible customer locations specified as (latitude, longitude)
coordinate pairs, we aim to find a subset of these locations that will serve as waiting locations for
drivers and minimizes the distance from each costumer to her closest driver. This problem can be
modeled using the classical facility location problem, whose objective is known to be monotone and
submodular. More formally, Mitrovic et al. [41] defined for every set T of locations the objective
value f(T ) as

f(T ) =
∑

a∈R

max
b∈T

c(a, b) ,

where c(a, b) is a convenience score defined by c(a, b) ≜ 2 − 2
1+e−200d(a,b) , and d(a, b) = |xa −

xb|+ |ya − yb| is the Manhattan distance between the points a and b.

One drawback of the above objective function is that it does not promote diversity in the set of chosen
locations. For example, imagine a scenario where, due to congestion or road maintenance in a specific
area, traffic in and out of this area is slow or completely blocked. If all the selected waiting locations
happen to be inside the affected area (i.e., there is no diversity in the selected locations), it will be
difficult for the drivers to move between the waiting locations and the customers. To avoid such
unfavorable scenarios, a diversity component should be added to the objective function. However,
when a diversity component is added, the function becomes non-monotone (but still submodular),
making the approximation guarantees of state-of-the-art algorithms much lower, as is discussed
above.

Using the monotonicity ratio, the effect of the diversity component on the approximation guarantee
can be significantly reduced. For example, a natural way to add a diversity component is demonstrated
by the next objective function.

f(T ) =
∑

a∈R

max
b∈T

c(a, b)− 1

|R|
∑

x∈T

∑

y∈T

c(x, y) .

One can note that the last function has the same form as the function discussed in Appendix F. Hence,
by Theorem F.2, the previous function is (1 − 2k

|R| )-weakly monotone, where 1 ≤ k ≤ |R| is the
maximum size of a feasible solution.

H Proofs of Section 6

In this section we prove the theorems from Section 6.

8From a purely formal point of view this upper bound is not fully justified since Measured Continuous Greedy
is a rare example of an algorithm whose analysis cannot use in a black box fashion the weak monotonicity ratio
instead of the monotonicity ratio. However, due to probabilistic concentration, we expect the upper bound to still
hold up to at most a small error.
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H.1 Proof of Theorem 6.1

Theorem 6.1. The objective function f is monotone for 0 ≤ λ ≤ 1/2 and 2(1 − λ)-monotone for
1/2 ≤ λ ≤ 1.

Proof. We first prove the first part of the theorem. Thus, we assume λ ≤ 1/2, and we need to
show that for arbitrary set S ⊆ N and element u ∈ N \ S the marginal contribution f(u | S) is
non-negative. This holds because

f(u | S) =
∑

v∈N
sv,u − λ

[∑

v∈S

su,v +
∑

v∈S

sv,u + su,u

]

=
∑

v∈N
sv,u − λ

[
2
∑

v∈S

sv,u + su,u

]
≥
∑

v∈N
sv,u −

∑

v∈S

sv,u − su,u ≥ 0 ,

where the second equality holds because su,v = sv,u, and the first inequality holds since λ ≤ 1/2 in
the case we consider and the su,v values are non-negative.

It remains to prove the second part of the theorem. Thus, we assume from now on λ ∈ [1/2, 1], and we
consider two sets S ⊆ T ⊆ N . To prove the theorem we need to show that f(T ) ≥ 2(1− λ) · f(S).
The first step towards showing this is to prove the following lower bound on f(S).

f(S) = 2(1− λ) · f(S) + (2λ− 1) ·
[∑

u∈N

∑

v∈S

su,v − λ
∑

u∈S

∑

v∈S

su,v

]
(11)

≥ 2(1− λ) · f(S) + (2λ− 1) ·
∑

u∈T\S

∑

v∈S

su,v

= 2(1− λ) · f(S) + (2λ− 1) ·
∑

u∈S

∑

v∈T\S
su,v , (12)

where the inequality holds since λ ≤ 1, and the second equality holds since su,v = sv,u. Using this
lower bound, we now get

f(T ) = f(S) +
∑

u∈N

∑

v∈T\S
su,v − λ


∑

u∈S

∑

v∈T\S
su,v +

∑

u∈T\S

∑

v∈S

su,v +
∑

u∈T\S

∑

v∈T\S
su,v




= f(S) +
∑

u∈N

∑

v∈T\S
su,v − λ


2
∑

u∈S

∑

v∈T\S
su,v +

∑

u∈T\S

∑

v∈T\S
su,v




≥ f(S) + (1− 2λ) ·
∑

u∈S

∑

v∈T\S
su,v ≥ 2(1− λ) · f(S) ,

where the first inequality holds since λ ≤ 1, and the second inequality holds by Inequality (11).

H.2 Proof of Theorem 6.2

Theorem 6.2. For β ∈ (0, 1/2), the objective function F given by Equation (1) is (1−2β)·α
1+α -monotone.

Furthermore, when min0̄≤x≤u(
1
2x

THx+ hx) ≥ 0, F is even (1− 2β)-monotone.

Proof. Fix two vectors 0̄ ≤ x ≤ y ≤ u. We begin this proof by providing a lower bound on F (y)
and an upper bound on F (x). The lower bound on F (y) is as following.

F (y) =
1

2
yTHy + hTy + c ≥ min

0̄≤x≤u

(
1

2
xTHx+ hx

)
+ c .

To get the upper bound on F (x), we first need to prove an upper bound on c.

c ≥ − min
0≤x≤u

(
1

2
xTHx+ hTx

)
= − min

0≤x≤u

(
1

2
xTHx− βuTHx

)
≥ −

(
1

2
− β

)
uTHu .
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Figure 4: Comparing the performance of algorithms for a cardinality constraint in our experiments.

The promised upper bound on F (x) now follows.

F (x) =
1

2
xTHx+hTx+ c ≤ hTx+ c ≤ hTu+ c = −βuTHu+ c ≤ βc

1/2− β + c =
c

1− 2β
,

where the first inequality holds since H is non-positive, and the second inequality holds since h is
non-negative.

Recall now that c = −M + α|M |, which implies

min
0≤x≤u

(
1

2
xTHx+ hTx

)
=M ≥ − c

1 + α
,

and therefore,

F (y) ≥ − c

1 + α
+ c =

cα

1 + α
≥ (1− 2β)α

1 + α
· F (x) .

It remains to consider the case in which min0̄≤x≤u

(
1
2x

THx+ hx
)
≥ 0. In this case

F (y) ≥ c ≥ (1− 2β) · F (x) .

I Additional Plots for Section 6

As discussed in Section 6, the various algorithms we use in the context of a cardinality constraint
have very similar empirical performance. Figure 4a presents the performance of all these algorithms
in the movie recommendation setting with the number of movies in the summery varying. One can
observe that the lines of the three non-scarecrow algorithms almost overlap. Figure 4b presents the
performance of the non-scarecrow algorithms in the image summarization setting. In this figure
we had to ignore the scarecrow algorithm Random because otherwise the lines of the three non-
scarecrows algorithms are indistinguishable. Furthermore, we had to zoom in on a very small range of
y-axis values. Despite these steps, the lines of Sample Greedy and Threshold Greedy still completely
overlap, but the large zoom allows us to see that Threshold Random Greedy is marginally worse.

J Maximizating DR-submodular Functions subject to a Polytope Constraint

There are (at least) two natural ways in which the notion of submodularity can be extended from set
functions to continuous functions. The more restrictive of these is known as DR-submodularity (first
defined by [3]). Given a domain X =

∏n
i=1 Xi, where Xi is a closed range in R for every i ∈ [n],
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a function F : X → R is DR-submodular if for every two vectors a,b ∈ X , positive value k and
coordinate i ∈ [n] the inequality

F (a+ kei)− F (a) ≥ F (b+ kei)− F (b)
holds whenever a ≤ b and b+ kei ∈ X (here and throughout the section ei denotes the standard
i-th basis vector, and comparison between two vectors should be understood to hold coordinate-wise).
If F is continuously differentiable, then the above definition of DR-submodulrity is equivalent to∇F
being an antitone mapping from X to Rn (i.e., ∇F (a) ≥ ∇F (b) for every two vectors a,b ∈ X
that obey a ≤ b). Moreover, when F is twice differentiable, it is DR-submodular if and only if its
Hessian is non-positive at every vector x ∈ X .

In this section we consider the problem of maximizing a non-negative DR-submodular function
F : 2N → R≥0 subject to a solvable down-closed9 convex body P ⊆ X (usually polytope) constraint.
As is standard when dealing with problems of this kind, we assume that F is L-smooth, i.e., for every
two vectors x,y ∈ X it obeys

∥∇F (x)−∇F (y)∥2 ≤ L∥x− y∥2
for some non-negative parameter L. Additionally, for simplicity, we assume that X = [0, 1]n. This
assumption is without loss of generality because the natural mapping from X to [0, 1]n preserves all
our results.

We analyze a variant of the Frank-Wolfe algorithm for the above problem due to [2] called Non-
monotone Frank-Wolfe. This variant was motivated by the Measured Continuous Greedy algorithm
studied in Section E.2, and its assumes access to the first order derivatives of F . The details of
the algorithm we consider appear as Algorithm 7. This algorithm gets a quality control parameter
ε ∈ (0, 1), and it is assumed that ε−1 is an integer (if this is not the case, one can fix that by reducing
ε by at most a factor 2). Algorithm 7 and its analysis also employ the notation defined in Section E.2,
namely, given two vectors x,y, their coordinate-wise multiplication is denoted by x⊙y. Additionally,
we denote by 0̄ and 1̄ the all zeros and all ones vectors, respectively.

Algorithm 7: Non-monotone Frank-Wolfe(ε)

1 Let y(0) ← 0̄ and t = 0.
2 while t ≤ 1 do
3 s(t) ← argmaxx∈P x · ((1̄− y(t))⊙∇F (y(t))).
4 y(t+ε) ← y(t) + ε · (1̄− y(t))⊙ s(t).
5 t← t+ ε.

6 return y(1).

To analyze Algorithm 7 we need to define two additional parameters. The first parameter is the
diameter D = maxx∈P ∥x∥2 of P , which is a standard parameter. The other parameter is the
monotonicity ratio of F , which can be extended to the continuous setting we study in the following
natural way.10

m = inf
x,y∈X
x≤y

F (y)

F (x)
,

where the ratio F (y)/F (x) should be understood to have a value of 1 whenever F (x) = 0. Addition-
ally, let us denote by o an arbitrary optimal solution for the problem described above. Using these
definitions, we are now ready to state the result that we prove for Algorithm 7.

Theorem J.1. When given a non-negative m-monotone DR-submodular function F : X → R≥0

and a down-closed solvable convex body P ⊆ X , the Measured Greedy Frank-Wolfe algorithm
(Algorithm 7) outputs a solution y ∈ P such that F (y) ≥ [m(1−1/e)+(1−m)·(1/e)]·F (o)−εLD2.

9In Section E.2, down-closeness of was defined for the special case of P ⊆ [0, 1]N . More generally, a body
P ⊆ X is down-closed if b ∈ P implies a ∈ P for every vector a ∈ X obeying a ≤ b.

10In Appendix 6.2 we showed how the monotonicity ratio can be extended to the particular continuous setting
studied in that section. The definition of Appendix 6.2 is obtained from the more general definition we give here
by setting X =

∏n
i=1[0, ui].
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Our first objective towards proving Theorem J.1 is to lower bound the expression F (o+y(t) ·(1̄−o)),
which we do in the next two lemmata.
Lemma J.2. For every integer i ∈ [0, ε−1], y(εi) ≥ 0̄ and ∥y(εi)∥∞ ≤ 1− (1− ε)−i.

Proof. We prove the lemma by induction on i. For i = 0, the lemma follows directly from the
initialization y(0) = 0̄ because 1− (1− ε)−0 = 0. Assume now that the lemma holds for i− 1, and
let us prove it for an integer 0 < i ≤ 1. Observe that, for every j ∈ [n],

yεij = y
ε(i−1)
j + ε ·

(
1− yε(i−1)

j

)
· sε(i−1)

j ≥ yε(i−1)
j ≥ 0 ,

where the first inequality holds since yε(i−1)
j ≤ 1 by the induction hypothesis and the value of

s
(ε(i−1))
j is non-negative by definition. Moreover,

yεij = y
ε(i−1)
j + ε ·

(
1− yε(i−1)

j

)
· sε(i−1)

j ≤ yε(i−1)
j + ε ·

(
1− yε(i−1)

j

)

= ε+ (1− ε) · yε(i−1)
j ≤ ε+ (1− ε) ·

[
1− (1− ε)(i−1)

]
= 1− (1− ε)i ,

where again the first inequality holds since s(ε(i−1)) ∈ X , which implies sij ≤ 1; and the second
inequality holds by the induction hypothesis.

Lemma J.3. For every integer i ∈ [0, ε−1], F (o+y(εi) · (1̄−o)) ≥
[
(1− (1−m)

(
1− (1− ε)i

)]
·

F (o) =
[
m+ (1−m)(1− ε)i

]
· F (o).

Proof. Observe that

F (o+ y(εi) · (1̄− o)) ≥
(
1− ∥y(εi)∥∞

)
· F (o) + ∥y(εi)∥∞ · F

(
o+

y(εi) · (1̄− o)

∥y(εi)∥∞

)

≥
(
1− ∥y(εi)∥∞

)
· F (o) +m · ∥y(εt)∥∞ · F (o)

=
(
1− (1−m) · ∥y(εi)∥∞

)
· F (o) ,

where the first inequality holds since the DR-submodularity of F implies that F is concave along
positive directions (such as the direction y(εi) · (1̄− o)/∥y(εi)∥∞), and the second inequality holds
since the monotonicity ratio of F is at least m. Plugging Lemma J.2 into the previous inequality
completes the proof of the lemma.

Using the previous lemma, we can now provide a lower bound on the increase in the value of y(t) as
a function of t.
Lemma J.4. For every integer 0 ≤ i < ε−1, F (y(ε(i+1)))− F (y(εi)) ≥ ε · [(m+ (1−m) · (1−
ε)i) · F (o)− F (y(εi))]− ε2LD2.

Proof. By the chain rule,

F (yε(i+1))− F (y(εi)) = F (y(εi) + ε · s(εi) ⊙ (1̄− y(εi)))− F (y(εi))

=

∫ ε

0

∇F (y(εi) + r · s(εi) ⊙ (1̄− y(εi))) · (s(εi) ⊙ (1̄− y(εi))) dr

≥
∫ ε

0

∇F (y(εi)) · (s(εi) ⊙ (1̄− y(εi))) dr − ε2LD2

= ε · ∇F (y(εi)) · (s(εi) ⊙ (1− y(εi)))− ε2LD2 ,

where the first inequality holds by the L-smoothness of F . Furthermore,

∇F (y(εi)) · (s(εi) ⊙ (1̄− y(εi))) = ((1̄− y(εi))⊙∇F (y(εi))) · s(εi)

≥ ((1̄− y(εi))⊙∇F (y(εi))) · o
= ∇F (y(εi))) · ((1̄− y(εi))⊙ o)

≥ F (o+ y(εi)(1̄− o))− F (y(εi))

≥
[
m+ (1−m) · (1− ε)i

]
· F (o)− F (y(εi)) ,
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where the first inequality holds by the definition of s(εi) since o is a candidate to be this vector, the
second inequality follows from the concavity of F along positive directions, and the last inequality
holds by Lemma J.3. The lemma now follows by combining the two above inequalities.

We are now ready to prove Theorem J.1.

Proof of Theorem J.1. Rearranging the guarantee of Lemma J.4, we get

F (yε(i+1)) ≥ (1− ε) · F (y(εi)) + ε[m+ (1−m) · (1− ε)i] · F (o)− ε2LD2 .

Since this inequality applies for every integer 0 ≤ i < ε−1, we can use it repeatedly to obtain

F (y(1)) ≥ ε ·
1/ε∑

i=1

(1− ε)1/ε−i ·
[
(m+ (1−m) · (1− ε)i−1) · F (o)− εLD2

]
+(1− ε)1/ε ·F (0̄)

≥ mε ·
1/ε∑

i=1

(1− ε) 1
ε−i · F (o) + ε(1−m) ·

1/ε∑

i=1

[(1− ε)1/ε−1 · F (o)− εLD2]

= mε · 1− (1− ε)1/ε
ε

· F (o) + ε(1−m) · (1− ε)
1/ε−1 · F (o)− εLD2

ε

≥
[
m(1− e−1) + (1−m) · e−1

]
· F (o)− εLD2 ,

where the second inequality follows from the non-negativity of F , and the last inequality holds since
(1− ε)1/ε ≤ e−1 ≤ (1− ε)1/ε−1.
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Resolving the Approximability of Offline and Online Non-monotone
DR-Submodular Maximization over General Convex Sets

Loay Mualem Moran Feldman
University of Haifa University of Haifa

Abstract

In recent years, maximization of DR-submodular
continuous functions became an important re-
search field, with many real-worlds applications
in the domains of machine learning, commu-
nication systems, operation research and eco-
nomics. Most of the works in this field study
maximization subject to down-closed convex set
constraints due to an inapproximability result by
Vondrák (2013). However, Dürr et al. (2021)
showed that one can bypass this inapproxima-
bility by proving approximation ratios that are
functions of m, the minimum ℓ∞-norm of any
feasible vector. Given this observation, it is
possible to get results for maximizing a DR-
submodular function subject to general convex
set constraints, which has led to multiple works
on this problem. The most recent of which is a
polynomial time 1

4 (1−m)-approximation offline
algorithm due to Du (2022). However, only a
sub-exponential time 1

3
√
3
(1−m)-approximation

algorithm is known for the corresponding online
problem. In this work, we present a polynomial
time online algorithm matching the 1

4 (1 − m)-
approximation of the state-of-the-art offline algo-
rithm. We also present an inapproximability re-
sult showing that our online algorithm and Du’s
offline algorithm are both optimal in a strong
sense. Finally, we study the empirical perfor-
mance of our algorithm and the algorithm of
Du (which was only theoretically studied pre-
viously), and show that they consistently out-
perform previously suggested algorithms on rev-
enue maximization, location summarization and
quadratic programming applications.

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

1 INTRODUCTION

Optimization of continuous DR-submodular functions has
gained prominence in recent times. Such optimization is an
important tractable subclass of non-convex optimization,
and captures problems at the forefront of machine learn-
ing and statistics with many real-world applications (see,
e.g., (Bian et al., 2019; Hassani et al., 2017a; Mitra et al.,
2021; Soma and Yoshida, 2017)). The majority of the exist-
ing works on DR-submodular optimization (and submod-
ular optimization in general) have been focused either on
monotone objective functions, or optimization subject to a
down-closed convex set constraint.1 However, many real-
world problems are naturally captured as optimization of a
non-monotone DR-submodular function over a constraint
convex set that is not down-closed. For example, consider
a streaming service that would like to produce a summary
of recommended movies for a user. Often the design of the
user interface places strong bounds on the size of the sum-
mary displayed to the user, leading to a non-down-closed
constraint. Furthermore, the quality of the summary is of-
ten captured by a non-monotone objective since putting
very similar films in the summary is detrimental to both
its value and professional look.

Motivated by the above-mentioned situation, a few recent
works started to consider DR-submodular maximization
subject to a general (not necessarily down-closed) convex
set constraint K. In general, no constant approximation ra-
tio can be guaranteed for this problem in sub-exponential
time due to an hardness result by Vondrák (2013). How-
ever, Dürr et al. (2021) showed that this inapproxima-
bility result can be bypassed when the convex set con-
straint K includes points whose ℓ∞-norm is less than the
maximal value of 1. Specifically, Dürr et al. (2021) pre-
sented a sub-exponential time offline algorithm guarantee-
ing 1

3
√
3
(1 − m)-approximation for this problem, where

m is the minimal ℓ∞-norm of any vector in K. Later,
Th´̆ang and Srivastav (2021) showed how to obtain a sim-
ilar result in an online (regret minimization) setting, and

1A set K ⊆ [0, 1]n is down-closed if, for every two vectors
x,y ∈ [0, 1]n, x ∈ K whenever y ∈ K and y coordinate-wise
dominates x.
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an improved sub-exponential offline algorithm obtaining
1
4 (1−m)-approximation was suggested by Du et al. (2022).
Very recently, Du (2022) provided the first polynomial
time algorithm for this setting, obtaining the same offline
1
4 (1−m)-approximation as Du et al. (2022). Nevertheless,
and despite all the progress described above, there are still
important open questions left regarding this setting.

• What is the best approximation ratio that can be ob-
tained by a polynomial time offline algorithm? In par-
ticular, can such an algorithm guarantee a better than
1
4 (1−m)-approximation, and if not, how much slower
must be an algorithm that improves over this approxi-
mation ratio?

• Is there a polynomial time online algorithm guaran-
teeing any constant approximation ratio? Can such an
algorithm match the optimal approximation ratio ob-
tainable by an offline algorithm?

In this work we answer all the above questions, essentially
settling the problem of maximizing DR-submodular func-
tions over general convex sets in both the offline and online
settings. We also study the empirical performance of the
theoretically optimal offline and online algorithms, show-
ing that both algorithms consistently outperform previously
suggested algorithms. Below we describe our results in
more detail.

Online setting. As mentioned above, the state-of-the-art
online (regret minimization) algorithm of Th´̆ang and Sri-
vastav (2021) achieves 1

3
√
3
(1−m)-approximation, which

it does with sub-exponential running time and roughly
O(
√
T )-regret, where T is the number of time steps.2

In this paper, we describe a new online algorithm im-
proving both the approximation ratio and the time com-
plexity. Specifically, our algorithm achieves 1

4 (1 − m)-
approximation in polynomial time and roughly O(

√
T )-

regret. The approximation guarantee of our algorithm
matches an inapproximability that we prove for the offline
setting (see below), and is thus, optimal. We also study the
empirical performance of our algorithm, and show that it
outperforms the algorithm of Th´̆ang and Srivastav (2021)
on two applications of revenue maximization and location
summarization.

Offline setting. Recall that the state-of-the-art offline al-
gorithm is a recent polynomial time 1

4 (1 − m)-approx-
imation algorithm due to Du (2022). Our first contribution
to the offline setting is an inapproximability result show-
ing that this algorithm is optimal in a very strong sense.

2By changing parameter values, it is possible to reduce the
time complexity of the algorithm of Th´̆ang and Srivastav (2021)
to be polynomial. However, this comes at the cost of a regret that
is nearly-linear in T and an error term in the approximation ratio
that diminishes very slowly (linearly in log T ).

Specifically, we show that no sub-exponential time algo-
rithm can significantly improve over this approximation ra-
tio, even when m is fixed to any particular value in [0, 1].
Furthermore, since Du (2022) analyzed only the theoretical
performance of his algorithm, it is interesting to study the
empirical performance of this algorithm, which we do by
considering revenue maximization and quadratic program-
ming applications.

Coding the algorithm of Du (2022) for the empirical study
is somewhat non-trivial because Du (2022) presented his
algorithm as part of a general mathematical framework for
designing algorithms for various submodular optimization
problems. Therefore, our empirical study is based on an
explicit version of this algorithm that we give in this paper,
which is not fully identical to the algorithm of Du (2022).
Beside being explicit, our version of the algorithm also has
the advantage of being more tuned towards practical per-
formance. For completeness, we include a full analysis of
our version of the algorithm of Du (2022). This full anal-
ysis is also used as a warm-up towards the analysis of our
own online algorithm.

1.1 Related work

Next, we provide a brief summary of the most relevant re-
sults on DR-submodular maximization. Recently, this field
has become the work-horse of numerous applications in the
fields of statistics and machine learning, which has lead to
a dramatic increase in the number of studies related to it.

Offline DR-submodular optimization. The problem of
maximizing monotone DR-functions subject to a down-
closed convex set was considered by Bian et al. (2017a),
who showed a variant of the Frank-Wolfe algorithm (based
on the greedy method proposed by Calinescu et al. (2011)
for set functions) that guarantees (1 − 1/e)-approximation
for this problem, which is optimal (Nemhauser and Wolsey,
1978). Later, Hassani et al. (2017a) showed that the al-
gorithm of Bian et al. (2017a) is not robust in stochastic
settings (i.e., when only an unbiased estimator of gradi-
ents is available), and proved that gradient methods are ro-
bust in such setting while still achieving 1/2-approximation.
When the objective DR-submodular function is not neces-
sarily monotone, the problem becomes harder to approxi-
mate. Bian et al. (2019) and Niazadeh et al. (2020) inde-
pendently provided two algorithms with the same approx-
imation guarantee of 1/2 for maximizing non-monotone
DR-submodular functions over a hypercube, which is op-
timal (Feige et al., 2011) (the algorithm of Niazadeh et al.
(2020) applies also to non-DR submodular functions). For
general down-closed convex sets, Bian et al. (2018) pro-
vided a 1/e-approximation algorithm based on the greedy
method of Feldman et al. (2011) for set functions. Us-
ing the concept of monotonicity ratio, Mualem and Feld-
man (2022) were able to smoothly interpolate between the
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last result and the (1 − 1/e)-approximation obtainable for
monotone objectives.

Online DR-submodular optimization. Online optimi-
zation of monotone DR-submodular functions over general
convex sets (for monotone objective functions, there is no
difference between optimization subject to down-closed or
general convex sets) was first considered by Chen et al.
(2018), who provided two algorithms. One guaranteeing
(1− 1/e)-approximation using roughly O(

√
T )-regret, and

another algorithm which is robust to stochastic settings
but guarantees only 1/2-approximation up to the same re-
gret. Later, Chen et al. (2019) presented an algorithm that
combines (1 − 1/e)-approximation with roughly O(

√
T )-

regret and robustness, and Zhang et al. (2019) showed how
one can reduce the number of gradient calculations per
time step to one, at the cost of increasing the regret to
roughly O(T 4/5). Such a reduction is important for ban-
dit versions of the same problem. Online optimization of
DR-submodular functions that are not necessarily mono-
tone was studied by Th´̆ang and Srivastav (2021), who pro-
vided three algorithms for it. One of these algorithms ap-
plies to general convex set constraints, and was already dis-
cussed above. Another algorithm applies to maximization
over the entire hypercube, and achieves 1/2-approximation
with roughly O(

√
T )-regret; and the last algorithm applies

to online maximization of non-monotone DR-submodular
functions over down-closed convex sets, and achieves 1/e-
approximation with roughly O(T 3/4)-regret.

1.2 Paper organization

In Section 2, we provide some definitions and important
properties of DR-submodular functions. Section 3 de-
scribes our explicit version of the offline algorithm of Du
(2022), which also serves as warm up for our novel online
algorithm described in Section 4. Our inapproximability
result, showing that the above offline and online algorithms
are both optimal, is proved in Section 5. Finally, in Sec-
tion 6, we study the empirical performance and robustness
of our online algorithm and our version of the algorithm of
Du (2022) by comparing them with previously suggested
algorithms on multiple machine learning applications.

2 PRELIMINARIES

DR-submodularity (first defined by Bian et al. (2017b)) is
an extension of the submodularity notion from set func-
tions to continuous functions. Formally speaking, given a
domain X =

∏n
i=1 Xi, where Xi is a closed range in R for

every i ∈ [n], a function F : X → R is DR-submodular
if for every two vectors a,b ∈ X , positive value k and
coordinate i ∈ [n], the inequality F (a + kei) − F (a) ≥
F (b+kei)−F (b) holds whenever a ≤ b and b+kei ∈ X
(here and throughout the paper, ei denotes the standard i-th

basis vector, and comparison between two vectors should
be understood to hold coordinate-wise). Note that if func-
tion F is continuously differentiable, then the above defini-
tion of DR-submodulrity is equivalent to

∇F (x) ≤ ∇F (y) ∀ x,y ∈ X ,x ≥ y .

Furthermore, when F is twice differentiable, it is DR-
submodular if and only if its Hessian is non-positive at ev-
ery vector x ∈ X .

In this work, we study the problem of maximizing a non-
negative DR-submodular function F : 2N → R≥0 sub-
ject to a general convex body K ⊆ X (usually polytope)
constraint. For simplicity, we assume that X = [0, 1]n.
Note that this assumption is without loss of generality
since there is a natural mapping from X to [0, 1]n. Ad-
ditionally, as is standard in the field, we assume that F
is β-smooth for some parameter β > 0. Recall that F
is β-smooth if it is continuously differentiable, and for
every two vectors x,y ∈ [0, 1]n, the function F obeys
∥∇F (x)−∇F (y)∥2 ≤ β∥x− y∥2.

In the online (regret minimization) version of the above
problem, there are T time steps. In every time step t ∈
[T ], the adversary selects a non-negative β-smooth DR-
submodular function Ft, and then the algorithm should se-
lect a vector y(t) ∈ K without knowing Ft (the function Ft

is revealed to the algorithm only after y(t) is selected). The
objective of the algorithm is to maximize

∑T
i=1 Ft(y

(t)),
and its success in doing so is measured compared to the
best fixed vector x ∈ K. More formally, we say that the
algorithm achieves an approximation ratio of c ≥ 0 with
regretR(T ) if

E

[
T∑

t=1

Ft(y
(t))

]
≥ c ·max

x∈K
E

[
T∑

t=1

Ft(x)

]
−R(T ) .

The nature of the access that the algorithm has to Ft varies
between different versions of the above problem. Some
previous works assume access to the exact gradient of F .
However, our algorithm applies also to a stochastic version
of the problem in which only access to an unbiased estima-
tor of this gradient is available.

We conclude this section by introducing some additional
notation and two known lemmata that are useful in our
proofs. Given two vectors x,y ∈ [0, 1]n, we denote by
x ∨ y and x ∧ y their coordinate-wise maximum and min-
imum, respectively. Using this notation, we can now state
the first known lemma, which can be traced back to Hassani
et al. (2017a) (see Inequality 7.5 in the arXiv version (Has-
sani et al., 2017b) of Hassani et al. (2017a)), and is also
explicitly stated and proved in (Dürr et al., 2021).

Lemma 2.1 (Lemma 1 of Dürr et al. (2021)). For ev-
ery two vectors x,y ∈ [0, 1]n and any continuously
differentiable DR-submodular function F : [0, 1]n → R,
⟨∇F (x), y − x⟩ ≥ F (x ∨ y) + F (x ∧ y)− 2F (x).
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The following lemma originates from a lemma proved
by Feldman et al. (2011) for set functions. Extensions of
this lemma to continuous domains have appeared in (Bian
et al., 2017a; Chekuri et al., 2015), but for completeness,
we prove our exact version of the lemma in Appendix A.

Lemma 2.2. For every two vectors x,y ∈ [0, 1]n and any
continuously differentiable non-negative DR-submodular
function F : [0, 1]n → R≥0, F (x∨y) ≥ (1−∥x∥∞)F (y).

3 OFFILINE MAXIMIZATION

In this section, we present and analyze an explicit variant of
the offline algorithm of Du (2022) for maximizing a non-
negative DR-submodular function F over a general convex
setK. Since the algorithm of Du (2022) is related to Frank-
Wolfe, we name our variant Non-mon. Frank-Wolfe,
and its pseudocode appears as Algorithm 1. Algorithm 1
gets a non-negative integer parameter T and a quality con-
trol parameter ε ∈ (0, 1).

Algorithm 1: Non-mon. Frank-Wolfe (T, ε)

1 Let y(0) ← argminx∈K∥x∥∞.
2 for i = 1 to T do
3 Let s(i) ← argmaxx∈K

〈
∇F (y(i−1)),x

〉

4 Let y(i) ← (1− ε) · y(i−1) + ε · s(i)

5 return the vector maximizing F among
{y(0), . . . ,y(T )}.

For completeness, and as a warmup for Section 4, we
present a full analysis of Algorithm 1, independent of the
analysis presented by Du (2022). The conclusions of our
analysis are summarized by the following theorem. We
note that, for the purpose of this theorem, it would have suf-
ficed for Algorithm 1 to return y(T ) rather than the best so-
lution among y(0), . . . ,y(T ). However, returning the best
of these solutions results in a better empirical performance
at almost no additional cost.

Theorem 3.1. Let K ⊆ [0, 1]n be a general convex set,
and let F : [0, 1]n → R≥0 be a non-negative β-smooth DR-
submodular function. Then, Non-mon. Frank-Wolfe
(Algorithm 1) outputs a solution w ∈ K obeying

F (w) ≥ (1−2ε)T−1[(1+ε)T − 1](1−min
x∈K
∥x∥∞) ·F (o)

− 0.5ε2βD2T ,

where D is the diameter of K and o ∈ argmaxx∈K F (x).
In particular, when T is set to be ⌊ln 2/ε⌋,

F (w) ≥ (1/4− 3ε)(1−min
x∈K
∥x∥∞) · F (o)− 0.5εβD2 .

We begin the proof of Theorem 3.1 with the following ob-
servation, which bounds the rate in which the infinity norm

of the solution maintained by Algorithm 1 can be increase.
The proof of this observation is done by induction on the
number of iterations, and can be found in Appendix B (like
all the other proofs of this section).

Observation 3.2. For every integer 0 ≤ i ≤ T , 1 −
∥y(i)∥∞ ≥ (1− ε)i · (1− ∥y(0)∥∞).

By combining the last observation and Lemma 2.2, we
can prove the following lemma about the rate in which
the value of F (y(i)) increases as a function of i. The
proof gives a bound on the rate of increase in terms of
⟨s(i),∇F (y(i−1))⟩, and then lower bounds this inner prod-
uct by observing that o is one possible candidate to be s(i).

Lemma 3.3. For every integer 1 ≤ i ≤ T , F (y(i)) ≥
(1−2ε) ·F (y(i−1))+ε(1−ε)i−1 · (1−∥y(0)∥∞) ·F (o)−
0.5ε2βD2.

Theorem 3.1 is proved by using Lemma 3.3 repeatedly.

4 ONLINE MAXIMIZATION

In this section, we consider the problem of maximiz-
ing a non-negative DR-submodular function F over a
general convex set K in the online setting. The only
currently known algorithm for this problem is an algo-
rithm due to Th´̆ang and Srivastav (2021) which guarantees
1−minx∈K∥x∥∞

3
√
3

-approximation. One drawback of this algo-
rithm is that its regret is roughly T over the logarithm of the
running time, and therefore, to make this regret less than
nearly-linear in T one has to allow for a super-polynomial
time complexity (furthermore, a sub-exponential time com-
plexity is necessary to get a regret of T c for any constant
c ∈ (0, 1)). Our algorithm, given as Algorithm 2, combines
ideas from our offline algorithm and the Meta-Frank-Wolfe
algorithm suggested in (Chen et al., 2018), and guaran-
tees both 1

4 (1−minx∈K∥x∥∞)-approximation and roughly
O(
√
T )-regret in polynomial time.

Like the original Meta-Frank-Wolfe algorithm of Chen
et al. (2018), our algorithm uses in a black-box manner
multiple instances E of an online algorithm for linear op-
timization. More formally, we assume that every instance
E has the following behavior and guarantee. There are T
time steps. In every time step t ∈ [T ], E selects a vector
u(t) ∈ K, and then an adversary reveals to E a vector d(t)

that was chosen independently of u(t). The algorithm E
guarantees that

E

[
T∑

t=1

⟨u(t),d(t)⟩
]
≥ max

x∈K
E

[
T∑

t=1

⟨x,d(t)⟩
]
−R(T )

for some regret function R(T ) that depends on the partic-
ular linear optimization algorithm chosen as the black-box
(and may depend on the convex body K and the bounds
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available on the adversarially chosen vectors d(t)). One
possible choice for an online linear optimization algorithm
is Regularized-Follow-the-Leader due to Abernethy et al.
(2008) that has R(T ) ≤ DG

√
2T , where D is the diame-

ter of K and G = max1≤t≤T ∥d(t)∥2.

Algorithm 2 runs in each time step a procedure similar to
our version of the offline algorithm (Non-mon. Frank-
Wolfe). However, instead of calculating a point s that is
good with respect to the gradient at the current solution, Al-
gorithm 2 asks an instance of an online linear optimization
algorithm to provide such a point. At the end of the time
step, the online linear optimization algorithm gets an esti-
mate of the gradient as the adversarial vector, and therefore,
on average, the points it produces are a good approximation
of the optimal point in retrospect. Algorithm 2 gets three
parameters. The parameters L and ε correspond to the pa-
rameters T and ε of Non-mon. Frank-Wolfe (Algo-
rithm 1),3 respectively, and the parameter T is the number
of time steps.

Algorithm 2: Non-mon. Meta-Frank-Wolfe
(L, ε, T )

1 for i = 1 to L do Initialize an instance Ei of some
online algorithm for linear optimization.

2 for t = 1 to T do
3 Let y(0,t) ← argminx∈K∥x∥∞.
4 for i = 1 to L do
5 Let s(i,t) ∈ K ← be the vector picked by Eℓ in

time step t.
6 Let y(i,t) ← (1− ε) · y(i−1,t) + ε · s(i,t).
7 Play y(t) = y(L,t).
8 for i = 1 to L do
9 Observe an unbiased estimator g(i,t) of

∇Ft(y
(i−1,t)).

10 Pass g(i,t) as the adverserially chosen vector
d(t) for Ei.

The main result that we prove regarding the online setting
is given by the next theorem.
Theorem 4.1. LetK be a general convex set with diameter
D. Assume that for every 1 ≤ t ≤ T , Ft : [0, 1]

n → R≥0

is a β-smooth DR-submodular function, then

T∑

t=1

E[Ft(y
(t))]

≥ (1−2ε)T−1[(1+ε)T −1](1−min
x∈K
∥x∥∞) ·E

[
T∑

t=1

F (o)

]

3The parameter T of Non-mon. Frank-Wolfe was re-
named to L here to accommodate the standard notation in both
offline and online algorithms. In offline Frank-Wolfe-like algo-
rithms, the number of iterations is usually denoted by T , and in
online algorithms T is reserved to the number of time steps.

− εL · R(T )− 0.5ε2βD2TL ,

where D is the diameter of K, o is a vector in K maximiz-
ing E[

∑T
t=1 Ft(o)], and R(T ) is the regret of the online

linear optimization algorithm over the domain K when the
adversarial vectors d(t) are the estimators g(i,t) calculated
by Algorithm 2. In particular, when L is set to be ⌊ln 2/ε⌋,
ε is set to be 1/

√
T and Ei is chosen as an instance of

Regularized-Follow-the-Leader,

T∑

t=1

E[Ft(y
(t))]

≥ (1/4− 3ε)(1−min
x∈K
∥x∥∞) · E

[
T∑

t=1

Ft(o)

]

− (G+ βD)D
√
T ,

where G = max1≤i≤L,1≤t≤T ∥g(i,t)∥2.

Remark: In the last theorem we have set ε to 1/
√
T , which

requires pre-knowledge of T . This can be avoided by us-
ing a dynamic value for ε that changes as a function of the
number of time slots that have already passed.

We begin the proof of Theorem 4.1 by observing that a
repetition of the first half of the proof of Lemma 3.3 leads
to the following lemma.

Lemma 4.2. For every two integers 1 ≤ t ≤ T and
1 ≤ i ≤ L, Ft(y

(i,t)) ≥ Ft(y
(i−1,t)) + ε · ⟨s(i,t) −

y(i−1,t),∇Ft(y
(i−1,t)⟩ − 0.5ε2βD2.

Using the guarantee of Ei, it is possible to get the following
lemma from the previous one.

Lemma 4.3. For every integer number 1 ≤ i ≤ L,
E[
∑T

t=1 Ft(y
(i,t))] ≥ E[

∑T
t=1 Ft(y

(i−1,t))+ε·∑T
t=1⟨o−

y(i−1,t),∇Ft(y
(i−1,t))⟩]− ε · R(T )− 0.5ε2βD2T .

Proof. Summing up Lemma 4.2 over all t values, we get

T∑

t=1

Ft(y
(i,t)) ≥

T∑

t=1

Ft(y
(i−1,t))− 0.5ε2βD2T

+ ε ·
T∑

t=1

⟨s(i,t) − y(i−1,t),∇Ft(y
(i−1,t))⟩

=
T∑

t=1

Ft(y
(i−1,t))− 0.5ε2βD2T + ε ·

[
T∑

t=1

⟨s(i,t),g(i,t)⟩

+

T∑

t=1

⟨s(i,t),∇Ft(y
(i−1,t))− g(i,t)⟩

−
T∑

t=1

⟨y(i−1,t),∇Ft(y
(i−1,t))⟩

]
.

Additionally, since g(i,t) is independent of s(i,t), by the
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guarantee of Ei,

E

[
T∑

t=1

⟨s(i,t),g(i,t)⟩
]
≥ E

[
T∑

t=1

⟨o,g(i,t)⟩
]
−R(T ) .

Finally, since g(i,t) is chosen after y(i−1,t),

E[⟨s(i,t),∇Ft(y
(i−1,t))− g(i,t)⟩ | s(i,t),y(i−1,t)]

= ⟨s(i,t),∇Ft(y
(i−1,t))− E[g(i,t) | y(i−1,t)]⟩

= ⟨s(i,t),∇Ft(y
(i−1,t))−∇Ft(y

(i−1,t))⟩ = 0 ,

which by the law of total expectation implies the equality
E[⟨s(i,t),∇Ft(y

(i−1,t)) − g(i,t)⟩] = 0. Combining all the
above inequalities yields

E

[
T∑

t=1

Ft(y
(i,t))

]

≥ E

[
T∑

t=1

Ft(y
(i−1,t))

]
+ ε ·

{
T∑

t=1

⟨o,E[g(i,t)]⟩ − R(T )

−E
[

T∑

t=1

⟨y(i−1,t),∇Ft(y
(i−1,t))⟩

]}
− 0.5ε2βD2T

= E

[
ε ·

T∑

t=1

⟨o− y(i−1,t),∇Ft(y
(i−1,t))

+

T∑

t=1

Ft(y
(i−1,t))⟩

]
− ε · R(T )− 0.5ε2βD2T .

Corollary 4.4. For every integer number 1 ≤ i ≤ L,
E[
∑T

t=1 Ft(y
(i,t))] ≥ E[(1 − 2ε) ·∑T

t=1 Ft(y
(i−1,t)) +

ε(1− ε)i−1 ·∑T
t=1(1− ∥y(0,t)∥∞) · Ft(o)]− ε · R(T )−

0.5ε2βD2T .

Proof. To see why this corollary follows from Lemma 4.3,
it suffices to observe that, for every integer 1 ≤ t ≤ T ,

⟨o− y(i−1,t),∇Ft(y
(i−1,t))⟩

≥ Ft(o ∨ y(i−1,t)) + Ft(o ∧ y(i−1,t))− 2Ft(y
(i−1,t))

≥ Ft(o ∨ y(i−1,t))− 2Ft(y
(i−1))

≥ (1− ε)i−1 · (1− ∥y(0,t)∥∞) · Ft(o)− 2Ft(y
(i−1,t)) ,

where the first inequality follows from Lemma 2.1, the sec-
ond inequality holds by the non-negativity of Ft, and the
last inequality follows from Lemma 2.2 and the observation
that the proof of Observation 3.2 extends to Algorithm 2
and yields 1−∥y(i,t)∥∞ ≤ (1− ε)i · (1−∥y(0,t)∥∞).

One can observe that Corollary 4.4 is very similar to
Lemma 3.3 (the main difference between the two is that
in Corollary 4.4 the sum

∑T
t=1 Ft replaces the function F

from Lemma 3.3). This similarity means that the proof
of Theorem 3.1 can work with Corollary 4.4 instead of
Lemma 3.3, which yields Theorem 4.1.

5 INAPPROXIMABILITY

This section includes our inapproximability result, which is
given by the following theorem. Our result shows that the
known offline result (reproved in Section 3) for maximiz-
ing a DR-submodular function subject to a general convex
set is optimal. Notice that this implies that our online algo-
rithm from Section 4 is also optimal (at least in terms of the
approximation ratio) unless one allows for an exponential
time complexity.

Theorem 5.1. For every two constants h ∈ [0, 1) and ε >
0, no sub-exponential time algorithm can obtain (1/4(1 −
h)+ε)-approximation for the problem of maximizing a con-
tinuously differentiable non-negative DR-submodular func-
tion F : [0, 1]n → R≥0 subject to a solvable polytope K
obeying minx∈K ∥x∥∞ = h. Furthermore, this is true even
if we are guaranteed that maxx∈K F (x) = Ω(n−1) and F
is β-smooth for some β that is polynomial in n.

The last part of Theorem 5.1 specifies some additional
conditions under which the inapproximability stated in the
theorem still applies. These conditions are important be-
cause under them our algorithm from Section 3 can be
made to have a clean approximation guarantee of 1/4(1 −
minx∈K ∥x∥∞)− ε′, for any constant ε′ > 0, by choosing
a polynomially small value for the parameter ε of the algo-
rithm (to see that this is indeed the case, it is important to
observe that since K ⊆ [0, 1]n, the diameter D of K is at
most

√
n).

Theorem 5.1 is unconditional, i.e., it does not rely on any
complexity assumption. Instead, Theorem 5.1 assumes a
constraint on the way in which the algorithm may access
the objective F . It is standard in the field to assume that
the algorithm can access F only by querying the value or
gradient of F at a given point x. Theorem 5.1 applies under
this standard assumption, and furthermore, it applies even
when the algorithm is allowed any query about F whose
output is determined by the values of F in an arbitrarily
small neighborhood of a point x. Note that the standard
queries of value and gradient at x both fall within this class
of queries, and the same is true for other natural kind of
queries (such as higher order derivatives of F ).

The proof of Theorem 5.1 is based on the symmetry gap
framework of Vondrák (2013). To use this framework, we
first need to choose a submodular set function fk (k ≥ 1
is an integer parameter of the function). We choose the
same function that was used by Vondrák (2013) to prove
his hardness for maximizing a submodular function subject
to a matroid base constraint. Specifically, the ground set
of fk is the set Nk = {ai, bi | i ∈ [k]}, and for every set
S ⊆ Nk,

fk(S) =
k∑

i=1

1[ai ∈ S] · 1[bi ̸∈ S] .
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One can verify that fk is non-negative and submodular
since it is the cut function of a directed graph consisting
of k vertex-disjoint arcs.

We now would like to convert fk into two DR-submodular
functions, which we do using the following lemma of
Vondrák (2013). This lemma refers to the multilinear ex-
tension of a set function f : 2N → R over a ground set N .
This extension is a function F : [0, 1]N → R defined for
every vector x ∈ [0, 1]N by F (x) = E[f(R(x))], where
R(x) is a random subset of N that includes every element
u ∈ N with probability xu, independently.

Lemma 5.2 (Lemma 3.2 of Vondrák (2013)). Consider a
function f : 2N → R≥0 invariant under a group of permu-
tations G on the ground setN . Let F (x) be the multilinear
extension of f , define x̄ = Eσ∈G [1σ(x)] and fix any ε′ > 0.
Then, there is δ > 0 and functions F̂ , Ĝ : [0, 1]N → R≥0

(which are also symmetric with respect to G), satisfying the
following:

1. For all x ∈ [0, 1]N , Ĝ(x) = F̂ (x̄).

2. For all x ∈ [0, 1]N , |F̂ (x)− F (x)| ≤ ε′.

3. Whenever ∥x− x̄∥2 ≤ δ, F̂ (x) = Ĝ(x) and the value
depends only on x̄.

4. The first partial derivatives of F̂ and Ĝ are absolutely
continuous.

5. If f is monotone, then, for every element u ∈ N ,
∂F̂
∂xu
≥ 0 and ∂Ĝ

∂xu
≥ 0 everywhere.

6. If f is submodular then, for every two elements u, v ∈
N , ∂2F̂

∂xu∂xv
≤ 0 and ∂2Ĝ

∂xu∂xv
≤ 0 almost everywhere.

Observe that fk is invariant to exchanging the identities of
ai and bi with aj and bj , respectively, for any choice of
i, j ∈ [k]. Therefore, we can choose G in the last lemma
as the group of permutations that can be obtained by any
number of such exchanges. In the rest of this section, we
assume that F̂k and Ĝk are functions F̂ and Ĝ obtained
using Lemma 5.2 for this choice of G, fk and ε′ = 1/(2k).
It is also important to note that for this choice of G we have
for every vector x ∈ [0, 1]Nk and i ∈ [k]

x̄ai =
1

k

k∑

j=1

xaj and x̄bi =
1

k

k∑

j=1

xbj .

Let us now define a family of polytopes. The polytopePh,k

is the convex hull of the k + 1 vectors v(1),v(2), . . . ,v(k)

and u defined as follows. For every j ∈ [k], uaj
= 0 and

ubj = h. For every i, j ∈ [k],

v(i)aj
=

{
1 if i = j ,

0 otherwise ,
and v

(i)
bj

=

{
1 if i ̸= j ,

0 otherwise .

Using the above definitions, we can state two instances of
the problem we consider

max F̂k(x)
x ∈ Ph,k

and max Ĝk(x)
x ∈ Ph,k

.

In Appendix C we refer to these instances as the basic
instances. We show there that by “scrambling” these in-
stances in an appropriate way, they can be made indistin-
guishable. This yields Theorem 5.1 as we also prove in
Appendix C that the scrambled instances obey the proper-
ties assumed in the theorem, and furthermore, that there is
a large gap between the optimal values of scrambled in-
stances derived from the two basic instances.

6 APPLICATIONS AND
EXPERIMENTAL RESULTS

Up until recently, all the algorithms suggested for sub-
modular maximization subject to general convex set con-
straints had a sub-exponential execution time. As men-
tioned above, Du (2022) has recently shown the first poly-
nomial time offline algorithm for this problem, and in this
paper we have shown another polynomial time algorithm
obtaining a similar guarantee for the online (regret mini-
mization) setting. In this section (and Appendix D), we
study the empirical performance of these algorithms on the
machine learning applications of revenue maximization,
location summarization and quadratic programming. We
note that these are just a few examples of standard appli-
cations to which our results can be applied (other possible
applications include, for example, movie recommendation
and image summarization).

In the case of the offline algorithm, it is important to note
that (i) we analyze our explicit version of the algorithm,
rather than the original version of Du (2022); and (ii) it is
interesting to study the empirical performance of the algo-
rithm of Du (2022) because only a theoretical analysis of
this algorithm appeared in (Du, 2022).

Since the previously suggested algorithms require sub-
exponential execution time, and thus cannot be used as
is, we allowed all algorithms in our experiments the same
number of iterations. This makes all the algorithms termi-
nate in roughly the same amount of time, and allows for a
fair comparison between the quality of their solutions. In
a nutshell, our experiments show that our online algorithm
and the offline algorithm of Du (2022) provide better solu-
tions (often much better) compared to their state-of-the-art
sub-exponential time counterparts.

6.1 Revenue Maximization

Following Th´̆ang and Srivastav (2021), our first set of ex-
periments considers revenue maximization in the following
setting. The goal of a company is to advertise a product
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to users so that the revenue increases through the “word-
of-mouth” effect. Formally, the input for the problem is a
weighted undirected graph G = (V,E) representing a so-
cial network graph, where wij denotes the weight of the
edge between vertex i and vertex j (wij = 0 if the edge
(i, j) is missing from the graph). If the company invests xi
unit of cost in a user i ∈ V , then this user becomes an ad-
vocate of the product with probability 1− (1− p)xi , where
p ∈ (0, 1) is a parameter. Note that this means that each ε
unit of cost invested in the user has an independent chance
to make the user an advocate, and that by investing a full
unit in the user, she becomes an advocate with probability
p (Soma and Yoshida, 2017).

Let S ⊆ V be a set of users who ended up being advocates
for the product. Then, the revenue obtained is represented
by the total influence of the users of S on non-advociate
users, or more formally, by

∑
i∈S

∑
j∈V \S wij . The ob-

jective function f : [0, 1]V → R≥0 of the experiments is
accordingly defined as the expectation of the above expres-
sion, i.e.,

f(x) = ES


∑

i∈S

∑

j∈V \S
wij




=
∑

i∈V

∑

j∈V
i ̸=j

wij(1− (1− p)xi)(1− p)xj .

It has been shown that f is a non-monotone DR-sub-
modular function (Soma and Yoshida, 2017).

In both the online and offline settings, we experimented
on instances of the above setting based on two differ-
ent datasets. The first is a Facebook network (Viswanath
et al., 2009), and includes 64K users (vertices) and 1M
unweighted relationships (edges). The second dataset is
based on the Advogato network (Massa et al., 2009), and
includes 6.5K users (vertices) as well as 61K weighted re-
lationships (edges).

6.1.1 Online setting

When performing our experiments in the online settings,
we tried to closely mimic the experiment of Th´̆ang and Sri-
vastav (2021). Therefore, we chose the number of time
steps to be T = 1000, and the parameter p = 0.0001. In
each time step t, the objective function is defined in the
following way. A subset V t ⊆ V is selected, and only
edges connecting two vertices of V t are kept. In the case
of the Advogato network, Vt is a uniformly random sub-
set of V of size 200, and in the case of the much larger
Facebook network, Vt is a uniformly random subset of V
of size 15,000. The optimization is done subject to the con-
straint 0.1 ≤ ∑i xi ≤ 1, which represents both minimum
and maximum investment requirements. Note that the in-
tersection of this constraint with the implicit box constraint
represents a non-down-monotone feasibility polytope.

In our experiments, we have compared our algorithm
from Section 4 with the algorithm of Th´̆ang and Srivastav
(2021), which is the only other algorithm for the online set-
ting currently known. In both algorithms, we have set the
number of online linear optimizers used to beL = 100, and
in our algorithm we have set the error parameter ε = 0.03
(there is no error parameter in the algorithm of Th´̆ang and
Srivastav (2021)). The results of these experiments on the
Advogato and Facebook networks can be found in Fig-
ures 1a and 1b, respectively. One can observe that our al-
gorithm significantly outperforms the state-of-the-art algo-
rithm for any number of time steps.

6.1.2 Offline setting

Our experiments in the offline setting are similar to the ones
done in the online setting, with two differences. First, since
there is only one objective function in the offline setting, we
base it on the entire network graph rather than on a subset
of its vertices. Second, for the sake of diversity, we changed
the constraint to be 0.25 ≤∑i xi ≤ 1 (but we note that the
results of the experiments remain essentially unchanged if
one reuse the constraint from the online setting).

In our experiments, we have compared our explicit version
from Section 3 of the algorithm of Du (2022) with the pre-
vious algorithms of Dürr et al. (2021) and Du et al. (2022).
All the algorithms have been executed for T = 100 itera-
tions,4 and the error parameter ε was set 0.03 in (our ver-
sion of) the algorithm of Du (2022). The results of these
experiments on the Advogato and Facebook networks can
be found in Figures 1c and 1d, respectively. One can ob-
serve that our version of the polynomial time algorithm of
Du (2022) clearly outperforms the two previous algorithms,
except when the number of iterations is very low.

6.2 Location Summarization

In this section we consider a location summarization task
based on the Yelp dataset (Yelp), which is a subset of Yelp’s
businesses, reviews and user data. This dataset contains in-
formation about local businesses across 11 metropolitan ar-
eas, and we have followed the technique of Kazemi et al.
(2021) for generating symmetry scores between these loca-
tions based on features extracted from the descriptions of
the locations and their related user reviews (such as park-
ing options, WiFi access, having vegan menus).

We would like to pick a non-empty set of up to 2 locations
that summarizes the existing locations, while not being too
far from the current location of the user. A natural objective
function for this task (which is very similar to the objective
function used in (Kazemi et al., 2021)) is the following set
function. Assume that the set of locations is [n], Mi,j is

4Recall that the number of iterations corresponds to the pa-
rameter L in the online setting, which was also set to 100 above.
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(a) Online Algorithms on the
Advogato network.
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(b) Online Algorithms on the
Facebook network.
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(c) Offline Algorithms on the
Advogato network.
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(d) Offline Algorithms on the
Facebook network.

Figure 1: Results of the Revenue Maximization Experiments

the similarity score between locations i and j, and di is the
distance of location i from the user (in units of 200KM);
then for every set S ⊆ [n], the value of the objective is
f(S) = 1

n

∑n
i=1 maxj∈S Mi,j −

∑
i∈S di.

Since f is a set function, and the tools we have developed in
this work apply only to continuous functions, we optimize
the multilinear extension F of f ,5 which is given for every
vector x ∈ [0, 1]n by

F (x) = 1
n

n∑

i=1

n∑

j=1


xjMi,j ·

∏

j′|Mi,j≺Mi,j′

(1− xj′)


−

n∑

i=1

xidi .

The multilinear extension F is DR-submodular since f is
submodular. Moreover, any solution obtained while opti-
mizing F can be rounded into a solution obtaining the same
approximation guarantee for f using either pipage or swap
rounding (Calinescu et al., 2011; Chekuri et al., 2010).

In our experiment, we restricted attention to a single
metropolitan area (Charlotte), and assumed there are 100
time steps. In each time step, a new user u arrives, and her
location is determined uniformly at random within the rect-
angle containing the metropolitan area. Let us denote by
Fu the function F when the distances are calculated based
on the location of u. When user u arrives, we would like
to choose a vector x(u) maximizing Fu among all vectors
obeying ∥x∥1 ∈ [1, 2] (recall that we look for solutions that
include 1 or 2 locations). Furthermore, we would like to do
that before learning the location of u (to speed up the re-
sponse and for privacy reasons); thus, we need to consider
online optimization algorithms. Specifically, like in Sec-
tion 6.1.1, we compared our algorithm from Section 4 with
the algorithm of Th´̆ang and Srivastav (2021). In both algo-
rithms, we have set the number of online linear optimizers
used to be L = 100, and in our algorithm we have set the
error parameter ε = 0.03. The results of the experiment
can be found in Figure 2, and they show that our algorithm
(again) significantly outperforms the state-of-the-art algo-
rithm for any number of time steps.

5See Section 5 for a definition of the multi-linear extension.
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Figure 2: Location Summarization Experiment

7 CONCLUSION

In this work, we have considered the problem of maximiz-
ing a DR-submodular function over a general convex set
in both the offline and the online (regret minimization) set-
tings. For the online setting we provided the first polyno-
mial time algorithm. Our algorithm matches the approx-
imation guarantee of the only polynomial time algorithm
known for the offline setting. Moreover, we presented a
hardness result showing that this approximation guarantee
is optimal for both settings. Finally, we have run experi-
ments to study the empirical performance of both our al-
gorithm and the (recently suggested) polynomial time of-
fline algorithm. Our experiments show that both these al-
gorithms outperform previous benchmarks.

Acknowledgements

This work was supported in part by Israel Science Founda-
tion (ISF) grant number 459/20.

References

Jacob Abernethy, Elad Hazan, and Alexander Rakhlin.
Competing in the dark: An efficient algorithm
for bandit linear optimization. In Conference on
Learning Theory (COLT), pages 263–273, 2008.
URL https://www.learningtheory.org/
colt2008/papers/123-Abernethy.pdf.



Resolving the Approximability of Offline and Online Non-monotone DR-Submodular Maximization over General Convex Sets

An Bian, Kfir Yehuda Levy, Andreas Krause, and
Joachim M. Buhmann. Non-monotone contin-
uous DR-submodular maximization: Structure
and algorithms. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), pages 486–
496, 2017a. URL https://proceedings.
neurips.cc/paper/2017/hash/
58238e9ae2dd305d79c2ebc8c1883422-
Abstract.html.

An Bian, Kfir Y Levy, Andreas Krause, and Joachim M
Buhmann. Non-monotone continuous DR-submodular
maximization: Structure and algorithms. In Advances
in Neural Information Processing Systems (NeurIPS),
pages 487–497. Curran, 2018.

Andrew An Bian, Joachim M. Buhmann, Andreas
Krause, and Sebastian Tschiatschek. Guarantees
for greedy maximization of non-submodular functions
with applications. In International Conference on
Machine Learning (ICML), pages 498–507, 2017b.
URL http://proceedings.mlr.press/v70/
bian17a.html.

Yatao Bian, Joachim Buhmann, and Andreas Krause. Op-
timal continuous DR-submodular maximization and ap-
plications to provable mean field inference. In Interna-
tional Conference on Machine Learning (ICML), pages
644–653. PMLR, 2019.

Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan
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Christoph Dürr, Nguyên Kim Thång, Abhinav Srivas-
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Jan Vondrák. Symmetry and approximability of submod-
ular maximization problems. SIAM J. Comput., 42
(1):265–304, 2013. doi: 10.1137/110832318. URL
https://doi.org/10.1137/110832318.

Wei Xia, Juan-Carlos Vera, and Luis F. Zuluaga. Glob-
ally solving nonconvex quadratic programs via lin-
ear integer programming techniques. INFORMS J.
Comput., 32(1):40–56, 2020. doi: 10.1287/ijoc.2018.
0883. URL https://doi.org/10.1287/ijoc.
2018.0883.

Yelp. Yelp Dataset. https://www.yelp.com/
dataset, 2019.

Mingrui Zhang, Lin Chen, Hamed Hassani, and Amin
Karbasi. Online continuous submodular maximization:
From full-information to bandit feedback. In Advances
in Neural Information Processing Systems (NeurIPS),
volume 32, 2019.



Resolving the Approximability of Offline and Online Non-monotone DR-Submodular Maximization over General Convex Sets

A PROOF OF LEMMA 2.2

In this section we prove Lemma 2.2, which we repeat here for convenience.

Lemma 2.2. For every two vectors x,y ∈ [0, 1]n and any continuously differentiable non-negative DR-submodular func-
tion F : [0, 1]n → R≥0, F (x ∨ y) ≥ (1− ∥x∥∞)F (y).

Proof. If ∥x∥∞ = 0, then x is the all zeros vector, and the lemma becomes trivial. Thus, we may assume in the rest of this
proof that ∥x∥∞ > 0. Let z = x ∨ y − y. Then,

F (x ∨ y)− F (y) =
∫ 1

0

dF (y + r · z)
dr

∣∣∣∣
r=t

dt =

∫ 1

0

n∑

i=1

⟨z,∇F (y + t · z)⟩dt (1)

= ∥x∥∞ ·
∫ 1/∥x∥∞

0

n∑

i=1

⟨z,∇F (y + ∥x∥∞ · t′ · z)⟩dt′

≥ ∥x∥∞ ·
∫ 1/∥x∥∞

0

n∑

i=1

⟨z,∇F (y + t′ · z)⟩dt′ ,

where the last equality holds by changing the integration variable to t′ = t/∥x∥∞, and the inequality follows from the
DR-submodularity of F because y + t′ · z ∈ [0, 1]n. To see that the last inclusion holds, note that, for every i ∈ [n], if
xi ≤ yi, then yi + t′ · zi = yi ≤ 1, and if xi ≥ yi, then

yi + t′ · zi ≤ yi +
zi
∥x∥∞

= yi +
xi − yi
∥x∥∞

≤ xi
∥x∥∞

≤ 1 .

Observe now that we also have
∫ 1/∥x∥∞

0

n∑

i=1

⟨z,∇F (y + t′ · z)⟩dt′ =
∫ 1/∥x∥∞

0

dF (y + r · z)
dr

∣∣∣∣
r=t′

dt′

= F

(
y +

z

∥x∥∞

)
− F (y) ≥ −F (y) ,

where the inequality follows from the non-negativity of F . The lemma now follows by plugging this inequality into
Inequality (1), and rearranging.

B MISSING PROOFS OF SECTION 3

B.1 Proof of Observation 3.2

In this section we prove observation 3.2, which we repeat here for convenience.

Observation 3.2. For every integer 0 ≤ i ≤ T , 1− ∥y(i)∥∞ ≥ (1− ε)i · (1− ∥y(0)∥∞).

Proof. To prove the observation, we show by induction that for every fixed coordinate j ∈ [n], we have 1 − y
(i)
j ≥

(1− ε)i · (1− y(0)j ). For i = 0, this inequality trivially holds. Furthermore, assuming this inequality holds for i− 1, it also
holds for i because

1− yij = 1− (1− ε)y(i−1)
j − εs(i)j

≥ 1− (1− ε)y(i−1)
j − ε

= (1− ε)(1− y(i−1)
j )

≥ (1− ε)i · (1− y(0)j ) ,

where the second inequality follows from the induction hypothesis.
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B.2 Proof of Lemma 3.3

In this section we prove Lemma 3.3, which we repeat here for convenience.

Lemma 3.3. For every integer 1 ≤ i ≤ T , F (y(i)) ≥ (1−2ε)·F (y(i−1))+ε(1−ε)i−1 ·(1−∥y(0)∥∞)·F (o)−0.5ε2βD2.

Proof. By the chain rule,

F (y(i))− F (y(i−1)) = F ((1− ε) · y(i−1) + ε · s(i))− F (y(i−1))

=

∫ ε

0

F ((1− z) · y(i−1) + z · s(i))
dz

∣∣∣∣
z=r

dr

=

∫ ε

0

⟨s(i) − y(i−1),∇F ((1− r) · y(i−1) + r · s(i))⟩dr

≥
∫ ε

0

[
⟨s(i) − y(i−1),∇F (y(i−1))⟩ − rβD2

]
dr

= ε · ⟨s(i) − y(i−1),∇F (y(i−1))⟩ − 0.5ε2βD2,

where the inequality follows from the β-smoothness of F . Recall now that s(i) is the maximizer found by Algorithm 1 in
its i-th iteration, and o is one of the values in the domain on which the maximum is calculated. Therefore,

F (y(i))− F (y(i−1)) ≥ ε · ⟨s(i) − y(i−1),∇F (y(i−1))⟩ − 0.5ε2βD2

≥ ε · ⟨o− y(i−1),∇F (y(i−1))⟩ − 0.5ε2βD2

≥ ε ·
[
F (o ∨ y(i−1)) + F (o ∧ y(i−1))− 2F (y(i−1))

]
− 0.5ε2βD2

≥ ε ·
[
(1− ε)i−1 · (1− ∥y(0)∥∞) · F (o)− 2F (y(i−1))

]
− 0.5ε2βD2.

where the third inequality follows from Lemma 2.1, and the last inequality from Lemma 2.2, Observation 3.2 and the
non-negativity of F . The lemma now follows by rearranging the last inequality.

B.3 Proof of Theorem 3.1

In this section we prove Theorem 3.1, which we repeat here for convenience.

Theorem 3.1. Let K ⊆ [0, 1]n be a general convex set, and let F : [0, 1]n → R≥0 be a non-negative β-smooth DR-
submodular function. Then, Non-mon. Frank-Wolfe (Algorithm 1) outputs a solution w ∈ K obeying

F (w) ≥ (1−2ε)T−1[(1+ε)T − 1](1−min
x∈K
∥x∥∞) ·F (o)

− 0.5ε2βD2T ,

where D is the diameter of K and o ∈ argmaxx∈K F (x). In particular, when T is set to be ⌊ln 2/ε⌋,

F (w) ≥ (1/4− 3ε)(1−min
x∈K
∥x∥∞) · F (o)− 0.5εβD2 .

Proof. To see that the second part of the theorem follows from the first part, note that for T = ⌊ln 2/ε⌋ and ε < 1/4,

(1− 2ε)T−1[(1 + ε)T − 1] ≥ e−2εT (1− 4ε2T )[eεT (1− ε2T )− 1]

≥ e−2 ln 2(1− 4ε ln 2)[eln 2−ε(1− ε ln 2)− 1]

=

(
1

4
− ε ln 2

)[
2− 2ε ln 2

eε
− 1

]

≥
(
1

4
− ε
)[

2− 2ε

1 + 2ε
− 1

]

=

(
1

4
− ε
)
· 1− 4ε

1 + 2ε

≥ 1

4
− 3ε .
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For ε ≥ 1/4, the second part of the theorem is an immediate consequence of the non-negaitivity of F .

It remains to prove the first part of the theorem. We do that by proving by induction the stronger claim that for every integer
0 ≤ i ≤ T ,

F (y(i)) ≥ (1− 2ε)i−1
[
(1 + ε)i − 1

]
· (1− ∥y(0)∥∞) · F (o)− 0.5ε2βD2i . (2)

Note that the theorem indeed follows from this claim because w is the best vector within a set that includes y(T ), and
y(0) ∈ argminx∈K ∥x∥∞. For i = 0, Equation (2) follows directly from the non-negativity of F . Hence, we only need to
show that for 1 ≤ i ≤ T , if we assume that Equation (2) holds for i− 1, then it holds for i as well. This is indeed the case
because Lemma 3.3 yields

F (y(i)) ≥ (1− 2ε) · F (y(i−1)) + ε(1− ε)i−1 · (1− ∥y(0)∥∞) · F (o)− 0.5ε2βD2

≥ (1− 2ε) · {(1− 2ε)i−2
[
(1 + ε)i−1 − 1

]
· (1− ∥y(0)∥∞) · F (o)− 0.5ε2βD2(i− 1)}

+ ε(1− ε)i−1 · (1− ∥y(0)∥∞) · F (o)− 0.5ε2βD2

≥ {(1− 2ε)i−1
[
(1 + ε)i − ε(1 + ε)i−1 − 1

]
+ ε(1− ε)i−1} · (1− ∥y(0)∥∞) · F (o)− 0.5ε2βD2i

≥ (1− 2ε)i−1
[
(1 + ε)i − 1

]
· (1− ∥y(0)∥∞) · F (o)− 0.5ε2βD2i ,

where the second inequality follows from the induction hypothesis, and the last inequality holds since

(1− 2ε)i−1 · ε(1 + ε)i−1 = ε(1− ε− 2ε2)i−1 ≤ ε(1− ε)i−1 .

C CONTINUING THE PROOF OF THEOREM 5.1

In this section, we complete the proof of Theorem 5.1. As explained in Section 5, the proof of Theorem 5.1 is based
on showing that: (i) by “scrambling” the basic instances defined in Section 5 in an appropriate way, they can be made
indistinguishable, (ii) the scrambled instances obey the properties assumed in the theorem, and (iii) there is a large gap
between the optimal values of scrambled instances derived from the two basic instances. Towards this goal, we first study
the properties of the basic instances themselves, and the gap between their optimal values. Let us begin with the following
lemma, which gives some properties of the objective functions of the basic instances.
Lemma C.1. The functions F̂k and Ĝk are continuously differentiable, non-negative and DR-submodular. Furthermore,
they are β-smooth for a value β that is polynomial in k.

Proof. The non-negativity of F̂k and Ĝk is explicitly guaranteed by Lemma 5.2, and Part 4 of the lemma shows that
F̂ and Ĝ are also continuously differentiable. Finally, Parts 4 and 6 of Lemma 5.2 imply together that F̂k and Ĝk are
DR-submodular (see the proof of Lemma 3.1 of Vondrák (2013) for a formal argument).

It remains to bound the smoothness of F̂k and Ĝk. Notice that the following claim implies that both functions are β-
smooth for a β value that is polynomial in k. Unfortunately, the proof of this claim is technically quite involved (and
not very insightful) as it requires us to look into the proof Lemma 5.2, and therefore, we defer the proof of this claim to
Section C.1.

Claim C.2. The absolute values of the second order partial derivatives of the functions F̂k and Ĝk are bounded by 16k+2
almost everywhere, and therefore, both functions are β-smooth for a β value that is polynomial in k.

Next, we observe that the common constraint polytope of the basic instances is solvable since Ph,k is a polytope over 2k
variables defined as the convex-hall of k + 1 vectors. The next observation proves another property of this polytope.
Observation C.3. If k ≥ 1/(1− h), minx∈Ph,k

∥x∥∞ = h.

Proof. Since u ∈ Ph,k, minx∈Ph,k
∥x∥∞ ≤ h. Thus, we only need to show that no point in Ph,k has an infinity norm less

than h. Recall that every point in Ph,k is a convex combination
∑k

i=1 civ
(i) + du (where ci is the coefficient of v(i) in the

combination, and d is the coefficient of u), and assume without loss of generality that c1 = min{c1, c2, . . . , ck}. Then,
∥∥∥∥∥

k∑

i=1

civ
(i) + du

∥∥∥∥∥
∞
≥

k∑

i=1

civ
(i)
b1

+ dub1 =
k∑

i=2

ci + dh ≥ k − 1

k

k∑

i=1

ci + dh ≥ h
k∑

i=1

ci + dh = h ,

where the last inequality holds by the condition of the observation, and the last equality holds since the fact that∑k
i=1 civ

(i) + du is a convex combination implies
∑k

i=1 ci + d = 1.
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The last properties that we need to prove for the basic instances are about the optimal values of these instances. Specifically,
we need to show that both their optimal values are significant (at least Ω(k−1)), but there is a large gap between them. The
following two lemmata show these properties, respectively.

Lemma C.4. maxx∈Ph,k
F̂k(x) = Ω(k−1) and maxx∈Ph,k

Ĝk(x) = Ω(k−1).

Proof. We prove the lemma by considering the vector y = 1
k

∑k
i=1 u

(i). Since y ∈ Ph,k and ȳ = y, F̂k(y) lower bounds
both maxx∈Ph,k

F̂k(x) and maxx∈Ph,k
Ĝk(x). Thus, it remains to show that F̂k(y) = Ω(k−1). By Lemma 5.2,

F̂k(y) ≥ Fk(y)− ε′ =
k∑

i=1

yai
(1− bi)− ε′ =

k∑

i=1

1

k
·
(
1−

(
1− 1

k

))
− ε′ = 1

k
− ε′ = 1

2k
,

where Fk is the multilinear extension of fk.

Lemma C.5. maxx∈Ph,k
F̂k(x) ≥ 1− 1/(2k) and maxx∈Ph,k

Ĝk(x) ≤ (1− h)/4 + 3/(2k).

Proof. To prove the first part of the lemma, it suffices to observe that v(1) ∈ Ph,k and

F̂k(v
(1)) ≥ Fk(v

(1))− ε′ = fk({a1} ∪ {bi | 2 ≤ i ≤ k})− ε′ = 1− 1/(2k) ,

where Fk is the multilinear extension of fk.

Let us now prove the second part of the lemma. Fix an arbitrary vector x ∈ Ph,k, and let d be the coefficient of u in the
convex combination that shows that x belongs to Ph,k. Then,

k∑

i=1

xai = 1− d and
k∑

i=1

xbi = dkh+ (1− d)(k − 1) = k(dh+ 1− d) + d− 1 .

Thus,

Ĝk(x) = F̂k(x̄) ≤ Fk(x̄) + ε′ =
k∑

1=1

∑k
i=1 xai

k

(
1−

∑k
i=1 xbi
k

)
+ ε′

= (1− d)
(
d− dh+

1− d
k

)
+ ε′ ≤ d(1− d)(1− h) + 1

k
+ ε′ ≤ 1− h

4
+

3

2k
.

We now would like to describe how the two basic instances are scrambled. Intuitively, the constraint polytope Kh,k,ℓ of a
scrambled instance is obtained by combining ℓ orthogonal instances of Ph,k. Each element ai or bi has a copy in all the
orthogonal instances, and the objective function treats every such copy as representing ℓ−1 of the original element. For
example, if one would like to construct a solution assigning a value of 1/2 to ai, then the copies of ai in Kh,k,ℓ should get
an average value of 1/2. By randomly permuting the names of the elements in each orthogonal instance of Ph,k, we make
it difficult for the algorithm to construct solutions that do not correspond to symmetric vectors in Ph,k. More formally, the
constraint polytope Kh,k,ℓ is a subset of [0, 1]Mk,ℓ , where

Mk,ℓ = {ai,j , bi,j | i ∈ [k], j ∈ [ℓ]} .

A vector x ∈ [0, 1]Mk,ℓ belongs to Kh,k,ℓ if for every j ∈ [ℓ] we have x(j) ∈ Ph,k, where the vector x(j) ∈ [0, 1]Nk is
defined by

x(j)
ai

= xai,j and x
(j)
bi

= xbi,j .

The following lemma is an immediate corollary of the definition of Kh,k,ℓ, Observation C.3 and the discussion before this
observation.

Lemma C.6. When k ≥ 1/(1− h), Kh,k,ℓ is solvable and maxx∈Kh,k,ℓ
∥x∥∞ = h.
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The objective functions of the scrambled instances are formally defined using a vector σ of ℓ permutations over [k] (in
other words, σ1, σ2, . . . , σℓ are all permutations over [k]). Given such a vector σ and a vector x ∈ [0, 1]Mk,ℓ , we define
the vector x(σ) ∈ [0, 1]Nk as follows.

x(σ)
ai

= 1
ℓ

ℓ∑

j=1

xaσj(i),j
and x

(σ)
bi

= 1
ℓ

ℓ∑

j=1

xbσj(i),j
.

Then, the functions F̄k,σ : [0, 1]Mk,ℓ → R≥0 and Ḡk,σ : [0, 1]Mk,ℓ → R≥0 are defined for every vector x ∈ [0, 1]Mk,ℓ by

F̄k,σ(x) = F̂ (x(σ)) and Ḡk,σ(x) = Ĝ(x(σ)) .

The following lemma shows that the functions F̄k,σ and Ḡk,σ inherit all the good properties of F̂k and Ĝk promised
by Lemma C.1. Since the proof of this lemma is technical and quite straightforward given Lemma C.1, we defer it to
Section C.1.

Lemma C.7. The functions F̄k,σ and Ḡk,σ are continuously differentiable, non-negative and DR-submodular. Further-
more, they are β-smooth for a value β that is polynomial in k and ℓ.

We can now formally state the scrambled instances that we consider.

max F̄k,σ(x)
x ∈ Kh,k,ℓ

and
max Ḡk,σ(x)
x ∈ Kh,k,ℓ

.

The next lemma shows that these scrambled instances inherit the values of their optimal solutions from the basic instances,
which in particular, implies that they also inherit the gap between these solutions.

Lemma C.8. We have both maxx∈Kh,k,ℓ
F̄k,σ(x) = maxx∈Ph,k

F̂k(x) and maxx∈Kh,k,ℓ
Ḡk,σ(x) = maxx∈Ph,k

Ĝk(x).

Proof. We prove below only the first equality of the lemma. The proof of the other equality is analogous. We begin
by arguing that maxx∈Kh,k,ℓ

F̄k,σ(x) ≥ maxx∈Ph,k
F̂k(x). To show this inequality, we start with an arbitrary vector

x ∈ Ph,k, and we construct a vector y ∈ Kh,k,ℓ such that F̄k,σ(y) = F̂k(x). Formally, the vector y is defined as follows.
For every i ∈ [k] and j ∈ [ℓ],

yai,j
= xa

σ
−1
j

(i)
and ybi,j = xb

σ
−1
j

(i)
.

One can observe that x = y(σ), and therefore, we indeed have F̄k,σ(y) = F̂k(x); which means that we are only left to
show that y ∈ Kh,k,ℓ. Recall that, by the definition of Kh,k,ℓ, to prove this inclusion, we need to argue that y(j) ∈ Ph,k

for every j ∈ [ℓ], where y(j) is the restriction of y to elements of {ai,j , bi,j | i ∈ [k]}.
Below, given a vector z ∈ Ph,k, we denote by σj(z) the following vector.

(σj(z))ai
= za

σ
−1
j

(i)
and (σj(z))bi = zb

σ
−1
j

(i)
.

Observe that this definition implies σj(u) = u and σj(v
(i)) = v(σj(i)), where u,v(1),v(2), . . . ,v(k) are the vec-

tors whose convex-hall defines Ph,k. Since x ∈ Ph,k, it must be given by some convex combination of the vectors
u,v(1),v(2), . . . ,v(k). In other words,

x =

k∑

i=1

ci · v(i) + d · u .

Thus,

y(j) = σj(x) = σj

(
k∑

i=1

ci · v(i) + d · u
)

=
k∑

i=1

ci · v(σj(i)) + d · u .

The rightmost side of the last equality is another convex combination of the vectors u,v(1),v(2), . . . ,v(k), and thus, the
equality shows that y(j) ∈ Ph,k, as desired.

We now get to the proof that maxx∈Kh,k,ℓ
F̄k,σ(x) ≤ maxx∈Ph,k

F̂k(x). Consider an arbitrary vector x ∈ Kh,k,ℓ. By the
definition of F̄k,σ(x), F̄k,σ(x) = F̂k(x

(σ)). Thus, to prove the last inequality, it suffices to show that x(σ) ∈ Ph,k, which
is done by the next claim. Since the proof of this claim is very similar to the above proof that y ∈ Kh,k,ℓ, we defer it to
Section C.1.
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Claim C.9. For every vector x ∈ Kh,k,ℓ, x(σ) ∈ Ph,k.

Corollary C.10. It holds that maxx∈Kh,k,ℓ
F̄k,σ(x) ≥ 1 − 1/(2k) = Ω(k−1) and (1 − h)/4 + 3/(2k) ≥

maxx∈Kh,k,ℓ
Ḡk,σ(x) = Ω(k−1).

Lemmata C.6, C.7 and C.8 show that the scrambled instances we have constructed have all the properties stated in Theo-
rem 5.1 when k ≥ 1/(1− h)). Therefore, to prove the theorem it suffices to show that no sub-exponential time algorithm
can obtain a good approximation guarantee given these instances when ℓ is large enough compared to k. We do this by
showing that when σ is chosen uniformly at random, it is difficult to distinguish between the two scrambled instances, and
therefore, no sub-exponential time algorithm can obtain an approximation ratio better than the (large) gap between their
optimal values. The first step in this proof is done by the next lemma, which shows that any single access to the objective
function almost always returns the same answer given either of the two scrambled instances. To understand why the lemma
implies this, it is important to recall that we assume that the algorithm is able to access F only by making queries whose
outputs are determined by the values of F in an arbitrary small neighborhood of a given point x (this kind of queries
includes the standard value and gradient queries).

Lemma C.11. Assume σ is drawn uniformly at random, i.e., σj is an independently chosen uniformly random permutation

of [k] for every j ∈ [ℓ]. Given any vector x ∈ [0, 1]Mk , with probability at least 1 − 4k · e−ℓ· δk
6
√

2k we have F̄k,σ(y) =

Ḡk,σ(y) for every vector y such that ∥x−y∥2 ≤ (
√
ℓ/4) · δk, where δk is the value of δ when Lemma 5.2 is applied to fk.

Proof. Below, we show that ∥x(σ) − x̄(σ)∥2 ≤ δk/2 with probability at least 1 − 4k · e−ℓδk/(6
√
2k). However, before

getting to this proof, let us show that, whenever this inequality holds, we also have F̄k,σ(y) = Ḡk,σ(y). By the definitions
of F̄k,σ and Ḡk,σ , the last equality is equivalent to F̂k(y

(σ)) = Ĝk(y
(σ)), and this equality holds by Lemma 5.2 since

∥y(σ) − ȳ(σ)∥2 ≤ ∥y(σ) − x(σ)∥2 + ∥ȳ(σ) − x̄(σ)∥2 + ∥x(σ) − x̄(σ)∥2 ≤ 2∥y(σ) − x(σ)∥2 + δk/2 ≤ δk ,

where the first inequality is the triangle inequality, the second inequality holds since averaging two vectors in the same
way can only decrease their distance from each other, and the last inequality holds because Sedrakyan’s inequality (or
Cauchy-Schwarz inequality) implies

∥y(σ) − x(σ)∥22 =

∑k
i=1[

∑ℓ
j=1(yaσj(i),j

− xaσj(i),j
)]2 +

∑k
i=1[

∑ℓ
j=1(ybσj(i),j

− xbσj(i),j
)]2

ℓ2

≤
∑k

i=1

∑ℓ
j=1(yaσj(i),j

− xaσj(i),j
)2 +

∑k
i=1

∑ℓ
j=1(ybσj(i),j

− xbσj(i),j
)2

ℓ
=
∥x− y∥22

ℓ
.

It now remains to prove that the inequality ∥x(σ)− x̄(σ)∥2 ≤ δk/2 holds with probability at least 1−4k ·e−ℓδk/(6
√
2k). By

the union bound, to prove this inequality it suffices to show that, for every i ∈ [k], the probabilities of the two inequalities
|x(σ)

ai − x̄
(σ)
ai | > δk/

√
8k and |x(σ)

bi
− x̄

(σ)
bi
| > δk/

√
8k to hold are both at most 2e−ℓδk/(6

√
2k). The rest of this proof is

devoted to showing that this is indeed the case for the first inequality as the proof for the second inequality is analogous.
Recall that

x(σ)
ai

= 1
ℓ

ℓ∑

j=1

xaσj(i),j
. (3)

Thus,

x̄(σ)
ai

=
1

k

k∑

i′=1

x(σ)
ai′

=
1

k

k∑

i′=1


 1

ℓ

ℓ∑

j=1

xaσj(i
′),j


 =

1

kℓ

k∑

i′=1

ℓ∑

j=1

xaσj(i
′),j =

1

kℓ

k∑

i′=1

ℓ∑

j=1

xai′,j , (4)

where the last equality holds since σj is a permutation over [k]. Similarly, we also have

E[x(σ)
ai

] =
1

ℓ

ℓ∑

j=1

E[xaσj(i),j
] =

1

ℓ

ℓ∑

j=1

(
1
k

k∑

i′=1

E[xai′,j ]

)
= x̄(σ)

ai
.

Hence, the claim that we want to prove bounds the probability that x(σ)
ai significantly deviates from its expectation. Fur-

thermore, Equation (3) shows that ℓ · x(σ)
ai is the sum of ℓ random variables taking values from the range [0, 1]. Since σj
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is chosen independently for every j ∈ [ℓ], these ℓ random variables are independent, which allows us to use Chernoff’s
inequality to bound their sum. Therefore,

Pr

[
|x(σ)

ai
− x̄(σ)

ai
| > δk√

8k

]
= Pr



∣∣∣∣∣∣

ℓ∑

j=1

xaσj(i),j
− E




ℓ∑

j=1

xaσj(i),j



∣∣∣∣∣∣
>

ℓδk√
8k




≤ 2e−
E[∑ℓ

j=1 xaσj(i),j
]·min





ℓδk√
8k·E[∑ℓ

j=1
xaσj(i),j

]
,

ℓ2δ2k
8k·E[∑ℓ

j=1
xaσj(i),j

]2





3

= 2e−
min





ℓδk√
8k

,
ℓ2δ2k

8k·E[∑ℓ
j=1

xaσj(i),j
]





3 ≤ 2e−
ℓδk√
8k

·min

{
1,

δk√
8k

}

3 = 2e
−ℓ· δk

6
√

2k .

Equation (4) in the last proof has another interesting consequence. This equation shows that x̄(σ) is independent of σ.
Since Lemma 5.2 shows that Ĝk(x) = F̂k(x̄) for every x ∈ [0, 1]Nk , this implies the following observation.

Observation C.12. For every x ∈ [0, 1]Mk,ℓ , the value of Ḡk,σ(x) = Ĝk(x
(σ)) = F̂k(x̄

σ) is independent of σ.

In light of the above observation, we use below Ḡk to denote the function Ḡk,σ . We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Fix an arbitrary sub-exponential function P (·). Below, we show that there is a distribution of
instances on which no deterministic algorithm making at most P (n) accesses to the objective function, where n is the
dimension, can obtain an approximation ratio of (1− h)/4+ ε. By Yao’s principle, this will imply the same result also for
randomized algorithms running in time P (n) (notice that running in time P (n) implies making at most P (n) accesses to
the objective function).

The distribution of instances we consider is the scrambled instance maxvx∈Kh,k,ℓ
Fk,σ , where k ≥ 1/(1−h) and ℓ are de-

terministic values to be determined below, and σ is chosen at random according to the distribution defined in Lemma C.11.
Assume towards a contradiction that there exists a deterministic algorithm ALG that accesses the objective function at
most P (|Mk,ℓ|) = P (2kℓ) times, and given a random instance from the above distribution obtains an approximation ratio
of (1 − h)/4 + ε. More formally, if we denote OPT = maxx∈Ph,k

F̂k(x), then ALG guarantees that its output vector a
obeys

E[Fk,σ(a)] ≥ [(1− h)/4 + ε] · E
[

max
x∈Kh,k,ℓ

F̂k,σ(x)

]
= [(1− h)/4 + ε] ·OPT , (5)

where the equality holds by Lemma C.8.

Consider now an execution of ALG on the instance maxx∈Kh,k,ℓ
Ḡk(x), and let us denote by A1, A2, . . . , Ar the accesses

made by ALG (each access Ai consists of a vector x and the type of access, namely whether ALG evaluates the objective
function at x or calculates the gradient of the objective function at x). It is convenient to assume that the last access made
by ALG is to evaluate the value of its output set a. If this is not the case, we can add such an access to the end of the
execution of ALG, and still have r ≤ P (2kℓ) + 1. Let E be the event that all the accesses A1, A2, . . . , Ar return the same
value given that the objective is either Ḡk or F̄k,σ . Clearly, ALG follows the same execution path given either Ḡk or F̄k,σ

when the event E happens, and therefore, it outputs the same vector a ∈ Kh,k,ℓ in this case. Furthermore, E also implies
that F̄k,σ(a) = Ḡk(a), and thus, conditioned on E ,

Fk,σ(a) ≤ max
x∈Kh,k,ℓ

Ĝk(x) ≤ (1− h)/4 + 3/(2k) ≤ (1− h)/4 + 3/(2k)

1− 1/(2k)
·OPT

≤
[

1− h
4− 2/k

+
3

k

]
·OPT ≤

[
1− h
4

+
4

k

]
·OPT ,

where the second inequality holds by Corollary C.10, the third inequality follows from Lemma C.5, and two last inequalities
hold since k ≥ 1 and h ∈ [0, 1].

We would like to use the last inequality to upper bound E[Fk,σ(a)]. For that purpose, we need to lower bound the
probability of the event E . By Lemma C.11 and the union bound,

Pr[E ] ≥ 1− 4kr · e−ℓ· δk
6
√

2k ≥ 1− 4k[P (2kℓ) + 1] · e−ℓ· δk
6
√

2k .
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Consider the second term in the rightmost side of the last inequality. This term is a function of k and ℓ alone, and for a fixed
value of k it is the product of a sub-exponential function of ℓ and an exponentially decreasing function of ℓ. Therefore, for

any fixed value of k, we can choose a large enough value for ℓ to guarantee that 2k[P (2kℓ) + 1] · e−ℓ· δk
6
√

k ≤ ε/2. In the
rest of the proof we assume that ℓ is chosen in such a way. Then, since we always have Fk,σ(a) ≤ OPT and Pr[E ] ≤ 1,
we get by the law of total expectation,

E[Fk,σ(a)] ≤ Pr[Ē ] ·OPT + E[Fk,σ(a) | E ] ≤
ε

2
·OPT + [(1− h)/4 + 4/k] ·OPT ,

which contradicts Equation (5) (and thus, the existence of ALG) when k is chosen to be max{⌈1/(h− 1)⌉, 8/ε}.

C.1 Missing Proofs

C.1.1 Proof of Claim C.2

In this section we prove Claim C.2, which we repeat here for convenience.

Claim C.2. The absolute values of the second order partial derivatives of the functions F̂k and Ĝk are bounded by 16k+2
almost everywhere, and therefore, both functions are β-smooth for a β value that is polynomial in k.

Proof. Recall that F̂k and Ĝk are the functions F̂ and Ĝ whose existence is guaranteed by Lemma 5.2 for f = fk. The
functions F̂ and Ĝ are obtained in the proof of Lemma 5.2 in a series of steps involving multiple intermediate functions.
The first of these functions are F (the multilinear extension of f ), the function G(x) = F (x̄) and the function H(x) =
F (x)−G(x). The proof of Lemma 3.5 of Vondrák (2013) shows that the absolute values of the second partial derivatives
of these functions are bounded by 4M , 4M and 8M , respectively, where M is the maximum value that the function f can
take. Since in our case f is fk, the maximum value it can take is k, and therefore, the absolute values of the second partial
derivatives of all three functions can be upper bounded by 8k.

The next function we consider is a function denoted by F̃ in the proof of Lemma 5.2. The proof of Lemma 3.8 of Vondrák
(2013) shows that for every two elements u, v ∈ N , this function obeys almost everywhere the inequality

∣∣∣∣∣
∂2F̃ (x)

∂u∂v
− ∂2F (x)

∂u∂v
+ ϕ(D(x)) · ∂

2H(x)

∂u∂v

∣∣∣∣∣ ≤ 512M |N |α =
512ε′

2000|N |2 ≤ 1 ,

where ϕ is a function defined by Vondrák (2013) whose range is [0, 1], D(x) is another function defined by Vondrák (2013)
and α = ε′/(2000M |N |3). Since |ϕ(D(x))| ≤ 1, the last inequality implies that the absolute values of the second partial
derivatives of F̃ are upper bounded by 16k + 1 because the second partial derivatives of F and H have absolute values
bounded by 8k.

The functions F̂ and Ĝ are obtained from F̃ and G, respectively, by adding 256M |N |αJ(x) = 256ε′

2000|N |2 · J(x), where

J(x) = |N |2 + 3|N |∥x∥1 − (∥x∥1)2 .

Since the second order partial derivatives of J(x) are all −2, and the coefficient of J(x) is 256ε′

2000|N |2 ≤ 1/2, adding
256ε′

2000|N |2 · J(x) cannot increase the absolute value of the second order partial derivatives by more than 1.

C.1.2 Proof of Lemma C.7

In this section we prove Lemma C.7, which we repeat here for convenience.

Lemma C.7. The functions F̄k,σ and Ḡk,σ are continuously differentiable, non-negative and DR-submodular. Further-
more, they are β-smooth for a value β that is polynomial in k and ℓ.

Proof. We prove the lemma below for F̄k,σ . The proof for Ḡk,σ is analogous. The non-negativity of F̄k,σ follows
immediately from their definitions and the non-negativity of F̂k and Ĝk. Furthermore, by the chain-rule, for every pair of
i ∈ [k] and j ∈ [ℓ], we have

∂F̄k,σ(x)

∂xai,j

=
1

ℓ
· ∂F̂k(z)

∂zaσj(i)

∣∣∣∣∣
z=x(σ)

and
∂F̄k,σ(x)

∂xbi,j

=
1

ℓ
· ∂F̂k(z)

∂zbσj(i)

∣∣∣∣∣
z=x(σ)

. (6)
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Thus, the continuous differentiability of F̂k implies that F̄k,σ is also continuously differentiable.

Taking the derivative of the last equalities with respect to ai′,b′ for another pair i′ ∈ [k], j′ ∈ [ℓ], the chain-rule gives us the
equalities

∂2F̄k,σ(x)

∂xai′,j′∂xai,j

=
1

ℓ2
· ∂2F̂k(z)

∂zaσ
j′ (i

′)∂zaσj(i)

∣∣∣∣∣
z=x(σ)

and
∂2F̄k,σ(x)

∂xai′,j′∂xbi,j

=
1

ℓ2
· ∂2F̂k(z)

∂zaσ
j′ (i

′)∂zbσj(i)

∣∣∣∣∣
z=x(σ)

.

Since similar equalities hold also when we take the derivative of the equalities in Equation (6) with respect to bi′,j′ , the
DR-submodularity of F̂k implies the same property for F̄k,σ .

It remains to bound the smoothness of F̄k,σ . For every two vectors x,y ∈ [0, 1]Mk , we have by Equation (6) that

∥∇F̄k,σ(x)−∇F̄k,σ(y)∥22 =

k∑

i=1

ℓ∑

j=1


1

ℓ
· ∂F̂k(z)

∂zaσj(i)

∣∣∣∣∣
z=x(σ)

− 1

ℓ
· ∂F̂k(z)

∂zaσj(i)

∣∣∣∣∣
z=y(σ)



2

+
k∑

i=1

ℓ∑

j=1


1

ℓ
· ∂F̂k(z)

∂zbσj(i)

∣∣∣∣∣
z=x(σ)

− 1

ℓ
· ∂F̂k(z)

∂zbσj(i)

∣∣∣∣∣
z=y(σ)



2

=
1

ℓ
·

k∑

i=1


 ∂F̂k(z)

∂zai

∣∣∣∣∣
z=x(σ)

− ∂F̂k(z)

∂zai

∣∣∣∣∣
z=y(σ)



2

+
1

ℓ
·

k∑

i=1


 ∂F̂k(z)

∂zbi

∣∣∣∣∣
z=x(σ)

− ∂F̂k(z)

∂zbi

∣∣∣∣∣
z=y(σ)



2

=
∥∇F̂k(x

(σ))−∇F̂k(y
(σ))∥22

ℓ
≤ β2∥x(σ) − y(σ)∥22

ℓ

=
β2 ·∑k

i=1[(
∑ℓ

j=1 xaσj(i),j
−∑ℓ

j=1 yaσj(i),j
)2 + (

∑ℓ
j=1 xbσj(i),j

−∑ℓ
j=1 ybσj(i),j

)2]

ℓ3
,

where β is the smoothness parameter of F̂k, and the second equality holds since the entries of σ are permutations. Using
Sedrakyan’s inequality (or Cauchy–Schwarz inequality), we also have, for every i ∈ [k],




ℓ∑

j=1

xaσj(i),j
−

ℓ∑

j=1

yaσj(i),j



2

≤ ℓ ·
ℓ∑

j=1

(xaσj(i),j
−

ℓ∑

j=1

yaσj(i),j
)2

and 


ℓ∑

j=1

xbσj(i),j
−

ℓ∑

j=1

ybσj(i),j



2

≤ ℓ ·
ℓ∑

j=1

(xbσj(i),j
−

ℓ∑

j=1

ybσj(i),j
)2 .

Combining all the above inequalities yields

∥∇F̄k,σ(x)−∇F̄k,σ(y)∥2 ≤
β ·
√∑k

i=1[
∑ℓ

j=1(xaσj(i),j
− yaσj(i),j

)2 +
∑ℓ

j=1(xbσj(i),j
− ybσj(i),j

)2]

ℓ

=
β · ∥x− y∥2

ℓ
,

which completes the proof of the lemma since the smoothness parameter β of F̂k is polynomial in k.

C.1.3 Proof of Claim C.9

In this section we prove Claim C.9, which we repeat here for convenience.

Claim C.9. For every vector x ∈ Kh,k,ℓ, x(σ) ∈ Ph,k.
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Proof. By the definition of Kh,k,ℓ, the membership of x in Kh,k,ℓ implies that for every j ∈ [ℓ] we must have x(j) ∈ Ph,k.
Thus, x(j) can be represented by a convex combination of the vectors u,v(1),v(2), . . . ,v(k) as follows.

x(j) =
k∑

i=1

ci,j · v(j) + dj · u .

Similarly to the proof of Lemma C.8, let us define σ−1
j (x(j)) to be the following vector. For every i ∈ [k],

(σ−1
j (x(j)))ai

= x(j)
aσ(i)

and (σ−1
j (x(j)))bi = x

(j)
bσ(i)

.

Using the above notation, we get

x(σ) = 1
ℓ

ℓ∑

j=1

σ−1
j (x(j)) = 1

ℓ

ℓ∑

j=1

σ−1
j

(
k∑

i=1

ci,j · v(i) + dj · u
)

= 1
ℓ

ℓ∑

j=1

[
k∑

i=1

ci,j · σ−1
j (v(i)) + dj · σ−1

j (u)

]
= 1

ℓ

ℓ∑

j=1

[
k∑

i=1

ci,j · v(σ−1
j (i)) + dj · u

]

=

k∑

i=1

∑ℓ
j=1 cσj(i),j

ℓ
· v(i) +

∑ℓ
j=1 dj

ℓ
· u .

The last step in the proof of the claim is to show that the rightmost side is a convex combination, which implies x(σ) ∈ Ph,k

by the definition of Ph,k. To see that this is indeed the case, we observe that the coefficients of all the vectors in this
rightmost side are averages of non-negative numbers, and therefore, are non-negative as well. Furthermore,

k∑

i=1

∑ℓ
j=1 cσj(i),j

ℓ
+

∑ℓ
j=1 dj

ℓ
= 1

ℓ

ℓ∑

j=1

[
k∑

i=1

cσj(i),j + dj

]
= 1

ℓ

ℓ∑

j=1

[
k∑

i=1

ci,j + dj

]
= 1

ℓ

ℓ∑

j=1

1 = 1 ,

where the second equality holds since σj is a permutation for every j ∈ ℓ.

D QUADRATIC PROGRAMMING

In this section, we complement the study of (our version) of the offline algorithm of Du (2022), by checking its empir-
ical performance for down-closed polytopes. Algorithms with better approximation guarantees are known when one is
guaranteed to have such a constraint (Bian et al., 2017a). However, it is still important to understand the performance of
algorithms designed for general polytope constraint when they happen to get a down-closed polytope. In particular, we
note that Dürr et al. (2021) studied the empirical performance of their algorithm compared to the performance of the algo-
rithm of Bian et al. (2017a) subject to such constraints, and we extend here their work by comparing the performance of
their algorithm with that of newer algorithms. All the experiments presented in this section closely follow settings studied
in (Dürr et al., 2021).

Consider the down-closed polytope given by

K = {x ∈ Rn
≥0 | Ax ≤ b,x ≤ u,A ∈ Rm×n

≥0 ,b ∈ Rm
≥0} ,

where A is a non-negative matrix chosen in a way described below, b is the all ones vector, and u is a vector that acts as an
upper bound on K and is given by uj = minj∈[m] bi/Ai,j for every j ∈ [n]. We now describe a function F that we would
like to maximize subject to K. For every vector 0̄ ≤ x ≤ u (where 0̄ is the all zeros vector),

F (x) =
1

2
xTHx+ hTx+ c ,

where H is a matrix, h is a vector and c is a scalar. The matrix H is chosen in a way described below, and it is always
non-positive, which guarantees that F is DR-submodular. Furthermore, once H is chosen, we follow Bian et al. (2017a)
and set h = −0.1 · HTu. Finally, to make sure that F is also non-negative, the value of c should be at least M =
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Figure 3: Quadratic Programming with Uniform Distribution

−min0̄≤x≤u
1
2x

THx + hTx . The value of M can be approximately obtained using QUADPROGIP6 (Xia et al., 2020),
and c is chosen to be M + 0.1|M |, which is a bit larger than the necessary minimum.

It remains to describe the way in which the entries of the matrices H and A are chosen. Below we describe two different
random ways in which this can be done, and study the performance of the various algorithms on the instances generated in
this way.

D.1 Uniform distribution

The first way to choose the matrices H and A is using a uniform distribution. Here, the matrix H ∈ Rn×n is a randomly
generated symmetric matrix whose entries are drawn uniformly at random (and independently) from [−1, 0], and A ∈
Rm×n is a randomly generated matrix whose entries are drawn uniformly at random from [v, v + 1] for v = 0.01 (this
choice of v guarantees that the entries of A are strictly positive).

In each one of our experiments, we chose a different set of values for the dimensions n and m, and then drew an instance
from the above distribution and executed on it 100 iterations of three algorithms: our explicit version from Section 3 of the
algorithm of Du (2022) (with ε = 0.03), and the previous algorithms of Dürr et al. (2021) and Du et al. (2022). Each such
experiment was repeated 100 times, and the results are depicted in Figure 3. In each plot of this figure, the x-axis represents
the value of n, and the caption of the plot specifies how the value of m was calculated based on the value of n. The y-axis
of the plots represents the approximation ratios obtained by the various algorithms compared to the optimum computed
using a quadratic programming solver. One can observe that the two sub-exponential time algorithms of Dürr et al. (2021)
and Du et al. (2022) exhibit similar performance, and (our version) of the newer algorithm of Du (2022) consistently and
significantly outperforms them.

D.2 Exponential distribution

The other way to choose the matrices H and A is using an exponential distribution. Recall that given λ > 0, the exponential
distribution exp(λ) is given by a density function assigning a density of λe−λy for every y ≥ 0 and density 0 for negative y
values. Then, H ∈ Rn×n is randomly generated symmetric matrix whose entries are drawn independently from − exp(1),
and A ∈ Rm×n is a randomly generated matrix whose entries are drawn independently from exp(0.25) + 0.01.

For this way of generating H and A, we repeated that same set of experiments as for the previous way of generating these
matrices. The results of these experiments (averaged over 100 repetitions) are depicted in Figure 4. Again, we note that
the two sub-exponential time algorithms of Dürr et al. (2021) and Du et al. (2022) exhibit similar performance, and (our
version) of the newer algorithm of Du (2022) significantly outperforms them, especially as the dimension n grows.

6We have used IBM CPLEX optimization studio https://www.ibm.com/products/ilog-cplex-optimization-
studio.
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Figure 4: Quadratic Programming with Exponential Distribution
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Down-Closed Convex Sets in

Submodular Maximization

In this chapter, we study the impact of constraint structure on the approximability of sub-

modular maximization. Specifically, in the previous literature, there was a gap between gen-

eral convex sets and down-closed convex sets. To bridge this gap, we present new hardness

results alongside improved approximation algorithms that adapt to the geometric properties

of the constraint set, and thus, provide a smooth interpolation between previously known

results for general and down-closed convex sets.
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Abstract
Optimization of DR-submodular functions has ex-
perienced a notable surge in significance in recent
times, marking a pivotal development within the
domain of non-convex optimization. Motivated
by real-world scenarios, some recent works have
delved into the maximization of non-monotone
DR-submodular functions over general (not nec-
essarily down-closed) convex set constraints. Up
to this point, these works have all used the mini-
mum L-infinity norm of any feasible solution as a
parameter. Unfortunately, a recent hardness result
due to Mualem and Feldman shows that this ap-
proach cannot yield a smooth interpolation between
down-closed and non-down-closed constraints. In
this work, we suggest novel offline and online al-
gorithms that provably provide such an interpola-
tion based on a natural decomposition of the con-
vex body constraint into two distinct convex bod-
ies: a down-closed convex body and a general con-
vex body. We also empirically demonstrate the su-
periority of our proposed algorithms across three
offline and two online applications.

1 Introduction
Optimization of continuous DR-submodular functions (and
the strongly related discrete submodular set functions) has
experienced a notable surge in significance in recent times,
marking a pivotal development within the domain of non-
convex optimization. The tools developed in this context
adaptively tackle challenges related to real-world applica-
tions at the forefront of various fields such as data sum-
marization [Mualem et al., 2023; Hassani et al., 2017;
Bian et al., 2019; Mitra et al., 2021; Soma and Yoshida,
2017], robotics [Shi et al., 2021; Tukan et al., 2023], and
human brain mapping [Salehi et al., 2017], among many oth-
ers. Most of the works in the literature focused either on DR-
submodular optimization for monotone objective functions,

*A full version of this paper, including all details and proofs
omitted here, is available in [Mualem et al., 2024].

or subject to a down-closed convex set constraint.1 How-
ever, real-world problems are often naturally captured as op-
timization of a non-monotone DR-submodular function over
a constraint convex set that is not down-closed. For example,
imagine an online shopping platform optimizing its product
recommendations within strict interface size constraints. The
challenge faced by the store involves designing concise sum-
maries that respect upper and lower bounds on product in-
clusion (these bounds are imposed by the user interface, and
they form a non-down-closed constraint), and are good with
respect to an objective function balancing between diversity
and relevance in the displayed recommendations (which nat-
urally yields a non-monotone objective).

Motivated by scenarios similar to the one given above,
and optimization under fairness constraints [El Halabi et al.,
2023; Halabi et al., 2023; Yuan and Tang, 2023], some
recent works have delved into the maximization of non-
monotone DR-submodular functions over general (not nec-
essarily down-closed) convex set constraints. Unfortunately,
in general, no constant approximation can be obtained for this
problem in sub-exponential time due to a hardness result by
Vondrák [2013]. However, Durr et al. [2021] observed that
Vondrák’s proof of the hardness result was based on a class of
instances whose convex sets K include no point whose ℓ∞-
norm is less than 1.2 In light of this observation, Durr et
al. [2021] considered a parametrization of the problem based
on the minimum ℓ∞ norm of any vector in K (this minimum
is usually denoted by m), and were able to provide a sub-
exponential time 1

3
√
3
(1−m)-approximation for the problem

of optimizing a non-monotone DR-submodular function sub-
ject to a general convex set K.

The work Durr et al. [2021] has inspired a new line of re-
search. Th´̆ang & Srivastav [2021] showed how to obtain a
similar result in an online (regret minimization) setting, and
Du et al. [2022] improved the approximation ratio in the of-

1A set K is down-closed with respect to a domain X if, for every
two vectors x,y ∈ X , x ∈ K whenever y ∈ K and y coordinate-
wise dominates x. As is standard, we usually omit the domain when
talking about down-closed sets, and implicitly assume it to be the
domain of the objective function.

2For simplicity, we implicitly assume that the domain of the ob-
jective function and the convex set constraint is [0, 1]n. This as-
sumption is without loss of generality (see Section 2).



fline setting to 1
4 (1 − m) (while still using sub-exponential

time). More recently, the first polynomial time algorithm
for the problem, guaranteeing the same approximation ratio
as [Du et al., 2022], has been provided by Du [2022]; and
subsequently, Mualem & Feldman [2023] obtained the same
result in the online setting. In their work, Mualem & Feld-
man also proved a hardness result, showing that 1

4 (1 − m)-
approximation is the best approximation ratio that can be ob-
tained in sub-exponential time, which shows that the last al-
gorithms are optimal, and settles the approximability of the
problem with respect to this parametrization.
Our contribution. Every down-closed convex body has
m = 0. The reverse is not true, but one could hope that
convex bodies having m = 0 admit as good approximation
as down-closed convex bodies. Unfortunately, the hardness
result of Mualem & Feldman disproves this hope since the
state-of-the-art approximation ratio for down-closed bodies
is 0.401 [Buchbinder and Feldman, 2023]. This prompts the
question of whether there is a different way to look at the
problem (beyond parametrization by m) that will provide a
smooth interpolation between the approximability obtainable
for down-closed and general convex bodies. In this work, we
suggest such an interpolation based on a decomposition of
the convex body constraint into two distinct convex bodies:
a down-closed convex body and a general convex body. Our
key results based on this decomposition are as follows.

• We provide a novel polynomial time (offline) algorithm
for maximizing DR-submodular functions over convex
sets given as a composition of a down-closed convex
body KD and a general convex body KN. Our algorithm
always recovers at least the 1

4 (1−m)-approximation of
Du [2022]. The approximation guarantee smoothly im-
proves when a significant fraction of the value of the
optimal solution belongs to the down-closed part KD
of the decomposition. In particular, when the convex
body happens to be entirely down-closed, our algorithm
guarantees e−1 ≈ 0.367-approximation, which recov-
ers the approximation ratio for down-closed convex bod-
ies obtained by the Measured Continuous Greedy tech-
nique [Bian et al., 2017a; Feldman et al., 2011].3

• We provide a novel online (regret minimization) algo-
rithm for the same problem that replicates the guarantees
of our offline algorithm, up to a regret term that is pro-
portional to the square root of the number of time steps.

• We demonstrate that a decomposition of the kind that
we use can be naturally obtained for various machine-
learning applications, and use this fact to empirically
demonstrate the superiority of our proposed algorithms
compared to existing methods across various offline
and online applications, namely, offline and online rev-

3As mentioned above, the state-of-the-art approximation ratio
for down-closed convex body constraints is 0.401. However, all
current algorithms for such convex bodies with ratios better than
e−1 are based on the Measured Continuous Greedy technique (with
additional, often impractical, components). To keep our algo-
rithms simple and our message clear, we only aim to recover e−1-
approximation for down-closed convex bodies.

enue maximization, quadratic programming and loca-
tion summarization. In the full version of this pa-
per [Mualem et al., 2024], we also provide theoretical
implications for fairness settings.

1.1 Related Work
DR-submodular maximization has recently emerged as a key
tool in numerous applications within the realms of machine
learning and statistics. This surge in relevance has prompted
a growing number of studies in this field. In what follows, we
provide a brief overview of the main results in this field.
Offline DR-submodular optimization. The study of maxi-
mization of DR-submodular functions over down-closed con-
vex sets was initiated by Bian et al. [2017a]. Their work
showcased the effectiveness of a modified Frank-Wolfe al-
gorithm, grounded in the greedy method introduced by [Ca-
linescu et al., 2011] in the context of set functions, ensuring
(1 − 1/e)-approximation for the problem when the objective
function is guaranteed to be monotone (this is optimal due
to [Nemhauser and Wolsey, 1978]). Hassani et al. [2017]
subsequently identified a limitation in the algorithm proposed
by [Bian et al., 2017a], revealing its lack of robustness in
stochastic settings where only an unbiased estimator of the
gradient is available. To mitigate this limitation, Hassani et
al. [2017] demonstrated that gradient methods exhibit robust-
ness in such scenarios, achieving 1/2-approximation.

When the DR-submodular function is not guaranteed to
be monotone, the approximation task becomes notably more
challenging. In separate works, Bian et al. [2019] and Ni-
azadeh et al. [2020] introduced distinct algorithms, both
ensuring 1/2-approximation for the maximization of non-
monotone DR-submodular functions over a hypercube con-
straint, which is the best possible [Feige et al., 2011]. It
is noteworthy that (one version of) the algorithm proposed
by [Niazadeh et al., 2020] applies also to (non-DR) submod-
ular functions. As mentioned above, the state-of-the-art ap-
proximation for maximizing non-monotone DR-submdoular
functions subject to a down-closed convex body constraint is
0.401 [Buchbinder and Feldman, 2023].

Recently, Pedramfar et al. [2023] introduced a unified ap-
proach for maximization of continuous DR-submodular func-
tions that encompasses a range of settings and oracle access
types, while Mualem & Feldman [2022] suggested a parame-
ter termed monotonicity-ratio allowing for a smooth interpo-
lation between e−1-approximation for non-monotone objec-
tives and (1− 1/e)-approximation for monotone objectives.
Online (regret minimization) DR-submodular optimiza-
tion. Chen et al. [2018] were the first to address online
maximization of monotone DR-submodular functions over a
convex set (for monotone objective functions the distinction
between down-closed and general convex sets is irrelevant).
They introduced two algorithms: one ensuring (1 − 1/e)-
approximation with approximately O(

√
T )-regret, and an-

other algorithm that is resilient to stochastic settings, but
guarantees only 1/2-approximation up to the same regret.
Later, Chen et al. [2019] proposed an algorithm that combines
(1− 1/e)-approximation with roughly O(

√
T )-regret and ro-

bustness, and Zhang et al. [2019] demonstrated how to reduce



the number of gradient calculations per time step to one at the
expense of increasing the regret to roughlyO(T 4/5). The last
reduction is particularly relevant for bandit versions of the
problem (we refer the reader to [Pedramfar et al., 2023] for a
detailed overview of such versions).

For online optimization of DR-submodular functions that
are not guaranteed to be monotone, Th´̆ang & Srivastav [2021]
introduced three algorithms. One of these algorithms is ap-
plicable to general convex set constraints, and was later im-
proved over by Mualem and Feldman [2023], as discussed
above. Another was designed for maximization over the
entire hypercube, achieving 1/2-approximation with approx-
imatelyO(

√
T )-regret. The last algorithm of [Th´̆ang and Sri-

vastav, 2021] addresses down-closed convex set constraints,
and attains e−1-approximation with roughly O(T 2/3)-regret.

1.2 Paper Organization
In Section 2, we formally describe the problem we consider.
Then, in Section 3, we discuss the technique underlying our
results. Our offline and online algorithms, which are based on
this technique, can be found in Sections 4 and 5, respectively.
Finally, Section 6 compares the empirical performance of our
algorithms on multiple machine learning applications with
the performance of previously suggested algorithms from the
literature.

2 Preliminaries
In this section, we formally present the problem we consider
in this paper and the notation that we use. Let us begin with
the definition of DR-submodular functions, which are con-
tinuous analogs of submodular set functions first defined by
Bian et al. [2017b]. Formally, given a domain X =

∏n
i=1 Xi,

where Xi is a closed range in R for every i ∈ [n], a function
F : X → R is called DR-submodular if the inequality

F (a+ kei)− F (a) ≥ F (b+ kei)− F (b)
holds for every two vectors a,b ∈ X , positive value k and
coordinate i ∈ [n] obeying a ≤ b and b + kei ∈ X (here
and throughout the paper, ei denotes the standard i-th basis
vector, and comparison between two vectors should be un-
derstood to hold coordinate-wise). Bian et al. [2017b] ob-
served that for continuously differentiable functions F , the
above definition of DR-submodulrity is equivalent to

∇F (x) ≤ ∇F (y) ∀ x,y ∈ X ,x ≥ y ,

and for twice differentiable functions F , it is equivalent to the
Hessian being non-positive at every vector x ∈ X .

In this work, we study the problem of maximizing a non-
negative DR-submodular function F : X → R≥0 subject to
a convex body K ⊆ X constraint. We are interested in the
approximation guarantee that can be obtained for this prob-
lem based on a particular decomposition of K into two other
convex bodies: a convex body KD that is down-closed with
respect to X and a (not necessary down-closed) convex body
KN. Formally, by saying that KD and KN are a decompo-
sition of K, we mean that K = (KN + KD) ∩ X , where
KN +KD ≜ {y + z | y ∈ KN, z ∈ KD}.

For simplicity, we assume (throughout the paper) that the
domain X of our objective functions is [0, 1]n. This assump-
tion is without loss of generality since there is a natural linear
mapping from X to [0, 1]n preserving the above discussed
properties of F and K. Additionally, as is standard in the
field, we assume that F is β-smooth for some β > 0. A
function F : [0, 1]n → R is call β-smooth if it is continuously
differentiable, and obeys

∥∇F (x)−∇F (y)∥2 ≤ β∥x− y∥2 ∀ x,y ∈ [0, 1]n .

Another standard assumption in the field is that the relevant
convex-bodies (KN and KD in our case) are solvable, i.e., that
one can efficiently optimize linear functions over them. We
take a step further, and assume the ability to optimize linear
functions over any convex body defined by the intersection
of a polynomial number of linear constraints and constraints
requiring particular vectors to belong either to KN or to KD.
This assumption appeared (often implicitly) in many previous
works (see, for example, [Buchbinder and Feldman, 2023;
Ene and Nguyen, 2016; Mualem and Feldman, 2023]), and
is theoretically justified by the well-known equivalence be-
tween separability and solvability.

We often refer below to the diameter D of K. This diame-
ter is defined as D ≜ maxx,y∈K ∥x− y∥2.

2.1 Additional Vector Operations
Following Buchbinder and Feldman [2023], we use the fol-
lowing coordinate-wise vector operations. To reduce the
number of parentheses necessary, we assume that both these
operations have a higher precedence compared to vector ad-
dition and subtraction.
Definition 2.1. Given two vectors x,y ∈ [0, 1]n,

• we denote by x⊙y their coordinate-wise multiplication
(also known as the Hadamard product).

• we denote by x ⊕ y their coordinate-wise probabilistic
sum. In other words, for every i ∈ [n], (x ⊕ y)i ≜
xi + yi − xiyi = 1− (1− xi)(1− yi).

As was noted by [Buchbinder and Feldman, 2023], the op-
eration ⊕ is symmetric and associative. We also use 0̄ and 1̄
to represent the all-zeros and all-ones vectors, respectively.

2.2 Online Optimization
In the online (regret minimization) version of the problem we
consider in this work, there are L time steps.4 In every time
step ℓ ∈ [L], the adversary selects a non-negative β-smooth
DR-submodular function Ft, and then the algorithm should
select a distribution Pℓ of points in K = (KN +KD)∩ [0, 1]n
without knowing Ft (the function Ft is revealed to the al-
gorithm only after Pℓ is selected). The objective of the al-
gorithm is to maximize

∑L
ℓ=1 Ex∼Pℓ

[Fℓ(x)], and its success
in doing so is measured compared to the best fixed solution
(i.e., any two vectors oN ∈ KN and oD ∈ KD such that
oN + oD ∈ [0, 1]n).

4The number of time steps is usually denoted by T in the lit-
erature. However, we use L in this paper to avoid confusion with
the parameter T traditionally used by continuous submodular maxi-
mization algorithms (including our own algorithms).



Let us elaborate a bit on the last point. If the func-
tions F1, F2, . . . , FL were all known upfront, one could
execute the offline algorithm we develop to get a set of
solutions x(1),x(2), . . . ,x(L) such that

∑L
ℓ=1 Fℓ(x

(ℓ)) ≥
ψ(
∑L

ℓ=1 Fℓ(oN + oD),
∑L

ℓ=1 Fℓ(oD)) for some function ψ
(the structure of the function ψ is determined by the guaran-
tee of Theorem 4.1 below). Since an online algorithm has
to select the output distribution Pℓ before seeing the function
Fℓ, it can only guarantee
L∑

ℓ=1

Ex∼Pℓ
[Fℓ(x)]≥ψ

( L∑

ℓ=1

Fℓ(oN+oD),

L∑

ℓ=1

Fℓ(oD)
)
−R(L)

for some regret function R(L). Asymptotically, for our on-
line algorithm,R(L) grows proportionally to

√
L, and there-

fore, for large L values, the average guarantee of our online
algorithm per function Fℓ approaches the one of our offline
algorithm. As usual for online settings, we assume that the
range of the functions F1, F2, . . . , FL is [0, 1].

3 Our Technique
Our algorithms maintain vectors y ∈ KN and z ∈ KD.
Intuitively, the vector y is maintained by the Frank-Wolfe
variant developed by Mualem and Feldman [2023] for non-
down-closed polytopes, and the vector z is maintained by the
continuous-greedy-like variant of Frank-Wolfe developed by
Bian [2017a] for down-closed polytopes. Combining the two
algorithms requires us to solve some technical issues. For
example, it is necessary to run the two algorithms in paral-
lel since they both depend on the coordinates of the solution
growing at a bounded rate, and it is necessary to create a cor-
relation between the algorithms to guarantee that y + z re-
mains within [0, 1]n. However, it turns out that the more in-
teresting question is regarding the best way to combine the
two vectors y and z into the output solution of the algorithm.

The most natural approach is to consider the sum y + z
as the output solution. Unfortunately, this does not work
well since it results in coordinates of the solution growing
too fast. To make this more concrete, we note that our al-
gorithms, as well as the algorithms of [Bian et al., 2017a]
and [Mualem and Feldman, 2023], simulate continuous al-
gorithms working from time t = 0 until time t = 1. Con-
sider now a particular coordinate j ∈ [n]. Up until time
t ∈ [0, 1], our algorithms spend (up to) t units of “energy”
on this coordinate. A fraction x ∈ [0, t] of this “energy” is
invested in growing yj , and the remaining t − x “energy”
is invested in growing zj . By the properties of the algo-
rithms of [Bian et al., 2017a] and [Mualem and Feldman,
2023], this investment of “energy” leads to yi = 1 − e−x

and zi = 1−ex−t, which in the worst case can make (y+z)i
as large as 2(1 − e−t/2). To get a better upper bound on
the coordinates of the solution, we have to use y ⊕ z as
the output solution. Note that this choice guarantees that
(y⊕ z)j ≤ 1− [1− (1− e−x)] · [1− (1− ex−t)] = 1− e−t,
which is always better (for t > 0) compared to the bound of
2(1− e−t/2) obtained above.

While the use of y ⊕ z is useful, it does not come without
a cost. As mentioned above, our algorithms simulate con-

tinuous algorithms, which is a common practice in the lit-
erature about submodular maximization. To discretize these
algorithms, one has to split time into steps, and then do in
each step a single modification of the vectors y and z simu-
lating all the modifications done by the continuous algorithm
throughout the step. The standard way in which this is done
is as follows. Assume that, at the beginning of the step, the
continuous algorithm increases y at a rate of y′ and z at a
rate of z′, then the discrete algorithm should increase y by
εy′ and z by εz′, where ε is the size of the step. Unfortu-
nately, this standard practice results in y ⊕ z changing by
εy′⊙ (1̄−z)+ εz′⊙ (1̄−y)− ε2 · (y′⊙z′). To see why this
is problematic, note that in the continuous algorithm, when y
and z increase at rates of y′ and z′, respectively, y ⊕ z in-
creases at a rate of y′ ⊙ (1̄ − z) + z′ ⊙ (1̄ − y). Thus, the
term −ε2 · (y′ ⊙ z′) from the previous expression represents
a new kind of discretization error that we need to handle.

Another hurdle worth mentioning is that the vectors y and
z are updated using two different update rules inherited from
the algorithms of [Bian et al., 2017a] and [Mualem and Feld-
man, 2023], and the interaction between these update rules
results in a guarantee on the output of the algorithm that de-
pends also on the value of F (z). Thus, it is necessary to make
sure that our algorithms maintain z in a way that also guar-
antees that F (z) has a good value. In the first version of our
offline algorithm, we do that by assuming that we know the
value v of the part of the optimal solution that belongs to KD.
This knowledge allows us to force the algorithm to increase z
in a way guaranteed to make F (z) competitive with v. In the
other versions of our offline algorithm and in our online algo-
rithm, we use a potential function argument to avoid the need
to know v. This potential function argument is similar to an
argument used by Feldman [2021] in a different submodular
maximization setting.

4 Offline Maximization
In this section, we present and analyze our offline algorithm,
whose guarantee is given by the next theorem.
Theorem 4.1. Let KN ⊆ [0, 1]n be a general solvable con-
vex set, KD ⊆ [0, 1]n be a down-closed solvable convex set,
and F : [0, 1]n → R≥0 be a non-negative β-smooth DR-
submodular function. Then, there exists a polynomial time
algorithm that, given an error parameter ε ∈ (0, 1), outputs
vectors w ∈ (KN +KD) ∩ [0, 1]n such that

F (w) ≥ (1−m)·
max

ts∈[0,1]
max

T∈[ts,1]

{
((T − ts)e−T −O(ε)) · F (o(2)

D )

+
( t2s · e−ts−T

2
−O(ε)

)
· F (o(1)

D ) + (e−T − e−ts−T

−O(ε)) · F (oN + o
(1)
D )
}
−O( εβD

2

1−m ) ,

wherem = minx∈KN∥x∥∞,D is the diameter of (KN+KD)∩
[0, 1]n, oN ∈ KN and o

(1)
D ∈ KD are any vectors whose sum

belongs to (KN+KD)∩ [0, 1]n, and o
(2)
D is any vector inKD.5

5The vectors o(1)
D and o

(2)
D can be identical.



It is interesting to note that Theorem 4.1 recovers two guar-
antees of previous works. Specifically, by setting T = 1, ts =
0 and KN = {0̄}, the theorem implies e−1-approximation for
maximizing a DR-submodular function subject to a down-
closed polytope KD, recovering the result of [Bian et al.,
2017a]. Similarly, by setting T = ts = ln 2 and KD = {0̄},
Theorem 4.1 implies 1/4(1−m)-approximation for maximiz-
ing a DR-submodular function subject to a general polytope
KN, recovering the result of [Mualem and Feldman, 2023].

For ease of the presentation, we have three versions of our
offline algorithm. The first version, appearing below as Al-
gorithm 1, proves Theorem 4.1 under the assumption that
F (o

(1)
D ) is known. In the full version of this paper [Mualem et

al., 2024], we present the two other versions of our offline al-
gorithm that prove Theorem 4.1 without making this assump-
tion. One version is theoretically natural, and is the base for
our online algorithm described in Section 5. However, to get
the best results in practice, it is natural to make some modi-
fications to this natural version (including ones motivated by
the work of [Bian et al., 2017a]), which do not improve the
theoretical guarantee of the algorithm and cannot be extended
to the online version of the algorithm. Both the natural and
the modified version of our algorithm are studied in the of-
fline experiments described in Section 6.

Recall that Algorithm 1 proves Theorem 4.1 under the as-
sumption that F (o(1)

D ) is known. In its description, we as-
sume for simplicity that ε−1 is integral. If this is not the case,
ε can be replaced with ⌈ε−1⌉−1, which is smaller than ε by at
most a factor of 2.

Algorithm 1 Frank-Wolfe/Continuous-Greedy

Hybrid for Known F (o
(1)
D )

1: Let y(0) ← argminx∈KN
∥x∥∞ and z(0) ← 0̄.

2: for i = 1 to ε−1 do
3: Solve the following linear program:

max ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)),
a(i) + b(i) ⊙ (1̄− y(i−1))⟩

s.t. a(i) ∈ KN,b
(i) ∈ KD

⟨b(i) ⊙ (1− z(i−1)),∇F (z(i−1))⟩
≥ (1− ε)i−1 · F (o(1)

D )− F (z(i−1))
a(i) + b(i) ⊙ (1̄− y(i−1)) ≤ 1̄

4: Let y(i) ← (1− ε) · y(i−1) + ε · a(i).
5: Let z(i) ← z(i−1) + ε · (1− z(i−1))⊙ b(i).
6: end for
7: Return a vector maximizing F among all the vectors in
{y(i) ⊕ z(i) | i ∈ Z, 0 ≤ i ≤ ε−1}.

5 Online Maximization
In this section, we consider the online (regret minimization)
setting described in Section 2.2. The algorithm we present
and analyze has the guarantee given by the next theorem.
Theorem 5.1. Let KN ⊆ [0, 1]n be a general solvable con-
vex set, and KD ⊆ [0, 1]n be a down-closed solvable convex

set. If the adversary chooses only non-negative β-smooth DR-
submodular functions Fℓ : [0, 1]

n → [0, 1], then there exists a
polynomial time online algorithm that, given value ε ∈ (0, 1),
outputs at every time step ℓ ∈ [L] a distribution Pℓ over vec-
tors in (KN +KD) ∩ [0, 1]n guaranteeing that
∑L

ℓ=1
Ex∼Pℓ

[Fℓ(x)] ≥ (1−m) · max
ts∈[0,1]

max
T∈[ts,1]

{(
(T − ts)e−T +

t2s · e−ts−T

2
−O(ε)

)
·
∑L

ℓ=1
Fℓ(oD)

+ (e−T − e−ts−T −O(ε)) ·
∑L

ℓ=1
Fℓ(oN + oD)

}

−O(εβLD2)−O(DG
√
L)−O(

√
L ln ε−1) ,

where m = minx∈KN∥x∥∞, D is the diameter of (KN +
KD) ∩ [0, 1]n, G = max{maxx∈(KN+KD)∩[0,1]n ∥∇Ft(x)∥2,
maxx∈KD ∥∇Ft(x)∥2, }, and oN ∈ KN and oD ∈ KD are any
vectors whose sum belongs to (KN +KD) ∩ [0, 1]n.

Note the following two remarks about Theorem 5.1.
• Section 2.2 states that the regret of our online algo-

rithm (compared to the offline algorithm) asymptotically
grows as

√
L. This might seem to contradict the pres-

ence of the error term O(εβLD2) in the guarantee of
Theorem 5.1. However, this is not the case since this
error term is part of the ψ functions mentioned in Sec-
tion 2.2 (because the term O( εβD

2

1−m ) appears in the guar-
antee of Theorem 4.1).

• Theorem 4.1 considers two vectors o
(1)
D ,o

(2)
D ∈ KD. A

similar result could be proved in Theorem 5.1. However,
in the online setting, the algorithm is required to be com-
petitive against any fixed solution. Thus, we felt that it is
more natural to state Theorem 5.1 for the case in which
o
(1)
D and o

(2)
D are the same vector (denoted by oD).

The central component in the proof of Theorem 5.1 is the
following proposition, which is a variant of Theorem 5.1 in
which (i) ts is a parameter of the algorithm, and (ii) the algo-
rithm outputs in each time step a single vector rather than a
distribution over vectors.
Proposition 5.2. LetKN ⊆ [0, 1]n be a general solvable con-
vex set, and KD ⊆ [0, 1]n be a down-closed solvable convex
set. If the adversary chooses only non-negative β-smooth DR-
submodular functions Fℓ : [0, 1]

n → [0, 1], then there exists
a polynomial time online algorithm that, given parameters
ts ∈ [0, 1] and ε ∈ (0, 1), outputs at every time step ℓ ∈ [L] a
vector w(ℓ) ∈ (KN +KD) ∩ [0, 1]n guaranteeing that
∑L

ℓ=1
Fℓ(w

(ℓ)) ≥ (1−m) · max
T∈[ts,1]

{(
(T − ts)e−T +

t2s · e−ts−T

2
−O(ε)

)
·
∑L

ℓ=1
Fℓ(oD)

+ (e−T − e−ts−T −O(ε)) ·
∑L

ℓ=1
Fℓ(oN + oD)

}

−O(εβLD2)−O(DG
√
L) ,

where m = minx∈KN∥x∥∞, D is the diameter of (KN +
KD) ∩ [0, 1]n, G = max{maxx∈(KN+KD)∩[0,1]n ∥∇Ft(x)∥2,



maxx∈KD ∥∇Ft(x)∥2}, and oN ∈ KN and oD ∈ KD are any
vectors whose sum belongs to (KN +KD) ∩ [0, 1]n.

Algorithm 2 Online Frank-Wolfe/Continuous
-Greedy Hybrid

1: for i = 1 to ε−1 do
2: Initialize an instance Ei of Regularized-Follow-the-

Leader for the convex body {(a,b) | a ∈ KN,b ∈
KD,a+ b ∈ [0, 1]n}.

3: end for
4: Let m← minx∈KN∥x∥∞.
5: for ℓ = 1 to L do
6: Let y(0,ℓ) ← argminx∈KN

∥x∥∞, z(0,ℓ) ← 0̄.
7: for i = 1 to ε−1ts do
8: Let (a(i,ℓ),b(i,ℓ)) be the vector picked by Ei in time

step ℓ.
9: Let y(i,ℓ) ← (1− ε) · y(i−1,ℓ) + ε · a(i,ℓ).

10: Let z(i,ℓ) ← z(i−1,ℓ) + ε · (1− z(i−1,ℓ))⊙ b(i,ℓ).
11: end for
12: for i = ε−1ts + 1 to ε−1 do
13: Let a(i,ℓ) ← y(i−1,ℓ).
14: Let b(i,ℓ) be a vector consisting of the last n coordi-

nates of the vector picked by Ei in time step ℓ.
15: Let y(i,ℓ) ← y(i−1,ℓ).
16: Let z(i,ℓ) ← z(i−1,ℓ) + ε · (1− z(i−1,ℓ))⊙ b(i,ℓ).
17: end for
18: Set the vector y(ε−1,ℓ)⊕z(ε

−1,ℓ) as the output for time
step ℓ.

19: for i = 1 to ε−1ts do
20: Let g(i,ℓ) be the vector in R2n obtained as fol-

lows. The first n coordinates of this vector are given
by e2εi∇Fℓ(y

(i−1,ℓ) ⊕ z(i−1,ℓ)) ⊙ (1̄ − z(i−1,ℓ)),
and the other n coordinates of g(i,ℓ) are equal
to e2εi∇Fℓ(y

(i−1,ℓ) ⊕ z(i−1,ℓ))⊙ (1̄− z(i−1,ℓ))⊙
(1̄−y(i−1,ℓ))+(1−m)·eεi(ts−εi)·∇Fℓ(z

(i−1,ℓ))⊙
(1− z(i−1,ℓ)).

21: Pass g(i,ℓ) as the adversarially chosen vector d(ℓ)

for Ei.
22: end for
23: for i = ε−1ts + 1 to ε−1 do
24: Let g(i,ℓ) be a vector in R2n obtained as follows.

The first n coordinates of this vector are all ze-
ros, and the other n coordinates of g(i,ℓ) are equal to
∇Fℓ(y

(i−1,ℓ) ⊕ z(i−1,ℓ)) ⊙ (1̄ − z(i−1,ℓ)) ⊙ (1̄ −
y(i−1,ℓ)).

25: Pass g(i,ℓ) as the adversarially chosen vector d(ℓ)

for Ei.
26: end for
27: end for

Let us explain why Proposition 5.2 implies Theorem 5.1.
The guarantee given in Theorem 5.1 remains unchanged (up
to the constants hidden by the big O notation) if the maxi-
mum over ts ∈ [0, 1] is restricted to the set of O(ε−1) values
that are integer multiples of ε between 0 and 1. If we knew
upfront what value from this set leads to the best guarantee
for Proposition 5.2, then we could use the algorithm of this

proposition to get the guarantee of Theorem 5.1.
Unfortunately, in reality, we do not usually know upfront

the best value for ts. Nevertheless, since there are only
O(ε−1) such values that need to be considered, we can use
a regret minimization algorithm (such as the one of [Cesa-
Bianchi et al., 2007]) to get in each time step a distribution
over solutions whose expected value is at least as good as the
guarantee of Proposition 5.2 for the best value of ts, up to
an error term of O(

√
L ln ε−1). Thus, Theorem 5.1 indeed

follows from Proposition 5.2.
At this point, we would like to describe the algorithm

that we use to prove Proposition 5.2, which is given as Al-
gorithm 2. Similarly to the Meta-Frank-Wolfe algorithm
of [Chen et al., 2018], Algorithm 2 uses multiple instances
of an online algorithm for linear optimization. Specifi-
cally, we use the algorithm Regularized-Follow-the-Leader
due to [Abernethy et al., 2008], which has the following be-
havior. There are L time steps. In every time step ℓ ∈ [L], the
algorithm selects a vector u(ℓ) ∈ K for some given convex
body K, and then an adversary reveals to the algorithm a vec-
tor d(ℓ) that was chosen independently of u(ℓ). Regularized-
Follow-the-Leader guarantees that
∑L

t=1
⟨u(ℓ),d(ℓ)⟩ ≥ max

x∈K

∑L

ℓ=1
⟨x,d(ℓ)⟩ −D′G′√2L ,

where G′ = max1≤ℓ≤L ∥d(ℓ)∥2 and D′ is the diameter of K.
Algorithm 2 follows the same general structure of our of-

fline algorithm, with two main modifications: the linear pro-
grams of the offline algorithm are replaced by instances of
the online linear optimization algorithm that we use, and the
vector corresponding to i = T−1 is used as the output instead
of the best vector among multiple options.

In the pseudocode of Algorithm 2, we implicitly assume
that ε ≤ 1/70 and εts is integral. The first assumption is
without loss of generality since we can decrease ε to be 1/70
if its original value is larger, and the second assumption is
without loss of generality because the coefficients in the guar-
antee of Proposition 5.2 change only byO(ε) when ts is mod-
ified by up to ε to make tsε integral.

6 Applications and Experimental Results
In this work, we study the empirical performance of the of-
fline and online algorithms described in the previous sections
on three machine learning tasks. We present one applica-
tion here, and defer the rest to the full version of this pa-
per [Mualem et al., 2024]. The full version also includes em-
pirical stability and ablation studies of our offline algorithm.

6.1 Revenue Maximization
As our first experimental setting, we consider the follow-
ing revenue maximization setting, which was also considered
by [Mualem and Feldman, 2023; Soma and Yoshida, 2017;
Th´̆ang and Srivastav, 2021]. The objective of some company
is to promote a product to users to boost revenue through the
“word-of-mouth” effect. The problem of optimizing this ob-
jective can be formalized as follows. The input is a weighted
undirected graph G = (V,E) representing a social network,
where wij represents the weight of the edge between vertex
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(a) Online Algorithms on the
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(b) Online Algorithms on the
Facebook network.
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(c) Offline Algorithms on the
Advogato network.
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(d) Offline Algorithms on the
Facebook network.

Figure 1: Results of the revenue maximization experiments. In each plot, the x-axis is the timestep, and the y-axis is the corresponding
function value.

i and vertex j (with wij = 0 if the edge (i, j) is absent from
the graph). If the company allocates a cost of xi units to a
user i ∈ V , then that user becomes an advocate of the prod-
uct with a probability of 1 − (1 − p)xi , where p ∈ (0, 1) is
a parameter. Note that this formula implies that each ε unit
of cost invested in the user independently contributes to the
chance of making the user an advocate. Furthermore, by in-
vesting a full unit in the user, the user becomes an advocate
with a probability of p [Soma and Yoshida, 2017].

Given a set S ⊆ V of users who have become advocates
for the product, the expected revenue is related to the total
influence of the users in S on non-advocate users, which is
formally expressed as

∑
i∈S

∑
j∈V \S wij . Hence, the objec-

tive function F : [0, 1]V → R≥0 in this setting is defined as
the expectation of the aforementioned expression, i.e.,

F (x) = ES

[∑
i∈S

∑
j∈V \S wij

]
=

∑
i∈V

∑
j∈V,i̸=j wij(1− (1− p)xi)(1− p)xj .

It has been demonstrated that F is a non-monotone DR-
submodular function [Soma and Yoshida, 2017].

We conducted experiments in both online and offline sce-
narios based on instances of the aforementioned setting de-
rived from two distinct datasets. The first dataset is sourced
from a Facebook network [Viswanath et al., 2009], encom-
passing 64K users (vertices) and 1M unweighted relation-
ships (edges). The second dataset is based on the Advogato
network [Massa et al., 2009], comprising 6.5K users (ver-
tices) and 61K weighted relationships (edges).
Online Setting. In our online experiments, inspired
by [Mualem and Feldman, 2023], we set the number of time
steps to L = 1000, with p = 0.0001. At each time step
ℓ, the objective function is defined by selecting a uniformly
random subset Vℓ ⊆ V of a given size, and then retaining
only edges connecting two vertices of Vℓ. For the Advogato
network, Vℓ is of size 200, and for the larger Facebook net-
work, Vℓ is of size 15,000. The above objective functions
are optimized subject to the constraint 0.1 ≤ ∑

i xi ≤ 1,
which represents both minimum and maximum investment
requirements. Notably, the intersection of this constraint with
the implicit box constraint forms a non-down-monotone fea-
sibility polytope. However, this polytope can be decomposed
into two polytopes: (i)KN, a polytope defined by the equality

∑n
i=1 xi = 0.1, and (ii) KD, a down-closed polytope defined

by
∑n

i=1 xi ≤ 0.9. Observe that (KD+KN)∩[0, 1]n is indeed
the original polytope, and thus, this is a valid decomposition
of this polytope.

In our experiments, we have compared the performance of
our algorithm from Section 5 with the online algorithm of
Mualem & Feldman [2023], which is the current state-of-the-
art algorithm for the online setting. In both algorithms, we
have set the number of online linear optimizers used to be 100
(which corresponding to setting the error parameter ε to 0.01
in our algorithm and to ln 2/100 in the algorithm of Mualem
& Feldman). The results of our experiments on the Advogato
and Facebook networks can be found in Figures 1a and 1b,
respectively. In both experiments, our algorithm significantly
outperforms the state-of-the-art algorithm.
Offline Setting. Our offline experiments are similar to their
online counterparts. However, since there is only one objec-
tive function in this setting, we run the experiment on the
entire network graph. In this setting, we compared our of-
fline algorithm (see Section 4 for a discussion of the versions
of this algorithm used in the experiments) with the current
state-of-the-art algorithm from [Mualem and Feldman, 2023]
(which is an explicit version of the algorithm of Du [2022]).
Both algorithms have been executed for T = 100 iterations,
and the error parameter ε was set accordingly (which again
means 0.01 in our algorithm and ln 2/100 in the algorithm of
Mualem & Feldman). The results of the offline experiments
on the Advogato and Facebook networks can be found in Fig-
ures 1c and 1d, respectively. One can observe that our method
consistently outperforms the previous state-of-the-art.

7 Conclusion
We have presented novel offline and online algorithms for
DR-submodular maximization subject to a general convex
body constraint. Our algorithms are able to provide a smooth
interpolation between the approximability of general and
down-closed convex bodies by considering a decomposition
of the convex body constraint into a down-closed convex
body and a general convex body. In addition to giving a theo-
retical analysis of our algorithms, we have demonstrated their
empirical superiority (compared to state-of-the-art methods)
in various online and offline machine learning applications.
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Figure 2: Results for the Fairness Setting of [Halabi
et al., 2023] (for r = 1/2)

A Implication for a Fairness Setting
El Halabi et al. [2023] considered the following fairness setting. The input for this setting is a ground set N , a non-negative
discrete submodular function f : 2N → R≥0, a matroidM = (N , I),6 a partition of the elements in N into k disjoint classes
C1, C2, . . . , Ck and integral lower and upper bounds ℓi and ui for each class Ci, respectively. The objective is to find a set
S ∈ I maximizing f subject to fairness constraints requiring that ℓi ≤ |S ∩ Ci| ≤ ui for every class Ci. If one only requires
the fairness constraints to hold in expectation, then El Halabi et al. [2023] showed that is possible to reduce their setting to
the following continues settings.7 In this continuous settings, one has to find a vector x in the matroid polytope PM that
maximizing the multilinear extension F of f subject to fairness constraints requiring that ℓi ≤ ∥x ∩ χCi

∥1 ≤ ui for every
class Ci, where χCi

is the characteristic vector of the set Ci. Since multilinear extensions of discrete submodular functions are
DR-submodular [Bian et al., 2017b], our offline results can be applied to this continues setting.

Some of the results of El Halabi et al. [2023] are bi-criteria approximation algorithms that are allowed to output solutions
x ∈ PM that, for some parameter β ∈ (0, 1), only obey βℓi ≤ ∥x ∩ χCi

∥1 ≤ ui for every class Ci. In our terminology,
allowing such solutions implies two things.

• F (o(1)
D ) and F (o(2)

D ) can be both made to be at least (1− β) · F (o), where o is the optimal solution; and
• m = βr, where r = minx∈PM ∥x∥∞.

Thus, our offline algorithms can be used to get a solution whose approximation ratio is at least8

(1− βr) · max
ts∈[0,1]

max
T∈[ts,1]

{
(T − ts)e−T · (1− β) + t2s · e−ts−T

2
· (1− β) + e−T − e−ts−T

}
.

In Figure 2, we compare the above approximation ratio with two results of [Halabi et al., 2023] (for r = 1/2). The first
result is an approximation ratio of (1 − β)/8, which is worse than the approximation ratio that we obtain for any β, but
is not based on the above mentioned reduction to the continuous setting (and thus, guarantees that the fairness constraints
βℓi ≤ ∥x ∩ χCi∥1 ≤ ui hold always, and not just in expectation). The second result of [Halabi et al., 2023] used in our
comparison is an approximation of (1− r)/4, which applies even for β = 1 (but like our result, satisfies the fairness constraints
only in expectation). Our result can be viewed as a generalization of this second result.

B Known Results
In this section, we review a few known results used in our proofs. Bian et al. [2017b] observed that DR-submodular functions
are concave along non-negative directions. This implies the following important lemma.
Lemma B.1. Let F : [0, 1]n → R≥0 be a non-negative differentiable DR-submodular function. Then,

6We refer the reader to [Halabi et al., 2023] for the definition of matroids and the other terms used in this section.
7If the classes are large, then, in addition to guaranteeing that the fairness constraints hold in expectation, the reduction also guarantees

that, with high probability, each fairness constraint is violated by at most a small amount.
8We omitted the error term in the approximation ratio. Since the smoothness of multilinear extensions of discrete submodular functions is

polynomial, this error term can be made an arbitrarily small constant. For details, see, for example, Appendix A of [Buchbinder and Feldman,
2023].



1. ⟨∇F (x),y⟩ ≥ F (x+ y)− F (x) for every x ∈ [0, 1]n and y ≥ 0̄ such that x+ y ≤ 1̄.

2. ⟨∇F (x),y⟩ ≤ F (x)− F (x− y) for every x ∈ [0, 1]n and y ≥ 0̄ such that x− y ≥ 0̄.

We also need the following lemma, which generalizes Lemma 2.3 of [Feige et al., 2011].
Lemma B.2 (Lemma 4.3 of [Buchbinder and Feldman, 2023]). Given a DR-submodular function F : [0, 1]n → R, integer
value r ≥ 1, vectors x(1),x(2), . . . ,x(r) ∈ [0, 1]n, and values p1, p2, . . . , pr ∈ [0, 1],

F

(
r⊕

i=1

(pi · x(i))

)
≥
∑

S⊆[r]


∏

i∈S

pi ·
∏

i∈[r]\S
(1− pi) · F

(

⊕
i∈S

x(i)

)
 .

One important consequence of the last lemma is given by the next corollary. We note that this corollary can be viewed as an
extension of Lemma 2.2 of [Feldman et al., 2011].
Corollary B.3. Given a non-negative DR-submodular function F : [0, 1]n → R≥0 and two vectors x,y ∈ [0, 1]n, F (x⊕y) ≥
(1− ∥y∥∞) · F (x).
Proof. If ∥y∥∞ = 0, then y = 0̄, which makes the corollary trivial. Otherwise, Lemma B.2 and the non-negativity of F imply
together that

F (x⊕ y)=F
(
x⊕

(
∥y∥∞ ·

y

∥y∥∞

))
≥ (1− ∥y∥∞)F (x).

C Omitted Offline Algorithms and Proofs
In this section, we provide the full omitted analysis of Algorithm 1, and then present two additional versions of our offline
algorithm (as discussed in Section 4). For ease of reading, we use o below to denote the sum oN + o

(1)
D . We also assume,

without loss of generality, that F (o(2)
D ) ≥ F (o

(1)
D ). If this inequality is violated, then the guarantee of Theorem 4.1 follows

from the guarantee of the same theorem for the case in which o
(2)
D is replaced with o

(1)
D (which is a case in which the inequality

F (o
(2)
D ) ≥ F (o(1)

D ) trivially holds).

C.1 Analysis of Algorithm 1
It is clear that algorithm Algorithm 1 runs in polynomial time. Therefore, we concentrate on proving that the output vector of
Algorithm 1 obeys the properties stated in Theorem 4.1. We begin by showing that this vector belongs to (KN +KD)∩ [0, 1]n.

Lemma C.1. For every integer 0 ≤ i ≤ ε−1, y(i) ∈ KN and z(i) ∈ εi · KD, where εi · KD ≜ {εi · x | x ∈ KD}. Hence,
y(i) ⊕ z(i) ∈ (KN +KD) ∩ [0, 1]n.

Proof. We begin the proof by showing that the first part of the lemma implies its second part. Assume that y(i) ∈ KN and
z(i) ∈ εi · KD ⊆ KD (the inclusion holds by the down-monotonicity of KD). The definition of ⊕ guarantees that we always
have y(i) ⊕ z(i) ∈ [0, 1]n. Thus, to prove that y(i) ⊕ z(i) ∈ (KN +KD) ∩ [0, 1]n, it suffices to show that y(i) ⊕ z(i) is the sum
of a vector in KN and a vector in KD, which is the case since y(i) ⊕ z(i) = y(i) + (1̄− y(i))⊙ z(i) and (1̄− y(i))⊙ z(i) ∈ KD
by the down-closeness of KD.

In the rest of the proof, we prove the first part of the lemma by induction. The base of the induction holds by the initializations
of y(0) and z(0). Assume now that both y(i−1) ∈ KN and z(i−1) ∈ ε(i − 1) · KD hold for some integer 1 ≤ i ≤ ε−1, and let
us prove that we also have y(i) ∈ KN and z(i) ∈ KD. For y(i) this is true since KN is convex and y(i) is defined as a convex
combination of y(i−1) and a(i), which are both vectors in KN. Additionally, since z(i−1) ∈ ε(i − 1) · KD, there must exist a
vector x ∈ KD such that z(i−1) = ε(i− 1) · x. Hence,

z(i) = z(i−1) + ε · (1̄− z(i−1))⊙ b(i) ≤ z(i−1) + ε · b(i)

= ε(i− 1) · x+ ε · b(i) = εi · [(1− i−1) · x+ i−1 · b(i)] ∈ εi · KD ,

where the inclusion holds since the convexity of KD and the fact that both x and b(i) are vectors in KD imply together that
(1− i−1) · x+ i−1 · b(i) ∈ KD. Thus, z(i) is upper bounded by a vector in εi · KD, which implies that z(i) itself also belongs
to εi · KD because the down-closeness of KD implies that εi · KD is also down-closed.

Our next goal is to lower bound the value of the output vector of Algorithm 1. We begin with the following lemma, which
bounds the infinity norm of y(i) ⊕ z(i).

Lemma C.2. For every integer 0 ≤ i ≤ ε−1, ∥z(i)∥∞ ≤ 1− (1− ε)i and ∥y(i)∥∞ ≤ ∥y(i) ⊕ z(i)∥∞ ≤ 1− (1− ε)i(1−m).



Proof. We prove the lemma by induction. For i = 0, the lemma holds since our choice of values for y(0) and z(0) guarantees
that ∥z(0)∥∞ = ∥0̄∥∞ = 0 and ∥y(0) ⊕ z(0)∥∞ = ∥y(0)∥∞ = m. Let us now prove the lemma for i ≥ 1 assuming it holds for
i− 1. Note that

1̄− y(i) ⊕ z(i) = (1̄− y(i))⊙ (1̄− z(i))

=
(
1̄− (1− ε) · y(i−1) − εa(i)

)
⊙
(
1̄− z(i−1) − ε(1̄− z(i−1))⊙ b(i)

)

≥ (1̄− y(i−1))⊙ (1̄− ε(1̄− b(i)))⊙ (1̄− z(i−1))⊙ (1̄− εb(i))

≥ (1̄− y(i−1))⊙ (1̄− z(i−1)) · (1− ε) = (1− ε) · (1̄− y(i−1) ⊕ z(i−1)) ,

where the first inequality uses the fact that the inequality a(i) + b(i) ⊙ (1̄ − y(i−1)) ≤ 1̄ is one of the conditions of the linear
program of Algorithm 1, which implies a(i) − y(i−1) ≤ (1̄− y(i−1))⊙ (1̄− b(i)). Hence, by the induction hypothesis,

∥y(i) ⊕ z(i)∥∞ = max
j∈[n]

(y(i) ⊕ z(i))j ≤ max
j∈[n]

[1− (1− ε) · (1− (y(i−1) ⊕ z(i−1))j)]

= 1− (1− ε) · (1−max
j∈[n]

(y(i−1) ⊕ z(i−1))j) = 1− (1− ε) · (1− ∥y(i−1) ⊕ z(i−1)∥∞)

≤ 1− (1− ε) · [(1− ε)i−1
(1−m)] = 1− (1− ε)i(1−m) .

Similarly, the induction hypothesis also implies that

∥z(i)∥∞ = ∥z(i−1) + ε(1̄− z(i−1))⊙ b(i)∥∞ ≤ ∥z(i−1) + ε(1̄− z(i−1))∥∞
= ε+ (1− ε) · ∥z(i−1)∥∞ ≤ ε+ (1− ε) · (1− (1− ε)i−1) = 1− (1− ε)i .

Using the last lemma, we prove two lower bounds on the optimal value of the linear program solved by Algorithm 1. Each
one of these lower bounds is based on one possible solution for this linear program. The first such solution is given by the next
lemma.
Lemma C.3. For every integer 1 ≤ i ≤ ε−1, the assignment a(i) = oN and b(i) = o

(1)
D is a feasible solution for the linear

program solved by Algorithm 1 in iteration number i.

Proof. The definitions of oN and o
(1)
D immediately implies that the first two constraints of the linear program hold for the

solution stated in the lemma. Thus, we concentrate on proving that this solution obeys also the other two constraints of the
linear program. The third constraint of the linear program is

⟨b(i) ⊙ (1̄− z(i−1)),∇F (z(i−1))⟩ ≥ (1− ε)i−1 · F (o(1)
D )− F (z(i−1)) .

To see that this constraint is satisfied by our proposed solution, notice that, by Property 1 of Lemma B.1,

⟨o(1)
D ⊙ (1̄− z(i−1)),∇F (z(i−1))⟩ ≥ F (o(1)

D ⊕ z(i−1))− F (z(i−1))

≥ (1− ∥z(i−1)∥∞) · F (o(1)
D )− F (z(i−1)) ≥ (1− ε)i−1 · F (o(1)

D )− F (z(i−1)) ,

where the second inequality holds by Corollary B.3, and the last inequality follows from Lemma C.2. The last constraint of the
linear program is

a(i) + b(i) ⊙ (1̄− y(i−1)) ≤ 1̄ .

This constraint is also satisfied by our proposed solution since oN + o
(1)
D ⊙ (1̄− y(i−1)) ≤ oN + o

(1)
D ≤ 1̄.

As promised, we can now get a lower bound on the optimal value of the linear program solved by Algorithm 1. Recall
that the objective function of this linear program is given (in iteration i of the algorithm) by ⟨∇F (y(i−1) ⊕ z(i−1)) ⊙ (1̄ −
z(i−1)),a(i) + b(i) ⊙ (1̄− y(i−1))⟩.
Lemma C.4. For every integer 1 ≤ i ≤ ε−1,

⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)),a(i) + b(i) ⊙ (1̄− y(i−1))⟩
≥ (1− ε)i−1(1−m) · F (o) + (1− ε)i−1

(1−m) · F (z(i−1))

+ ⟨∇F (y(i−1) ⊕ z(i−1)),y(i−1) ⊙ (1̄− z(i−1))⟩ − 2F (y(i−1) ⊕ z(i−1)) .



Proof. Since Lemma C.3 guarantees that a(i) = oN and b(i) = o
(1)
D is one feasible solution for the linear program solved in

iteration i of Algorithm 1, we get

⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)),a(i) + b(i) ⊙ (1̄− y(i−1))⟩ (1)

≥ ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)),oN + o
(1)
D ⊙ (1̄− y(i−1))⟩

= ⟨∇F (y(i−1) ⊕ z(i−1)),o⊙ (1̄− y(i−1))⊙ (1̄− z(i−1))⟩
+ ⟨∇F (y(i−1) ⊕ z(i−1)),oN ⊙ y(i−1) ⊙ (1− z(i−1))⟩ .

The first term on the rightmost side of this inequality can be lower bounded, by Property 1 of Lemma B.1, as follows.

⟨∇F (y(i−1) ⊕ z(i−1)),o⊙ (1̄− y(i−1))⊙ (1̄− z(i−1))⟩ ≥ F (y(i−1) ⊕ z(i−1) ⊕ o)− F (y(i−1) ⊕ z(i−1))

≥ (1− ∥y(i−1) ⊕ z(i−1)∥∞) · F (o)− F (y(i−1) ⊕ z(i−1))

≥ (1− ε)i−1(1−m) · F (o)− F (y(i−1) ⊕ z(i−1)) ,

where the second inequality holds by Corollary B.3, and the last inequality follows from Lemma C.2.
Next, we need to lower bound the second term on the rightmost side of Inequality (1).

⟨∇F (y(i−1) ⊕ z(i−1)),oN ⊙ y(i−1) ⊙ (1̄− z(i−1))⟩ − ⟨∇F (y(i−1) ⊕ z(i−1)),y(i−1) ⊙ (1̄− z(i−1))⟩
= − ⟨∇F (y(i−1) ⊕ z(i−1)),y(i−1) ⊕ z(i−1) − z(i−1) ⊕ (oN ⊙ y(i−1))⟩
≥ F (z(i−1) ⊕ (oN ⊙ y(i−1)))− F (y(i−1) ⊕ z(i−1))

≥ (1− ∥oN ⊙ yi−1∥∞) · F (z(i−1))− F (y(i−1) ⊕ z(i−1))

≥ (1− ∥yi−1∥∞) · F (z(i−1))− F (y(i−1) ⊕ z(i−1))

≥ (1− ε)i−1
(1−m) · F (z(i−1))− F (y(i−1) ⊕ z(i−1)) ,

where the first inequality holds by Property (2) of Lemma B.1 since y(i−1) ⊕ z(i−1) − z(i−1) ⊕ (oN ⊙ y(i−1) ≥ y(i−1) ⊕
z(i−1) − z(i−1) ⊕ (1̄ ⊙ y(i−1)) = 0̄, the second inequality follows from Corollary B.3, and the last inequality holds due to
Lemma C.2.

The lower bound given by the last lemma depends on the term F (z(i−1)). Thus, to make this lower bound useful, we need
to prove also a lower bound on this term, which is done by the next lemma.

Lemma C.5. For every integer 0 ≤ i ≤ ε−1, F (z(i)) ≥ εi · (1− ε)i−1 · F (o(1)
D )− i · ε2βD2/[2(1−m)2].

Proof. We prove the lemma by induction on i. For i = 0, the lemma trivially holds by the non-negativity of F . Assume now
that the lemma holds for i− 1, and let us prove it for i ≥ 1. By the chain rule,

F (z(i)) = F (z(i−1) + ε(1̄− z(i−1))⊙ b(i))

= F (z(i−1)) + ε · ⟨(1̄− z(i−1))⊙ b(i),∇F (z(i−1))⟩

+

∫ ε

0

⟨(1̄− z(i−1))⊙ b(i),∇F (z(i−1) + τ(1̄− z(i−1))⊙ b(i))−∇F (z(i−1))⟩dτ

≥ F (z(i−1)) + ε · [(1− ε)i−1 · F (o(1)
D )− F (z(i−1))]

−
∫ ε

0

∥(1̄− z(i−1))⊙ b(i)∥2 · ∥∇F (z(i−1) + τ(1̄− z(i−1))⊙ b(i))−∇F (z(i−1))∥2dτ

≥ (1− ε) · F (z(i−1)) + ε(1− ε)i−1 · F (o(1)
D )−

∫ ε

0

τ · β∥(1̄− z(i−1))⊙ b(i)∥22dτ

≥ (1− ε) · F (z(i−1)) + ε(1− ε)i−1 · F (o(1)
D )− ε2βD2/[2(1−m)2] ,

where the first inequality follows from the Cauchy–Schwarz inequality and fact that b(i) is part of a feasible solution for
the linear program that Algorithm 1 solves at iteration i, the second inequality holds by the β-smoothness of F , and the last
inequality uses the observation that since ∥y(0)∥∞ = m and KD is down-closed, both y(0) and y(0)+(1−m) ·b(i) are vectors
in (KN +KD) ∩ [0, 1]n, and thus,

∥(1̄− z(i−1))⊙ b(i)∥2 ≤ ∥b(i)∥2 =
∥(y(0) + (1−m) · b(i))− y(0)∥2

1−m ≤ D

1−m .



Plugging the induction hypothesis into the last inequality yields

F (z(i)) ≥ (1− ε) · [ε(i− 1) · (1− ε)i−2 · F (o(1)
D )] + ε(1− ε)i−1 · F (o(1)

D )− i · ε2βD2/[2(1−m)2]

= εi · (1− ε)i−1 · F (o(1)
D )− i · ε2βD2/[2(1−m)2] .

We now present, in Lemma C.6, another possible solution for the linear program solved by Algorithm 1. Corollary C.7 then
states the lower bound implied by this solution for the optimal value of the objective function of this linear program.

Lemma C.6. For every integer 1 ≤ i ≤ ε−1, the assignment a(i) = y(i−1) and b(i) = o
(2)
D is a feasible solution for the linear

program solved by Algorithm 1 in iteration number i.

Proof. Lemma C.1 shows that a(i) = y(i−1) ∈ KN, and by definition we have o
(2)
D ∈ KD. Thus, the first two constraints of the

linear program are satisfied by the solution stated in the lemma. The third constraint of this linear program is

⟨b(i) ⊙ (1̄− z(i−1)),∇F (z(i−1))⟩ ≥ (1− ε)i−1 · F (o(1)
D )− F (z(i−1)) .

Repeating the part of the proof of Lemma C.3 related to this constraint, with o
(2)
D taking the role of o(1)

D , we get

⟨o(2)
D ⊙ (1̄− z(i−1)),∇F (z(i−1))⟩ ≥ (1− ε)i−1 · F (o(2)

D )− F (z(i−1))

≥ (1− ε)i−1 · F (o(1)
D )− F (z(i−1)) ,

where the second inequality holds by our assumption that F (o(2)
D ) ≥ F (o

(1)
D ). Hence, the above stated third constraint is

satisfied by our solution, and it only remains to prove that this solution also satisfies the last constraint of the linear program,
which is

a(i) + b(i) ⊙ (1̄− y(i−1)) ≤ 1̄ .

This is indeed the case since y(i−1) + o
(2)
D ⊙ (1̄− y(i−1)) ≤ y(i−1) + (1̄− y(i−1)) = 1̄.

Corollary C.7. For every integer 1 ≤ i ≤ ε−1,

⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)),a(i) + b(i) ⊙ (1̄− y(i−1))⟩ ≥ (1− ε)i−1(1−m) · F (o(2)
D )

− F (y(i−1) ⊕ z(i−1)) + ⟨∇F (y(i−1) ⊕ z(i−1)),y(i−1) ⊙ (1̄− z(i−1))⟩ .
Proof. Recall that the left hand side of the inequality of the lemma is the objective function of the linear program solved by
Algorithm 1 in iteration i. Thus, its value is at least the value obtained by plugging in the feasible solution described by
Lemma C.6. Hence,

⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)),a(i) + b(i) ⊙ (1̄− y(i−1))⟩
≥ ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)),y(i−1) + o

(2)
D ⊙ (1̄− y(i−1))⟩

= ⟨∇F (y(i−1) ⊕ z(i−1)),o
(2)
D ⊙ (1̄− y(i−1))⊙ (1̄− z(i−1))⟩

+ ⟨∇F (y(i−1) ⊕ z(i−1)),y(i−1) ⊙ (1̄− z(i−1))⟩ .
To complete the proof of the corollary, it remains to observe that

⟨∇F (y(i−1) ⊕ z(i−1)),o
(2)
D ⊙ (1̄− y(i−1))⊙ (1̄− z(i−1))

≥ F (y(i−1) ⊕ z(i−1) ⊕ o
(2)
D )− F (y(i−1) ⊕ z(i−1))

≥ (1− ∥y(i−1) ⊕ z(i−1)∥∞) · F (o(2)
D )− F (y(i−1) ⊕ z(i−1))

≥ (1− ε)i−1(1−m) · F (o(2)
D )− F (y(i−1) ⊕ z(i−1)) ,

where the first inequality holds by Property 1 of Lemma B.1, the second inequality holds by Corollary B.3, and the last
inequality follows from Lemma C.2.

Using the above results, we can now prove the following lemma about the rate in which the value of F (y(i)) increases as a
function of i.
Lemma C.8. For every integer 1 ≤ i ≤ ε−1, the value of F (y(i) ⊕ z(i))− F (y(i−1) ⊕ z(i−1)) can be lower bounded by both
expressions

ε(1−m) · [(1− ε)i · F (o) + ε(1− ε)2i−2(i− 1) · F (o(1)
D )]

− 2ε · F (y(i−1) ⊕ z(i−1))− 3ε2 · F (y(i−1) ⊕ z(i−1))−O( ε
2βD2

1−m ) ,

and
ε(1−m) · (1− ε)i · F (o(2)

D )− ε · F (y(i−1) ⊕ z(i−1))− 3ε2 · F (y(i−1) ⊕ z(i−1))−O( ε
2βD2

1−m ) .



Proof. By the chain rule,

F (y(i) ⊕ z(i))− F (y(i−1) ⊕ z(i−1)) (2)

= F (((1− ε)y(i−1) + εa(i))⊕ (z(i−1) + ε(1̄− z(i−1))⊙ b(i)))− F (y(i−1) ⊕ z(i−1))

=

∫ ε

0

〈d[((1− τ)y(i−1) + τa(i))⊕ (z(i−1) + τ(1̄− z(i−1))⊙ b(i))]

dτ
,

∇F (((1− τ)y(i−1) + τa(i))⊕ (z(i−1) + τ(1̄− z(i−1))⊙ b(i)))
〉
dτ

=

∫ ε

0

⟨(1̄− z(i−1))⊙ [(1̄− y(i−1))⊙ b(i) + (a(i) − y(i−1))⊙ (1̄− 2τ · b(i))],

∇F (((1− τ)y(i−1) + τa(i))⊕ (z(i−1) + τ(1̄− z(i−1))⊙ b(i)))⟩dτ .

At this point, we need to lower bound the integrand on the rightmost side of the last equality. The first step towards obtaining
this lower bound is the following inequality.

⟨(1̄− z(i−1))⊙ [(1̄− y(i−1))⊙ b(i) + (a(i) − y(i−1))⊙ (1̄− 2τ · b(i))], (3)

∇F (((1− τ)y(i−1) + τa(i))⊕ (z(i−1) + τ(1̄− z(i−1))⊙ b(i)))−∇F (y(i−1) ⊕ z(i−1))⟩
≥ − ∥(1̄− z(i−1))⊙ [(1̄− y(i−1))⊙ b(i) + (a(i) − y(i−1))⊙ (1̄− 2τ · b(i))]∥2·

∥∇F (((1− τ)y(i−1) + τa(i))⊕ (z(i−1) + τ(1̄− z(i−1))⊙ b(i)))−∇F (y(i−1) ⊕ z(i−1))∥2
≥ − 3D · β∥(((1− τ)y(i−1) + τa(i))⊕ (z(i−1) + τ(1̄− z(i−1))⊙ b(i)))− (y(i−1) ⊕ z(i−1))∥2
= − 3βD · ∥τ(a(i) − y(i−1))⊙ (1̄− z(i−1)) + τ(1̄− z(i−1))⊙ b(i) ⊙ (1̄− y(i−1))

− τ2(1̄− z(i−1))⊙ (a(i) − y(i−1))⊙ b(i)∥2 ≥ −6τβD2 ,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality uses the β-smoothness of F
and the observation that since a(i) + (1̄− y(i−1))⊙ b(i), a(i) and y(i−1) are all vectors in (KN +KD) ∩ [0, 1]n, it holds that

∥(1̄− z(i−1))⊙ [(1̄− y(i−1))⊙ b(i) + (a(i) − y(i−1))⊙ (1̄− 2τ · b(i))]∥2
≤ ∥(a(i) + (1̄− y(i−1))⊙ b(i))− y(i−1)∥2 + 2τ · ∥(a(i) − y(i−1))⊙ b(i)∥2
≤ D + 2τ · ∥a(i) − y(i−1)∥2 ≤ 3D .

Similarly, the last inequality of Inequality (3) holds since

∥τ(a(i) − y(i−1))⊙ (1̄− z(i−1)) + τ(1̄− z(i−1))⊙ b(i) ⊙ (1̄− y(i−1))

− τ2(1̄− z(i−1))⊙ (a(i) − y(i−1))⊙ b(i)∥2
= ∥τ(a(i) − y(i−1))⊙ (1̄− z(i−1))⊙ (1− τb(i)) + τ(1̄− z(i−1))⊙ b(i) ⊙ (1̄− y(i−1))∥2
≤ ∥a(i) − y(i−1)∥2 + ∥(y(i−1) + (1̄− y(i−1))⊙ b(i))− y(i−1)∥2 ≤ 2D .

We now need another inequality.

⟨(1̄− z(i−1))⊙ [(1̄− y(i−1))⊙ b(i) + (a(i) − y(i−1))⊙ (1̄− 2τ · b(i))],∇F (y(i−1) ⊕ z(i−1))⟩
= (1− 2τ) · {⟨(1̄− y(i−1))⊙ b(i) + a(i),∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1))⟩
− ⟨y(i−1) ⊙ (1̄− z(i−1)),∇F (y(i−1) ⊕ z(i−1))⟩}
+ 2τ · ⟨(1̄− z(i−1))⊙ (1̄− y(i−1))⊙ b(i),∇F (y(i−1) ⊕ z(i−1))⟩
+ 2τ · ⟨(1̄− z(i−1))⊙ a(i) ⊙ (1̄− y(i−1))⊙ (1̄− b(i)),∇F (y(i−1) ⊕ z(i−1))⟩
− 2τ · ⟨(1̄− z(i−1))⊙ y(i−1) ⊙ (1̄− a(i))⊙ (1̄− b(i)),∇F (y(i−1) ⊕ z(i−1))⟩

≥ (1− 2τ) · {⟨(1̄− y(i−1))⊙ b(i) + a(i),∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1))⟩
− ⟨y(i−1) ⊙ (1̄− z(i−1)),∇F (y(i−1) ⊕ z(i−1))⟩}
+ 2τ · {F (y(i−1) ⊕ z(i−1) ⊕ b(i)) + F (yi−1 ⊕ z(i−1) ⊕ ((1̄− b(i))⊙ a(i)))

+ F (((a(i) ⊕ b(i))⊙ y(i−1))⊕ z(i−1))− 3F (y(i−1) ⊕ z(i−1))}
≥ (1− 2τ) ·max{(1−m) · [(1− ε)i−1F (o) + (1− ε)2i−3 · ε(i− 1) · F (o(1)

D )]−O( εβD
2

1−m )



− 2F (y(i−1) ⊕ z(i−1)), (1− ε)i−1(1−m) · F (o(2)
D )− F (y(i−1) ⊕ z(i−1))}

− 6τ · F (y(i−1) ⊕ z(i−1)) ,

where the second inequality holds by Properties 1 and 2 of Lemma B.1, and the last inequality follows from Lemmata C.4
and C.5, Corollary C.7 and the non-negativity of F .

Adding the last inequality to Inequality (3), we get the promised lower bound on the integrand on the rightmost side of
Equality (2); and plugging this lower bound into the equality yields

F (y(i) ⊕ z(i))− F (y(i−1) ⊕ z(i−1))

≥ (ε− ε2) ·max{(1−m) · [(1− ε)i−1F (o) + (1− ε)2i−3 · ε(i− 1) · F (o(1)
D )]

− 2F (y(i−1) ⊕ z(i−1)), (1− ε)i−1(1−m) · F (o(2)
D )− F (y(i−1) ⊕ z(i−1))}

− 3ε2 · F (y(i−1) ⊕ z(i−1))−O( ε
2βD2

1−m ) .

The last lemma implies recursive lower bounds on the values of {F (y(i)⊕z(i)) | i ∈ Z, 0 ≤ i ≤ ε−1}. We need to get closed
expression forms for these lower bounds, and the next two lemmata are steps towards this goal. To simplify the statements of
these lemmata, it is useful to define α ≜ (1−m)(1− ε)2 and g(t) ≜

(
e−t − e−2t

)
· F (o) + t2·e−2t

2 · F (o(1)
D ).

Lemma C.9. For every integer 0 ≤ i ≤ ε−1, F (y(i) ⊕ z(i)) ≥ α · g(εi) − 3ε2 ·∑i
i′=1 F (y

(i′−1) ⊕ z(i
′−1)) − i · O(ε2(α ·

F (o) + α · F (o(1)
D ) + βD2

1−m )).

Proof. We prove the lemma by induction on i. For i = 0, the lemma immediately follows from the non-negativity of F since
g(0) = 0. Assume now that the lemma holds for i− 1, and let us prove it for i ≥ 1.

Observe that
g′(t) = (2e−2t − e−t) · F (o) + te−2t(1− t) · F (o(1)

D ) ;

and therefore,

g(εi)− g(ε(i− 1)) =

∫ εi

ε(i−1)

[(2e−2t − e−t) · F (o) + te−2t(1− t) · F (o(1)
D )]dt (4)

≤
∫ εi

ε(i−1)

[(2e−2ε(i−1) − e−ε(i−1)) · F (o) + ε(i− 1)e−2ε(i−1)(1− ε(i− 1)) · F (o(1)
D )

+O(ε(F (o) + F (o
(1)
D )))]dt

= ε[(2e−2ε(i−1) − e−ε(i−1)) · F (o) + ε(i− 1)e−2ε(i−1)(1− ε(i− 1)) · F (o(1)
D )]

+O(ε2(F (o) + F (o
(1)
D )))

= ε[e−ε(i−1) · F (o) + ε(i− 1)e−2ε(i−1) · F (o(1)
D )− 2g(ε(i− 1))] +O(ε2(F (o) + F (o

(1)
D ))) ,

where the inequality holds since, for every t ∈ [ε(i− 1), εi],

(2e−2t − e−t) · F (o) + te−2t(1− t) · F (o(1)
D )

− (2e−2ε(i−1) − e−ε(i−1)) · F (o)− ε(i− 1)e−2ε(i−1)(1− ε(i− 1)) · F (o(1)
D )

=

∫ t

ε(i−1)

[(e−τ − 4e−2τ ) · F (o) + e−2τ ((1− τ)− 2τ(1− τ)− τ) · F (o(1)
D )]dτ

=

∫ t

ε(i−1)

[(e−τ − 4e−2τ ) · F (o) + e−2τ (1− 4τ + 2τ2) · F (o(1)
D )]dτ

≤
∫ t

ε(i−1)

(
F (o)

16
+ F (o

(1)
D )

)
dτ = O(ε(F (o) + F (o

(1)
D ))) .

Rearranging Inequality (4) yields

(1− 2ε) · g(ε(i− 1)) + ε[e−ε(i−1) · F (o) + ε(i− 1)e−2ε(i−1) · F (o(1)
D )] ≥ g(εi)−O(ε2(F (o) + F (o

(1)
D ))) . (5)

Now, we can use Lemma C.8 (and the non-negativity of F ) to get

F (y(i) ⊕ z(i)) ≥ (1− 2ε− 3ε2) · F (y(i−1) ⊕ z(i−1))



+ εα[(1− ε)i−2 · F (o) + ε(1− ε)2i−4
(i− 1) · F (o(1)

D )]−O( ε
2βD2

1−m )

≥ (1− 2ε) ·
[
α · g(ε(i− 1))− 3ε2 ·

i−2∑

i′=1

F (y(i
′) ⊕ z(i

′))

− (i− 1) ·O(ε2(α · F (o) + α · F (o(1)
D ) + βD2

1−m ))
]
− 3ε2 · F (y(i−1) ⊕ z(i−1))

+ εα[e−ε(i−1) · F (o) + εe−2ε(i−1)(i− 1) · F (o(1)
D )]−O( ε

2βD2

1−m )

≥ α · g(εi)− 3ε2 ·
i−1∑

i′=1

F (y(i
′) ⊕ z(i

′))− i ·O(ε2(α · F (o) + α · F (o(1)
D ) + βD2

1−m ) ,

where the second inequality holds by the induction hypothesis, and the last inequality follows from Inequality (5).

Lemma C.10. For every two integers 0 ≤ is ≤ i ≤ ε−1, F (y(i) ⊕ z(i)) ≥ αε(i − is)(1 − ε)i−2 · F (o(2)
D ) + (1 − ε)i−is ·

F (y(is) ⊕ z(is))− 3ε2 ·∑i
i′=is+1 F (y

(i′−1) ⊕ z(i
′−1))− (i− is) ·O( ε

2βD2

1−m ).

Proof. We prove the lemma by induction on i. For i = is the lemma is trivially true. Thus, assume that the lemma holds for
i− 1, and let us prove it for i > is. By Lemma C.8,

F (y(i) ⊕ z(i)) ≥ (1− ε) · F (y(i−1) ⊕ z(i−1)) + ε(1−m) · (1− ε)i · F (o(2)
D )

− 3ε2 · F (y(i−1) ⊕ z(i−1))−O( ε
2βD2

1−m )

≥ (1− ε) ·
[
αε(i− 1− is)(1− ε)i−3 · F (o(2)

D ) + (1− ε)i−is−1 · F (y(is) ⊕ z(is))

−
i−1∑

i′=is+1

F (y(i
′−1) ⊕ z(i

′−1))− (i− is − 1) ·O( ε
2βD2

1−m )
]

+ αε · (1− ε)i−2 · F (o(2)
D )− 3ε2 · F (y(i−1) ⊕ z(i−1))−O( ε

2βD2

1−m )

≥ αε(i− is)(1− ε)i−2 · F (o(2)
D ) + (1− ε)i−is · F (y(is) ⊕ z(is))

− 3ε ·
i∑

i′=is+1

F (y(i
′−1) ⊕ z(i

′−1))− (i− is) ·O( ε
2βD2

1−m ) ,

where the second inequality holds by the induction hypothesis.

We are ready now to prove the next corollary, which completes the proof of Theorem 4.1. Recall that the value of the output
vector w of Algorithm 1 is max0≤i≤ε−1 F (y(i) ⊕ z(i)).
Corollary C.11. It holds that

(1 +O(ε)) · max
0≤i≤ε−1T

F (y(i) ⊕ z(i)) ≥ α · max
ts∈[0,1]

max
T∈[ts,1]

{
((T − ts)e−T −O(ε)) · F (o(2)

D )

+

[
t2s · e−ts−T

2
−O(ε)

]
· F (o(1)

D ) + (e−T − e−ts−T −O(ε)) · F (o)
}
−O( εβD

2

1−m ) .

Proof. Combining Lemmata C.9 and C.10, we get, for every two integers 0 ≤ is ≤ iT ≤ ε−1,

F (y(iT ) ⊕ z(iT )) ≥ αε(iT − is)(1− ε)iT−2 · F (o(2)
D )− (iT − is) ·O( ε

2βD2

1−m )

+ (1− ε)iT−is ·
[
α · g(εis)− is ·O(ε2(α · F (o) + α · F (o(1)

D ) + βD2

1−m ))

− 3ε2 ·
is∑

i′=1

F (y(i
′−1) ⊕ z(i

′−1))
]
− 3ε2 ·

iT∑

i′=is+1

F (y(i
′−1) ⊕ z(i

′−1))

≥ αε(iT − is)(1− ε)iT−2 · F (o(2)
D )−O(ε(α · F (o) + α · F (o(1)

D ) + βD2

1−m ))

+ (1− ε)iT−is · α
[
(e−εis − e−2εis) · F (o) + (εis)

2 · e−2εis

2
· F (o(1)

D )

]



− 3ε2 ·
iT∑

i′=1

F (y(i
′−1) ⊕ z(i

′−1))

≥ αε(iT − is)e−εiT · F (o(2)
D ) + α

[
(εis)

2 · e−εis−εiT

2
−O(ε)

]
· F (o(1)

D )

+ α(e−εiT − e−εis−εiT −O(ε)) · F (o)− 3ε ·max
1≤i′≤iT

F (y(i
′−1) ⊕ z(i

′−1))−O( εβD
2

1−m ) .

This implies that, for every ts ∈ [0, 1] and T ∈ [ts, 1],

(1 + 3ε) · max
0≤i≤ε−1

F (y(i) ⊕ z(i)) ≥ F (y(⌊ε−1T⌋) ⊕ z(⌊ε
−1T⌋)) + 3ε · max

1≤i′≤⌊ε−1T⌋
y(i

′−1) ⊕ z(i
′−1)

≥ αε(⌊ε−1T ⌋ − ⌊ε−1ts⌋)e−ε⌊ε−1T⌋ · F (o(2)
D ) + α

[
(ε⌊ε−1ts⌋)2 · e−ε⌊ε−1ts⌋−ε⌊ε−1T⌋

2
−O(ε)

]
· F (o(1)

D )

+ α(e−ε⌊ε−1T⌋ − e−ε⌊ε−1ts⌋−ε⌊ε−1T⌋ −O(ε)) · F (o)−O( εβD
2

1−m )

≥ α(T − ts − ε)e−T · F (o(2)
D ) + α

[
t2s · e−ts−T

2
−O(ε)

]
· F (o(1)

D )

+ α(e−T − e−ts−T −O(ε)) · F (o)−O( εβD
2

1−m ) .

C.2 Guess-Free Offline Maximization
In this section, we reprove Theorem 4.1 without assuming knowledge of F (o(1)

D ) like in Section C.1. Formally, we prove in
this section the following proposition.
Proposition C.12. Let KN ⊆ [0, 1]n be a general solvable convex set, KD ⊆ [0, 1]n be a down-closed solvable convex set, and
F : [0, 1]n → R≥0 be a non-negative β-smooth DR-submodular function. Then, there exists a polynomial time algorithm that,
given a time ts ∈ [0, 1] and an error parameter ε ∈ (0, 1), outputs vector w ∈ (KN +KD) ∩ [0, 1]n such that

F (w) ≥ (1−m) · max
T∈[ts,1]

{
((T − ts)e−T −O(ε)) · F (o(2)

D ) +

(
t2s · e−ts−T

2
−O(ε)

)
· F (o(1)

D )

+ (e−T − e−ts−T −O(ε)) · F (oN + o
(1)
D )

}
−O( εβD

2

1−m ) ,

where m = minx∈KN∥x∥∞, D is the diameter of (KN + KD) ∩ [0, 1]n, oN ∈ KN and o
(1)
D ∈ KD are any vectors whose sum

belongs to (KN +KD) ∩ [0, 1]n, and o
(2)
D ∈ KD.

To see why Proposition C.12 implies Theorem 4.1, we observe that, by executing the algorithm from this proposition for
every ts ∈ {εi | i ∈ Z, 0 ≤ i ≤ ε−1}, and then outputting the best solution obtained, one can get (in polynomial time) a vector
w such that

F (w) ≥ (1−m) · max
ts∈{εi|i∈Z,0≤i≤ε−1}

max
T∈[ts,1]

{
((T − ts)e−T −O(ε)) · F (o(2)

D )

+

(
t2s · e−ts−T

2
−O(ε)

)
· F (o(1)

D ) + (e−T − e−ts−T −O(ε)) · F (oN + o
(1)
D )

}
−O( εβD

2

1−m ) .

Since the coefficients of F (o(1)
D ), F (o(2)

D ) and F (oN + o
(1)
D ) in the right side of the last inequality all change by at most O(ε)

when ts and T change by at most ε, this right side is equivalent to the right side of the inequality stated in Theorem 4.1. Thus,
the vector w obeys the properties guaranteed by this theorem.

The proof of Proposition C.12 is based on Algorithm 3. The pseudocode of this algorithm makes, without loss of generality,
two assumptions, which we list below.

• The pseudocode assumes that ε−1 is integral and ε ≤ 1/30. If this is not the case, then we can replace ε with 1/⌈30ε−1⌉,
which decreases ε by most a constant factor.

• The pseudocode assumes that ε−1ts is integral. If this is not the case, we reduce ts by at most ε to ε⌊ε−1ts⌋. Notice that
such a reduction again affects the right hand side of the inequality stated in Proposition C.12 only by modifying the hidden
constants within the big O notation.



Algorithm 3 Frank-Wolfe/Continuous-Greedy Hybrid

1: Let y(0) ← argminx∈KN
∥x∥∞, z(0) ← 0̄ and m← ∥y(0)∥∞.

2: for i = 1 to ε−1 do
3: if i ≤ ε−1ts then
4: Solve the following linear program. The variables in this program are the vectors a(i) and b(i).
5:

maximize e2εi · ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)), (1̄− y(i−1))⊙ b(i) + a(i)⟩
+ (1−m) · eεi(ts − εi) · ⟨∇F (z(i−1))⊙ (1− z(i−1)),b(i)⟩

subject to a(i) ∈ KN,b
(i) ∈ KD

a(i) + b(i) ∈ [0, 1]n

6: else
7: Solve the following linear program. The variables in this program are the vectors a(i) and b(i).
8:

maximize ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)),b(i) ⊙ (1̄− y(i−1))⟩
subject to a(i) = y(i),b(i) ∈ KD

9: end if
10: Let y(i) ← (1− ε) · y(i−1) + ε · a(i).
11: Let z(i) ← z(i−1) + ε · (1− z(i−1))⊙ b(i).
12: end for
13: Return a vector maximizing F among all the vectors in {y(i) ⊕ z(i) | i ∈ Z, ε−1ts ≤ i ≤ ε−1}.

Intuitively, Algorithm 1 strives to guarantee that both F (y(i) ⊕ z(i)) and F (z(i)) increase at appropriate rates. Algorithm 3
relaxes this goal, and its aim is to guarantee that some combination of these expressions increases at an appropriate rate.
Specifically, the combination considered is given by the potential function ϕ(i) ≜ e2(εi−ts) · F (y(i) ⊕ z(i)) + (1 −m)(1 −
ε) · eεi−2ts(ts − εi) · F (z(i)). We note that the idea of using such a dynamic combination of the two functions of interest as a
potential function can be traced back to the work of [Feldman, 2021].

It is also interesting to note that, for i > ε−1ts, the variable a(i) and y(i) of Algorithm 1 are always set to be equal to
y(i−1). This means that one could simplify the algorithm by dropping the constraint regarding a(i) from the second linear
program of Algorithm 1 and executing Line 10 only for i ≤ ε−1ts. This observation is essential for getting the online result
of Section 5. However, for the sake of the current section, the given description of the algorithm is more convenient as it
immediately implies the following observation, which shows that the pair (a(i),b(i)) always obey all the constraints of the
linear program of Algorithm 1, except for one.
Observation C.13. For every 1 ≤ i ≤ ε−1, a(i) ∈ KN, b(i) ∈ KD and a(i) + (1− y(i−1))⊙ b(i) ≤ 1̄.

Given Observation C.13, the proofs of Lemmata C.1 and C.2 go through without a change. Thus, we can use both lemmata in
the analysis of Algorithm 3, which in particular, implies that the output vector of this algorithm belongs to (KN +KD)∩ [0, 1]n.

Our objective in the rest of this section is to lower bound the value of this output vector. We begin with a basic lower bound
on the rate in which the potential function ϕ(i) increases.
Lemma C.14. For every integer 1 ≤ i ≤ ε−1ts, the expression ε−1e2ts [ϕ(i) − ϕ(i − 1)] can be lower bounded both by
2e2ε(i−1) · F (y(i−1) ⊕ z(i−1))− (1−m)(1− ε) · eεi(1− ts + εi) · F (z(i−1))− 25εβD2

1−m − 15ε · F (y(i−1) ⊕ z(i−1)) and by
the sum of this expression and

(1− ε) · e2εi · ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)), (1̄− y(i−1))⊙ o
(1)
D + oN − y(i−1)⟩

+ (1−m)(1− ε) · eεi(ts − εi) · ⟨(1̄− z(i−1))⊙ o
(1)
D ,∇F (z(i−1))⟩ .

Proof. Observe that

e2εi · F (y(i) ⊕ z(i))− e2ε(i−1) · F (y(i−1) ⊕ z(i−1)) (6)

= [e2εi − e2ε(i−1)] · F (y(i−1) ⊕ z(i−1)) + e2εi · [F (y(i) ⊕ z(i))− F (y(i−1) ⊕ z(i−1))]

≥
∫ ε

0

{2e2(ε(i−1)+τ) · F (y(i−1) ⊕ z(i−1)) + e2εi · ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)),



(1̄− y(i−1))⊙ b(i) + (a(i) − y(i−1))⊙ (1̄− 2τ · b(i))⟩ − 45τβD2}dτ
≥ 2εe2ε(i−1) · F (y(i−1) ⊕ z(i−1)) + εe2εi · ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)),

(1̄− y(i−1))⊙ b(i) + (a(i) − y(i−1))⊙ (1̄− ε · b(i))⟩ − 23ε2βD2 ,

where the first inequality follows from the calculations done in the first half of the proof of Lemma C.8, and the second
inequality uses the non-negativity of F . Similarly,

eεi(ts − εi) · F (z(i))− eε(i−1)(ts − ε(i− 1)) · F (z(i−1)) (7)

= [eεi(ts − εi)− eε(i−1)(ts − ε(i− 1))] · F (z(i−1)) + eεi(ts − εi) · [F (z(i))− F (z(i−1))]

≥
∫ ε

0

{eε(i−1)+τ (ts − 1− ε(i− 1)− τ) · F (z(i−1)) + eεi(ts − εi) · ⟨(1̄− z(i−1))⊙ b(i),∇F (z(i−1))⟩
− 4τβD2/(1−m)2}dτ

≥ − εeεi(1− ts + εi) · F (z(i−1)) + εeεi(ts − εi) · ⟨(1̄− z(i−1))⊙ b(i),∇F (z(i−1))⟩
− 2ε2βD2/(1−m)2 ,

where the first inequality is based on calculations from the proof of Lemma C.5, and the second inequality uses F ’s non-
negativity. Adding up Inequality (6) and (1−m)(1− ε) times Inequality (7), we get

ε−1e2ts [ϕ(i)− ϕ(i− 1)] (8)

≥ 2e2ε(i−1) · F (y(i−1) ⊕ z(i−1))− (1−m)(1− ε) · eεi(1− ts + εi) · F (z(i−1))− 25εβD2

1−m

+ (1− ε) · e2εi · ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)), (1̄− y(i−1))⊙ b(i) + a(i) − y(i−1)⟩
+ (1−m)(1− ε) · eεi(ts − εi) · ⟨(1̄− z(i−1))⊙ b(i),∇F (z(i−1))⟩
+ εe2εi · ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)), (a(i) − y(i−1))⊙ (1̄− b(i))⟩ .

Note now that Properties 1 and 2 of Lemma B.1 imply together

⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)), (a(i) − y(i−1))⊙ (1̄− b(i))⟩
= ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)),a(i) ⊙ (1̄− y(i−1))⊙ (1̄− b(i))⟩
− ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)),y(i−1) ⊙ (1̄− a(i))⊙ (1̄− b(i))⟩

≥ F (y(i−1) ⊕ z(i−1) ⊕ (a(i) ⊙ (1̄− b(i)))) + F ((y(i−1) ⊙ (a(i) ⊕ b(i)))⊕ z(i−1))

− 2 · F (y(i−1) ⊕ z(i−1)) ≥ −2 · F (y(i−1) ⊕ z(i−1)) ,

where the last inequality holds by the non-negativity of F . Plugging this inequality into Inequality (8) yields

ε−1e2ts [ϕ(i)− ϕ(i− 1)]

≥ 2e2ε(i−1) · F (y(i−1) ⊕ z(i−1))− (1−m)(1− ε) · eεi(1− ts + εi) · F (z(i−1))− 25εβD2

1−m

+ (1− ε) · e2εi · ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)), (1̄− y(i−1))⊙ b(i) + a(i) − y(i−1)⟩
+ (1−m)(1− ε) · eεi(ts − εi) · ⟨(1̄− z(i−1))⊙ b(i),∇F (z(i−1))⟩ − 15ε · F (y(i−1) ⊕ z(i−1)) .

The last two terms on the right hand side of the last inequality are related to the objective function of the first linear program
of Algorithm 3. Specifically, to get from them to the objective function of this linear program, it is necessary to multiply by
(1 − ε)−1, and then remove the additive term e2εi · ⟨∇F (y(i−1) ⊕ z(i−1)) ⊙ (1̄ − z(i−1)),−y(i−1)⟩, which does not depend
on a(i) and b(i). Therefore, we can lower bound the right hand side of the last inequality by plugging in feasible solutions for
the first linear program of Algorithm 3. Specifically, we plug in the solutions (a(i),b(i)) = (oN,o

(1)
D ) and (y(i−1), 0̄), which

implies the two lower bounds stated in the lemma. Notice that both these solutions are guaranteed to be feasible since KD is
down-closed and y(i−1) + 0̄ = y(i−1) ≤ 1̄.

We now need to develop the basic lower bound given by Lemma C.14 in two ways. First, we show in the next corollary that
the potential cannot decrease significantly. Then, in Lemma C.16, we show a lower bound on the increase of the potential in
terms of F (o) and F (o(1)

D ).
Corollary C.15. For every integer 1 ≤ i ≤ ε−1ts,

ϕ(i)− ϕ(i− 1) ≥ − 25ε2βD2

1−m − 15ε2 · ϕ(i− 1) .



Proof. By Corollary B.3 and Lemma C.2,

2e2ε(i−1) · F (y(i−1) ⊕ z(i−1)) ≥ 2(1−m) · e2ε(i−1) · (1− ε)i−1 · F (z(i−1))

≥ (1−m) · eε(i−1) · F (z(i−1)) ≥ (1−m)(1− ε) · eεi(1− ts + εi) · F (z(i−1)) ,

where the second inequality follows from our assumption that ε ≤ 1/30. By plugging the last inequality into Lemma C.14, we
get

ε−1e2ts [ϕ(i)− ϕ(i− 1)] ≥ − 25εβD2

1−m − 15ε · F (y(i−1) ⊕ z(i−1)) .

The corollary follows from this inequality since the non-negativity of F implies that

ϕ(i− 1) ≥ e2(ε(i−1)−ts) · F (y(i−1) ⊕ z(i−1)) ≥ e−2ts · F (y(i−1) ⊕ z(i−1)) .

Lemma C.16. For every integer 1 ≤ i ≤ ε−1ts,

ϕ(i)− ϕ(i− 1) ≥ ε(1−m)(1− ε) · [eεi−2ts · F (o) + e−2ts(ts − εi) · F (o(1)
D )]− 25ε2βD2

1−m − 62ε2 · ϕ(i− 1) .

Proof. Repeating some of the calculations from the proof of Lemma C.4, we get

⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)), (1̄− y(i−1))⊙ o
(1)
D + (oN − y(i−1))⟩

≥ (1− ε)i−1(1−m) · F (o) + (1− ε)i−1
(1−m) · F (z(i−1))− 2F (y(i−1) ⊕ z(i−1)) .

Additionally, by repeating some of the calculations from the proof of Lemma C.3, we get

⟨o(1)
D ⊙ (1̄− z(i−1)),∇F (z(i−1))⟩ ≥ (1− ε)i−1 · F (o(1)

D )− F (z(i−1)) .

Plugging both these inequalities into the guarantee of Lemma C.14, we get that ε−1e2ts [ϕ(i)− ϕ(i− 1)] is at least

2e2ε(i−1) · F (y(i−1) ⊕ z(i−1))− (1−m)(1− ε) · eεi(1− ts + εi) · F (z(i−1))− 25εβD2

1−m

+ (1− ε) · e2εi · [(1− ε)i−1(1−m) · F (o) + (1− ε)i−1
(1−m) · F (z(i−1))− 2F (y(i−1) ⊕ z(i−1))]

+ (1−m)(1− ε) · eεi(ts − εi) · [(1− ε)i−1 · F (o(1)
D )− F (z(i−1))]− 15ε · F (y(i−1) ⊕ z(i−1))

≥ (1−m)(1− ε) · [eεi · F (o) + (ts − εi) · F (o(1)
D )]− 25εβD2

1−m − 62ε · F (y(i−1) ⊕ z(i−1))

≥ (1−m)(1− ε) · [eεi · F (o) + (ts − εi) · F (o(1)
D )]− 25εβD2

1−m − 62ε · e2ts · ϕ(i− 1) .

The last two claims provide lower bounds on the change in ϕ as a function of i. We now use these bounds to get a lower
bound on F (y(ε−1ts) ⊕ z(ε

−1ts)) = ϕ(ε−1ts).
Lemma C.17. It holds that

F (y(ε−1ts) ⊕ z(ε
−1ts)) = ϕ(ε−1ts)

≥
(1−m)(1− ε) · {(e−ts − e−2ts) · F (o) + e−2ts · t

2
s−ε
2 · F (o(1)

D )} − ts ·O( εβD
2

1−m )

1 +O(ε)
.

Proof. Summing up the guarantee of Lemma C.16 for every integer 1 ≤ i ≤ ε−1ts yields

ϕ(ε−1ts) ≥ ϕ(0) + ε(1−m)(1− ε) ·
ε−1ts∑

i=1

[eεi−2ts · F (o) + e−2ts(ts − εi) · F (o(1)
D )] (9)

− 25εtsβD
2

1−m − 62ε2 ·
ε−1ts∑

i=1

ϕ(i− 1) .

Let us now bound some of the terms in the last inequality. First,

ε ·
ε−1ts∑

i=1

eεi−2ts · F (o) ≥
∫ ts

0

eτ−2tsdτ · F (o) = eτ−2ts |ts0 · F (o) = (e−ts − e−2ts) · F (o) .

Second,

ε ·
ε−1ts∑

i=1

e−2ts(ts − εi) · F (o(1)
D ) = e−2ts

[
t2s − ε2 ·

(ε−1ts)(ε
−1ts + 1)

2

]
· F (o(1)

D ) ≥ e−2ts · t
2
s − ε
2
· F (o(1)

D ) .



Finally, if we denote by i∗ the value of i for which the maximum of max0≤i≤ε−1ts ϕ(i) is obtained, then, by Corollary C.15,

ϕ(i∗) ≤ ϕ(ε−1ts) +
25tsεβD

2

1−m + 15ε2 ·
ε−1ts∑

i=i∗+1

ϕ(i− 1) ≤ ϕ(ε−1ts) +
25tsεβD

2

1−m + 15ε · ϕ(i∗) ,

and thus,

ε ·
ε−1ts∑

i=1

ϕ(i− 1)− 50tsεβD
2

1−m ≤ ϕ(i∗)− 50tsεβD
2

1−m

≤
(1− 15ε) · ϕ(i∗)− 25tsεβD

2

1−m

1− 15ε
≤ ϕ(ε−1ts)

1− 15ε
≤ 2 · ϕ(ε−1ts) ,

where the second and last inequalities follows from our assumption that ε ≤ 1/30. The lemma now follows by plugging all the
above bounds into Inequality (9), and observing that ϕ(0) ≥ 0 due to the non-negativity of F .

Up to this point we have only considered the first ε−1ts iterations of Algorithm 3. We now need to lower bound the rate in
which F (y(i) ⊕ z(i)) increases in the remaining iterations of the algorithm.
Lemma C.18. For every integer ε−1ts < i ≤ ε−1,

F (y(i) ⊕ z(i))− F (y(i−1) ⊕ z(i−1)) ≥ ε · [(1−m)(1− ε)i−1 · F (o(2)
D )− F (y(i−1) ⊕ z(i−1))]− ε2βD2/2 .

Proof. By the chain rule,

F (y(i) ⊕ z(i))− F (y(i−1) ⊕ z(i−1)) =

∫ ε

0

dF (y(i−1) ⊕ (z(i−1) + τ · b(i) ⊙ (1̄− z(i−1))))

dτ
dτ (10)

=

∫ ε

0

⟨b(i) ⊙ (1̄− z(i−1))⊙ (1̄− y(i−1)),∇F (y(i−1) ⊕ (z(i−1) + τ · b(i) ⊙ (1̄− z(i−1))))⟩dτ .

We would like to lower bound the integrand on the rightmost side of the last equality. We do that by lower bounding two
expressions whose sum is equal to this integrand. The first expression is

⟨b(i) ⊙ (1̄− z(i−1))⊙ (1̄− y(i−1)),

∇F (y(i−1) ⊕ (z(i−1) + τ · b(i) ⊙ (1̄− z(i−1))))−∇F (y(i−1) ⊕ z(i−1))⟩
≥ − ∥b(i) ⊙ (1̄− z(i−1))⊙ (1̄− y(i−1))∥2

· ∥∇F (y(i−1) ⊕ (z(i−1) + τ · b(i) ⊙ (1̄− z(i−1))))−∇F (y(i−1) ⊕ z(i−1))∥2
≥ − τβ∥b(i) ⊙ (1̄− z(i−1))⊙ (1̄− y(i−1))∥22 ≥ −τβD2 ,

where the first inequality holds by the Cauchy–Schwarz inequality, the second inequality holds due to the β-smoothness of F ,
and the last inequality holds since

∥b(i) ⊙ (1̄− z(i−1))⊙ (1̄− y(i−1))∥2 ≤ ∥b(i) ⊙ (1̄− y(i−1))∥2 = ∥(y(i−1) + b(i) ⊙ (1̄− y(i−1)))− y(i−1)∥2 ≤ D

because both y(i−1) + b(i) ⊙ (1̄− y(i−1)) and y(i−1) are vectors of (KN +KD) ∩ [0, 1]n. The second expression is

⟨b(i) ⊙ (1̄− z(i−1))⊙ (1̄− y(i−1)),∇F (y(i−1) ⊕ z(i−1))⟩
= ⟨b(i) ⊙ (1̄− y(i−1)),∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1))⟩
≥ ⟨o(2)

D ⊙ (1̄− y(i−1)),∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1))⟩
≥ F (o(2)

D ⊕ y(i−1) ⊕ z(i−1))− F (y(i−1) ⊕ z(i−1))

≥ (1− ε)i−1(1−m) · F (o(2)
D )− F (y(i−1) ⊕ z(i−1)) ,

where the first inequality holds since b(i) = o
(2)
D is a feasible solution for the second linear program of Algorithm 3, the second

inequality follows from Property (1) of Lemma B.1, and the last inequality follows from Corollary B.3 and Lemma C.2. The
lemma now follows by plugging the lower bounds we have proved into the rightmost side of Equality (10), and then solving the
integral obtained.



Using the lower bound proved in the last lemma on the rate in which F (y(i)⊕z(i)) increases as a function of i for i ≥ ε−1ts,
we derive in the next lemma a lower bound on the value of this expression for particular values of i. The proof of this lower
bound is very similar to the proof of Lemma C.10.

Lemma C.19. For every integer ε−1ts ≤ i ≤ ε−1, F (y(i) ⊕ z(i)) ≥ (1−m)(εi− ts)(1− ε)i−1 · F (o(2)
D ) + (1− ε)i−ε−1ts ·

F (y(ε−1ts) ⊕ z(ε
−1ts))− (i− ε−1ts) ·O(ε2βD2).

Proof. We prove the lemma by induction on i. For i = ε−1ts the lemma trivially holds. Thus, assume that the lemma holds for
i− 1, and let us prove it for i > εts. By Lemma C.18,

F (y(i) ⊕ z(i)) ≥ (1− ε) · F (y(i−1) ⊕ z(i−1)) + ε(1−m)(1− ε)i−1 · F (o(2)
D )−O(ε2βD2)

≥ (1− ε) · [(1−m)(εi− ε− ts)(1− ε)i−2 · F (o(2)
D )

+ (1− ε)i−1−ε−1ts · F (y(ε−1ts) ⊕ z(ε
−1ts))− (i− 1− ε−1ts) ·O(ε2βD2)]

+ ε(1−m)(1− ε)i−1 · F (o(2)
D )−O(ε2βD2)

≥ (1−m)(εi− ts)(1− ε)i−1 · F (o(2)
D ) + (1− ε)i−ε−1ts · F (y(ε−1ts) ⊕ z(ε

−1ts))

− (i− ε−1ts) ·O(ε2βD2) ,

where the second inequality holds by the induction hypothesis.

We are now ready to complete the proof of the approximation guarantee of Algorithm 3, which completes the proof of
Proposition C.12 (recall that the output of Algorithm 3 has a value of maxε−1ts≤i≤ε−1 F (y(i) ⊕ z(i))).
Lemma C.20. For every value T ∈ [ts, 1], it holds that

max
ε−1ts≤i≤ε−1

F (y(i) ⊕ z(i)) ≥ F (y(⌊ε−1T⌋) ⊕ z(⌊ε
−1T⌋)) ≥ (1−m)

1 + 42ε
·
{
(e−T − e−ts−T − 2ε) · F (o)

+ (T − ts − ε) · e−T · F (o(2)
D ) +

[
t2s · e−ts−T

2
− ε
]
· F (o(1)

D )

}
−O( εβD

2

1−m ) .

Proof. Plugging the guarantee of Lemma C.17 into the guarantee of Lemma C.19 yields

F (y(⌊ε−1T⌋) ⊕ z(⌊ε
−1T⌋)) ≥ (1−m)(ε⌊ε−1T ⌋ − ts)(1− ε)ε⌊ε

−1T⌋−1 · F (o(2)
D )

− (ε⌊ε−1T ⌋ − ts) ·O(εβD2) + (1− ε)ε−1⌊ε−1T⌋−ε−1ts · F (y(ε−1ts) ⊕ z(ε
−1ts))

≥ (1−m)(T − ts − ε) · e−T · F (o(2)
D )− (T − ts) ·O(εβD2)

+ ets−T (1− ε)


 (1−m)(1− ε){(e−ts − e−2ts) · F (o) + e−2ts · t

2
s−ε
2 · F (o(1)

D )} − ts ·O( εβD
2

1−m )

1 +O(ε)




≥ (1−m)(1− 2ε)

1 +O(ε)
·
{
(e−T − e−ts−T ) · F (o)

+ (T − ts − ε) · e−T · F (o(2)
D ) +

[
t2s · e−ts−T

2
− ε
]
· F (o(1)

D )

}
−O( εβD

2

1−m ) .

C.3 Empirical Improvements of Algorithm 3
In this section, we present a version of Algorithm 3 (appears as Algorithm 4) that includes modifications designed to improve
the empirical performance of the algorithm. These modifications were not included in the original Algorithm 3 because they do
not affect the algorithm’s theoretical guarantee, and furthermore, they cannot be applied to the online counterpart of Algorithm 3
(i.e., Algorithm 2).

To be more concrete, the modifications done in Algorithm 4 compared to Algorithm 3 are the following.

• Algorithm 3 was designed with the view that o(1)
D and o

(2)
D should be a feasible assignments to b(i), and then the vector

z(i) is increased proportionally to (1̄− z(i−1))⊙b(i). The multiplication by (1− z(i−1)) was done to reduce the speed in
which ∥z(i)∥∞ increases as a function of i. Following the work of Bian et al. [2017a], Algorithm 4 was modified to make
(1̄− z(i−1)) · o(1)

D and (1̄− z(i−1)) · o(2)
D natural assignments for b(i). This was done by allowing b(i) to be any vector in

KD which is upper bounded by (1̄− z(i−1))⊙ (1̄− a(i)), and making the vector z(i) increase proportionally to the vector
b(i) itself. Note that these modifications preserve the bound on the rate in which ∥z(i)∥∞ increases, but give the algorithm
more flexability as the increase in z(i) no longer has to be equal to 1̄− z(i−1) times some vector in KD.



Algorithm 4 Frank-Wolfe/Continuous-Greedy Hybrid with Empirical Improvements

1: Let y(0) ← argminx∈KN
∥x∥∞, z(0) ← 0̄ and m← ∥y(0)∥∞.

2: for i = 1 to ε−1 do
3: if i ≤ ε−1ts then
4: Solve the following linear program. The variables in this program are the vectors a(i), b(i) and c(i).

max e2εi · ⟨∇F (y(i−1) ⊕ z(i−1)), (1̄− y(i−1))⊙ (b(i) − c(i))

+ (1̄− z(i−1))⊙ a(i)⟩+ (1−m) · eεi(ts − εi) · ⟨∇F (z(i−1)),b(i) − c(i)⟩
s.t. a(i) ∈ KN,b

(i) ∈ KD

b(i) ≤ (1̄− z(i−1))⊙ (1̄− a(i))

0̄ ≤ c(i) ≤ z(i−1)

5: else
6: Solve the following linear program. The variables in this program are the vectors a(i), b(i) and c(i).

max ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− y(i−1)),b(i) − c(i)⟩
s.t. a(i) = y(i),b(i) ∈ KD

b(i) ≤ 1̄− z(i−1)

0̄ ≤ c(i) ≤ z(i−1)

7: Let y(i) ← (1− ε) · y(i−1) + ε · a(i).
8: Let z(i) ← z(i−1) + ε · (b(i) − c(i)).
9: end if

10: end for
11: return a vector maximizing F among all the vectors in {y(i) ⊕ z(i) | i ∈ Z, 0 ≤ i ≤ ε−1}.

• Algorithm 3 can both increase and decrease y(i). However, a similar flexibility does not exist for the vector z(i), which
is maintained in a continuous-greedy like fashion. Algorithm 4 introduces a new vector c(i) that is used to decrease
coordinates of z(i) when this helps the objective (or the potential function when i ≤ ε−1ts).

• Algorithm 3 returns the best solution for any ε−1 · ts ≤ i ≤ ε−1. Algorithm 4 returns the best solution obtained after any
number of iterations because that is always at least as good.

The rest of this section is devoted to proving that, like Algorithm 3, Algorithm 4 has the properties guaranteed by Theo-
rem 4.1. We begin with the following lemma, which is a counterpart of Lemma C.1, and proves that Algorithm 4 returns a
feasible solution.
Lemma C.21. For every integer 0 ≤ i ≤ ε−1, y(i) ∈ KN and z(i) ∈ εi · KD. Hence, y(i) ⊕ z(i) ∈ (KN +KD) ∩ [0, 1]n.

Proof. Given the proof of Lemma C.1, to prove the current lemma we only need to show that z(i) ∈ εi · KD, which we do by
induction on i. Clearly, z(0) = 0̄ ∈ 0 · KD. Assume now that z(i−1) ∈ ε(i − 1) · KD for some i ∈ [ε−1], and let us prove that
z(i) ∈ εi · KD.

Since z(i−1) ∈ ε(i− 1) · KD, there must exist a vector x ∈ KD such that z(i−1) = ε(i− 1) · x. Therefore,

z(i) = z(i−1) + ε(b(i) − c(i)) = εi ·
(
i− 1

i
· x+

1

i
· b(i) − 1

i
· c(i)

)
. (11)

The convexity of KD implies that i−1
i · x+ 1

i · b(i) is a vector in KD. This vector upper bounds 1
i · c(i) because

1

i
· c(i) ≤ 1

i
· z(i−1) =

ε(i− 1)

i
· x ≤ i− 1

i
· x .

Therefore, Equation (11) and the down-closeness of KD imply together that z(i) ∈ εi · KD.



We now divert our attention to proving the approximation guarantee of Algorithm 4. It turns out that most of the analysis
of the approximation guarantee of Algorithm 3 from Section C.2 can be reused to prove the same guarantee for Algorithm 4,
except for the proofs of three lemmata: Lemma C.2, Lemma C.14 and Lemma C.18, which we reprove below in the context of
this algorithm. We begin by proving that Lemma C.2 still holds in the context of Algorithm 4.

Lemma C.2. For every integer 0 ≤ i ≤ ε−1, ∥z(i)∥∞ ≤ 1− (1− ε)i and ∥y(i)∥∞ ≤ ∥y(i) ⊕ z(i)∥∞ ≤ 1− (1− ε)i(1−m).

Proof. We prove the lemma by induction on i. For i = 0, we have ∥z(0)∥∞ = ∥0̄∥∞ = 0 = 1− (1−ε)0 and ∥y(0)⊕z(0)∥∞ =
∥y(0)∥∞ = m = 1 − (1 − ε)0(1 − m). Assume now that ∥z(i−1)∥∞ ≤ 1 − (1 − ε)i−1 and ∥y(i−1) ⊕ z(i−1)∥∞ ≤
1− (1− ε)i−1(1−m) for some i ∈ [ε−1], and let us prove the corresponding claim for i.

Observe that

∥z(i)∥∞ = ∥z(i−1) + ε · (b(i) − c(i))∥∞ ≤ ∥z(i−1) + ε · b(i)∥∞
≤ ∥z(i−1) + ε · (1̄− z(i−1))∥∞ ≤ ∥(1− ε) · z(i−1)∥∞ + ε · ∥1̄∥∞ = (1− ε) · ∥z(i−1)∥∞ + ε

≤ (1− ε) · [1− (1− ε)i−1] + ε = 1− (1− ε)i ,
where the first inequality holds since c(i) is non-negative, the second inequality holds since both linear programs of Algorithm 4
require b(i) to be coordinate-wise upper bounded by (1̄ − z(i−1)) ⊙ (1̄ − a(i)) ≤ 1̄ − z(i−1), and the last inequality follows
from the induction hypothesis.

Similarly,

∥y(i) ⊕ z(i)∥∞ = ∥((1− ε) · y(i−1) + ε · a(i))⊕ (z(i−1) + ε · (b(i) − c(i)))∥∞
≤ ∥((1− ε) · y(i−1) + ε · a(i))⊕ (z(i−1) + ε · b(i))∥∞
≤ ∥((1− ε) · y(i−1) + ε · a(i))⊕ (z(i−1) + ε · (1̄− z(i−1))⊙ (1̄− a(i)))∥∞
≤ ∥(y(i−1) ⊕ (ε · a(i)))⊕ (z(i−1) ⊕ (ε(1̄− a(i))))∥∞ ≤ ∥y(i−1) ⊕ z(i−1) ⊕ (ε · 1̄)∥∞
= ∥ε · 1̄∥∞ + (1− ε) · ∥y(i−1) ⊕ z(i−1)∥∞
≤ ε+ (1− ε) · [1− (1− ε)i−1(1−m)] = 1− (1− ε)i(1−m) .

As the proof that Lemma C.14 applies to Algorithm 4 is somewhat long, we defer it a bit, and prove first that Lemma C.18
applies in the context of this algorithm. To be completely honest, we prove here a modified version of Lemma C.18 that has a
slightly larger error term (ε2βD2 instead of ε2βD2/2). However, this affects the proof of Theorem 4.1 only by changing the
constants hidden by the big O notation.
Lemma C.18. For every integer ε−1ts < i ≤ ε−1,

F (y(i) ⊕ z(i))− F (y(i−1) ⊕ z(i−1)) ≥ ε · [(1−m)(1− ε)i−1 · F (o(2)
D )− F (y(i−1) ⊕ z(i−1))]− ε2βD2 .

Proof. By the chain rule,

F (y(i) ⊕ z(i))− F (y(i−1) ⊕ z(i−1)) =

∫ ε

0

dF (y(i−1) ⊕ (z(i−1) + τ · (b(i) − c(i))))

dτ
dτ (12)

=

∫ ε

0

⟨(b(i) − c(i))⊙ (1̄− y(i−1)),∇F (y(i−1) ⊕ (z(i−1) + τ · (b(i) − c(i))))⟩dτ .

We would like to lower bound the integrand on the rightmost side of the last equality. We do that by lower bounding two
expressions whose sum is equal to this integrand. The first expression is

⟨(b(i) − c(i))⊙ (1̄− y(i−1)),

∇F (y(i−1) ⊕ (z(i−1) + τ · (b(i) − c(i))))−∇F (y(i−1) ⊕ z(i−1))⟩
≥ − ∥(b(i) − c(i))⊙ (1̄− y(i−1))∥2

· ∥∇F (y(i−1) ⊕ (z(i−1) + τ · (b(i) − c(i))))−∇F (y(i−1) ⊕ z(i−1))∥2
≥ − τβ∥(b(i) − c(i))⊙ (1̄− y(i−1))∥22 ≥ −2τβD2 ,

where the first inequality holds by the Cauchy–Schwarz inequality, the second inequality holds due to the β-smoothness of F ,
and the last inequality holds since

∥(b(i) − c(i))⊙ (1̄− y(i−1))∥2 ≤ ∥b(i) ⊙ (1̄− y(i−1))∥2 + ∥c(i) ⊙ (1̄− y(i−1))∥2
= ∥(y(i−1) + b(i) ⊙ (1̄− y(i−1)))− y(i−1)∥2 + ∥(y(i−1) + c(i) ⊙ (1̄− y(i−1)))− y(i−1)∥2 ≤ 2D .



Note that the last inequality holds because the fact that c(i) ≤ z(i−1) ∈ KD implies that y(i−1) + b(i) ⊙ (1̄ − y(i−1)),
y(i−1) + c(i) ⊙ (1̄− y(i−1)) and y(i−1) are all vectors of (KN +KD) ∩ [0, 1]n. The second expression (of the two mentioned
above) is

⟨(b(i) − c(i))⊙ (1̄− y(i−1)),∇F (y(i−1) ⊕ z(i−1))⟩ = ⟨b(i) − c(i),∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− y(i−1))⟩
≥ ⟨o(2)

D ⊙ (1̄− z(i−1)),∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− y(i−1))⟩
≥ F (o(2)

D ⊕ y(i−1) ⊕ z(i−1))− F (y(i−1) ⊕ z(i−1))

≥ (1− ε)i−1(1−m) · F (o(2)
D )− F (y(i−1) ⊕ z(i−1)) ,

where the first inequality holds since the second side of the above inequality is identical to the objective function of the second
linear program of Algorithm 4, and one feasible solution for this linear program is b(i) = o

(2)
D ⊙ (1̄−z(i−1)) and c(i) = 0̄. The

second inequality follows from Property (1) of Lemma B.1, and the last inequality follows from Corollary B.3 and Lemma C.2.
The lemma now follows by plugging the lower bounds we have proved into the rightmost side of Equality (12), and then solving
the integral obtained.

It remains to show that Lemma C.14 applies to Algorithm 4. The next two lemmata are steps toward this goal.
Lemma C.22. For every i ∈ [ε−1ts],

e2εi · F (y(i) ⊕ z(i))− e2ε(i−1) · F (y(i−1) ⊕ z(i−1))

≥ 2εe2ε(i−1) · F (y(i−1) ⊕ z(i−1)) + εe2εi · ⟨∇F (y(i−1) ⊕ z(i−1)), (1̄− y(i−1))⊙ (b(i) − c(i))

+ (a(i) − y(i−1))⊙ (1̄− z(i−1) − ε · (b(i) − c(i)))⟩ − 56ε2βD2 .

Proof. By the chain rule,

F (y(i) ⊕ z(i))− F (y(i−1) ⊕ z(i−1)) (13)

= F (((1− ε)y(i−1) + εa(i))⊕ (z(i−1) + ε(b(i) − c(i))))− F (y(i−1) ⊕ z(i−1))

=

∫ ε

0

〈d[((1− τ)y(i−1) + τa(i))⊕ (z(i−1) + τ(b(i) − c(i)))]

dτ
,

∇F (((1− τ)y(i−1) + τa(i))⊕ (z(i−1) + τ(b(i) − c(i))))
〉
dτ

=

∫ ε

0

⟨(1̄− y(i−1))⊙ (b(i) − c(i)) + (a(i) − y(i−1))⊙ (1̄− z(i−1) − 2τ · (b(i) − c(i))),

∇F (((1− τ)y(i−1) + τa(i))⊕ (z(i−1) + τ(b(i) − c(i))))⟩dτ .

The following inequality is used later to lower bound the integrand on the rightmost side of the last equality.

⟨(1̄− y(i−1))⊙ (b(i) − c(i)) + (a(i) − y(i−1))⊙ (1̄− z(i−1) − 2τ · (b(i) − c(i))), (14)

∇F (((1− τ)y(i−1) + τa(i))⊕ (z(i−1) + τ(b(i) − c(i))))−∇F (y(i−1) ⊕ z(i−1))⟩
≥ − ∥(1̄− y(i−1))⊙ (b(i) − c(i)) + (a(i) − y(i−1))⊙ (1̄− z(i−1) − 2τ · (b(i) − c(i)))∥2·

∥∇F (((1− τ)y(i−1) + τa(i))⊕ (z(i−1) + τ(b(i) − c(i))))−∇F (y(i−1) ⊕ z(i−1))∥2
≥ − 5D · β∥((1− τ)y(i−1) + τa(i))⊕ (z(i−1) + τ(b(i) − c(i)))− y(i−1) ⊕ z(i−1)∥2
= − 5βD · ∥τ(a(i) − y(i−1))⊙ (1̄− z(i−1)) + τ(b(i) − c(i))⊙ (1̄− y(i−1))

− τ2(a(i) − y(i−1))⊙ (b(i) − c(i))∥2 ≥ −15τβD2 ,

where the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality uses the β-smoothness of
F and the observation that since y(i) + (1̄ − y(i−1)) ⊙ b(i), y(i) + (1̄ − y(i−1)) ⊙ c(i), a(i) and y(i−1) are all vectors in
(KN +KD) ∩ [0, 1]n (because c(i) ≤ z(i−1) and KD is down-closed), it holds that

∥(1̄− y(i−1))⊙ (b(i) − c(i)) + (a(i) − y(i−1))⊙ (1̄− z(i−1) − 2τ · (b(i) − c(i)))∥2
≤ ∥(y(i−1) + (1̄− y(i−1))⊙ b(i))− y(i−1)∥2 + ∥(y(i−1) + (1̄− y(i−1))⊙ c(i))− y(i−1)∥2
− ∥a(i) − y(i−1)∥2 ⊙ ∥1̄− z(i−1) − 2τ · (b(i) − c(i))∥∞ ≤ 5D .



Similarly, the last inequality of Inequality (14) holds since

∥τ(a(i) − y(i−1))⊙ (1̄− z(i−1)) + τ(b(i) − c(i))⊙ (1̄− y(i−1))− τ2(a(i) − y(i−1))⊙ (b(i) − c(i))∥2
= ∥τ(a(i) − y(i−1))⊙ (1̄− z(i−1))⊙ (1− τ(b(i) − c(i))) + τ(b(i) − c(i))⊙ (1̄− y(i−1))∥2
≤ ∥a(i) − y(i−1)∥2 + ∥(y(i−1) + (1̄− y(i−1))⊙ b(i))− y(i−1)∥2

+ ∥(y(i−1) + (1̄− y(i−1))⊙ c(i))− y(i−1)∥2 ≤ 3D ,

where the penultimate inequality uses the fact that ∥(1̄− z(i−1))⊙ (1̄ + c(i))∥∞ ≤ ∥(1̄− z(i−1))⊙ (1̄ + z(i−1))∥∞ ≤ 1.
Combining Inequalities (13) and (14) now yields

e2εi · F (y(i) ⊕ z(i))− e2ε(i−1) · F (y(i−1) ⊕ z(i−1))

= [e2εi − e2ε(i−1)] · F (y(i−1) ⊕ z(i−1)) + e2εi · [F (y(i) ⊕ z(i))− F (y(i−1) ⊕ z(i−1))]

≥
∫ ε

0

{2e2(ε(i−1)+τ) · F (y(i−1) ⊕ z(i−1)) + e2εi · ⟨∇F (y(i−1) ⊕ z(i−1)), (1̄− y(i−1))⊙ (b(i) − c(i))

+ (a(i) − y(i−1))⊙ (1̄− z(i−1) − 2τ · (b(i) − c(i)))⟩ − 111τβD2}dτ
≥ 2εe2ε(i−1) · F (y(i−1) ⊕ z(i−1)) + εe2εi · ⟨∇F (y(i−1) ⊕ z(i−1)), (1̄− y(i−1))⊙ (b(i) − c(i))

+ (a(i) − y(i−1))⊙ (1̄− z(i−1) − ε · (b(i) − c(i)))⟩ − 56ε2βD2 ,

where the second inequality uses the non-negativity of F .

Lemma C.23. For every i ∈ [ε−1ts],

eεi(ts − εi) · F (z(i))− eε(i−1)(ts − ε(i− 1)) · F (z(i−1))

≥ − εeεi(1− ts + εi) · F (z(i−1)) + εeεi(ts − εi) · ⟨b(i) − c(i),∇F (z(i−1))⟩ − 6ε2βD2/(1−m)2 .

Proof. By the chain rule,

F (z(i))− F (z(i−1)) =

∫ ε

0

⟨b(i) − c(i),∇F (z(i−1) + τ(b(i) − c(i)))⟩dτ

= ε · ⟨b(i) − c(i),∇F (z(i−1))⟩+
∫ ε

0

⟨b(i) − c(i),∇F (z(i−1) + τ(b(i) − c(i)))−∇F (z(i−1))⟩dτ

≥ ε · ⟨b(i) − c(i),∇F (z(i−1))⟩ −
∫ ε

0

∥b(i) − c(i)∥2 · ∥∇F (z(i−1) + τ(b(i) − c(i)))−∇F (z(i−1))∥2dτ

≥ ε · ⟨b(i) − c(i),∇F (z(i−1))⟩ − β∥b(i) − c(i)∥22 ·
∫ ε

0

τdτ ≥ ε · ⟨b(i) − c(i),∇F (z(i−1))⟩ − 2ε2βD2

(1−m)2
,

where the first inequality follows from the Cauchy–Schwarz inequality, the second inequality holds by the β-smoothness of
F , and the last inequality uses the fact that both b(i) and c(i) are vectors in KD (in the case of c(i) this holds by the down-
monotonicity of KD since c(i) ≤ z(i−1)), and thus, the ℓ2 norm of both these vectors is at most D/(1 −m) according to the
proof of Lemma C.5.

Using the last inequality, we now get

eεi(ts − εi) · F (z(i))− eε(i−1)(ts − ε(i− 1)) · F (z(i−1))

= [eεi(ts − εi)− eε(i−1)(ts − ε(i− 1))] · F (z(i−1)) + eεi(ts − εi) · [F (z(i))− F (z(i−1))]

≥
∫ ε

0

eε(i−1)+τ (ts − 1− ε(i− 1)− τ) · F (z(i−1))dτ + εeεi(ts − εi) · ⟨b(i) − c(i),∇F (z(i−1))⟩
− 6ε2βD2/(1−m)2

≥ − εeεi(1− ts + εi) · F (z(i−1)) + εeεi(ts − εi) · ⟨b(i) − c(i),∇F (z(i−1))⟩ − 6ε2βD2/(1−m)2 ,

where the second inequality uses F ’s non-negativity.

We are now ready to prove Lemma C.14 in the context of Algorithm 4. Like in the case of Lemma C.18, the version of
Lemma C.14 that we prove here has slightly worse error terms compared to the version from Section C.2, but the difference
again affects the proof of Theorem 4.1 only by changing the constants hidden by the big O notation as long as ε ≤ 1/60.



Lemma C.14. For every integer 1 ≤ i ≤ ε−1ts, the expression ε−1e2ts [ϕ(i) − ϕ(i − 1)] can be lower bounded both by
2e2ε(i−1) · F (y(i−1) ⊕ z(i−1))− (1−m)(1− ε) · eεi(1− ts + εi) · F (z(i−1))− 62εβD2

1−m − 30ε · F (y(i−1) ⊕ z(i−1)) and by
the sum of this expression and

(1− ε) · e2εi · ⟨∇F (y(i−1) ⊕ z(i−1))⊙ (1̄− z(i−1)), (1̄− y(i−1))⊙ o
(1)
D + oN − y(i−1)⟩

+ (1−m)(1− ε) · eεi(ts − εi) · ⟨(1̄− z(i−1))⊙ o
(1)
D ,∇F (z(i−1))⟩ .

Proof. Adding (1−m)(1− ε) times the guarantee of Lemma C.23 to the guarantee of Lemma C.22, we get

ε−1e2ts [ϕ(i)− ϕ(i− 1)] (15)

≥ 2e2ε(i−1) · F (y(i−1) ⊕ z(i−1))− (1−m)(1− ε) · eεi(1− ts + εi) · F (z(i−1))− 62εβD2

1−m

+ (1− ε)e2εi · ⟨∇F (y(i−1) ⊕ z(i−1)), (1̄−y(i−1))⊙ (b(i)− c(i−1)) + (a(i)−y(i−1))⊙ (1̄− z(i−1))⟩
+ (1−m)(1− ε) · eεi(ts − εi) · ⟨b(i) − c(i),∇F (z(i−1))⟩
+ εe2εi · ⟨∇F (y(i−1) ⊕ z(i−1)), (a(i) − y(i−1))⊙ (1̄− z(i−1) − (b(i) − c(i)))⟩ .

To bound the last term on the rightmost side of the last inequality, we need to make a few observations. First, 1̄ − z(i−1) −
b(i) + c(i) ∈ [0, 1]n because c(i) ≤ z(i−1) and b(i) ≤ 1̄− z(i−1); second, y(i−1) ⊕ z(i−1) ≥ y(i−1) ≥ y(i−1) ⊙ (1̄− a(i))⊙
(1̄− z(i−1) − b(i) + c(i)); and finally, by Lemma C.2, ∥zi−1 + a(i) ⊙ c(i)/2∥∞ ≤ ∥zi−1 + c(i)/2∥∞ ≤ (3/2) · ∥z(i−1)∥∞ ≤
(3/2) · (1− 1/e) < 1. Given all these observations, we can use Properties 1 and 2 of Lemma B.1 to get

⟨∇F (y(i−1) ⊕ z(i−1)), (a(i) − y(i−1))⊙ (1̄− z(i−1) − (b(i) − c(i)))⟩
= ⟨∇F (y(i−1) ⊕ z(i−1)),a(i) ⊙ (1̄− y(i−1))⊙ (1̄− z(i−1) − b(i))⟩

+ 2 · ⟨∇F (y(i−1) ⊕ z(i−1)),a(i) ⊙ (1̄− y(i−1))⊙ c(i)/2⟩
− ⟨∇F (y(i−1) ⊕ z(i−1)),y(i−1) ⊙ (1̄− a(i))⊙ (1̄− z(i−1) − b(i) + c(i))⟩

≥ F (y(i−1) ⊕ (a(i) ⊙ (1̄− b(i)) + (1̄− a(i))⊙ z(i−1))) + 2F (y(i−1) ⊕ (z(i−1) + a(i) ⊙ c(i−1)/2))

+ F (y(i−1) ⊕ z(i−1) − y(i−1) ⊙ (1̄− a(i))⊙ (1̄− z(i−1) − b(i) + c(i)))

− 4 · F (y(i−1) ⊕ z(i−1)) ≥ −4 · F (y(i−1) ⊕ z(i−1)) ,

where the last inequality holds by the non-negativity of F . Plugging this inequality into Inequality (15) yields

ε−1e2ts [ϕ(i)− ϕ(i− 1)]

≥ 2e2ε(i−1) · F (y(i−1) ⊕ z(i−1))− (1−m)(1− ε) · eεi(1− ts + εi) · F (z(i−1))− 62εβD2

1−m

+ (1− ε)e2εi · ⟨∇F (y(i−1) ⊕ z(i−1)), (1̄−y(i−1))⊙ (b(i)− c(i−1)) + (a(i)−y(i−1))⊙ (1̄− z(i−1))

+ (1−m)(1− ε) · eεi(ts − εi) · ⟨b(i) − c(i),∇F (z(i−1))⟩ − 30ε · F (y(i−1) ⊕ z(i−1)) .

The last two terms on the right hand side of the last inequality are related to the objective function of the first linear program
of Algorithm 4. Specifically, to get from them to the objective function of this linear program, it is necessary to multiply by
(1 − ε)−1, and then remove the additive term e2εi · ⟨∇F (y(i−1) ⊕ z(i−1)),−y(i−1) ⊙ (1̄ − z(i−1))⟩, which does not depend
on the variables a(i), b(i) and c(i). Therefore, we can lower bound the right hand side of the last inequality by plugging in
feasible solutions for the first linear program of Algorithm 4. Specifically, we plug in the solutions (a(i),b(i), c(i)) = (oN, (1̄−
z(i−1)) ⊙ o

(1)
D , 0̄) and (a(i),b(i), c(i)) = (y(i−1), 0̄, 0̄), which implies the two lower bounds stated in the lemma. Notice that

both these solutions are guaranteed to be feasible sinceKD is down-closed and (1̄−z(i−1))⊙o(1)
D ≤ (1̄−z(i−1))⊙(1̄−oN).

D Analysis of Our Online Algorithm
In this section, we prove that our online algorithm (i.e., Algorithm 2) obeys the guarantee of Proposition 5.2. Similarly to
Appendix C, we use o below as a shorthand for the sum oN + oD.

One can observe that, for every fixed time step ℓ ∈ [L], Algorithm 2 sets the vectors {y(i,ℓ), z(i,ℓ) | i ∈ Z, 0 ≤ i ≤ ε−1} in
the same way in which Algorithm 3 sets the vectors {y(i), z(i) | i ∈ Z, 0 ≤ i ≤ ε−1}, with the sole difference that the vectors
{a(i,ℓ),b(i,ℓ) | i ∈ [ε−1]} used for this purpose may not optimize the linear programs of Algorithm 3 (but they are feasible
solutions for these linear programs). Since the property that these vectors optimize the linear programs of Algorithm 3 is not
used in the proof that Lemmata C.1 and C.2 apply to this algorithm, we immediately get that both these lemmata apply also to
Algorithm 2 for any fixed ℓ. In other words, we get the following lemma.



Lemma D.1. For every two integers 0 ≤ i ≤ ε−1 and ℓ ∈ [L],

• y(i,ℓ) ∈ KN and z(i,ℓ) ∈ εi · KD, and thus, y(i,ℓ) ⊕ z(i,ℓ) ∈ (KN +KD) ∩ [0, 1]n.

• ∥z(i,ℓ)∥∞ ≤ 1− (1− ε)i and ∥y(i,ℓ)∥∞ ≤ ∥y(i,ℓ) ⊕ z(i,ℓ)∥∞ ≤ 1− (1− ε)i(1−m).
The last lemma implies, in particular, that Algorithm 2 outputs feasible vectors. The rest of this section is devoted to showing

that the total value of these vectors is at least as large as is guaranteed by Proposition 5.2. For that purpose, we need to define a
new potential function ϕ(i) ≜

∑L
ℓ=1 ϕ(i, ℓ), where

ϕ(i, ℓ) ≜ e2(εi−ts) · Fℓ(y
(i,ℓ) ⊕ z(i,ℓ)) + (1−m)(1− ε) · eεi−2ts(ts − εi) · Fℓ(z

(i,ℓ)) .

Notice that the definition ϕ(i, ℓ) is identical to the definition of the potential function from Section C.2 up to the addition of the
index ℓ to the various vectors and the function F .

The next lemma corresponds to Lemma C.14 from the analysis of Algorithm 3. Notice that this lemma has only one guar-
antee, in contrast to Lemma C.14 that has two guarantees (because the proof of the other guarantee does not generalize to the
online setting). Due to the lack of this addition guarantee, there is no result in this section corresponding to Corollary C.15 from
the analysis of Algorithm 3, and the proof of Lemma D.4 is more involved than the proof of the corresponding Lemma C.17.
Lemma D.2. For every integer 1 ≤ i ≤ ε−1ts,

ε−1e2ts [ϕ(i)− ϕ(i− 1)] ≥ 2e2ε(i−1) ·
L∑

ℓ=1

Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))

− (1−m)(1− ε) · eεi(1− ts + εi) ·
L∑

ℓ=1

Fℓ(z
(i−1,ℓ))− 25εβLD2 − 15ε ·

L∑

ℓ=1

Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))

+ (1− ε) · e2εi ·
L∑

ℓ=1

⟨∇Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))⊙ (1̄− z(i−1)), (1̄− y(i−1,ℓ))⊙ oD + oN − y(i−1,ℓ)⟩

+ (1−m)(1− ε) · eεi(ts − εi) ·
L∑

ℓ=1

⟨(1̄− z(i−1,ℓ))⊙ oD,∇Fℓ(z
(i−1,ℓ))⟩ − 24DG

√
L .

Proof. The definition of the convex-body assigned to Ei guarantees that, for every ℓ ∈ [L], there exists a vector x(ℓ) ∈ KN such
that x(ℓ) + b(i,ℓ) ∈ (KN +KD) ∩ [0, 1]n. Thus, ∥b(i,ℓ)∥2 = ∥(x(ℓ) + b(i,ℓ))− x(ℓ)∥2 ≤ D because the down-closeness of KD

implies that x(ℓ) also belongs to (KN +KD) ∩ [0, 1]n. Plugging this observation into the first part of the proof of Lemma C.14,
we get, for every ℓ ∈ [L],

ε−1e2ts [ϕ(i, ℓ)− ϕ(i− 1, ℓ)] ≥ 2e2ε(i−1) · Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))

− (1−m)(1− ε) · eεi(1− ts + εi) · Fℓ(z
(i−1,ℓ))− 25εβD2 − 15ε · Fℓ(y

(i−1,ℓ) ⊕ z(i−1,ℓ))

+ (1− ε) · e2εi · ⟨∇Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))⊙ (1̄− z(i−1,ℓ)), (1̄− y(i−1,ℓ))⊙ b(i,ℓ) + a(i,ℓ) − y(i−1,ℓ)⟩

+ (1−m)(1− ε) · eεi(ts − εi) · ⟨(1̄− z(i−1,ℓ))⊙ b(i,ℓ),∇Fℓ(z
(i−1,ℓ))⟩ .

Adding up this inequality for all ℓ ∈ [L] yields

ε−1e2ts [ϕ(i)− ϕ(i− 1)] ≥ 2e2ε(i−1) ·
L∑

ℓ=1

Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ)) (16)

− (1−m)(1− ε) · eεi(1− ts + εi) ·
L∑

ℓ=1

Fℓ(z
(i−1,ℓ))− 25εβLD2 − 15ε ·

L∑

ℓ=1

Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))

+ (1− ε)e2εi ·
L∑

ℓ=1

⟨∇Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))⊙ (1̄− z(i−1,ℓ)), (1̄− y(i−1,ℓ))⊙ b(i,ℓ) + a(i,ℓ) − y(i−1,ℓ)⟩

+ (1−m)(1− ε) · eεi(ts − εi) ·
L∑

ℓ=1

⟨(1̄− z(i−1,ℓ))⊙ b(i,ℓ),∇Fℓ(z
(i−1,ℓ))⟩ .

One can observe that the last two terms of on the right hand side of the last inequality are equal to the expression (1 − ε) ·∑L
ℓ=1 ⟨g(i,ℓ), (a(i,ℓ),b(i,ℓ))⟩ up to an additive term of (1−ε)e2εi ·∑L

ℓ=1⟨∇Fℓ(y
(i−1,ℓ)⊕z(i−1,ℓ))⊙ (1̄−z(i−1,ℓ)),−y(i−1,ℓ)⟩.



Therefore, since (oN,oD) is one possible solution that Ei can return, the guarantee of Ei implies

(1− ε)e2εi ·
L∑

ℓ=1

⟨∇Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))⊙ (1̄−z(i−1,ℓ)),(1̄−y(i−1,ℓ))⊙ b(i,ℓ)+a(i,ℓ)−y(i−1,ℓ)⟩ (17)

+ (1−m)(1− ε) · eεi(ts − εi) ·
L∑

ℓ=1

⟨(1̄− z(i−1,ℓ))⊙ b(i,ℓ),∇Fℓ(z
(i−1,ℓ))⟩

≥ (1− ε)e2εi ·
L∑

ℓ=1

⟨∇Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))⊙ (1̄− z(i−1,ℓ)), (1̄− y(i−1,ℓ))⊙ oD + oN − y(i−1,ℓ)⟩

+(1−m)(1−ε) ·eεi(ts−εi) ·
L∑

ℓ=1

⟨(1̄−z(i−1,ℓ))⊙ oN,∇Fℓ(z
(i−1,ℓ))⟩−D′√2L ·max1≤i≤L ∥g(i,ℓ)∥2 ,

where D′ is the diameter of the convex body assigned to Ei.
We need to upper bound the terms D′ and max1≤i≤L ∥g(i,ℓ)∥2 appearing in the last inequality. First,

D′ = max
x(1),x(2)∈KN,w

(1),w(2)∈KD

x(1)+w(1),x(2)+w(2)∈[0,1]n

∥(x(1),w(1))− (x(2),w(2))∥2

≤ max
x(1),x(2)∈KN,w

(1),w(2)∈KD

x(1)+w(1),x(2)+w(2)∈[0,1]n

∥(x(1) +w(1))− (x(2) +w(2))∥2 ≤ D .

Second, for every ℓ ∈ [L], the ℓ2-norm of the first n coordinates of g(i,ℓ) is upper bounded by e2εi ·∥∇Fℓ(y
(i−1,ℓ)⊕z(i−1,ℓ))∥ ≤

e2G, and the ℓ2-norm of the other n coordinates of g(i,ℓ) is upper bounded by ∥e2εi · ∇Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ)) + eεi ·

∇Fℓ(z
(i−1,ℓ))∥2 ≤ 2e2G. Thus,

∥g(i,ℓ)∥2 ≤
√
(e2G)2 + (2e2G)2 =

√
5 · e2G ≤ 24√

2
·G .

The lemma now follows by plugging the above upper bounds into Inequality (17), and then combining the obtained inequality
with Inequality (16).

To get the following corollary, we repeat the proof of Lemma C.16 from the analysis of Algorithm 3 with Lemma D.2 taking
the role of Lemma C.14 and oD taking the role of o(1)

D .
Corollary D.3. For every integer 1 ≤ i ≤ ε−1ts,

ϕ(i)− ϕ(i− 1) ≥ ε(1−m)(1− ε) ·
[
eεi−2ts ·

L∑

ℓ=1

Fℓ(o) + e−2ts(ts − εi) ·
L∑

ℓ=1

Fℓ(oD)

]

− 25ε2βLD2 − 62ε2 · ϕ(i− 1)− 24εDG
√
L .

We now use the last corollary to get a lower bound on
∑L

ℓ=1 Fℓ(y
(ε−1ts,ℓ) ⊕ z(ε

−1ts,ℓ)) = ϕ(ε−1ts). As mentioned above,
Lemma D.4 corresponds to Lemma C.17 from the analysis of Algorithm 3, but its analysis is somewhat more involved.
Lemma D.4. It holds that

L∑

ℓ=1

Fℓ(y
(ε−1ts,ℓ) ⊕ z(ε

−1ts,ℓ)) = ϕ(ε−1ts) ≥ −63tsεβLD2 − 60tsDG
√
L

+ (1−m) ·
[
(e−ts − e−2ts −O(ε)) ·

L∑

ℓ=1

Fℓ(o) +

(
e−2ts · t2s

2
−O(ε)

)
·

L∑

ℓ=1

Fℓ(oD)

]
.

Proof. We prove by induction on i that

(1− 62ε2)−i · ϕ(i) ≥ ε(1−m)(1− ε) ·
i∑

i′=1

[
eεi

′−2ts ·
L∑

ℓ=1

Fℓ(o) + e−2ts(ts − εi′) ·
L∑

ℓ=1

Fℓ(oD)

]
(18)

− 63iε2βLD2 − 60iεDG
√
L .



Inequality (18) holds for i = 0 since the non-negativity of F guarantees that ϕ(0) ≥ 0. Assume now that Inequality (18) holds
for i− 1, and let us prove it for i. By Corollary D.3 and the induction hypothesis,

(1− 62ε2)−i · ϕ(i) = (1− 62ε2)−(i−1) · ϕ(i− 1) + (1− 62ε2)−i · [ϕ(i)− (1− 62ε2)ϕ(i− 1)]

≥ ε(1−m)(1− ε) ·
i−1∑

i′=1

[
eεi

′−2ts ·
L∑

ℓ=1

Fℓ(o) + e−2ts(ts − εi′) ·
L∑

ℓ=1

Fℓ(oD)

]

− 63(i− 1)ε2βLD2 − 60(i− 1)εDG
√
L

+ (1− 62ε2)−i ·
{
ε(1−m)(1− ε) ·

[
eεi−2ts ·

L∑

ℓ=1

Fℓ(o) + e−2ts(ts − εi) ·
L∑

ℓ=1

Fℓ(oD)

]

− 25ε2βLD2 − 24εDG
√
L

}

≥ ε(1−m)(1− ε) ·
i∑

i′=1

[
eεi

′−2ts ·
L∑

ℓ=1

Fℓ(o) + e−2ts(ts − εi′) ·
L∑

ℓ=1

Fℓ(oD)

]

− 63iε2βLD2 − 60iεDG
√
L ,

where the second inequality uses the non-negativity of F and the fact that our assumption that ε ≤ 1/70 implies that (1 −
62ε2)−i ≤ (1− 62ε2)−1/ε ≤ e62ε ≤ 2.5. This completes the proof of Inequality (18). Plugging i = ε−1ts into this inequality,
we get

ϕ(ε−1ts) ≥ (1−62ε2)ε
−1ts ·

{
ε(1−m)(1−ε) ·

ε−1ts∑

i′=1

[
eεi

′−2ts ·
L∑

ℓ=1

Fℓ(o)+e
−2ts(ts−εi′) ·

L∑

ℓ=1

Fℓ(oD)

]

− 63tsεβLD
2 − 60tsDG

√
L

}

≥ (1−m) ·
[
(e−ts − e−2ts −O(ε)) ·

L∑

ℓ=1

Fℓ(o) +

(
e−2ts · t2s

2
−O(ε)

)
·

L∑

ℓ=1

Fℓ(oD)

]

− 63tsεβLD
2 − 60tsDG

√
L ,

where the second inequality uses two lower bounds on sums that are justified in the proof of Lemma C.17.

Up to this point we have only studied vectors in {y(i,ℓ), z(i,ℓ) | i ∈ Z, 0 ≤ i ≤ ε−1ts, ℓ ∈ [L]}. We now need to consider
vectors corresponding to larger values of i. We begin with the following lemma, which corresponds to Lemma C.18 from the
analysis of Algorithm 3.
Lemma D.5. For every integer ε−1ts < i ≤ ε−1,

ℓ∑

ℓ=1

[Fℓ(y
(i,ℓ) ⊕ z(i,ℓ))− Fℓ(y

(i−1,ℓ) ⊕ z(i−1,ℓ))]

≥ max

{
ε ·
[
(1−m)(1− ε)i−1 ·

L∑

ℓ=1

Fℓ(oD)−
L∑

ℓ=1

Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))

]
, 0

}

− ε2βLD2/2− εDG
√
2L .

Proof. Repeating the first part of the proof of Lemma C.18 implies that, for every ℓ ∈ [L],

Fℓ(y
(i,ℓ) ⊕ z(i,ℓ))− Fℓ(y

(i−1,ℓ) ⊕ z(i−1,ℓ))

≥ ε · ⟨b(i) ⊙ (1̄− y(i−1,ℓ)),∇Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))⊙ (1̄− z(i−1,ℓ))⟩ − ε2βD2/2 .



Summing up this inequality for all ℓ ∈ [L] yields
ℓ∑

ℓ=1

[Fℓ(y
(i,ℓ) ⊕ z(i,ℓ))− Fℓ(y

(i−1,ℓ) ⊕ z(i−1,ℓ))]

≥ ε ·
L∑

ℓ=1

⟨b(i) ⊙ (1̄− y(i−1,ℓ)),∇Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))⊙ (1̄− z(i−1,ℓ))⟩ − ε2βLD2/2

≥ max

{
ε ·

L∑

ℓ=1

⟨oD ⊙ (1̄− y(i−1,ℓ)),∇Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))⊙ (1̄− z(i−1,ℓ))⟩, 0

}

− ε2βLD2/2− εDG
√
2L ,

where the second inequality holds by the properties of Ei since (i) the convex body assigned to Ei is of diameter at most D
(see the proof of Lemma D.2), (ii) both (oN,oD) and (oN, 0̄) are vectors in this convex body, and (iii) for every ℓ ∈ [L],
∥g(i,ℓ)∥2 ≤ ∥∇F (y(i−1,ℓ) ⊕ z(i−1,ℓ))∥2 ≤ G.

To complete the proof of the lemma, it remains to observe that, for every ℓ ∈ [L],

⟨oD ⊙ (1̄− y(i−1,ℓ)),∇Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ))⊙ (1̄− z(i−1,ℓ))⟩

≥ Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ) ⊕ oD)− Fℓ(y

(i−1,ℓ) ⊕ z(i−1,ℓ))

≥ (1−m)(1− ε)i−1 · Fℓ(oD)− Fℓ(y
(i−1,ℓ) ⊕ z(i−1,ℓ)) ,

where the first inequality holds by Property 1 of Lemma B.1, and the second inequality follows from Corollary B.3 and
Lemma D.1.

Corollary D.6. For every integer ε−1ts ≤ i ≤ ε−1,
∑L

ℓ=1 Fℓ(y
(ε−1,ℓ)⊕z(ε−1,ℓ)) ≥ (1−m)(εi−ts)(1−ε)i−1 ·∑L

ℓ=1 Fℓ(oD)+

(1− ε)i−ε−1ts ·∑L
i=1 Fℓ(y

(ε−1ts,ℓ) ⊕ z(ε
−1ts,ℓ))− (1− ts) ·O(εβLD2)− (1− ts)DG

√
2L.

Proof. By repeating the proof of Lemma C.19 with Lemma D.5 taking the role of Lemma C.18, one can prove that
L∑

ℓ=1

Fℓ(y
(i,ℓ) ⊕ z(i,ℓ))

≥ (1−m)(εi− ts)(1− ε)i−1 ·
L∑

ℓ=1

Fℓ(oD) + (1− ε)i−ε−1ts ·
L∑

i=1

Fℓ(y
(ε−1ts,ℓ) ⊕ z(ε

−1ts,ℓ))

− (εi− ts) ·O(εβLD2)− (εi− ts)DG
√
2L .

By adding up the inequalities guaranteed by Lemma D.5 for all i < i′ ≤ ε−1, we can also get
L∑

ℓ=1

Fℓ(y
(ε−1,ℓ) ⊕ z(ε

−1,ℓ))−
L∑

ℓ=1

Fℓ(y
(i,ℓ) ⊕ z(i,ℓ))

=
ε−1∑

i′=i+1

ℓ∑

ℓ=1

[Fℓ(y
(i,ℓ) ⊕ z(i,ℓ))− Fℓ(y

(i−1,ℓ) ⊕ z(i−1,ℓ))]

≥
ε−1∑

i′=i+1

{−ε2βLD2/2− εDG
√
2L} = −(1− εi)εβLD2/2− (1− εi) ·DG

√
2L .

The corollary now follows by adding up the two above inequalities.

We are now ready to complete the proof of the approximation guarantee of Algorithm 2, which completes the proof of
Proposition 5.2.
Lemma D.7. It holds that

L∑

ℓ=1

Fℓ(y
(ε−1,ℓ) ⊕ z(ε

−1,ℓ)) ≥ (1−m) · max
T∈[ts,1]

{[
(T − ts)e−T +

e−ts−T · t2s
2

−O(ε)

]
·

L∑

ℓ=1

Fℓ(oD)

+ (e−T − e−ts−T −O(ε)) ·
L∑

ℓ=1

Fℓ(o)

}
−O(εβLD2)−O(DG

√
L) .



Proof. We prove below that the inequality stated in the lemma holds for any fixed T ∈ [ts, 1]. Plugging the guarantee of
Lemma D.4 into the guarantee of Corollary D.6 for i = ⌊ε−1T ⌋ yields

L∑

ℓ=1

Fℓ(y
(ε−1,ℓ) ⊕ z(ε

−1,ℓ))

≥ (1−m)(ε⌊ε−1T ⌋ − ts)(1− ε)⌊ε
−1T⌋−1 ·

L∑

ℓ=1

Fℓ(oD)− (ε⌊ε−1T ⌋ − ts) ·O(εβLD2)

− (1− ts)DG
√
2L+ (1− ε)⌊ε−1T⌋−ε−1ts ·

{
(1−m) ·

[
(e−ts − e−2ts −O(ε)) ·

L∑

ℓ=1

Fℓ(o)

+

(
e−2ts · t2s

2
−O(ε)

)
·

L∑

ℓ=1

Fℓ(oD)

]
− 63tsεβLD

2 − 60tsDG
√
L

}

≥ (1−m)(T − ts − ε)e−T ·
L∑

ℓ=1

Fℓ(oD)−O(εβLD2)−O(DG
√
L)

+ets−T (1−m)(1−ε)
[
(e−ts−e−2ts−O(ε)) ·

L∑

ℓ=1

Fℓ(o)+

(
e−2ts · t2s

2
−O(ε)

)
·

L∑

ℓ=1

Fℓ(oD)

]

= (1−m) ·
{[

(T − ts)e−T +
e−ts−T · t2s

2
−O(ε)

]
·

L∑

ℓ=1

Fℓ(oD)

+ (e−T − e−ts−T −O(ε)) ·
L∑

ℓ=1

Fℓ(o)

}
−O(εβLD2)−O(DG

√
L) .

E Additional Applications
In this section, we present two applications (in addition to the one given in Section 6).

E.1 Location Summarization
In this experimental setting, our objective is to create a summary of the locations around the current user location based on the
Yelp dataset, a subset of Yelp’s businesses, reviews, and user data covering information about local businesses in 11 metropoli-
tan areas [Yelp, 2019]. We employ the formalization of this task used by Mualem & Feldman [2023]. Specifically, symmetry
scores between the various locations have been generated using the methodology introduced by Kazemi et al. [2021] based on
features extracted from location descriptions and associated user reviews, encompassing aspects like parking availability, WiFi
access, vegan menu offerings, delivery options, suitability for outdoor seating, and being conducive to group gatherings. Then,
assuming the set of locations is denoted by [n], Mi,j represents the similarity score between locations i and j, and di is the
distance of location i from the user (measured in units of 200KM), the objective function for every set S ⊆ [n] is given by

f(S) = 1
n

n∑

i=1

max
j∈S

Mi,j −
∑

i∈S

di .

Intuitively, this objective function favors sets S of locations that effectively summarizes the existing locations while remaining
close to the user’s current location.

Since the methods developed in this work are tailored for continuous functions, they cannot be used to directly optimize f .
Thus, we need to invoke the multilinear extension9 F of f defined as follows. For integers i, j, j′ ∈ [n], we write Mi,j ≺Mi,j′

if Mi,j < Mi,j′ or Mi,j =Mi,j′ and j < j′. Then, for every vector x ∈ [0, 1]n,

F (x) = 1
n

n∑

i=1

n∑

j=1


xjMi,j ·

∏

j′|Mi,j≺Mi,j′

(1− xj′)


−

n∑

i=1

xidi .

The multilinear extension F is amenable to optimization using our methods since the submodularity of f implies that its
multi-linear extension F is DR-submodular [Bian et al., 2017b]. Furthermore, the solution obtained in this way for F can be

9See, for example, [Buchbinder and Feldman, 2018] for the definition of the multi-linear extension.
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Figure 3: Results of the Location Summarization Ex-
periment

rounded into a discrete solution with the same approximation for f using either pipage or swap rounding [Calinescu et al., 2011;
Chekuri et al., 2010].

Our experiment closely follows the one of [Mualem and Feldman, 2023] by focusing on a single metropolitan area (Charlotte)
and considering a time horizon of 100 steps. Each time step is associated with a different user u whose location is chosen
uniformly at random within the rectangle encompassing the metropolitan area. If we denote by Fu the function F computed
based on the location of user u, then in the time step associated with u, our objective is to select a vector x(u) that maximizes
Fu among all vectors satisfying ∥x∥1 ∈ [1, 2] (we seek solutions incorporating either 1 or 2 locations). As this optimization
should be done before learning the location of u for prompt responses and privacy reasons, online optimization algorithms are
used for the task. Akin to Section 6.1, we compare the performance in this context of our algorithm from Section 5 with the
algorithm proposed by Mualem & Feldman [2023] when the number of online linear optimizers is set to L = 100 for both
algorithms. As our algorithm requires a decomposition of the feasible polytope into a down-closed polytope KD and a general
polytope KN, we chose the decomposition KD = {x ∈ [0, 1]n | ∥x∥1 ≤ 1} and KN = {x ∈ [0, 1]n | ∥x∥1 = 1} (note that
(KD + KN) ∩ [0, 1]n is indeed the original feasible polytope). The results of our experiments are illustrated in Figure 3, and
demonstrate that our algorithm consistently outperforms the state-of-the-art algorithm of [Mualem and Feldman, 2023].

E.2 Quadratic Programming
In this section, we showcase the ability of our algorithm to interpolate between down-closed and general convex bodies. To
demonstrate this, we consider a setting with a down-closed polytope constraint, and compare the performance of our method
with to two other algorithms: the non-monotone Franke-Wolfe algorithm proposed by Bian et al. [2017a], which was de-
signed for down-closed convex bodies and achieves e−1-approximation for maximizing DR-submodular functions over such
constraints (but is not well-defined when the constraint is not down-closed), and the non-monotone Franke-Wolfe algorithm
suggested by Mualem & Feldman [2023] for general convex-body constraints. In a nutshell, the experiments we discuss below
show that, despite the ability of our algorithm to optimize over general convex-body constraint, it is able to outperform the al-
gorithm of [Mualem and Feldman, 2023] and recover the performance of the algorithm of [Bian et al., 2017a] (and sometimes
even slightly outperform it).

Every instance of the setting we consider is defined by two matrices A ∈ Rm×n
≥0 and H ∈ Rm×n

≤0 (the details of the setting
closely follow settings considered by [Bian et al., 2017a; Mualem and Feldman, 2023]). These matrices are chosen at random
according to distributions described in Sections E.2 and E.2. However, before getting to the description of these distributions, let
us explain how the instance is constructed based on the matrices A and H obtained. First, the down-closed polytope constraint
is given by

K = {x ∈ Rn
≥0 | Ax ≤ b,x ≤ u} ,

where b is the all-ones vector, and the upper bound vector u is given by uj = mini∈[m] bi/Ai,j for each j ∈ [n]. The function
F to be maximized subject to K is given, for every vector 0̄ ≤ x ≤ u, by

F (x) =
1

2
xTHx+ hTx+ c ,

where h is a vector and c is a scalar. The non-positivity of the matrix H ensures that F is DR-submodular. Addition-
ally, we set h = −0.1 · HTu. Finally, to make F non-negative, it is necessary to set the value of c to be at least
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(a) m = ⌊0.5n⌋
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(b) m = n
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(c) m = ⌊1.5n⌋

Figure 4: Quadratic Programming with Uniform Distribution

M = −min0̄≤x≤u

(
1
2x

THx+ hTx
)
. The value of M can be approximately calculated via QUADPROGIP10 [Xia et al.,

2020], and we set c to be M + 0.1|M |, which is a bit larger than the necessary minimum.

Uniform Distribution
In this section, we we use a method for choosing the matrices H and A that utilizes uniform distributions. In this method, the
matrix H ∈ Rn×n is a symmetric matrix randomly generated by drawing each entry independently and uniformly from the
interval [−1, 0]. Similarly, the matrix A ∈ Rm×n is generated with entries randomly drawn from the interval [v, v + 1], where
v = 0.01. Note that, by using a positive value for v, we ensure that the entries of A are all strictly positive.

Our experiments based on the above distributions vary in the values chosen for the dimensions n and m. For each choice,
we generated 100 instances and executed on them our offline algorithm (the version given as Algorithm 4 in Appendix C.3)
as well as the algorithms of Mualem & Feldman [2023] and Bian et al. [2017a]. The number of iterations was set to 100 in
all algorithms, which forces the the error control parameter ε to be set to 0.01 in our algorithm and the algorithm of Bian et
al. [2017a], and to ln 2/100 in the remaining algorithm. Additionally, since K is down-closed, the decomposition used by our
algorithm is simply KD = K and KN = {0}. Figure 4 depicts the results obtained by the three algorithms, averaged over
the 100 instances generated. The x-axis in each plot represents the value of n, and the value of m was derived based on n as
specified by each plot caption. The y-axis illustrates the approximation ratios of the various algorithms in comparison to the
optimum value calculated using a quadratic programming solver. Notably, our proposed algorithm demonstrates near-identical
performance to the Frank-Wolfe algorithm suggested by Bian et al. [2017a], and clearly surpasses the algorithm suggested by
Mualem & Feldman [2023].

Exponential Distribution
In this section, we use a different method for choosing the matrices H and A that utilizes exponential distributions. For every
value λ > 0, the exponential distribution exp(λ) is defined by a density function assigning a density of λe−λy for y ≥ 0,
and a density of 0 for y < 0. Given this definition, H ∈ Rn×n

≤0 is a symmetric matrix randomly generated with entries
drawn independently from − exp(1), while A ∈ Rm×n

≥0 is a randomly generated matrix with entries drawn independently from
exp(0.25) + 0.01.

For this method of generating H and A, we conducted the same set of experiments as for the previous approach. The results of
these experiments, again averaged over 100 independently chosen instances, are illustrated in Figure 5. Our proposed algorithm
demonstrates slightly better performance than the non-monotone Frank-Wolfe algorithm suggested by Bian et al. [2017a], and
surpasses the algorithm suggested by Mualem & Feldman [2023].

10We used IBM CPLEX optimization studio https://www.ibm.com/products/ilog-cplex-optimization-studio.



8 10 12 14 16
0.00

0.20

0.40

0.60

0.80

1.00

n

A
pp

ro
xi

m
at

io
n

R
at

io

Algorithm 4
[Mualem and Feldman, 2023]
[Bian et al., 2017a]

(a) m = ⌊0.5n⌋

8 10 12 14 16
0.00

0.20

0.40

0.60

0.80

1.00

n

A
pp

ro
xi

m
at

io
n

R
at

io

Algorithm 4
[Mualem and Feldman, 2023]
[Bian et al., 2017a]

(b) m = n

8 10 12 14 16
0.00

0.20

0.40

0.60

0.80

1.00

n

A
pp

ro
xi

m
at

io
n

R
at

io

Algorithm 4
[Mualem and Feldman, 2023]
[Bian et al., 2017a]

(c) m = ⌊1.5n⌋

Figure 5: Quadratic Programming with Exponential Distribution
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Chapter 6

Sumbodular Minimax Optimization:

Finding Effective Sets

In this chapter, we introduce and investigate the problem of submodular minimax opti-

mization, a generalization of submodular maximization. Among its applications is modeling

competition between multiple submodular functions, and robust maximization of a submod-

ular function under uncertainty. We propose several algorithms with provable theoretical

guarantees, tailored to different settings. Our framework has broad applicability, including

prompt engineering, robust model training, and adversarial machine learning.

The following paper [MEFK24] was published at the International Conference on Artifi-

cial Intelligence and Statistics (AISTATS 2024).
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Abstract

Despite the rich existing literature about mini-
max optimization in continuous settings, only
very partial results of this kind have been
obtained for combinatorial settings. In this
paper, we fill this gap by providing a character-
ization of submodular minimax optimization,
the problem of finding a set (for either the min
or the max player) that is effective against
every possible response. We show when and
under what conditions we can find such sets.
We also demonstrate how minimax submod-
ular optimization provides robust solutions
for downstream machine learning applications
such as (i) prompt engineering in large lan-
guage models, (ii) identifying robust waiting
locations for ride-sharing, (iii) kernelization
of the difficulty of instances of the last setting,
and (iv) finding adversarial images. Our ex-
periments show that our proposed algorithms
consistently outperform other baselines.

1 INTRODUCTION

Many machine learning tasks, ranging from data se-
lection to decision making, are inherently combina-
torial and thus, require combinatorial optimization
techniques that work at scale. Even though, in general,
solving such problems is notoriously hard, practical
problems are very often endowed with extra structures
that lend them to optimization techniques. One com-
mon structure is submodularity, a condition that holds
either exactly or approximately in a wide range of
machine learning applications, including: dictionary se-
lection (Krause and Cevher, 2010), sparse recovery, fea-

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

ture selection (Das and Kempe, 2011), neural network
interpretability (Elenberg et al., 2017), crowd teach-
ing (Singla et al., 2014), human brain mapping (Salehi
et al., 2017), data summarizarion (Lin and Bilmes,
2011; Mualem and Feldman, 2022a), among many oth-
ers. Submodular functions are often considered to be
discrete analogs of concave functions, and like con-
cave functions they can be (approximately) maximized.
At the same time, submodular functions can also be
exactly minimized as they can be extended into an effi-
ciently computable continuous convex function (known
as the Lovász extension). These optimization proper-
ties of submodular functions has been often exploited
in scalable machine learning algorithms.

While scalable optimization methods are desirable, they
are not the only requirements for ML algorithm deploy-
ment. Very often, it is also important to get solutions
that are robust with respect to noise, outliers, adver-
sarial examples, etc. Problems looking for solutions
that are robust with respect to worst-case scenarios
have usually been expressed as minimax optimization.
Accordingly, recent years have witnessed a large body
of work addressing minimax optimization in the con-
tinuous settings (see, e.g., Diakonikolas et al. (2021);
Ibrahim et al. (2020); Lin et al. (2020); Mokhtari et al.
(2020)). This line of research has given rise to a myriad
of algorithms, and an ever increasing list of applica-
tions such as adversarial attack generation (Wang et al.,
2021), robust statistics (Agarwal and Zhang, 2022) and
multi-agent systems (Li et al., 2019), to name a few.
To ensure feasibility of finding a saddle point, one has
to make some structural assumptions. For instance,
many of the above-mentioned works assume that the
minimization is taken over a convex function, and the
maximization over a concave function.

Despite the rich existing literature about minimax op-
timization in continuous settings, very few works have
managed to obtain similar results for combinatorial
settings. Staib et al. (2019) and Adibi et al. (2022)
considered hybrid settings in which the maximization is
done with respect to a (discrete) submodular function,
but the minimization is still done over a continuous
domain. Krause et al. (2008), Torrico et al. (2021) and
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Iyer (2019, 2020) considered settings in which both
the maximization and the minimization are discrete,
but one of them is done over a small domain that can
be efficiently enumerated. In this paper we provide
the first systematic study of the natural case of fully
discrete minimax optimization with maximization and
minimization domains that can both be large. To the
best of our knowledge, the only previous works relevant
to this case are works of Bogunovic et al. (2017) and
Orlin et al. (2018), who studied the maximization of a
monotone submodular function subject to a cardinality
constraint in the presence of a worst case (represented
by a minimization) removal of a small number of ele-
ments from the chosen solution.

As submodular functions cannot be maximized exactly,
there is no hope to get a saddle point in our setting.
Instead, like Adibi et al. (2022), we take a game the-
oretic perspective on the setting. From this point of
view, there are two players. Each player selects a set,
and the objective function value is determined by the
sets selected by both players. One of the players aims
to minimize the objective function, while the other
player wishes to maximize it. Our task is to select
for one of the players (either the minimization or the
maximization player) a set that is effective in the sense
that it guarantees a good objective value regardless of
the set chosen by the other player.

We map the tractability and approximability of the
above minimax submodular optimization task as func-
tion of various properties, such as: the player consid-
ered (minimization or maximization), the constraints
(if any) on the sets that can be chosen by the players,
and whether the objective function is submodular as
a whole, or for each player separately. We refer the
reader to Section 2 for our exact results. However, in a
nutshell, we have fully mapped the approximability for
the minimization player, and we also have non-trivial
results for the maximization player.

Our proposed algorithms for minimax submodular op-
timization can lead to finding of robust solutions for
down-stream machine learning applications, including
efficient prompt engineering, ride-share difficulty ker-
nalization, adversarial attacks on image summarization
and robust ride-share optimization. Empirical evalua-
tion of our algorithms in the context of all the above
applications can be found in Section 3.

1.1 Related Work

Submodular Minimization The first polynomial
time algorithm for (unconstrained) submodular mini-
mization was obtained by Grötschel et al. (1981) us-
ing the ellipsoids method. Almost twenty years later,
Schrijver (2000) and Iwata et al. (2001) obtained, inde-

pendently, the first strongly polynomial time (and com-
binatorial) algorithms for the problem. Further works
have improved over the time complexities of the last
algorithms, and the current state-of-the-art algorithm
was described by Lee et al. (2015) (see also Axelrod
et al. (2020) for a faster approximation algorithm for
the problem).

All the above results apply to unconstrained submodu-
lar minimization. Unfortunately, constrained submodu-
lar minimization often (provably) admits only very poor
approximation guarantees even when the constraint is
as simple as a cardinality constraint (see, for exam-
ple, Goel et al. (2010); Svitkina and Fleischer (2011)).
Nevertheless, there are rare examples of constraints
that allow for efficient submodular minimization, such
as the constraint requiring the output set to be of even
size (Goemans and Ramakrishnan, 1995).

Submodular Maximization A simple greedy al-
gorithm obtains the optimal approximation ratio of
1 − 1/e for maximization of a monotone submodular
function subject to a cardinality constraint (Nemhauser
and Wolsey, 1978; Nemhauser et al., 1978). The same
approximation ratio was later obtained for general
matroid constraints via the continuous greedy algo-
rithm (Călinescu et al., 2011). The best possible approx-
imation ratio for unconstrained maximization of a non-
monotone submodular function is 1/2 (Feige et al., 2011;
Buchbinder et al., 2015), even for deterministic algo-
rithms (Buchbinder and Feldman, 2018). However, the
approximability of constrained maximization of such
functions is not as well understood. Following a long
line of works (Buchbinder et al., 2014; Ene and Nguyen,
2016; Feldman et al., 2011; Lee et al., 2009; Oveis
Gharan and Vondrák, 2011; Vondrák, 2013), the state-
of-the-art algorithm for maximizing a non-monotone
submodular function subject to a cardinality or ma-
troid constraint guarantees 0.385-approximation (Buch-
binder and Feldman, 2019), while the best inapproxima-
bility result for these constraints only shows that one
cannot obtain 0.478-approximation for them (Gharan
and Vondrák, 2011; Qi, 2022).

It is also worth mentioning a line of work (Mirza-
soleiman et al., 2017; Mitrovic et al., 2017) aiming
to find a small core set such that even if some elements
are adversarially chosen for deletion, it is still possible
to produce a good solution based on the core set. Note
that this line of work differs from the maximization
player point of view in our setting, in which the aim
is to find a single solution for the maximization player
that is good against every choice of the minimization
player.

Additional related work relevant to some of our appli-
cations can be found in Appendix A.
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2 NOTATION AND OUR
THEORETICAL CONTRIBUTION

Let us describe the formal model for our setting. There
are two (disjoint) ground sets N1 and N2, one ground
set for each one of the players. For each ground set
Ni, we also have a constraint Fi ⊆ 2Ni specifying
the sets that can be chosen from this ground set. Fi-
nally, there is a non-negative objective set function
f : 2N1 ·∪N2 → R≥0.

1 The minimization player gets to
pick a set X from F1, and wishes to minimize the value
of f , while the maximization players picks a set Y
from F2, and aims to maximize the value of f . Our
task is to find for each player a set S that yields the
best value for f assuming the other player chooses the
best response against S. In other words, for the min-
imization player we want to find a set X ∈ F1 that
(approximately) minimizes maxY ∈F2 f(X ·∪Y ), and for
the maximization player we should find a set Y ∈ F2

that (approximately) maximizes minX∈F1
f(X ·∪Y ). As

optimization of general set functions cannot be done
efficiently, we must assume that the objective function
f obeys some properties. Two common properties that
are often considered in the literature are submodularity
and monotonicity. However, to assume these properties,
we first need to discuss what they mean in our setting.

Let us begin with the property of submodularity. In
the following, given an element u and a set S we use
f(u | S) ≜ f(S ∪ {u})− f(S) to denote the marginal
contribution of u to the set S.2 According to the
standard definition of submodularity,3 f is submodular
if the inequality f(u | S) ≥ f(u | T ) holds for every
two sets S ⊆ T ⊆ N1 ·∪ N2 and element u ∈ (N1 ·∪
N2) \ T . Since this definition of submodularity treats
N1 and N2 as two parts of one ground set, in the rest
of this paper we call a function that obeys it jointly-
submodular. However, since the ground sets N1 and
N2 play very different roles in our problems, it makes
sense to consider also functions that are submodular
when restricted to one ground set. We say that f
is submodular when restricted to N1 if it becomes a
submodular function when we fix the set of elements
of N2 chosen. More formally, f is submodular when
restricted to N1 if the inequality f(u | S ∪ A2) ≥
f(u | T ∪ A2) holds for every S ⊆ T ⊆ N1 and u ∈
N1 \ T,A2 ⊆ N2. The definition of being submodular
when restricted to N2 is analogous, and we say that
f is disjointly-submodular if it is submodular when
restricted to either N1 or N2.

1We use ·∪ to denote the union of disjoint sets.
2Similarly, given sets S and T , f(T | S) ≜ f(S∪T )−f(S)

denotes the marginal contribution of T to S.
3A set function g : N → R is submodular if g(u | S) ≥

g(u | T ) for every S ⊆ T ⊆ N and u ∈ N \ T .

Unfortunately, submodular minimization admits very
poor approximation guarantees even subject to simple
constraints such as cardinality (see Section 1.1 for more
details). Therefore, we restrict attention to the case
of F1 = 2N1 . Given this restriction, we cannot assume
that f is monotone4 since this will guarantee that the
best choice for the set X is always ∅. However, some
of our results assume that f is monotone with respect
to the elements of N2. In other words, we say that f is
N2-monotone if the inequality f(u | S) ≥ 0 holds for
every S ⊆ N1 ·∪ N2 and u ∈ N2 \ S.
Table 1 summarizes the theoretical results proved in
this paper. When the table states that we have an in-
approximability result of c for a problem, it means
that no polynomial time algorithm can produce a
value that with probability at least 2/3 approximates
the exact value of this problem up to a factor of c.
For example, if we look at the optimization problem
minX⊆N1

maxY ∈F2
f(X ·∪ Y ), then an inapproximabil-

ity result of c means that no polynomial time algorithm
can produce a value v that obeys

v ≤ c · min
X⊆N1

max
Y ∈F2

f(X ·∪ Y ) ≤ c · v (1)

with probability at least 2/3. In contrast, we hold our
algorithms to a higher standard. Specifically, when Ta-
ble 1 states that we have a c-approximation algorithm
for a problem, it means that the algorithm is able to pro-
duce with probability at least 2/3 two things: a value v
of the above kind, and a solution set S for the external
min or max operation that leads to c-approximation
when the internal min or max is optimality solved.
For example, given the above optimization problem, a
c-approximation algorithm produces with probability
at least 2/3 a value v obeying Equation (1), and a
set S ⊆ N1 such that minX⊆N1

maxY ∈F2
f(X ·∪ Y ) ≤

maxY ∈F2
f(S ·∪ Y ) ≤ c ·minX⊆N1

maxY ∈F2
f(X ·∪ Y ).

The success probability of 2/3 in the above definitions
can always be increased via repetitions. However, such
repetitions can usually be avoided since our algorithms
are typically either deterministic or naturally have a
high success probability.

As is standard in the literature, we assume that access
to the objective function f is done via a value oracle
that given a set S ⊆ N1 ·∪ N2 returns f(S). Further-
more, given a set S and element u, we use S + u and
S − u to denote S ∪ {u} and S \ {u}, respectively.

2.1 Results for maxmin Optimization

For maxmin expressions (the problem of the maxi-
mization player) we have a good understanding of the

4A set function g : 2N → R is monotone if g(S) ≤ g(T )
for every two sets S ⊆ T ⊆ N .
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Table 1: Our theoretical results. We denote by α the approximation ratio that can be obtained for maximizing a
non-negative submodular function subject to F2. If f happens to be N2-monotone, then α can be improved to be
the approximation ratio that can be obtained for maximizing a non-negative monotone submodular function
subject to F2.

Expression to approximate Assumptions Result proved

maxY ∈F2 minX⊆N1 f(X ·∪ Y ) jointly-submodular (α + ε)-approx. alg. (Thm 2.1)
maxY ⊆N2 minX⊆N1 f(X ·∪ Y ) disjointly-submodular

}
No finite approximation ratio
possible unless BPP = NP
(Thms 2.2 and 2.3)

maxY ⊆N2
|Y |≤k

minX⊆N1 f(X ·∪ Y ) disjointly-submodular
N2-monotone

minX⊆N1 maxY ⊆N2 f(X ·∪ Y ) disjointly-submodular (4 + ε)-approx. alg. (Thm 2.5)

minX⊆N1 maxY ∈F2 f(X ·∪ Y ) jointly-submodular, ∅ ∈ F2 O(α
√

|N1|)-approx. alg. (Thm. 2.6)

minX⊆N1 maxY ∈F2 f(X ·∪ Y )
disjointly-submodular

O(|N2|)-approx. alg. (Thm 2.4){u} ∈ F2 ∀u ∈ N2

approximability, and it turns out that this approxima-
bility strongly depends on the kind of submodularity
guaranteed for f . If f is jointly-submodular, then the
problem admits roughly the same approximation ratio
as the maximization problem obtained by omitting the
min operation.

Theorem 2.1. Assume that there exists an α-approx-
imation algorithm ALG for the problem of maximiz-
ing a non-negative submodular function g subject to
F2. Then, for every polynomially small ε ∈ (0, α],
there exists a polynomial time algorithm that (i) out-
puts a set Ŷ ∈ F2 and the value minX⊆N1 f(X ·∪ Ŷ );
and (ii) guarantees that, with probability at least 2/3,
minX⊆N1

f(X ·∪ Ŷ ) falls within the range [τ/(α+ε), τ ],
where τ = maxY ∈F2

minX⊆N1
f(X ·∪ Y ). Furthermore,

if f is N2-monotone, then it suffices for ALG to obtain
α-approximation when g is guaranteed to be monotone
(in addition to being non-negative and submodular).

We note that by assuming in Theorem 2.1 that ALG is
an α-approximation algorithm, we only mean that the
expected value of the solution of ALG is smaller than
the value of the optimal solution by at most a factor of
α. In other words, we do not make any high probability
assumption on ALG. The proof of Theorem 2.1 is
based on the observation that the joint-submodularity
of f implies that minX⊆N1

f(X ·∪ Y ) is a submodular
function of Y . See Section B.1 for details.

Unfortunately, it turns out that when f is only dis-
jointly submodular, there is little an algorithm can
guarantee. The following theorems show this for two
basic special cases: unconstrained maximization, and
maximization subject to a cardinality constraint of
an N2-monotone function (the special case of uncon-
strained maximization of an N2-monotone function is
trivial since it is always optimal to set Y = N2 in this
case). Both theorems are proved using a reduction
showing that the minimization over X can be replaced
with a minimization over multiple functions, which al-
lows us to capture well-known NP-hard problems with

maxmin expressions. See Section B.2 for details.

Theorem 2.2. When f is only guaranteed to be non-
negative and disjointly submodular, no polynomial time
algorithm for calculating maxY⊆N2 minX⊆N1 f(X ·∪ Y )
has a finite approximation ratio unless BPP = NP .

Theorem 2.3. When f is only guaranteed to be
non-negative, N2-monotone and disjointly submod-
ular, no polynomial time algorithm for calculating
maxY⊆N2,|Y |≤ρ minX⊆N1 f(X ·∪ Y ), where ρ is a pa-
rameter of the problem, has a finite approximation
ratio unless BPP = NP .

2.2 Results for minmax Optimization

We also have some results for minmax expressions (the
problem of the minimization player), although our un-
derstanding of the approximability of such expressions
is worse than for maxmin expressions. We begin with
the following theorem, which shows that when all the
singleton subsets of N1 are feasible choices for the min
operation (which is the case, for example, when the con-
straint is down-closed), it is possible to get a finite ap-
proximation (specifically, O(|N2|)-approximation) for
minmax. The proof of Theorem 2.4 can be found in
Section C.1. In a nutshell, it is based on the observation
for a set X ⊆ N1 the sum f(X) +

∑
u∈N2

f(X ·∪ {u})
is an easy to calculate submodular function of X that
gives O(|N2|)-approximation for maxY⊆N2

f(X ·∪ Y ).

Theorem 2.4. Assuming {u} ∈ F2 for every u ∈ N2,
there is a polynomial time algorithm that, given a non-
negative disjointly submodular function f : 2N → R≥0,

returns a set X̂ ⊆ N1 and a value v such that both
maxY ∈F2

f(X̂ ·∪Y ) and v fall within the range [τ, (|N2|+
1) · τ ], where τ ≜ minX⊆N1

maxY ∈F2
f(X ·∪ Y ).

The approximation ratio of the last theorem can be
improved to a constant when the max operation is
unconstrained (like the min operation). The following
theorem states this formally, and its proof can be found
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in Section C.2. The proof is based on using samples of
N2 to construct a random easy to calculate submodular
function of X approximating maxY⊆N2

f(X ·∪ Y ) up
to a factor of roughly 4.

Theorem 2.5. For every constant ε ∈ (0, 1), there
exists a polynomial time algorithm that given a non-
negative disjointly submodular function f : 2N →
R≥0 returns a set X̂ ⊆ N1 and a value v such

that the expectations of both maxY⊆N2 f(X̂ ·∪ Y ) and
v fall within the range [τ, (4 + ε)τ ], where τ ≜
minX⊆N1

maxY⊆N2
f(X ·∪ Y ). Furthermore, the prob-

ability that both maxY⊆N2
f(X̂ ·∪ Y ) and v fall within

this range is at least 1−O(|N2|−1).

The factor of 4+ε in the last theorem improves to 2+ε
when f is symmetric with respect to N2, i.e., when
f(X ·∪Y ) = f(X ·∪ (N2 \Y )) for every two sets X ⊆ N1

and Y ⊆ N2.

It is interesting to note that the last two results show a
separation between minmax and maxmin optimization
as no finite approximation guarantee can be obtained
for disjointly submodular functions in the later case
(Theorems 2.2 and 2.3). Our last result obtains a
sub-linear approximation guarantee for an (almost)
general constraint F2; however, this comes at the cost
of requiring f to be jointly-submodular.

Theorem 2.6. Assuming ∅ ∈ F2, there exists a poly-
nomial time algorithm that gets as input (i) a non-
negative jointly submodular function f : 2N → R≥0,
and (ii) an oracle that given a set X ⊆ N1 returns
a set Y ∈ F2 that maximizes f(X ·∪ Y ) up to a fac-
tor of α ≥ 1 among such sets,5 and given this in-
put returns a set X̂ ⊆ N1 and a value v such that
both maxY ∈F2 f(X̂ ·∪ Y ) and v are lower bounded
by τ and upper bounded by O(α

√
|N1|) · τ , where

τ ≜ minX⊆N1
maxY ∈F2

f(X ·∪ Y ).

Below, we prove Theorem 2.6. In this proof, we denote
by X∗ an arbitrary set in argminX⊆N1

maxY ∈F2
f(X∪

Y ). Notice that the definitions of X∗ and τ imply
together that τ = maxY ∈F2 f(X

∗ ∪ Y ). Thus, f(X∗ ∪
Y ) ≤ τ for every set Y ∈ F2, and in particular, since
∅ ∈ F2 by assumption, f(X∗) ≤ τ .

5Theorem 2.6 assumes an oracle that never fails. Such
an oracle can be implemented by a deterministic α-
approximation algorithm, or a randomized algorithm that
maximizes f(X ·∪Y ) up to a factor of α with high probability
(in the later case, the algorithm guaranteed by the theorem
also succeeds only with high probability). If one only has
a randomized algorithm guaranteeing α-approximation in
expectation, then repetitions should be used to get an oracle
that maximizes f(X ·∪ Y ) up to a factor of α + ε with high
probability. Note that when ε > 0 is only polynomially
small, this requires only a polynomial number of repetitions
since we may assume that α ≤ |N2| (otherwise, Theorem 2.4
already provides a better approximation).

Algorithm 1: Iterative X Growing

1 Use an algorithm for submodular minimization to
find a set X0 ∈ argminX⊆N1 f(X).

2 for i = 1 to n1 + 1 do
3 Use the given oracle to find a set Yi ∈ F2

maximizing f(Xi−1 ·∪ Yi) up to a factor of α
among all sets in F2.

4 Use an algorithm for submodular minimization
to find a set X ′

i ∈
argminX⊆N1

[
√
n1 · f(X ∪Xi−1) + f(X ·∪ Yi)].

5 if X ′
i ⊆ Xi−1 then return the set Xi−1 and

the value α · f(Xi−1 ·∪ Yi).
6 else Let Xi ← Xi−1 ∪X ′

i.

The algorithm that we use to prove Theorem 2.6 is
Algorithm 1. Below, we use n1 as a shorthand for |N1|,
and use I to denote the number of iterations completed
by the loop of this algorithm. Since the size of Xi

increases following every completed iteration, I ≤ n1.
Note that iteration I + 1 started, but stopped before
completion since X ′

I+1 was a subset of XI . Hence, XI

is the output set of Algorithm 1. We begin the analysis
of Algorithm 1 with the following lemma.

Lemma 2.7. For every integer 1 ≤ i ≤ I,

f(Xi) = f(Xi−1∪X ′
i) ≤ f((X∗∩X ′

i)∪Xi−1)+τ/
√
n1 .

Proof. By the choice of X ′
i, we have

√
n1 · f(X ′

i ∪Xi−1) + f(X ′
i ·∪ Yi)

≤ √n1 · f((X∗ ∩X ′
i) ∪Xi−1) + f((X∗ ∩X ′

i) ·∪ Yi)
≤ √n1 ·f((X∗∩X ′

i)∪Xi−1)+f(X
∗ ·∪Yi) + f(X ′

i ·∪Yi)
≤ √n1 · f((X∗ ∩X ′

i) ∪Xi−1) + τ + f(X ′
i ·∪ Yi) ,

where the second inequality follows from the submodu-
larity and non-negativity of f , and the last inequality
follows from the definition of X∗. The lemma now
follows by rearranging the last inequality.

Corollary 2.8. The output set XI of Algorithm 1
obeys f(XI) ≤ O(

√
n1) · τ .

Proof. If I = 0, then XI = X0, and by definition we
have f(XI) ≤ f(X∗) ≤ τ . Therefore, we may assume
from now on I ≥ 1. Using Lemma 2.7, we now get

f(XI)− f(X0) ≤
I∑

i=1

[f(Xi)− f(Xi−1)]

≤
I∑

i=1

[f(X∗ ∩X ′
i | Xi−1) + τ/

√
n1]
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≤
I∑

i=1

f(X∗ ∩X ′
i | X∗ ∩Xi−1) +

√
n1 · τ

= f(X∗ ∩XI | X∗ ∩X0) +
√
n1 · τ

≤ f(X∗ ∩XI)− f(X0) +
√
n1 · τ ,

where the penultimate inequality holds by the submod-
ularity of f and the observation that I ≤ n1, and the
last inequality holds by the definition of X0. Adding
f(X0) to be both sides of the last inequality yields

f(XI)−
√
n1 · τ ≤ f(X∗ ∩XI) ≤ f(X∗) + f(XI)

− f(X∗ ∪XI) ≤ τ + f(XI)− f(X∗ ∪XI) ,

where the second inequality follows from the submodu-
larity of f , and last inequality follows from the defini-
tion of X∗. To lower bound the term f(X∗ ∪XI), we
observe that since I ≥ 1, the definition of X ′

I implies

f(X∗ ∪XI) = f((X∗ ∪X ′
I) ∪XI−1)

≥ f(X ′
I ∪XI−1)−

f(X∗ | X ′
I ·∪ YI)√
n1

≥ f(XI)−
f(X∗)√
n1
≥ f(XI)− τ/

√
n1 ,

where the second inequality uses the submodularity
and non-negativity of f , and the last inequality holds
by the definition of X∗. The corollary now follows by
combining this inequality with the previous one.

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Since Algorithm 1 outputted
the set XI , we must have X ′

I+1 ⊆ XI . Furthermore,
by the choices of YI+1 and X ′

I+1,

α−1 · max
Y ∈F2

f(XI ·∪ Y )

≤ f(XI ·∪ YI+1) = f(XI) + f(YI+1 | XI)

≤ f(XI) + f(YI+1 | X ′
I+1)

≤ f(XI) + [
√
n1 · f(X∗ ∪XI) + f(X∗ ·∪ YI+1)

−√n1 · f(X ′
I+1 ∪XI)− f(X ′

I+1)]

≤ f(XI) +
√
n1 · f(X∗ | XI) + f(X∗ ·∪ YI+1) ,

where the second inequality follows from the submod-
ularity of f , and the last inequality holds by the non-
negativity of f . Observe now that Corollary 2.8 guar-
antees f(XI) ≤ O(

√
n) · τ , and the definition of X∗

guarantees f(X∗ ∪ YI+1) ≤ τ . Furthermore, using the
submodularity and non-negativity of f , we also get
f(X∗ | XI) ≤ f(X∗) ≤ τ . Plugging all these observa-
tions into the previous inequality yields

α−1 · max
Y ∈F2

f(XI ·∪ Y ) ≤ f(XI ·∪ YI+1)

≤ O(
√
n1) · τ +

√
n1 · τ + τ = O(

√
n1) · τ .

Multiplying the last inequality by α, we get the upper
bound on maxY ∈F2 f(XI ·∪Y ) and α ·f(XI ·∪YI+1) (the
value outputted by Algorithm 1) promised in the theo-
rem. The promised lower bound on these expressions
also holds since the definition of YI implies

α · f(XI ·∪ YI+1) ≥ max
Y ∈F2

f(XI ·∪ Y )

≥ min
X⊆N1

max
Y ∈F2

f(X ·∪ Y ) = τ .

3 APPLICATIONS

In this section and Appendix D we discuss five machine-
learning applications: efficient prompt engineering,
ride-share difficulty kernelization, adversarial attack
on image summarization, robust ride-share optimiza-
tion, and prompt engineering for dialog state tracking.
Each one of these applications necessitates either max-
min or min-max optimization on a jointly submodular
function6 (with a cardinality constraint on the max-
imization part). To demonstrate the robustness of
our suggested methods in this work, we empirically
compare them against a few benchmarks.

In the max-min optimization applications, we compare
the algorithm from Theorem 2.1 (named below Min-as-
Oracle) against 4 benchmarks: (i) “Random” choosing
a random set of k elements from N2 as the set Y ; (ii)
“Max-Only” using a maximization algorithm to find the
a set Y that is (approximately) optimal against X = ∅;
(iii) “Top-k” selecting a set Y consisting of the top k
singletons y ∈ N2, where each singleton is evaluated
based on the corresponding worst case set X; and (iv)
“Best-Response” simulating a best response dynamic
between the minimization and maximization players,
and outputting the set used by the maximization player
after a given number of iterations. The Best-Response
method is a widely used concept in game theory and
optimization, first introduced in the seminal work by
Von Neumann and Morgenstern (1947).

In the min-max optimization applications, we study
the algorithm from Theorem 2.4 (named below Min-
by-Singletons) and a slightly modified version of the
algorithm from Theorem 2.6 (named below Iterative-X-
Growing). Out of the above 4 benchmarks, the Random
and Best-Response benchmarks still make sense in min-
max settings with the natural adaptations. It was also
natural to try to replace the Max-Only benchmark
with a “Min-Only” benchmark, but such a benchmark
would always output the empty set in our applications.
Thus, we use instead a benchmark called “Max-and-
then-Min” that returns a set X that is optimal against

6We consider only jointly submodular functions in our
experiments since our theoretical results for disjointly sub-
modular functions are, unfortunately, mostly negative.
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the set Y returned by Max-Only. See Appendix E for
further detail about the various benchmarks, and the
implementations of our algorithms.

3.1 Efficient Prompt Engineering

Consider the problem of designing efficient prompts
for zero-shot in-context learning. Following Si et al.
(2023), we consider an open-domain question answering
task: the goal is to answer questions from the SQuAD
dataset (Rajpurkar et al., 2016) by prompting a large
language model with k relevant passages of text taken
from a large corpus of Wikipedia articles. To get for
each question an initial set of relevant candidate pas-
sages, 21 million Wikipedia passages were embedded
using a pretrained Contriever model (Izacard et al.,
2022) and indexed using FAISS.7 Then, for each ques-
tion, the top 100 passages were kept as candidates.

Large language models such as OpenAI’s ChatGPT
offer very impressive performance on natural language
tasks via a public API. As the cost of making a pre-
diction depends on the length of the input prompt, we
propose to reduce the cost by jointly answering similar
questions with a common prompt, and thus, a single
query to the GPT-3.5-turbo language model. To use
this approach, we need to select a subset of passages
that are effective on the set of answerable questions,
which we formulate as a combinatorial optimization
problem. Specifically, let N1 be a batch of questions
and let N2 be the union of all candidate passages. (In
general, 100 ≤ |N2| ≤ 100 · |N1| since there may be sig-
nificant overlap among candidates for questions on the
same topic.) Let 0 ≤ su,v ≤ 1 be the cosine similarity
between passage embedding u and question embedding
v. Then, we define

f(X ·∪ Y ) =
∑

v∈N1\X
max
u∈Y

su,v (2)

+ β ·
∑

u∈N1\X

∑

v∈Y

su,v + λ · |X| .

Here λ ≥ 0 and β ≥ 0 are regularization parameters.
The first term represents how well the passages of Y
cover the questions in N1 \X. For small values of β,
the second term ensures f increases in |Y |, and the last
term controls the size of X. The following lemma is
proved in Section F.1.

Lemma 3.1. The objective function (2) is a non-
negative jointly-submodular function.

By solving the max-min optimization maxY⊆N2,|Y |≤k

minX∈N1
f(X ·∪ Y ), we get the set X of answerable

questions, and a small set Y of effective passages. In
our experiments we set β = 10−3, λ = 0.8, and k = 10,

7https://github.com/facebookresearch/faiss

and we grouped the SQuAD test set into batches of 25
questions. In addition to the heterogeneity introduced
by crude batching, we removed δ = 25% of the candi-
dates from N2, leading to some questions having no
relevant passages.

Table 2 shows the performance of the prompts for
GPT-3.5-turbo obtained by Min-as-Oracle and various
benchmarks. Each method is evaluated in terms of
exact match accuracy and F1 score between predicted
and ground truth answers. As a baseline, we also
consider using the common prompt returned by the
retrieval algorithm, but making a separate prediction
for each question in the cluster. We see our proposed
joint prediction with a single prompt increases accuracy
while on average requiring only 5.3% of the tokens per
question compared to separate prediction. Moreover,
Min-as-Oracle has the highest accuracy among all re-
trieval algorithms used for joint prediction. Figure 1
shows a qualitative example of joint prediction for a
batch of questions.

3.2 Ride-Share Difficulty Kernelization

Consider a regulator overseeing the taxi companies
licensed to operate within a given city. The regulator
wants to make sure that the taxi companies give a
fair level of service to all parts of the city, rather than
concentrating on the most profitable neighborhoods.
However, checking that this is indeed the case is not
trivial since often the limited number of taxis available
implies that some locations must remain poorly served.
Our objective in this section is to give the regulator
a small set (kernel) of locations that that capture the
difficulty of the problem faced by the taxi company in
the sense that the locations in the set cannot be served
well (on average) regardless of how the taxi companies
choose the waiting locations for their taxis.

Formally, given a set N1 of (client) pickup locations,
and a set N2 of potential waiting locations for taxies,
we define the following score function to capture the
convenience of serving all the locations of N1 \X by
locating taxis at locations Y .8

f(X ·∪ Y ) =
∑

v∈N\X
max
u∈Y

su,v −
1

|N2|
∑

u∈Y

∑

v∈Y

su,v (3)

+ λ · |X| .

Here, su,v is a “convenience score” which, given a cus-
tomer location u = (xu, yu) and a waiting driver loca-
tion v = (xv, yv),

9 represents the ease of accessing u

8It would have been more natural to define X as the set
of locations to service. However, this would have resulted
in an objective function that is only disjointly submodular.

9Each location is specified by a (latitude, longitude)
coordinate pair.
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Random

… membrane shows its extensive 
invaginations to be stacked, similar to 
thylakoid disks; hence the mitochondrial 
intermembrane space is topologically quite 
similar to the chloroplast lumen…
...
… the stromal thylakoids. These large 
protein complexes may act as spacers 
between the sheets of stromal thylakoids. 
The number of thylakoids and the total 
thylakoid area of a chloroplast is influenced 
by light exposure. Shaded chloroplasts 
contain larger and more grana with more 
thylakoid membrane…
...

…
3. In linked groups ●
… …
18. Mitochondria ✖
19. Grana and stromal ✖
20. Thylakoid-shaped ✖

21. Vary in size ●
22. Six ✖
…

Max-Only

…to their parent thylakoid. In old or stressed chloroplasts, 
plastoglobuli tend to occur in linked groups or chains, still 
always…
…
… In most vascular plant chloroplasts, the thylakoids are 
arranged in stacks called grana, though in certain plant…
…

…
- In old or stressed chloroplasts ✔
… …
- Prokaryotic membranes and the inner chloroplast 
membrane ✖

- Two: chlorophyll ""a"" and chlorophyll ""b"" ●
- Arrangement in stacks called grana ●
- Free-floating ✖
- Disc-shaped ✖
…

Min-As-Oracle

… ATP energy as the hydrogen ions flow back out into the 
stroma—much like a dam turbine. There are two types of 
thylakoids—granal thylakoids, which are arranged in grana, 
and stromal thylakoids, which are in contact with the 
stroma. Granal thylakoids are pancake-shaped
…
… to their parent thylakoid. In old or stressed chloroplasts, 
plastoglobuli tend to occur in linked groups or chains, still 
always…
…

…
3. In old or stressed chloroplasts.    ✔
… …
18. A dam turbine. ✔ 
19. Two types.      ●
20. Arranged in stacks. ●
21. Free floating.          ✖
22. Pancake-shaped. ✔
…

Template

You should use the following text to answer 
questions. Your answers should be very short 
phrases less than 5 words.

{RETRIEVED_PASSAGES}

…
- When do Plastoglobuli occur in linked groups?
- What is ATP synthase similar to?
- How many types of thylakoids are there?
- What distinguishes granal thylakoids?
- What distinguishes stromal thylakoids?
- What shape are granal thylakoids?
…

{LLM_OUTPUT}

Best-Response

…to their parent thylakoid. In old or stressed 
chloroplasts, plastoglobuli tend to occur in linked 
groups or chains, still always…
…
… In most vascular plant chloroplasts, the thylakoids 
are arranged in stacks called grana, though in 
certain plant…
…

…
3. In old or stressed chloroplasts. ✔
…
18. Mitochondria. ✖

19. Two types: grana and stromal. ●
20. Grana are stacked, stromal are free-floating. ●
21. Disc-shaped. ✖
22. 0.2-0.5 micrometers in diameter. ✖
…

Top-k

… ATP energy as the hydrogen ions flow back out 
into the stroma—much like a dam turbine. There 
are two types of thylakoids—granal thylakoids, 
which are arranged in grana, and stromal 
thylakoids, which are in contact with the stroma. 
Granal thylakoids are pancake-shaped
…
… In most vascular plant chloroplasts, the 
thylakoids are arranged in stacks called grana, 
though in certain plant…
…

…
3. When CO is scarce ✖
… …
18. Two types ✖
19. Arranged in stacks ✖

20. In contact with stroma ●
21. Pancake-shaped ✖
22. Varies ✖
…

None

…
3. Linked metabolic pathways ✖
… …
18. Grana and stromal ✖
19. Stacked thylakoids ✖
20. Unstacked thylakoids ✖
21. Flattened discs ✖
22. 10-20 nm in diameter ✖
…

Figure 1: Example of our proposed max-min formulation for jointly answering a batch of questions from the
SQuAD dataset using GPT-3.5-turbo. Template prompt (left), followed by excerpts from the retrieved passages
(blue) and generated answers (green). Exact match, partial match, and incorrect answer are denoted ✔, ●, and
✖, respectively. Min-as-Oracle retrieved two passages that are relevant to Questions 3, 18, 19, 20, 21, and 22,
while the other selection algorithms retrieved only one or neither of them. Consequently, Min-As-Oracle is
best aligned with the ground truth answers, having the highest number of exact matches and the
fewest number of hallucinations.

from v. Following Mitrovic et al. (2018), we set su,v ≜
2− 2

1+e−200d(u,v) , where d(u, v) = |xu−xv|+ |yu−yv| is
the Manhattan distance between the two points. The
value λ ∈ [0, 1] is a regularization parameter whose
use is discussed below. Some properties of this objec-
tive function are given by the next lemma, proved in
Appendix F.2.

Lemma 3.2. The objective function (3) is a non-
negative jointly-submodular function.

Recall that we are looking for a kernel set N1 \X of
pickup locations that cannot be served well (on average)
by any choice of k locations for taxis (k is determined
by the number of taxis available). To do that, we need
to solve the max-min optimization problem given by
minX⊆N1 maxY⊆N2,|Y |≤k f(X ·∪Y ). The regularization
parameter λ can now be used to control the size the
kernel set returned.

In our experiments for this application, we have used
the Uber data set (Uber), which includes real-life Uber
pickups in New York City during the month of April
in the year 2014. To ensure computational tractability,
in each execution of our experiments, we randomly

selected from this data set a subset of |N1| = 6,000
pickup locations within the region of Manhattan. Then,
we randomly selected a subset of 400 pickup locations
from the set N1 to constitute the set N2 (we treat
locations in N1 and N2 as distinct even if they are
identical, to guarantee that N1 and N2 are disjoint).

In the first experiment, we fixed the maximum number
of waiting locations to be 8, and varied λ. Figure 2a
depicts the outputs for this experiment for Min-by-
Singletons, Iterative-X-Growing (with β = 0.5) and
three benchmarks (averaged over 10 executions of the
experiment). One can observe that both Iterative-X-
Growing and Min-by-Singletons surpasses the perfor-
mance of all benchmarks for almost all values of λ. In
both this experiment and the next one the standard
error of the mean is less than 10 for all data points.

In the second experiment, we fixed λ to 0.2 and varied
the number of allowed waiting locations. The results
of this experiment are depicted by Figure 2b (averaged
over 10 executions of the experiment). Once again,
Iterative-X-Growing and Min-by-Singletons demon-
strate superior performance compared to the bench-
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Table 2: Open-domain question answering on SQuAD using GPT-3.5-turbo. Best values are in bold.

Prompting Method Retrieval Algorithm Exact Match % ↑ F1% ↑ Avg Tokens/Question ↓

Joint Prediction

Random 18.6 29.7 73.2
None 22.5 33.9 20.0
Top-k 25.0 37.0 72.8

Max-Only 25.9 37.5 73.2
Best-Response 25.6 37.0 73.2
Min-as-Oracle 26.1 37.8 73.2

Separate Prediction

Random 9.7 17.8 1356.3
None 15.9 29.1 40.1
Top-k 21.3 31.6 1338.8

Max-Only 25.3 36.4 1348.7
Best-Response 25.2 36.2 1348.7
Min-as-Oracle 25.2 36.3 1348.7
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(a) Results for 8 waiting locations
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(b) Results for λ = 0.2
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(c) Behavior of Best-Response for λ =
0.2 and 8 waiting locations

Figure 2: Empirical results for ride-share difficulty kernelization. Figures (a) and (b) compare the performance of
our algorithms Min-by-Singletons and Iterative-X-Growing with 3 benchmarks for different value of λ and bounds
on the number of weighting locations. Figure (c) depicts the value of the output of the Best-Response method as
a function of the number of iterations performed.

marks for almost all values of k. Please refer to Figure 6
in Appendix D.4 for a visual depiction of the results.

As the third experiment for this application, we con-
ducted a more in depth analysis of Best-Response. Fig-
ure 2c graphically presents the objective function value
obtained by a typical execution of Best-Response after
a varying number of iterations (for λ = 0.5 and an
upper bound of 20 on the number of waiting locations).
It is apparent that Best-Response does not converge
for this execution. Furthermore, both our suggested
algorithms demonstrate better performance even with
respect to the best performance of Best-Response for
any number of iterations between 1 and 50.

4 CONCLUSION

In this paper we have initiated the systematical study
of minimax optimization for combinatorial (discrete)
settings with large domains. We have fully mapped the
theoretical approximability of max-min submodular
optimization, and also obtained some understanding
of the approximability of min-max submodular opti-

mization. The above theoretical work has been comple-
mented with empirical experiments demonstrating the
value of our technique for the machine-learning tasks of
efficient prompt engineering, ride-share difficulty ker-
nelization, adversarial attacks on image summarization,
and robust ride-share optimization.

We hope future work will lead to a fuller understanding
of minimax submodular optimization, and will also
consider classes of discrete functions beyond submodu-
larity. A natural class to consider in that regard is the
class of weakly-submodular functions (Das and Kempe,
2011), which extends the class of submodular functions
and has many machine learning applications (Khanna
et al., 2017; Qian and Singer, 2019; Chen et al., 2018;
El Halabi et al., 2022). However, minimax optimization
of this class seems to be difficult because no algorithm is
currently known even for plain minimization of weakly-
submodular functions. Another open problem is to
prove a performance guarantee for Best-Response.
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Lang, editors, ECAI 2020 - 24th European Conference
on Artificial Intelligence, volume 325 of Frontiers in
Artificial Intelligence and Applications, pages 451–458.
IOS Press, 2020. doi: 10.3233/FAIA200125. URL
https://doi.org/10.3233/FAIA200125.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian
Riedel, Piotr Bojanowski, Armand Joulin, and Edouard
Grave. Unsupervised dense information retrieval with
contrastive learning. In TMLR, 2022.

Rajiv Khanna, Ethan Elenberg, Alex Dimakis, Sahand Ne-
gahban, and Joydeep Ghosh. Scalable Greedy Feature
Selection via Weak Submodularity. In Aarti Singh and
Jerry Zhu, editors, International Conference on Artifi-
cial Intelligence and Statistics (AISTATS), volume 54 of
Proceedings of Machine Learning Research, pages 1560–
1568. PMLR, Apr 2017. URL https://proceedings.
mlr.press/v54/khanna17b.html.

Andreas Krause and Volkan Cevher. Submodular dictio-
nary selection for sparse representation. In Johannes
Fürnkranz and Thorsten Joachims, editors, International
Conference on Machine Learning (ICML), pages 567–574.
Omnipress, 2010. URL https://icml.cc/Conferences/
2010/papers/366.pdf.

Andreas Krause, H Brendan McMahan, Carlos Guestrin,
and Anupam Gupta. Robust submodular observation
selection. Journal of Machine Learning Research, 9(12),
2008.

Alex Krizhevsky. Learning multiple layers of features from
tiny images. Master’s thesis, University of Toronto, 2009.

Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and
Maxim Sviridenko. Non-monotone submodular maxi-
mization under matroid and knapsack constraints. In
Michael Mitzenmacher, editor, STOC, pages 323–332.
ACM, 2009. doi: 10.1145/1536414.1536459. URL
https://doi.org/10.1145/1536414.1536459.

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong.
A faster cutting plane method and its implications for
combinatorial and convex optimization. In IEEE Sym-
posium on Foundations of Computer Science (FOCS),
pages 1049–1065, 2015. doi: 10.1109/FOCS.2015.68.
URL https://doi.org/10.1109/FOCS.2015.68.

Brian Lester, Rami Al-Rfou, and Noah Constant. The
power of scale for parameter-efficient prompt tuning. In
EMNLP, 2022.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang,
and Stuart Russell. Robust multi-agent reinforcement
learning via minimax deep deterministic policy gradi-
ent. In Conference on Artificial Intelligence (AAAI),



Submodular Minimax Optimization: Finding Effective Sets

pages 4213–4220. AAAI Press, 2019. doi: 10.1609/aaai.
v33i01.33014213. URL https://doi.org/10.1609/aaai.
v33i01.33014213.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing
continuous prompts for generation. In ACL, 2021.

Hui Lin and Jeff A. Bilmes. A class of submodular functions
for document summarization. In Dekang Lin, Yuji Mat-
sumoto, and Rada Mihalcea, editors, Annual Meeting
of the Association for Computational Linguistics (ACL),
pages 510–520. The Association for Computer Linguistics,
2011. URL https://aclanthology.org/P11-1052/.

Tianyi Lin, Chi Jin, and Michael I. Jordan. On gradi-
ent descent ascent for nonconvex-concave minimax prob-
lems. In International Conference on Machine Learning
(ICML), volume 119 of Proceedings of Machine Learn-
ing Research, pages 6083–6093. PMLR, 2020. URL
http://proceedings.mlr.press/v119/lin20a.html.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike
Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Re-
thinking the role of demonstrations: What makes in-
context learning work? In EMNLP, 2022.

Baharan Mirzasoleiman, Amin Karbasi, and Andreas
Krause. Deletion-robust submodular maximization: Data
summarization with “the right to be forgotten”. In
Doina Precup and Yee Whye Teh, editors, Proceedings of
the 34th International Conference on Machine Learning
(ICML), volume 70 of Proceedings of Machine Learning
Research, pages 2449–2458. PMLR, 2017. URL http://
proceedings.mlr.press/v70/mirzasoleiman17a.html.

Marko Mitrovic, Ehsan Kazemi, Morteza Zadimoghaddam,
and Amin Karbasi. Data summarization at scale: A two-
stage submodular approach. In International Conference
on Machine Learning, pages 3596–3605. PMLR, 2018.

Slobodan Mitrovic, Ilija Bogunovic, Ashkan Norouzi-Fard,
Jakub Tarnawski, and Volkan Cevher. Streaming
robust submodular maximization: A partitioned
thresholding approach. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett,
editors, Advances in Neural Information Processing
Systems 30 (NeurIPS), pages 4557–4566, 2017. URL
https://proceedings.neurips.cc/paper/2017/hash/
3baa271bc35fe054c86928f7016e8ae6-Abstract.html.

Aryan Mokhtari, Asuman E. Ozdaglar, and Sarath Pat-
tathil. Convergence rate of O(1/k) for optimistic gra-
dient and extragradient methods in smooth convex-
concave saddle point problems. SIAM J. Optim., 30
(4):3230–3251, 2020. doi: 10.1137/19M127375X. URL
https://doi.org/10.1137/19M127375X.

Loay Mualem and Moran Feldman. Resolving the ap-
proximability of offline and online non-monotone dr-
submodular maximization over general convex sets. arXiv
preprint arXiv:2210.05965, 2022a.

Loay Mualem and Moran Feldman. Using partial mono-
tonicity in submodular maximization. arXiv preprint
arXiv:2202.03051, 2022b.

George L. Nemhauser and Laurence A. Wolsey. Best algo-
rithms for approximating the maximum of a submodular
set function. Math. Oper. Res., 3(3):177–188, 1978. doi:
10.1287/moor.3.3.177. URL https://doi.org/10.1287/
moor.3.3.177.

George L. Nemhauser, Laurence A. Wolsey, and Marshall L.
Fisher. An analysis of approximations for maximizing
submodular set functions–I. Math. Program., 14(1):265–
294, 1978. doi: 10.1007/BF01588971. URL https://doi.
org/10.1007/BF01588971.

James B. Orlin, Andreas S. Schulz, and Rajan Udwani. Ro-
bust monotone submodular function maximization. Math.
Program., 172(1-2):505–537, 2018. doi: 10.1007/s10107-
018-1320-2. URL https://doi.org/10.1007/s10107-
018-1320-2.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L.
Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, John Schulman,
Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul Christiano, Jan
Leike, and Ryan Lowe. Training language models to
follow instructions with human feedback. In NeurIPS,
2022.

Shayan Oveis Gharan and Jan Vondrák. Submodular
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A ADDITIONAL RELATED WORK FOR PROMPT ENGINEERING FOR
NATURAL LANGUAGE PROCESSING

In-context learning (Dong et al., 2022) has emerged as a powerful technique to leverage very large language
models (Brown et al., 2020; Chen et al., 2021; Ouyang et al., 2022) for Natural Language Processing (NLP) tasks
to new tasks without fine-tuning. Recent works, such as Min et al. (2022); Wang et al. (2022); Wei et al. (2022),
show the importance of crafting good natural language prompts for these models.

Our prompt engineering experiments build on related works which use a neural retrieval model to prompt large
language models for open-domain question answering (Si et al., 2023) and dialog state tracking (Hu et al., 2022).
While these previous works only use the Top-k candidates based on embedding similarity, we formulate a novel
combinatorial optimization problem for each application.

Some works suggested algorithmic approaches to prompt engineering that learn parameters using gradient-based
optimization (Lester et al., 2022; Li and Liang, 2021; Shin et al., 2020; Wen et al., 2023). More recently, Zhou
et al. (2022) designed prompts by ranking generations from a secondary language model combined with iterative
Monte Carlo search. All of these methods are complex, computationally expensive, and challenging to interpret.

B PROOFS OF SECTION 2.1

B.1 Proof of Theorem 2.1

In this section we prove Theorem 2.1, which we repeat here for convenience.

Theorem 2.1. Assume that there exists an α-approximation algorithm ALG for the problem of maximizing
a non-negative submodular function g subject to F2. Then, for every polynomially small ε ∈ (0, α], there
exists a polynomial time algorithm that (i) outputs a set Ŷ ∈ F2 and the value minX⊆N1

f(X ·∪ Ŷ ); and (ii)

guarantees that, with probability at least 2/3, minX⊆N1
f(X ·∪ Ŷ ) falls within the range [τ/(α + ε), τ ], where

τ = maxY ∈F2
minX⊆N1

f(X ·∪ Y ). Furthermore, if f is N2-monotone, then it suffices for ALG to obtain
α-approximation when g is guaranteed to be monotone (in addition to being non-negative and submodular).

The majority of the section is devoted to proving the slightly different version of the last theorem given by
Proposition B.1. If ALG is a deterministic algorithm, then the algorithm whose existence is guaranteed by
Proposition B.1 is also deterministic, and immediately implies Theorem 2.1. However, if ALG is a randomized
algorithm, then it might be necessary to use repetitions to get the result stated in Theorem 2.1. Specifically, by a
Markov-like argument, the probability that minX⊆N1

f(X ·∪ Ŷ ) ≥ τ/(α+ ε) must be at least ε/α2, and therefore,

by executing the algorithm from Proposition B.1 O(α2/ε) times, the probability of getting a set Ŷ for which
minX⊆N1

f(X ·∪ Ŷ ) ≥ τ/(α+ ε) can be made to be at least 2/3.

Proposition B.1. Assume that there exists an α-approximation algorithm ALG for the problem of maximizing
a non-negative submodular function g subject to F2, then there exists a polynomial time algorithm that outputs
a set Ŷ ∈ F2 and the value minX⊆N1 f(X ·∪ Ŷ ), and guarantees that (i) minX⊆N1 f(X ·∪ Ŷ ) ≤ τ , and (ii) the

expectation of minX⊆N1 f(X ·∪ Ŷ ) is at least τ/α. Furthermore, if f is N2-monotone, then it suffices for ALG to
obtain α-approximation when g is guaranteed to be monotone (in addition to being non-negative and submodular).

To prove Proposition B.1, let us define, for every set Y ⊆ N2, g(Y ) = minX⊆N1 f(X ·∪ Y ). It is well-known that
g is a submodular function, and we prove it in the next lemma for completeness (along with additional properties
of g).

Lemma B.2. The function g : 2N2 → R≥0 is a non-negative submodular function, and there exists a polynomial
time implementation of the value oracle of g. Furthermore, if f is N2-monotone, then g is monotone (in addition
to being non-negative and submodular).

Proof. We begin the proof by considering Algorithm 2. One can observe that this algorithm describes a way to
implement a value oracle for g because, by the definitions of X ′ and hY ,

f(X ′ ∪ Y ) = hY (X
′) = min

X⊆N1

hY (X) = min
X⊆N1

f(X ∪ Y ) = g(Y ) .
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Algorithm 2: Value oracle implementation (Y )

1 Define hY (X) ≜ f(X ·∪ Y ) for every set X ⊆ N1.
2 Find a set X ′ ⊆ N1 minimizing hY (X

′).
3 return f(X ′ ·∪ Y ).

Furthermore, Algorithm 2 can be implemented to run in polynomial time using any polynomial time algorithm
for unconstrained submodular minimization because hY is a submodular function.

The non-negativity of g follows from the definition of g and the non-negativity of f . Proving that g is also
submodular is more involved. Let Y1 and Y2 be two arbitrary subsets of N2, and let us choose a set Xi ∈
argminX⊆N1

f(X ·∪ Yi) for every i ∈ {1, 2}. Then,

g(Y1) + g(Y2) = f(X1 ·∪ Y1) + f(X2 ·∪ Y2)
≥ f((X1 ∩X2) ·∪ (Y1 ∩ Y2)) + f((X1 ∪X2) ·∪ (Y1 ∪ Y2))
≥ min

X⊆N1

f(X ·∪ (Y1 ∩ Y2)) + min
X⊆N1

f(X ·∪ (Y1 ∪ Y2)) = g(Y1 ∩ Y2) + g(Y1 ∪ Y2) ,

where the first inequality holds by the submodularity of f since X1 ∪X2 ⊆ N1 is disjoint from Y1 ∪ Y2 ⊆ N2.
This completes the proof that g is submodular.

It remains to prove that g is monotone whenever f is N2-monotone. Therefore, in the rest of the proof we assume
that f indeed has this property. Then, if the sets Y1 and Y2 obey the inclusion Y1 ⊆ Y2, then they also obey

g(Y2) = f(X2 ∪ Y2) ≥ f(X2 ∪ Y1) ≥ f(X1 ∪ Y1) = g(Y1) ,

where the first inequality follows from the N2-monotonicity of f , and the second inequality follows from the
definition of X1.

We are now ready to prove Proposition B.1.

Proof of Proposition B.1. Note that Lemma B.2 implies that g has all the properties necessary for ALG to
guarantee α-approximation for the problem of minY ∈F2

g(Y ). Therefore, we can use ALG to implement in
polynomial time the procedure described by Algorithm 3 (since ALG runs in polynomial time given a polynomial
time value oracle implementation for the objective function). Since the definition of g implies maxY ∈F2 g(Y ) =

Algorithm 3: Approximate using ALG

1 Use ALG to get a set Y ′ ∈ F2 such that α−1 ·maxY ∈F2
g(Y ) ≤ E[g(Y ′)] ≤ maxY ∈F2

g(Y ).
2 return the set Y ′ and the value g(Y ′).

maxY ∈F2 minX⊆N2 f(X ·∪Y ) = τ , the value g(Y ′) = minX⊆N1 f(X ·∪Y ′) ≤ maxY ∈F2 minX⊆N2 f(X ·∪Y ) produced
by Algorithm 3 is at most τ and in expectation at least τ/α. Therefore, Algorithm 3 has all the properties
guaranteed by Proposition B.1.

B.2 Proofs of Theorems 2.2 and 2.3

In this section we prove the inapproximability results stated in Theorems 2.2 and 2.3. The proofs of both
theorems are based on the reduction described by the following proposition. Below, we use N0 and N to denote
the set of natural numbers with and without 0, respectively. Additionally, recall that for a non-negative integer i,
[i] = {1, 2, . . . , i}. In particular, this implies that [0] = ∅, which is a property we employ later in the section.

Proposition B.3. Fix any family F2 of pairs of ground set N2 and constraint F2 ⊆ 2N2 . Additionally, let
α : N0 × F2 → [1,∞) be an arbitrary function (intuitively, for every pair (N2,F2) ∈ F2, α(m,N2,F2) is an
approximation ratio that we assign to this pair when the ground set N1 has a size of m). Assume that there exists
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a (possibly randomized) polynomial time algorithm ALG which, given a ground set N1, a pair (N2,F2) ∈ F2, and
a non-negative disjointly submodular function f : 2N1 ·∪N2 → R≥0, outputs a value v such that, with probability at
least 2/3,

1
α(|N1|,(N2,F2))

· max
Y ∈F2

min
X⊆N1

f(X ·∪ Y ) ≤ v ≤ max
Y ∈F2

min
X⊆N1

f(X ·∪ Y ) .

Then, there also exists a polynomial time algorithm that given a pair (N2,F2) ∈ F2 and non-negative submodular
functions g1, g2, . . . , gm : 2N2 → R≥0 outputs a value v such that, with probability at least 2/3,

1
α(m−1,(N2,F2))

· max
Y ∈F2

min
1≤i≤m

gi(Y ) ≤ v ≤ max
Y ∈F2

min
1≤i≤m

gi(Y ) .

Furthermore, if the functions g1, g2, . . . , gm : 2N2 → R≥0 are all guaranteed to be monotone (in addition to being
non-negative and submodular), then it suffices for ALG to have the above guarantee only when f is N2-monotone
(in addition to being non-negative and disjointly submodular).

Before proving Proposition B.3, let us show that it indeed implies Theorems 2.2 and 2.3.

Theorem 2.2. When f is only guaranteed to be non-negative and disjointly submodular, no polynomial time
algorithm for calculating maxY⊆N2

minX⊆N1
f(X ·∪ Y ) has a finite approximation ratio unless BPP = NP .

Proof. Fix the family F2 = {([k], 2[k]) | k ∈ N}. Assume that there exists a polynomial time algorithm for
calculating maxY⊆N2

minX⊆N1
f(X ·∪ Y ) that has a polynomial approximation ratio. By plugging this algorithm

and the family F2 into Proposition B.3, we get that there exists a polynomial time algorithm ALG and a
polynomial function α : N×N→ [1,∞) such that, given integer k ∈ N and m non-negative monotone submodular
functions g1, g2, . . . , gm, the algorithm ALG produces a value v such that, with probability at least 2/3,

1
α(m,k) · max

Y⊆[k]
min

1≤i≤m
gi(Y ) ≤ v ≤ max

Y⊆[k]
min

1≤i≤m
gi(Y ) .

In particular, ALG answers correctly with probability at least 2/3 whether the expression maxY⊆[k] min1≤i≤m gi(Y )
is equal to zero. Therefore, to prove the theorem it suffices to show that that exists some NP-hard problem
such that every instance I of this problem can be encoded in polynomial time as an expression of the form
maxY⊆[k] min1≤i≤m gi(Y ) that takes the value 0 if and only if the correct answer for the instance I is “No”.

In the rest of this proof, we show that this is indeed the case for the NP-hard problem SAT. Every instance of SAT
consists a CNF formula ϕ over n variables x1, x2, . . . , xn that has ℓ clauses. To encode this instance, we need to
construct n+ ℓ functions over the ground set [2n]. Intuitively, for every integer 1 ≤ i ≤ n the elements 2i− 1
and 2i of the ground set correspond to the variable xi of ϕ. The element 2i− 1 corresponds to an assignment
of 1 to this variable, and the element 2i corresponds to an assignment of 0. For every integer 1 ≤ i ≤ n, the
objective of the function gi is to make sure that exactly one value is assigned to xi. Formally, this is done by
defining gi(Y ) ≜ |{2i − 1, 2i} ∩ Y | mod 2 for every Y ⊆ [2n]. One can note that gi(Y ) takes the value 1 only
when exactly one of the elements 2i− 1 or 2i belongs to Y . Furthermore, one can verify that gi is non-negative
and submodular.

Next, we need to define the functions gn+1, gn+2, . . . , gn+ℓ. To define these functions, let us denote by c1, c2, . . . , cℓ
the clauses of ϕ. Additionally we denote by cj(xi = v) an indicator that gets the value 1 if assigning the value v
to xi guarantees that the clause cj is satisfied. In other words, cj(xi = v) equals 1 only if v = 1 and cj includes
the positive literal xi, or v = 0 and cj includes the negative literal x̄j . For every integer 1 ≤ j ≤ ℓ, the function
gn+j(Y ) corresponds to the clause wj and takes the value 1 only when this clause is satisfied by some element of
Y . Formally,

gn+j(Y ) = max
i∈Y

cj(x⌈i/2⌉ = (i mod 2))

(notice that x⌈i/2⌉ is the index of the variable corresponding to element i, and i mod 2 is the value assigned to
this variable by the element i). One can verify that gn+j(Y ) is a non-negative submodular (and even monotone)
function.

Let us now explain why maxY⊆[2n] min1≤i≤m gi(Y ) takes the value 0 if and only if ϕ is not satisfiable. First, if
there exists a satisfying assignment a for ϕ, then one can construct a set Y ⊆ [2n] that encodes a. Specifically,
for every integer 1 ≤ i ≤ n, Y should include 2i− 1 (and not 2i) if a assigns the value 1 to xi, and otherwise Y
should include 2i (and not 2i− 1). Such a choice of Y will make all the above functions g1, g2, . . . , gn+ℓ take the
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value 1, and therefore, maxY⊆[2n] min1≤i≤m gi(Y ) = 1 in this case. Consider now the case in which ϕ does not
have a satisfying assignment. Then, for every set Y ⊆ [2n] we must have one of the following. The first option is
that Y includes either both 2i− 1 and 2i, or neither of these elements, for some integer i, which makes gi evaluate
to 0 on Y . The other option is that Y corresponds to some legal assignment a of values to x1, x2, . . . , xn that
violates some clause cj , and thus, gn+j evaluates to 0 on Y . In both cases min1≤i≤m gi(Y ) = 0.

Theorem 2.3. When f is only guaranteed to be non-negative, N2-monotone and disjointly submodular, no
polynomial time algorithm for calculating maxY⊆N2,|Y |≤ρ minX⊆N1

f(X ·∪ Y ), where ρ is a parameter of the
problem, has a finite approximation ratio unless BPP = NP .

Proof. The proof of this theorem is very similar to the proof of Theorem 2.2, and therefore, we only describe
here the differences between the two proofs. First, the family F2 should be chosen this time as F2 = {([2k], {Y ⊆
[2k] | |Y | ≤ k} | k ∈ N}. This modification implies that we now need to encode ϕ as an instance of

max
Y⊆[2n]
|Y |≤n

min
1≤i≤m

gi(Y ) ,

where the functions gi(Y ) are all non-negative monotone submodular functions over the ground set [2n]. We do
this using n+ ℓ functions like in the proof of Theorem 2.2. Moreover, the functions gn+1, gn+2, gn+ℓ are defined
exactly like in the proof of Theorem 2.2.

For every integer 1 ≤ i ≤ n, the function gi still corresponds to the variable xi, but now the role of gi is only to
guarantee that xi gets at least a single value. This is done by setting gi(Y ) = min{|Y ∩ {2i− 1, 2i}|, 1}, which
means that gi takes the value 1 only when at least one of the elements 2i− 1 or 2i belongs to Y . Note that gi is
indeed non-negative, monotone and submodular, as necessary. The main observation that we need to make is
that if Y is a set of size at most n for which all the functions g1, g2, . . . , gn return 1, then Y must include at least
one element of the pair {2i− 1, 2i} for every integer 1 ≤ i ≤ n. Since these are n disjoint pairs, and Y contains
at most n elements, we get that Y contains exactly one element of each one of the pairs {2i− 1, 2i}. In other
words, min1≤i≤n gi(Y ) = 1 if and only if Y corresponds to assigning exactly one value to every variable xi, which
is exactly the property that the functions g1, g2, . . . , gn need to have to allow the rest of the proof of Theorem 2.2
to go through.

Remark. The above proof of Theorem 2.3 plugs into Proposition B.3 the observation that an expression of the
form maxY⊆N2,|Y |≤k min1≤i≤m gi(Y ) can capture an NP-hard problem. The last observation was already shown
by Theorem 3 of Krause et al. (2008) (for the Hitting-Set problem). Thus, Theorem 2.3 can also be obtained as a
corollary of Proposition B.3 and Theorem 3 of Krause et al. (2008). However, for completeness and consistency,
we chose to provide a different proof of Theorem 2.3 that closely follows the proof of Theorem 2.2.

We now get to the proof of Proposition B.3. One can observe that to prove this proposition it suffices to show the
following lemma (the algorithm whose existence is guaranteed by Proposition B.3 can be obtained by simply
applying ALG to the ground set N1 and function f defined by Lemma B.4).

Lemma B.4. Given non-negative submodular functions g1, g2, . . . , gm : 2N2 → R≥0, there exists a ground set N1

and a non-negative disjointly submodular function f : 2N1 ·∪N2 → R≥0 such that

• the size of the ground set N1 is m− 1.

• given sets X ⊆ N1 and Y ⊆ N2, it is possible to evaluate f(X ·∪ Y ) in polynomial time.

• for every set Y ⊆ N2, minX⊆N1
f(X ·∪ Y ) = min1≤i≤m gi(Y ).

• when the functions g1, g2, . . . , gm are all monotone (in addition to being non-negative and submodular), then
the function f is guaranteed to be N2-monotone (in addition to being non-negative and disjointly submodular).

The rest of this section is devoted to proving Lemma B.4. Let us start by describing how the ground set N1 and
the function f are constructed. We assume without loss of generality that N2 ∩ [m− 1] = ∅, which allows us
to choose N1 = [m− 1]. Given a set X ⊆ [m− 1], let us define c(X) ≜ max{i ∈ N0 | [i] ⊆ X} (in other words,
c(X) is the largest integer such that all the numbers 1 to i appear in X). Additionally, we choose M to be a
number obeying gi(Y ) ≤M/2 for every i ∈ [m] and Y ⊆ N2 (such a number can be obtained in polynomial time
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by running the 2-approximation algorithm of Buchbinder and Feldman (2018) for unconstrained submodular
maximization on the functions g1, g2, . . . , gm, and then setting M to be four times the largest number returned).
Using this notation, we can now define, for every two sets X ⊆ N1 and Y ⊆ N2,

f(X ·∪ Y ) ≜ gc(X)+1(Y ) + (|X| − c(X)) ·M .

The following observation states some properties of f that immediately follow from the definition of f and the
fact that c(X) is at most |X| by definition.

Observation B.5. The function f is non-negative and can be evaluated in polynomial time. Furthermore, f
is N2-monotone when the functions g1, g2, . . . , gm are monotone because gc(X)+1(Y ) + (|X| − c(X)) ·M is a
monotone function of Y for any fixed set X ⊆ N1.

The following two lemmata prove additional properties of f .

Lemma B.6. The function f is disjointly submodular, i.e., it is submodular when restricted to either N1 or N2.

Proof. For every fixed set X ⊆ N1, there exists a value i ∈ [m] and another value c, both depending only on
X, such that f(X ·∪ Y ) = gi(Y ) + c. Since adding a constant to a submodular function does not affect its
submodularity, this implies that f is submodular when restricted to N2. In the rest of the proof we concentrate
on showing that f is also submodular when restricted to N1.

Consider now an arbitrary element i ∈ N1. For every two sets X ⊆ N1 − i and Y ⊆ N2,

f(i | X ·∪ Y ) = gc(X+i)+1(Y )− gc(X)+1(Y ) + (1 + c(X)− c(X + i)) ·M .

To show that f is submodular when restricted to N1, we need to show that the last expression is a down-monotone
function X, i.e., that its value does not increase when elements are added to X. To do that, it suffices to show
that the addition to X of any single element j ∈ N1 \ (X + i) does not increase the value of this expression; which
we show below by considering a few cases.

The first case we need to consider is the case of [i − 1] ̸⊆ X + j. Clearly, in this case c(X) = c(X + i) and
c(X + j + i) = c(X + j), and therefore,

f(i | (X + j) ·∪ Y ) = gc(X+j+i)+1(Y )− gc(X+j)+1(Y ) + (1 + c(X + j)− c(X + j + i)) ·M
=M = gc(X+i)+1(Y )− gc(X)+1(Y ) + (1 + c(X)− c(X + i)) ·M = f(i | X ·∪ Y ) .

The second case we consider the case in which [i− 1] ⊆ X + j, but [i− 1] ̸⊆ X. In this case

f(i | (X + j) ·∪ Y ) = gc(X+j+i)+1(Y )− gc(X+j)+1(Y ) + (1 + c(X + j)− c(X + j + i)) ·M
≤ gc(X+j+i)+1(Y )− gc(X+j)+1(Y ) ≤ gc(X+i)+1(Y )− gc(X)+1(Y ) +M

= gc(X+i)+1(Y )− gc(X)+1(Y ) + (1 + c(X)− c(X + i)) ·M = f(i | X ·∪ Y ) ,

where the first inequality holds since the definition of the case implies c(X + j + i) ≥ i = 1+ c(X + j), the second
inequality follows from the definition of M , and the penultimate equality holds since the definition of the case
implies c(X) = c(X + i).

The third case we need to consider is when [i− 1] ⊆ X and c(X + i) = c(X + i+ j). Since we also have in this
case c(X) = i− 1 = c(X + j), we get

f(i | (X + j) ·∪ Y ) = gc(X+j+i)+1(Y )− gc(X+j)+1(Y ) + (1 + c(X + j)− c(X + j + i)) ·M
= gc(X+i)+1(Y )− gc(X)+1(Y ) + (1 + c(X)− c(X + i)) ·M = f(i | X ·∪ Y )

The last case we need to consider is when [i− 1] ⊆ X and c(X + i) < c(X + j + i). In this case

f(i | (X + j) ·∪ Y ) = gc(X+j+i)+1(Y )− gc(X+j)+1(Y ) + (1 + c(X + j)− c(X + j + i)) ·M
≤ gc(X+j+i)+1(Y )− gc(X+j)+1(Y )−M ≤ gc(X+i)+1(Y )− gc(X)+1(Y )

= gc(X+i)+1(Y )− gc(X)+1(Y ) + (1 + c(X)− c(X + i)) ·M = f(i | X ·∪ Y ) ,

where the first inequality holds since the definition of the case implies c(X+j) = i−1 = c(X+i)−1 < c(X+j+i)−1,
the second inequality follows from the definition of M , and the penultimate equality holds since the definition of
the case implies c(X) = i− 1 = c(X + i)− 1.
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Lemma B.7. For every set Y ⊆ N2, minX⊆N1 f(X ·∪ Y ) = min1≤i≤m gi(Y ).

Proof. Observe that for every integer 1 ≤ i ≤ m, we have f([i−1] ·∪Y ) = gi(Y ) because |[i−1]| = c([i−1]) = i−1.
Therefore,

min
1≤i≤m

f([i− 1] ·∪ Y ) = min
1≤i≤m

gi(Y ) . (4)

Consider now an arbitrary subset X of N1 that is not equal to [i− 1] for any integer 1 ≤ i ≤ m. For such a subset
we must have c(X) ≤ |X| − 1, and therefore,

f(X ·∪ Y ) = gc(X)+1(Y ) + (|X| − c(X)) ·M ≥ gc(X)+1(Y ) +M ≥M ≥ min
1≤i≤m

gi(Y ) ,

where the second inequality follows from the non-negativity of gc(X)+1, and the last inequality holds by the
definition of M . Combining this inequality with Equation (4) completes the proof of the lemma.

Lemma B.4 now follows by combining Observation B.5, Lemma B.6 and Lemma B.7.

C OMITTED PROOFS OF SECTION 2.2

C.1 Proof of Theorem 2.4

In this section we prove Theorem 2.4, which we repeat here for convenience.

Theorem 2.4. Assuming {u} ∈ F2 for every u ∈ N2, there is a polynomial time algorithm that, given a
non-negative disjointly submodular function f : 2N → R≥0, returns a set X̂ ⊆ N1 and a value v such that both

maxY ∈F2 f(X̂ ·∪ Y ) and v fall within the range [τ, (|N2|+ 1) · τ ], where τ ≜ minX⊆N1
maxY ∈F2

f(X ·∪ Y ).

The algorithm that we use to prove Theorem 2.4 is given as Algorithm 4. We note that the function g defined by
this algorithm is the average of |N2|+1 submodular functions (since f is submodular once the subset of N2 in the
argument set is fixed), and therefore, g is also submodular. As written, Algorithm 4 is good only for the case in
which ∅ ∈ F2, and for simplicity, we assume throughout the section that this is indeed the case. If ∅ ̸∈ F2, then
the term f(X) should be dropped from the definition of g in Algorithm 4, which allows the proof to go through.

Algorithm 4: Estimating the min-max using singletons

1 Define a function g : 2N1 → R≥0 as follows. For every set X ⊆ N1, g(X) ≜ f(X) +
∑

u∈N2
f(X ·∪ {u}).

2 Use an unconstrained submodular minimization algorithm to find X ′ ⊆ N1 minimizing g(X ′).
3 return the set X ′ and the value g(X ′).

The analysis of Algorithm 4 is based on the observation that g(X) provides an approximation for maxY ∈F2
f(X ·∪Y ).

Lemma C.1. For every set X ⊆ N1, maxY ∈F2 f(X ·∪ Y ) ≤ g(X) ≤ (|N2|+ 1) ·maxY ∈F2 f(X ·∪ Y ).

Proof. Let Y ′ be the set in F2 maximizing f(X ·∪ Y ′), then the disjoint submodularity of f guarantees that

max
Y ∈F2

f(X ·∪ Y ) = f(X ∪ Y ′) ≤ f(X) +
∑

u∈Y ′

f(u | X)

≤ f(X) +
∑

u∈Y ′

f(X ·∪ {u}) ≤ f(X) +
∑

u∈N2

f(X ·∪ {u}) = g(X) ,

where the second and last inequalities hold by the non-negativity of f . This completes the proof of the first
inequality of the lemma. To see why the other inequality holds as well, we note that g(X) is the sum of |N2|+ 1
terms, each of which is individually upper bounded by maxY ∈F2 f(X ·∪ Y ).

Using the last lemma, we can now prove Theorem 2.4.
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Proof of Theorem 2.4. Let X∗ be the set minimizing maxY ∈F2 f(X
∗ ·∪ Y ). Then, by Lemma C.1 and the choice

of X ′ by Algorithm 4,

τ = min
X⊆N1

max
Y ∈F2

f(X ·∪ Y ) ≤ max
Y ∈F2

f(X ′ ·∪ Y ) ≤ g(X ′) ≤ g(X∗)

≤ (|N2|+ 1) · max
Y ∈F2

f(X∗ ·∪ Y ) = (|N2|+ 1) · min
X⊆N1

max
Y ∈F2

f(X ·∪ Y ) = (|N2|+ 1)τ .

C.2 Proof of Theorem 2.5

In this section we would like to prove Theorem 2.5. However, the majority of the section is devoted to proving
the following slightly different theorem, which implies Theorem 2.5.

Theorem C.2. For every constant ε ∈ (0, 1/2), there exists a polynomial time algorithm that given a non-negative
disjointly submodular function f : 2N → R≥0 returns a set X̂ and a value v such that

• v’s expectation falls within the range [τ, (4 + ε/2)τ ], where τ ≜ minX⊆N1 maxY⊆N2 f(X ·∪ Y ), and

• with probability at least 1− ε/[8(|N2|+1)], both v and maxY⊆N2 f(X̂ ·∪Y ) fall within the range [τ, (4+ ε/2)τ ].

Before getting to the proof of Theorem C.2, let us show that it indeed implies Theorem 2.5, which we repeat here
for convenience.

Theorem 2.5. For every constant ε ∈ (0, 1), there exists a polynomial time algorithm that given a non-negative
disjointly submodular function f : 2N → R≥0 returns a set X̂ ⊆ N1 and a value v such that the expectations

of both maxY⊆N2
f(X̂ ·∪ Y ) and v fall within the range [τ, (4 + ε)τ ], where τ ≜ minX⊆N1

maxY⊆N2
f(X ·∪ Y ).

Furthermore, the probability that both maxY⊆N2
f(X̂ ·∪ Y ) and v fall within this range is at least 1−O(|N2|−1).

Proof. Since the guarantee of Theorems 2.5 becomes stronger as ε becomes smaller, it suffices to prove the
theorem for ε ∈ (0, 1/2). Furthermore, the only way in which the algorithm guaranteed by Theorem C.2 might
not obey the properties described in Theorem 2.5 is if the expectation of maxY⊆N2

f(X̂ ·∪ Y ) for its output set

X̂ does not fall within the range [τ, (4 + ε)τ ]. Thus, to prove Theorem 2.5 it is only necessary to show how
to modify the output set X̂ of Theorem C.2 in a way that does not violate the other properties guaranteed
by this theorem, but makes the expectation of maxY⊆N2

f(X̂ ·∪ Y ) fall into the right range. We do that using
Algorithm 5. This algorithm uses a deterministic polynomial time algorithm that obtains 2-approximation for
unconstrained submodular maximization. Such an algorithm was given by Buchbinder and Feldman (2018).

Algorithm 5: Best of two (ε)

1 Execute the algorithm guaranteed by Theorem C.2. Let X ′ denote its output set.
2 Use an algorithm for unconstrained submodular maximization to find a set Y ′ ⊆ N2 such that

maxY⊆N2 f(X
′ ·∪ Y ) ≤ 2f(X ′ ·∪ Y ′) ≤ 2 ·maxY⊆N2 f(X

′ ·∪ Y ).

3 Execute the algorithm guaranteed by Theorem 2.4. Let X ′′ denote its output set.
4 Use an algorithm for unconstrained submodular maximization to find a set Y ′′ ⊆ N2 such that

maxY⊆N2 f(X
′′ ·∪ Y ) ≤ 2f(X ′′ ·∪ Y ′′) ≤ 2 ·maxY⊆N2 f(X

′′ ·∪ Y ).

5 if f(X ′ ·∪ Y ′) ≤ 2f(X ′′ ·∪ Y ′′) then return X ′.
6 else return X ′′.

Let us denote the output set of Algorithm 5 by X̂, and observe that the choice of the output set in the last five
lines of Algorithm 5 guarantees that whenever X̂ = X ′′, we also have

max
Y⊆N2

f(X̂ ·∪ Y ) = max
Y⊆N2

f(X ′′ ·∪ Y ) ≤ 2f(X ′′ ·∪ Y ′′) ≤ f(X ′ ·∪ Y ′) ≤ max
Y⊆N2

f(X ′ ·∪ Y ) .

Since the inequality maxY⊆N2
f(X̂ ·∪ Y ) ≤ maxY⊆N2

f(X ′ ·∪ Y ) trivially applies also when X̂ = X ′, we get that
this inequality always hold, and therefore, with probability at least 1− ε/[8(|N2|+ 1)] we must have

max
Y⊆N2

f(X̂ ·∪ Y ) ≤ (4 + ε/2)τ
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because Theorem C.2 guarantees that this inequality holds with at least this probability when X̂ is replaced with
X ′. Furthermore, since we always have τ = minX⊆N1 maxY⊆N2 f(X ·∪ Y ) ≤ maxY⊆N2 f(X̂ ·∪ Y ), the inequality

maxY⊆N2 f(X̂ ·∪ Y ) ≤ maxY⊆N2 f(X
′ ·∪ Y ) also shows that X̂ falls within the range [τ, (4 + ε)τ ] whenever X ′

falls within the this range.

Next, we need to prove a second upper bound on maxY⊆N2 f(X̂ ·∪ Y ). By the choice of the output set in the last
five lines of Algorithm 5, when this output set is X ′, we have

max
Y⊆N2

f(X̂ ·∪ Y ) = max
Y⊆N2

f(X ′ ·∪ Y ) ≤ 2f(X ′ ·∪ Y ′) ≤ 4f(X ′′ ·∪ Y ′′) ≤ 4 · max
Y⊆N2

f(X ′′ ·∪ Y ) .

Since the non-negativity of f implies that the inequality maxY⊆N2
f(X̂ ·∪ Y ) ≤ 4 ·maxY⊆N2

f(X ′′ ·∪ Y ) applies

also when X̂ = X ′′, we get by Theorem 2.4,

max
Y⊆N2

f(X̂ ·∪ Y ) ≤ 4 · max
Y⊆N2

f(X ′′ ·∪ Y ) ≤ 4(|N2|+ 1)τ .

We are now ready to prove that the expectation of the expression maxY⊆N2
f(X̂ ·∪ Y ) falls within the range

[τ, (4 + ε)τ ] as is guaranteed by Theorem 2.5. The expectation is at least the lower end of this range because, as
mentioned above, it always holds that τ = minX⊆N1

maxY⊆N2
f(X ·∪ Y ) ≤ maxY⊆N2

f(X̂ ·∪ Y ). Additionally, by

the law of total expectation and the two above proved upper bounds on maxY⊆N2
f(X̂ ·∪ Y ),

E
[
max
Y⊆N2

f(X̂ ·∪ Y )

]
≤
(
1− ε

8(|N2|+ 1)

)
·
(
4 +

ε

2

)
τ +

ε

8(|N2|+ 1)
· 4(|N2|+ 1)τ

=
[(

4 +
ε

2

)
+
ε

2

]
τ = (4 + ε)τ .

It remains to prove Theorem C.2. The algorithm that we use for this purpose is given as Algorithm 6. We note
that the function g defined by this algorithm is the average of m submodular functions (since f is submodular
once the subset of N2 in the argument set is fixed), and therefore, g is also submodular.

Algorithm 6: Estimating the min-max via random subsets (ε)

1 Let n1 = |N1| and n2 = |N2|, and pick m = ⌈3200ε−2[(n1 + 1) ln 2 + ln(n2 + 1) + ln(8/ε)]⌉ uniformly random
(and independent) subsets Y1, Y2, . . . , Ym of N2.

2 Define a function g : 2N1 → R≥0 as follows. For every X ⊆ N1, g(X) ≜ 1
m

∑m
i=1 f(X ·∪ Yi).

3 Use an unconstrained submodular minimization algorithm to find a set X ′ ⊆ N1 minimizing g(X ′).
4 return the set X ′ and the value (4 + ε/2) · g(X ′).

The analysis of Algorithm 6 uses the following known lemma.

Lemma C.3 (Lemma 2.2 of Feige et al. (2011)). Given a submodular function f : 2N → R≥0 and two sets
A,B ⊆ N , if A(p) and B(q) are independent random subsets of A and B, respectively, such that A(p) includes
every element of A with probability p (not necessarily independently), and B(q) includes every element of B with
probability q (again, not necessarily independently), then

E[f(A(p) ∪B(q))] ≥ (1− p)(1− q) · f(∅) + p(1− q) · f(A) + (1− p)q · f(B) + pq · f(A ∪B) .

Given a vector x ∈ [0, 1]N2 , we define R(x) to be a random subset of N2 that includes every element u ∈ N2 with
probability xu, independently. Given a set S ⊆ N2, it will also be useful to denote by 1S the characteristic vector
of S, i.e., the vector in [0, 1]N2 that has 1 in the coordinates corresponding to the elements of S, and 0 in the
other coordinates. Using this notation, we can now define a function h : 2N1 → R≥0 as follows. For every set
X ⊆ N1, h(X) ≜ E[f(X ·∪R(1/2 ·1N2

))]. The following lemma shows that h(X) is related to maxY⊆N2
f(X ·∪Y ).

Lemma C.4. For every set X ⊆ N1, maxY⊆N2
f(X ·∪ Y ) ≤ 4h(X).

Proof. Let us denote by Y ′(X) an arbitrary set in argmaxY⊆N2
f(X ·∪ Y ), and define rX(Y ) ≜ f(X ∪ Y ). Then,

h(X) = E[f(X ·∪ R(1/2 · 1N2
)] = E[rX(R(1/2 · 1Y ′(X)) ∪ R(1/2 · 1N2\Y ′(X))]

≥ 1
4rX(Y ′(X)) = 1

4f(X ·∪ Y ′(X)) = 1
4 · max

Y⊆N2

f(X ·∪ Y ) ,
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where the inequality follows from Lemma C.3 and the observation that for any fixed set X ⊆ N1 the function rX
is a non-negative submodular function.

The last lemma shows that the function h is useful. The following lemma complements the picture by showing
that the function g defined by Algorithm 6 is a good approximation of h.

Lemma C.5. With probability at least 1 − ε/[8(n2 + 1)], for every set X ⊆ N1 (at the same time) we have
|g(X)− h(X)| ≤ (ε/20) · h(X).

Proof. Fix some set X ⊆ N1, and let us define Zi ≜ f(X ·∪ Yi) for every integer 1 ≤ i ≤ m. We would like
to study the properties of the random variables Z1, Z2, . . . , Zm. First, note that these random variables are
independent since the sets Y1, Y2, . . . , Ym are chosen independently by Algorithm 6. Second, by the definition of
h and the distribution of Yi, E[Zi] = E[f(X ·∪ Yi)] = h(X). We would also like to bound the range of values that
the random variables Z1, Z2, . . . , Zm can take. On the one hand, these random variables are non-negative since f
is non-negative. On the other hand, Zi = f(X ·∪ Yi) ≤ maxY⊆N2

f(X ·∪ Y ) ≤ 4h(X), where the second inequality
holds by Lemma C.4.

Given the above proved properties of the random variables Z1, Z2, . . . , Zm, Hoeffding’s inequality shows that

Pr[|g(X)− h(X)| ≤ (ε/20) · h(X)] = Pr

[∣∣∣∣∣
1
m

m∑

i=1

Zi − E

[
1
m

m∑

i=1

Zi

]∣∣∣∣∣ > (ε/20) · h(X)

]

≤ 2e
− 2m2[(ε/20)·h(X)]2∑m

i=1
[4h(X)]2 = 2e−

mε2

3200 ≤ 2e−(n1+1) ln 2−ln(n2+1)−ln(8/ε) = 2−n1 · ε

8(n2 + 1)
,

where the last inequality follows from the definition of m. The lemma now follows from the last inequality by the
union bound since X was chosen as an arbitrary subset of N1, and there are only 2n1 such subsets.

Using the above lemmata, we can now prove Theorem C.2.

Proof of Theorem C.2. Let us denote by X∗ a set minimizing maxY⊆N2
f(X∗ ·∪ Y ). By the definition of g and

the choice of X ′ by Algorithm 6,

g(X ′) ≤ g(X∗) = 1
m

m∑

i=1

f(X∗ ·∪ Yi) ≤ max
Y⊆N2

f(X∗ ·∪ Y ) = min
X⊆N1

max
Y⊆N2

f(X∗ ·∪ Y ) = τ .

Let us now denote by E the event that |g(X)− h(X)| ≤ (ε/20) · h(X) for every set X ⊆ N . By Lemma C.5, E
happens with probability at least 1− ε/[8(n2 + 1)]. Furthermore, conditioned on E , we have

max
Y⊆N2

f(X ′ ·∪ Y ) ≤ 4h(X ′) ≤ 4g(X ′)
1− ε/20 ≤

4τ

1− ε/20 ≤ (4 + ε/2)τ , (5)

where the first inequality hold by Lemma C.4, and the last inequality holds for ε ∈ (0, 1/2). Since we always
also have maxY⊆N2

f(X ′ ·∪ Y ) ≥ minX⊆N1
maxY⊆N2

f(X ·∪ Y ) = τ , the above inequality already proves that

maxY⊆N2
f(X̂ ·∪ Y ) falls within the range [τ, (4 + ε/2)τ ] whenever the event E happens.

We now would like to show that the output value (4 + ε/2) · g(X ′) of Algorithm 6 also falls within this range
when the event E happens. Since we already proved that g(X ′) ≤ τ , all we need to show is that (4 + ε/2) · g(X ′)
is at least τ condition on E . This is indeed the case since Inequality (5) implies

(4 + ε/2) · g(X ′) ≥ 4

1− ε/20 · g(X
′) ≥ max

Y⊆N2

f(X ′ ·∪ Y ) ≥ τ ,

where the first inequality holds for ε ∈ (0, 1/2). In conclusion, we have shown that when the event E happens the
value (4 + ε/2) · g(X ′) returned by Algorithm 6 and the expression maxY⊆N2 f(X̂ ·∪ Y ) both fall within the range
(4 + ε/2). Since the probability of the event E is at least 1− ε/[8(n2 +1)], to complete the proof of the theorem it
only remains to show that the expectation of (4 + ε/2) · g(X ′) falls within the range [τ, (4 + ε/2)τ ], which is what
we do in the rest of this proof.
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The inequality E[(4+ε/2) ·g(X ′)] ≤ (4+ε/2)τ follows immediately from the above proof that we deterministically
have g(X ′) ≤ τ . Using Inequality (5), we can also get that, conditioned on E ,

g(X ′) ≥ (1− ε/20) ·maxY⊆N2
f(X ′ ·∪ Y )

4

≥ (1− ε/20) ·minX⊆N1
maxY⊆N2

f(X ·∪ Y )

4
=

(1− ε/20)τ
4

.

Thus, we can use the law of total expectation to get

E[g(X ′)] ≥ Pr[E ] · E[g(X ′) | E ] ≥
(
1− ε

8(n2 + 1)

)
· (1− ε/20)τ

4
≥
(
1− 9ε/80

4

)
τ ,

which implies

E[(4 + ε/2) · g(X ′)] ≥ (4 + ε/2) · (1− 9ε/80)

4
· τ ≥ τ ,

where the second inequality holds for ε ∈ [0, 1/2].

D ADDITIONAL APPLICATIONS

D.1 Adversarial Attack on Image Summarization

In this section we consider the application of “Adversarial Attack on Image Summarization”, which is an attack
version of an application studied by many previous works (see, e.g., Mitrovic et al. (2018); Mualem and Feldman
(2022b); Tschiatschek et al. (2014)). The setting for this application includes a collection of images from ℓ disjoint
categories (such as birds, airplanes or cats), and a user that specifies r ∈ [ℓ] categories of interest. In the classical
version of this application, the objective is to construct a subset of k images summarizing the images belonging
to the categories specified by the user. However, here we are interested in mounting an attack against this
summarization task. Specifically, our goal is to add a few additional images to the original set of images in a way
that undermines the quality of any subsequently chosen summarizing subset.

Formally, we have in this application a (completed) similarity matrix M comprising similarity scores for both the
set N2 of original images and the set N1 of images that the attacker may add. We aim to choose a set X ⊆ N1 of
images such that adding the images of N1 \X simultaneously minimizes the value every possible summarizing
subset Y . The value of a summarizing set Y is given by the following objective function.

f(X ·∪ Y ) = 3

√ ∑

v∈N\X

∑

u∈Y

M3
u,v −

1

|N2|
3

√∑

u∈Y

∑

v∈Y

M3
u,v + λ · |X| · 3

√
k . (6)

Here, Mu,v is the similarity score between images u and v, which is assumed to be non-negative and symmetric
(i.e., Mu,v =Mv,u ≥ 0); and λ ∈ [0, 1] is a regularization parameter affecting the number of elements added by
the adversary. Choosing a larger value for λ results in a larger set X, and thus, less adversarial images being
added. The objective function f is jointly-submodular and non-negative (the proof is very similar to the proof
that the function in Equation (7) has these properties, and therefore, we omit it). Since we are interested in
finding an attacker set X that is good against the best summary set Y of size k, the optimization problem that
we aim to solve is

min
X⊆N1

max
Y⊆N2

|Y |≤k

f(X ·∪ Y ) .

Our experiments for this application are based on a subset of the CIFAR-10 data set (Krizhevsky, 2009). This
subset includes 10,000 tiny images belonging to 10 classes. Each image consists of 32× 32 RGB pixels, and is thus,
represented by a 3,072 dimensional vector, and the cosine similarity method was used to compute similarities
between images. In order to keep the running time computationally tractable, we randomly sampled from the
data set in each experiment disjoint sets N1 and N2 of sizes |N1| = 2,000 and |N2| = 250.

In our experiments, we study the change in the quality of the summaries obtained by the various algorithms and
benchmarks as a function of the allowed number k of images and the regularization parameter λ. Figure 3a presents
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(b) Results for λ = 0.5

Figure 3: Empirical results for adversarial attack on image summarization. Both plots compares the performance
of our algorithms Min-by-Singletons and Iterative-X-Growing with 3 benchmarks for different value of the
regularization parameter λ and the cardinality parameter k.

the outputs of our algorithms Min-by-Singletons and Iterative-X-Growing (with β = 0.2) and three benchmarks
for k = 5 and a varying regularization parameter λ. Figure 3b presents the outputs of the same algorithms and
benchmarks for λ = 0.5 and a varying limitation k on the number of images in the summary. One can observe
that both of our algorithms consistently outperform the benchmarks of Best-Response, Max-and-then-Min and
Random, with the more involved algorithm Iterative-X-Growing tending to do better than the simpler algorithm
Min-by-Singletons. Both figures are based on averaging 400 executions of the algorithms, leading to a standard
error of the mean of less than 10 for all data points. It is also worth noting that the basic scarecrow benchmark
“Random” outperforms the Best-Response and Max-and-then-Min benchmarks in many cases. This hints that the
last heuristics are unreliable despite being natural, and highlights the significance of the methods we propose.

D.2 Robust Ride-Share Optimization

In the “Robust Ride-Share Optimization” application, our primary objective is to determine the most suitable
waiting locations for idle taxi drivers based on taxi order history. This problem was previously formalized as a
traditional facility location problem (Mitrovic et al., 2018). However, in the current work, we look for a more
robust set of waiting locations. Often some locations are inaccessible (for example, due to road maintenance).
Hence, we wish to find a robust set of waiting locations that effectively minimizes the distance between each
customer and her closest driver even when some of the locations are inaccessible.

The objective function we use to solve the above problem is technically identical to the jointly-submodular
function given by (3). However, now N1 represents the (client) pickup locations that might be inaccessible due to
traffic (while N2 remains the set of potential waiting locations for idle drivers). Furthermore, we now need to
perform max-min optimization on this objective function since we look for a set Y of up to k waiting locations
that is good regardless of which pickup locations become inaccessible.

In our experiments, we used again the Uber data set (Uber) (see Section 3.2). To ensure computational tractability,
in each execution of our experiments, we randomly selected from this data set a subset of |N | = 6,000 pickup
locations within the region of Manhattan. Then, we chose the set N1 to consist of all the pickup locations that
have a latitude value greater than 40.8, or less than 40.73. This set represents the pickup locations that are
potentially unavailable (for example, due to traffic). Furthermore, we randomly selected a subset of 400 pickup
locations from the set N to constitute the set N2. This set represents the potential waiting locations for idle
drivers.

In the first experiment, we fixed the regularization parameter λ to 0.35 and varied the number of allowed waiting
locations. Figure 4a depicts the outputs for this experiment for our algorithm Min-as-Oracle and two benchmarks
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(averaged over 10 executions of the experiment). One can observe that Min-as-Oracle consistently surpasses the
two benchmarks. The two other benchmarks (Random and Top-k) where also included in this experiment and
the next one, but are excluded from the figures since their outputs are worse by a factor of at least 2 comapred to
the presented methods. We also note that in both experiments the standard error of the mean is less than 10 for
all data points.

In the second experiment, we fixed the maximum number of waiting locations to be 15, and varied λ. The results
of this experimented are depicted by Figure 4b (again, averaged over 10 executions of the experiment). Once
again, our proposed method, Min-as-Oracle, demonstrates superior performance compared to the bechnmarks,
with the gap being significant for lower values of λ.

As the third experiment for this application, we conducted a more in depth analysis of the Best-Response technique.
Figure 4c graphically presents the objective function value obtained by a typical execution of Best-Response after
a varying number of iterations (for λ = 0.35 and an upper bound of 20 on the number of waiting locations). It is
apparent that Best-Response does not converge for this execution. Furthermore, Min-as-Oracle demonstrates
better performance even with respect to the best performance of Best-Response for any number of iterations
between 1 and 50.
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Figure 4: Empirical results for robust ride-share optimization. Figures (a) and (b) compare the performance of
our algorithm Min-as-Oracle with 2 benchmarks for different value of λ and bounds on the number of weighting
locations. Figure (c) depicts the value of the output of the Best-Response method as a function of the number of
iterations performed.

Our last experiment for this section aims to give a more intuitive point of view on the performance of our
algorithm (Min-as-Oracle). Figure 5 depicts the results of this algorithm on maps of Manhattan for three different
values of λ (0.2, 0.4 and 0.8). To make the maps easy to read, we allowed the algorithm to select only 6 waiting
locations for idle drivers, and the locations suggested by the algorithm are marked with red triangles on the maps.
We have also marked on the maps the pick up locations of N . The black dots represent the waiting locations that
are inaccessible, while the light gray dots indicate the accessible pickup locations. Intuitively, the regularization
parameter λ captures in this application the probability of pickup locations in N1 to be accessible. For example,
when λ = 0, it is assumed that all locations in N1 are inaccessible, whereas λ = 1 means that all locations in N1

are assumed to be accessible. This intuitive role of λ is demonstrated in Figure 5 in the following sense. As the
value of λ increases, the number of red triangles in the figure inside the areas of the black dots tends to increase,
and furthermore, the locations of theses triangles are pushed deeper into these areas.

D.3 Prompt Engineering for Dialog State Tracking

In this section, we consider the problem of selecting example (input, output) pairs for zero-shot in-context learning.
In this application, the objective is to design prompts for the task of dialog state tracking (DST) on the MultiWOZ
2.4 data set (Budzianowski et al., 2018). Following Hu et al. (2022), we recast this as a text-to-SQL problem in
order to prompt the GPT-Neo (Black et al., 2021) and OpenAI Codex (code-davinci-002) (Chen et al., 2021)
code generation models. These base models are adapted to DST with a combination of subset selection and
in-context learning. First, a corpus of (previous dialog state, current dialog turn, SQL query) tuples is constructed
from the training dialogs. Given a new input u0, our prompt consists of 1) tabular representations of the dialog
state ontology, 2) natural language instructions to query these tables using valid SQL given a task-oriented dialog
turn, and 3) examples selected from the corpus by maximizing an objective function.
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(a) λ = 0.2 (b) λ = 0.4 (c) λ = 0.8

Figure 5: The results of Min-as-Oracle for 3 different values of λ. The red triangles represent waiting locations
chosen by the algorithm, the light gray dots represent always accessible pick-up locations, and the black dots
represent possibly inaccessible pick-up locations.

Let u0 be the input query to a large language model. Each input u0 contains a list of (key, value) pairs representing
the previous dialog state predictions along with the text of the current dialog turn. We would like its prompt
to be robust to incorrect predictions of the previous dialog states, as well as text variation such as misspellings.
Let N1 be a set of perturbed inputs drawn from a small neighborhood around u0. These perturbed inputs are
constructed by randomly editing up to 2 slots and/or values in the dialog state, and additionally dropping up to
15% of tokens from the most recent dialog turn. In cases where u0 is initially incorrect, examples that are similar
to the perturbed inputs from N1 improve the final prompt. Let N = N1 ∪ {u0}, and let N2 be the ground set
of candidate examples. Given a set of examples Y ⊆ N2 and a set of perturbed inputs X ⊆ N1, we define the
following score function.

f(X ·∪ Y ) =
∑

u∈N\X

∑

v∈Y

su,v −
α

|N2|
·
∑

v∈Y

∑

u∈Y

su,v + λ · |X|+ |N2| . (7)

Here, 0 ≤ su,v ≤ 1 is the symmetric similarity score between examples u, v (the similarity score is computed by
embedding both examples with a pretrained SBERT model (Reimers and Gurevych, 2019), and then computing
cosine similarity of the two embeddings), and λ ≥ 0 and 0 ≤ α ≤ 1 are regularization parameters. The
parameter α explicitly trades off recommendation quality and diversity. Since we are interested in finding a
set of candidate examples Y that is good against the worst case set X of perturbed inputs, we would like to
optimize maxY⊆N2,|Y |≤k minX∈N1

f(X ·∪ Y ), where k is an upper bound on the number of examples to include in
the prompt. By an argument similar to the proof of Lemma 3.2, the objective function (7) is a non-negative
jointly-submodular function.

Initially, the GPT-Neo-Small generative model was evaluated with all possible combination of values for the
regularization parameters from the grid λ ∈ {0, 0.5, 0.75, 0.9, 2.5} and α ∈ {0, 0.1, 0.3, 0.5, 0.7}. The best
parameters (λ = 0.9, α = 0.5) were then used for the other generative models. Following Section 5 of Hu et al.
(2022), all retrieval models were evaluated on inputs obtained by randomly sampling 10% of the MultiWOZ
validation set, and all results were averaged over 3 different candidate sets, which are randomly sampled 5%



Submodular Minimax Optimization: Finding Effective Sets

subsets of the MultiWOZ training set. We set (k = 5, |N1| = 20) for GPT-Neo models and (k = 10, |N1| = 4) for
the OpenAI Codex model.

In our experiments, we have compared Min-as-Oracle with the our standard max-min benchmarks Top-k, Max-
Only and Best-Response, and also with a baseline termed “Non-robust Top-k” from Hu et al. (2022). For Top-k,
Max-Only, Best-Response and Min-as-Oracle, we first retrieved a ground set of size |N2| = 100k candidates using
the precomputed KD Tree, and only then selected the output set Y using the retrieval algorithm. Table 3 shows
the Joint F1 score for each of the above-mentioned methods. Results for GPT-Neo models are averaged over
4 random seeds. One can observe that prompting with our robust formulation outperforms the Non-Robust
Top-k baseline by as much as 1.5%. Among the algorithms using the robust formulation, our proposed algorithm
Min-as-Oracle is consistently the best or 2nd best. Table 3 also shows that Min-as-Oracle achieves the highest
objective value in all cases. Note that Min-as-Oracle has theoretical guarantees for both its convergence and
approximation ratio, whereas Sections 3.2 and D.2 demonstrate that the Best-Response heuristic diverges for
some instances.

Table 3: Dialog state tracking performance and objective values for different language models and retrieval
algorithms. Best values are in bold.

Generative Model Retrieval Algorithm Joint F1 Objective Value

GPT-Neo-Small

Random 0.0480 25.259
Non-robust Top-k (Hu et al., 2022) 0.3249 26.165

Top-k 0.2787 26.125
Max-Only 0.2783 26.134

Best-Response 0.3251 26.165
Min-as-Oracle 0.3022 26.168

GPT-Neo-Large

Random 0.2275 25.254
Non-robust Top-k (Hu et al., 2022) 0.4872 26.164

Top-k 0.4821 26.127
Max-Only 0.4830 26.134

Best-Response 0.4845 26.165
Min-as-Oracle 0.5020 26.168

Codex-Davinci

Random 0.8273 17.410
Non-robust Top-k (Hu et al., 2022) 0.8929 19.021

Top-k 0.8974 18.954
Max-Only 0.8913 18.953

Best-Response 0.8972 19.022
Min-as-Oracle 0.8991 19.027

D.4 Additional Figures For Ride-Share Difficulty Kernelization

In this section, we provide a graphical representation of the experimental outcomes discussed in Section 3 for the
Ride-Share Difficulty Kernelization application. Figure 6 demonstrates that the locations chosen by our algorithm,
based on the objective function (3) used for the application, create a spatial arrangement resembling a “frame”
encompassing the Manhattan area. This agrees with the intuitive expectation from a well-structured kernelization,
demonstrating that the objective function (3) is a good fit for the Ride-Share Difficulty Kernelization application.

E BENCHMARKS AND ALGORITHM IMPLEMENTATIONS

In this section we define all the benchmarks that we compare in Section 3 and Section D against our algorithms.
We then discuss the implementation details of these benchmarks and our algorithms.

• Random: Returns a random feasible solution. In the max-min setting this means random k elements from
the ground set N1, and in the min-max setting this means a random subset of N2.

• Max-Only: This benchmark makes sense only in the max-min setting. It uses a submodular maximization
algorithm to find a feasible set Y (approximately) maximizing the objective for X = ∅.
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(a) λ = 0.1, k = 8 (b) λ = 0.25, k = 8

(c) λ = 0.1, k = 4 (d) λ = 0.25, k = 4

Figure 6: The results of our algorithm Iterative-X-Growing for different values of λ (the regularization parameter)
and k (the number of taxis). The red dots represent the pick-up locations in the difficulty kernel chosen by the
algorithm (the other pick-up locations are marked by light gray dots).
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• Max-and-then-Min: A variant of Max-Only for use in the min-max setting. It returns a set X minimizing the
objective given the set Y chosen by Max-Only. Note that this is essentially equivalent to a single iteration of
Best-Response.

• Top-k: This benchmark makes sense only in the max-min setting. It returns the k singletons from N2 with
the maximum value, where the value of every singleton u ∈ N2 is defined as minX⊆N1

f(X ·∪ {u}).

• Best-Response: This benchmark proceeds in iterations. In the first iteration, one obtains a subset Y ∈ F2

(approximately) maximizing f(Y ) through the execution of a maximization algorithm, which is followed by
finding a set X ⊆ N2 minimizing f(X ·∪ Y ) by running a minimization algorithm. Subsequent iterations are
similar to the first iteration, except that the set Y chosen in these iterations is a set that (approximately)
maximizes f(X ·∪ Y ), where X is the minimizing set chosen in the previous iteration. The output is then the
last set Y in the max-min setting, and the last set X in the min-max setting.

In most of our applications, we aim to optimize objectives that are not N2-monotone, which requires a procedure
for (approximate) maximization of non-monotone submodular functions. As mentioned in Section 1.1, the state-of-
the-art approximation guarantee for the case in which the objective function f is not guaranteed to be monotone
is currently 0.385 (Buchbinder and Feldman, 2019). However, the algorithm obtaining this approximation ratio
is quite involved, which limits its practicality. Arguably, the state-of-the-art approximation ratio obtained by
a “simple” algorithm is 1/e-approximation obtained by an algorithm called Random Greedy (Buchbinder et al.,
2014). In practice, the performance of this algorithm is comparable to that of the standard greedy algorithm,
despite the last algorithm not having any approximation guarantee for non-monotone objective functions. Hence,
throughout the experiments, the maximization component used in all the relevant benchmarks and algorithms is
either the standard greedy algorithm or an accelerated version of it (suggested by Badanidiyuru and Vondrák
(2014)) named Threshold Greedy.

In our experiment we often report the values of the objective function corresponding to the output sets produced
by the various benchmarks and algorithms. In the max-min setting, given an output set X, computing the
objective value is done by utilizing an efficient minimizing algorithm to identify a minimizing set X. In the
min-max setting, the situation is more involved as calculating the true objective value for given an output set
X cannot be done efficiently in sub-exponential time (as it corresponds to maximizing a submodular function
subject to a cardinality constraint). Therefore, we use Threshold Greedy algorithm mentioned above to find a set
Y that approximately maximize the objective with respect to X, and then report the value corresponding to this
set Y as a proxy for the true objective value.

Our experiments for the min-max setting use a slightly modified version of Iterative-X-Growing (Algorithm 1).
Specifically, we make two modifications to the algorithm.

• Iterative-X-Growing grows a solution in iterations. As written, it outputs the set obtained after the last
iteration. However, we chose to output instead the best set obtained after any number of iterations. This is
a standard modification often used when applying to practice an iterative theoretical algorithm.

• Line 4 of Iterative-X-Growing looks for a set X ′
i that minimizes an expression involving two terms. The first

of these terms
√
n1 · f(X ∪Xi−1) has the large coefficient

√
n1. The value of this coefficient was chosen to fit

the largest number of possible iterations that the algorithm may perform (n1 + 1). However, in practice
we found that the algorithm usually makes very few iterations. Thus, the use of the large coefficient

√
n1

becomes sub-optimal. To truly show the empirical performance of Iterative-X-Growing, we replaced the
coefficient

√
n1 with a parameter β whose value is chosen based on the application in question.

All prompt engineering experiments were run using a single NVIDIA A10 GPU. Running inference with the
Contriever and GPT-Neo-Large models required a server with 128GB of memory, and all other parts of the
pipeline required less than 16GB of memory.

All other experiments were run using 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz CPU, requiring less
than 32GB of CPU memory and no GPU.
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F ADDITIONAL OMITTED PROOFS

F.1 Proof of Lemma 3.1

In this section we prove Lemma 3.1, which we repeat here for convenience.

Lemma 3.1. The objective function (2) is a non-negative jointly-submodular function.

Proof. Observe that the objective function (2) is a conical combination of three terms. Below we explain why each
one of these terms is non-negative and jointly-submodular, which immediately implies that the entire objective
function also has these properties.

The second term is
∑

u∈N1\X
∑

v∈Y su,v. This term can be viewed as the cut function of a directed bipartite
graph in which the elements of N1 and N2 form the two sides of the graph, and for every u ∈ N1 and v ∈ N2 the
graph includes an edge from v to u whose weight is su,v. Directed graph functions are known to be non-negative
and submodular over the set of elements of the graph, which translates into joint-submodularity in our terminology
since the both the elements of N1 and N2 are vertices of the graph.

The third term is |X|, which is a non-negative linear function, and thus, also jointly-submodular.

It remains to consider the first term, namely
∑

v∈N1\X maxu∈Y su,v. This term is clearly non-negative, so we
concentrate below on proving that it is jointly submodular. Recall that f is jointly-submodular if

f(u | Y ′ ·∪X ′) ≥ f(u | Y ·∪X) ∀ X ′ ⊆ X ⊆ N1, Y
′ ⊆ Y ⊆ N2, u ∈ (N1 ·∪ N2) \ (X ·∪ Y ) .

To prove that our objective function obeys this inequality, there are two scenarios to consider, based on whether
u belongs to the set N1 or N2.

Case 1: The element u belongs to N1. Here,

f(u | Y ′ ·∪X ′)− f(u | Y ·∪X) = max
v∈Y

su,v −max
v∈Y ′

su,v ≥ 0 .

Case 2: the element u belongs to N2. Observe that, in this case,

f(u | Y ′ ·∪X ′) =
∑

N1\X′

max{0, su,v − max
v′∈Y ′

su,v′}

≥
∑

N1\X
max{0, su,v −max

v′∈Y
su,v} = f(u | Y ·∪X) .

F.2 Proof of Lemma 3.2

In this section we prove Lemma 3.2, which we repeat here for convenience.

Lemma 3.2. The objective function (3) is a non-negative jointly-submodular function.

Proof. First, we shall establish that the objective function is non-negative by demonstrating that the first term of
the function is consistently greater than the subsequent term. This is established through the following inequality.

∑

v∈N\X
max
u∈Y

su,v ≥
∑

v∈N2

max
u∈Y

su,v ≥
1

|Y | ·
∑

v∈N2

∑

u∈Y

su,v ≥
1

|N2|
·
∑

v∈Y

∑

u∈Y

su,v .

Next, we demonstrate that the objective function f(X,Y ) is jointly-submodular. Recall that f is jointly-
submodular if

f(u | Y ′ ·∪X ′) ≥ f(u | Y ·∪X) ∀ X ′ ⊆ X ⊆ N1, Y
′ ⊆ Y ⊆ N2, u ∈ (N1 ·∪ N2) \ (X ·∪ Y ) .

To prove that our objective function obeys this inequality, there are two scenarios to consider, based on whether
u belongs to the set N1 or N2.
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Case 1: The element u belongs to N1. Here, f(u | Y ′ ·∪X ′)−f(u | Y ·∪X) = maxv∈Y su,v−maxv∈Y ′ su,v ≥ 0.

Case 2: The element u belongs to N2. Let ϕ(Y,w, J) =
∑

v∈J(maxu∈Y+w su,v −maxu∈Y su,v); and note
that, for every two sets Y ′ ⊆ Y ⊆ N2, set J ⊆ N1 and element u ∈ N2 \ T , ϕ(Y ′, u, J) ≥ ϕ(Y, u, J). Using this
notation, we get that in this case (the case of u ∈ N2)

• f(u | Y ′ ·∪X ′) = ϕ(Y ′, {u},N \X ′)− 1
|N2|

(
2 ·∑v∈Y ′ su,v + su,u

)
, and

• f(u | Y ·∪X) = ϕ(Y, {u},N \X)− 1
|N2|

(
2 ·∑v∈Y su,v + su,u

)
.

Thus,

f(u | Y ′ ·∪X ′)− f(u | Y ·∪X) = ϕ(Y ′, {u},N \X ′)− ϕ(Y, {u},N \X) +
2

|N2|
·
∑

v∈Y \Y ′

su,v ≥ 0 ,

where the last inequality holds since ϕ(Y ′, {u},N \X ′)−ϕ(Y, {u},N \X) ≥ 0 and su,v ≥ 0 for any u, v ∈ N .



Chapter 7

Conclusions and Future Work

In this thesis, we have developed a series of methods for improving the efficiency and scalabil-

ity of machine learning systems through coreset constructions and submodular optimization.

Our contributions span both theoretical and practical aspects, covering offline and online

settings, and addressing a variety of challenges in deep learning and optimization.

We began by proposing novel coreset sampling strategies for deep neural networks, in-

troducing deterministic and sensitivity-aware techniques that improve both accuracy and

fairness across classes. These methods demonstrated superior performance in preserving

classification metrics compared to traditional loss-based sampling.

Next, we explored the structure of submodular functions, showing that many real-world

objectives—though non-monotone—exhibit partial monotonicity. By leveraging this insight,

we achieved improved approximation guarantees in submodular maximization, bridging the

gap between theory and practice.

We then turned our attention to continuous domains, resolving fundamental questions in

the approximability of non-monotone DR-submodular maximization under general convex

constraints, in both offline and online settings. Our work introduced tight approximation

bounds and efficient algorithms for a large class of problems.

In a related direction, we studied the geometry of constraint sets, presenting new algo-

rithms and hardness results for submodular maximization over general versus down-closed
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convex sets. This work reveals the profound effect that constraint structure has on achievable

guarantees.

Finally, we introduced the submodular minimax optimization framework, presenting al-

gorithms with provable guarantees for adversarial and robust scenarios. We demonstrated

its potential in diverse applications, such as prompt engineering and robust training, further

illustrating the versatility of submodular optimization tools.

Taken together, these results highlight the importance of structure—whether in data,

objectives, or constraints—in enabling efficient algorithmic design. Looking forward, future

work could build on the foundations developed in this thesis by improving the training and

fine-tuning pipelines of generative models, and extending these techniques to active learning

and graph-based learning. Active learning [CGJ96] is particularly important in domains

where data acquisition is costly, such as scientific modeling or neural PDE solvers [BWW],

while graph learning [WPC+20] presents challenges of scalability and expressiveness due

to its non-Euclidean structure. Across these areas, advancing efficiency, principled design,

and adaptability of deep learning systems remains an exciting and open frontier for future

research.
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 תדימל/הקומע הדימל ימושייב תוצובק-יתת תריחבל תוקינכט
הקיטקרפה לא הירואיתהמ :הנוכמ  

 
 םלעומ יאול

 
 
 

ריצקת  
 

 לש הריחבב תודקמתמה ,היצזימיטפואו הנוכמ תדימלב תויעב לש הבחר הצובקב תקסוע וז הדובע
 .הליעי הרוצב תוטלחה תלבקו ,הקסה ,ןומיא ךרוצל ,םינותנה ךותמ תויעדימו תונטק תוצובק-יתת
 לש תוהובגה ןורכיזהו תויבושיחה תושירדה ,לודג הדימ הנקב תיתוכאלמ הניב תוכרעמב
 תודוסי תנחוב וז הדובע ,ןכ לע .םינותנה ללכ לש דוביע תורשפאמ ןניא תובורק םיתיעל םימתירוגלאה
 ,)coresets( הביל-תוצובק ןוגכ םילכב שומיש ךות ,תוצובק-יתת תריחבל םיימתירוגלאו םייטרואית
 .)הדימע( תירלודומ-תת היצזימיטפוא

 
:תוללוכ רקחמה לש תויזכרמה תומורתה  

 
 רובע (coresets) הביל תוצובקמ םיטפסנוק לע תססובמה (pruning) םוזיג תרגסמ חותיפ .1

 ,קוידב העיגפ אלל טעמכ םירתוימ םירטמרפ הריסמו ההזמ רשא ,תוקומע םינוריונ תותשר
 .רתוי הליעיו הריהמ הסירפ תרשפאמ ךכבו

 תוקזח בוריק תואצות לש הגצהו ,תוינוטונומ-תיקלח תוירלודומ-תת תויצקנופל שדח חותינ .2
 .םיישעמ םירשקהב תירלודומ-תת היצזימיסקמ רובע רפושמ יטרואית סיסבל תומרותה ,רתוי

   תויצקנופ לש היצזימיסקמל םימדקתמ םימתירוגלא לש יריפמא חותינ ונעציב .3
 DR-submodularלש תונווקמ תואסרג ונרצי ,םייללכ םירומק םיצוליא תחת תופיצר 

 .לבקל ןתינש רתויב תובוטה ןה םהלש בוריקה תוחטבה יכ ונחכוהו ,הלא םימתירוגלא
 הטמ-יפלכ םירוגס םירומק םיצוליא ןיב תרשגמה תורומק תוצובקל השדח קוריפ תשיג תעצה .4

 םייטרואיתה תומלועה ןיב קלח רבעמל תורשפא ךות ,םייללכ םירומק םיצוליא ןיבל
 .םינווקמ אלו םינווקמ םיבצמב םושייו םימיאתמה

 יבצמ המדמה ,סקמינימ גוסמ תירלודומ-תת היצזימיטפוא תויעב לש )ברוקמ( ןורתפו שוביג .5
 הרקמב תוחטבה םע םייליבאלקס םימתירוגלא חותיפ ךות ,םייבירי םיטירסתו תואדו-יא
 .עורגה

 
 תועצומה תוטישה .םיישעמ םימושיי ןיבל יטרואית קויד ןיב בוליש לע שגד םשומ הדובעה לכ ךרואל
 תומרותו ,הנוכמ תדימל לש הירואיתו תירוטניבמוק היצזימיטפוא ,הרומק הזילנאמ םילכ תובלשמ
 .םינווגמ םימוחתב תוינרדומ תיתוכאלמ הניב תוכרעמ לש תוניסחהו המאתהה ,תויליבאלקסה רופישל
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