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Abstract

We consider the k-Directed Steiner Forest (k-DSF) problem: given a directed graph

G = (V, E) with edge costs, a collection D ⊆ V × V of ordered node pairs, and an

integer k ≤ |D|, find a minimum cost subgraph H of G that contains an st-path for

(at least) k pairs (s, t) ∈ D. When k = |D|, we get the Directed Steiner Forest (DSF)

problem. The best known approximation ratios for these problems are: Õ(k2/3) for

k-DSF by Charikar et al. [3], and O(k1/2+ε) for DSF by Chekuri et al. [4]. We improve

these approximation ratios as follows.

For DSF we give an Õ(n4/5+ε)-approximation scheme using a novel LP-relaxation

that seeks to connect pairs with “cheap” paths. This is the first sub-linear (in terms

of n = |V |) approximation ratio for the problem; all previous algorithm had ratio

Ω(n1+ε), which can be trivially derived from known algorithms for the Directed Steiner

Tree problem.

For k-DSF we give a simple greedy O(k1/2+ε)-approximation algorithm. This im-

proves the best known ratio Õ(k2/3) by Charikar et al. [3], and (almost) matches

in terms of k the best ratio known for the undirected variant [2]. Even when used

for the particular case of DSF, our algorithm favorably compares to the one of [4],

which repeatedly solves linear programs and uses complex space and time consuming

transformations. Our algorithm is much simpler and faster, since it essentially reduces

k-DSF to a variant of the Directed Steiner Tree problem. The simplification is due to a

new notion of “junction star-tree” – a union of an in-star and an out-branching having

the same root, which is of independent interest.
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1 Introduction

Network design problems seek to find a minimum cost subgraph of a given (directed or

undirected) graph, that satisfies prescribed requirements. These problems are among the

most studied problems in the fields of Combinatorial Optimization and Approximation Al-

gorithms. We hereby list some classic network design problems on undirected graphs. One

of the most basic network design problems is the Steiner Tree problem: given a graph

G = (V,E) with edge costs, and a set T ⊆ V of terminals, find a min-cost subtree of G

that spans U . Unlike the classic Spanning Tree problem (the case U = V ), the Steiner Tree

problem is NP-complete (cf. [13]). This classic problem was extensively studied with respect

to approximation (see [34] and the references therein). A classic generalization is the Steiner

Forest problem: given a graph G = (V,E) with edge costs and a collection D ⊆ V × V of

(unordered) node pairs, find a minimum cost subgraph H of G that connects all pairs in

D (namely, contains an st-path for every {s, t} ∈ D). The best approximation known for

this problem is 2 [1, 16]. In the more general k-Steiner Forest problem, we are also given an

integer k ≤ |D|, and the goal is to connect at least k (arbitrary) pairs from D. Here a signif-

icant obstacle lies in the way of achieving a good (say, even polylogarithmic) approximation

ratio even for undirected graphs. It was observed in [17] that this problem is harder than the

minimization variant of the Densest k-Subgraph problem which is commonly believed not

to admit a polylogarithmic approximation. (See [11] for an O(n1/3−ε) approximation ratio

for the maximization variant, with ε ≈ 1/60. Despite several attempts of improvements this

ratio was not improved for 11 years.) The best known approximation ratio for the k-Steiner

Forest problem is O(min{√n,
√

k}), see a recent paper by Gupta et al. [2]. In [2] the k-

Steiner Forest problem is shown to have further significance due to its relation to the Dial a

Ride problem.

In this paper we consider the directed variant of the k-Steiner Forest problem, namely:

k-Directed Steiner Forest (k-DSF)

Instance: A directed graph G = (V,E), edge costs {c(e) : e ∈ E}, a set D ⊆ V × V of

ordered pairs, and an integer k ≤ |D|.
Objective: Find a min-cost subgraph H of G that contains an st-path for (at least) k pairs

(s, t) ∈ D.

When k = |D| we get the Directed Steiner Forest (DSF) problem. Another particular

case of k-DSF is the k-Directed Steiner Tree (k-DST) problem, where D = {s} × T for

some s ∈ V and a terminal set T ⊆ V − {s}. We note that the name ”Directed Steiner

Forest” is a bit misleading and used just to relate the problem to the undirected version.
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Indeed, in the undirected version, any minimal feasible solution is a forest. However in the

directed case the structure of a solution may be complicated (e.g., it may contain cycles).

For example, if all costs are 1 and D = V ×V , then a directed Hamiltonian cycle is the best

solution one can expect.

1.1 Directed and undirected Steiner forests and related problems

Usually, the directed variants of network design problems are much harder to approximate

that the undirected ones (we shall later see that for k-DSF this is not the case!). For

example, while the undirected Steiner Tree and k-Steiner Tree problems admit a constant

approximation ratio (see [34, 8]), even a very special case of DST – the Group Steiner problem

on trees, is unlikely to admit a log2−ε n ratio for any ε > 0 [18]. In fact, the best known ratio

for DST is much worse than its proved lower bound. Extending and simplifying the recursive

greedy method introduced by Zelikovsky [35] and Kortsarz and Peleg [28], Charikar et al.

[3] gave a combinatorial O(ℓ3k2/ℓ)-approximation algorithm for k-DST that runs in O(k2ℓnℓ)

time (where k = |T |). Substituting ℓ = 2/ε gives an O(kε)-approximation scheme, namely,

an O(kε/ε3)-approximation algorithm that runs in O(k4/εn2/ε) time for any fixed ε > 0.

Substituting ℓ = log k gives an O(log3 k)-approximation in quasi-polynomial time.

For the Steiner Forest problem, the comparison between directed and undirected graphs

becomes even worse. The problem admits a constant approximation for undirected graphs

[1, 16]. However, for DSF strong lower bounds are known [9]. Dodis and Khanna [9] showed

that DSF is at least as hard as the LABEL-COVERmax problem [33]. This implies that DSF

cannot be approximated within O(2log1−ε n) for any fixed ε > 0, unless NP-hard problems

can be solved in quasi-polynomial time [33].

The situation for DSF (and thus also for the more general k-DSF) is much worse than the

above in the current state of the art. The best known ratio for LABEL-COVERmax is O(
√

n)

[32]. This ratio seems hard to improve and better ratio algorithms for LABEL-COVERmax

are not known even for very simple versions of the problem (e.g., when the structure of the

graph obeys the rules of the Unique Game Conjecture [22], when the admissible pairs of

answers of the two provers on any fixed query induces a matching). If LABEL-COVERmax is

indeed Ω(
√

n) hard to approximate, then so is DSF.

Still, there is no evidence yet discarding the possibility that DSF admits an O(
√

n)

approximation ratio. Indeed, as already mentioned, we provide the first step in this direction

by giving a sublinear approximation scheme, in terms of n.

Perhaps the most extreme example of the difference between undirected and directed
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network design problems is the Steiner Network problem. In this problem each pair (s, t)

has connectivity requirement r(s, t), namely, r(s, t) edge disjoint st-paths are required for

every (s, t) ∈ D. On undirected graphs, this problem admits a 2-approximation algorithm

due to Jain [21]. As far as we know no non-trivial ratio is known for the Steiner Network

problem on directed graphs.

Problem Undirected Directed

In terms of n In terms of k In terms of n In terms of k

Steiner Tree 1.55 [34] 1.55 [34] O(nε) [3] O(kε) [3]

k-Steiner Tree 2 [14] 2 [14] O(nε) [3] O(kε) [3]

Steiner Forest 2 [1] 2 [1] O(n1+ε) O(k1/2+ε) [4]

k-Steiner Forest O(
√

n) [2] O(
√

k) [2] Õ(n4/3) [3] Õ(k2/3) [3]

Steiner Network 2 [21] 2 [21] n2 k

Table 1: Currently best known approximation ratios for various generalizations of the Steiner

Tree problem, prior to our work. We improve the ratios for Steiner Forest and k-Steiner

Forest on directed graphs.

For other related problems, including the closely related Group Steiner Tree problem see

[5, 15, 24, 18, 20, 12, 26] and surveys in [10] and [23, 27].

1.2 Our results

For DSF, the best known approximation ratio, in terms of n, is O(n1+ε), which can be easily

derived from the algorithm of [3] for DST. For k-DSF, Charikar et al. [3] gave an Õ(k2/3)-

approximation algorithm, thus, the best ratio for k-DSF in terms of n was Õ(n4/3), since

k = O(n2).

A natural question is whether DSF admits an O(n1−ε) approximation ratio. In particu-

lar, is there an O(
√

n)-approximation algorithm? Our first result makes a progress toward

answering this question, by giving the first sublinear, in terms of n, approximation algorithm

for the problem.

Theorem 1.1 DSF admits an O(n4/5+ε)-approximation scheme.

The algorithm of [4] for DSF does not extend to k-DSF; see the reasons for that in

Section 1.3.1. Thus another natural question is: What is the best ratio possible for k-DSF

in terms of k? We prove:
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Theorem 1.2 k-DSF admits an O(k1/2+ε)-approximation scheme.

This improves the Õ(k2/3) ratio of [3]. It almost matches the best approximation O(
√

k)

known (in terms of k) for undirected graphs [2]. A striking feature of the state of the art of

the k-Steiner Forest problem is that the ratios known for the directed and undirected cases

are not that different in terms of k: O(
√

k) for undirected graphs [2] versus O(k1/2+ε) in our

paper. However, in terms of n, the difference
√

n versus n4/5+ε is still quite large.

A setpair is a pair (S, T ) of disjoint nonempty subsets of V . [4] gives an O(log2 n log2 |D|)-
approximation algorithm for the following generalization of the Group Steiner Tree problem:

Group Steiner Forest (GSF)

Instance: An (undirected) graph G = (V,E), edge costs {c(e) : e ∈ E}, and a set D of

setpairs in V .

Objective: Find a min-cost subgraph H of G that contains an (S, T )-path for every setpair

(S, T ) ∈ D.

In the more general k-Group Steiner Forest (k-GSF) problem, we are also given an

integer k ≤ |D|, and only require H to contain an (S, T )-path for (at least) k setpairs

(S, T ) ∈ D. Note that k-GSF also generalizes the (undirected) k-Steiner Forest problem,

which is the particular case when every setpair in D is just a pair of nodes. The polyloga-

rithmic approximation of [4] does not extend to k-GSF. Furthermore, k-GSF is unlikely to

admit a polylogarithmic approximation ratio, otherwise, we would obtain a polylogarithmic

approximation for (undirected) k-Steiner Forest. Recall that the best known ratio for the

latter is O(min{√n,
√

k}), and that a polylogarithmic ratio for it implies a polylogarithmic

ratio for the Densest k-Subgraph problem [2].

k-GSF admits an easy (up to constants) approximation ratio preserving reduction to k-

DSF. Thus by Theorem 1.2 we obtain the following extension of the O(
√

k)-approximation

for the (undirected) k-Steiner Forest problem:

Corollary 1.3 k-GSF admits an O(k1/2+ε)-approximation scheme.

In fact, our results can be used to show that if the k-Group Steiner Tree problem admits

an α-approximation algorithm, then k-GSF admits an O(α
√

k)-approximation algorithm.

The running time of our algorithm for k-DSF: Suppose that k-DST admits an α-

approximation in T (n, k) time. We show that then k-DSF admits an O(α
√

k)-approximation

in O(nk2T (2n+k, k)) time (assuming T (n, k) is increasing in k). In particular, k-DSF admits

an O(k1/2+ε/ε3)-approximation algorithm that runs in O(nk2+4/ε(2n + k)2/ε) time for any
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fixed ε > 0. Using the specific properties of the k-DST algorithm of [3], the time complexity

can be reduced to O(nk1+4/ε(2n + k)2/ε).

Comparing our algorithm and the algorithm of [4] on DSF: In addition to the

above improvements, our O(k1/2+ε)-approximation algorithm for k-DSF, when restricted to

the special case of DSF, achieves the same ratio as [4] but is much simpler and much faster.

The algorithm of [4] repeatedly solves linear programs while our algorithm can be seen as a

reduction to k′-DST and is purely combinatorial; this is the reason our running time is much

lower. We achieve this by introducing a new notion of junction star-trees that simplifies

matters.

1.3 Main new techniques: junction star-trees and a novel LP for

DSF

1.3.1 Junction star-trees and their advantages

All known algorithms for k-DSF accumulate good density trees until enough pairs are con-

nected. The density of a solution is its cost over the number of new pairs it connects.

The idea of low-density junction trees was first invented for approximating Buy-at-Bulk

problems [6]. For the sake of Buy-at-Bulk, it was enough to define a junction tree as a

collection of paths, all going via the same node, and sending a (possibly fractional) unit of

siti-flow for “many” si, ti pairs at a “low” cost. The reason this definition suffices is that

there are known methods to round such fractional solutions into trees of low cost with only

polylogarithmic loss compared to the fractional value (see [30, 7]).

For problems on directed graphs, it does not seem that we can easily use fractional flow

methods to achieve a low ratio approximation algorithm. Even for DST, it is not clear if it is

possible to round a fractional flow solution into a low cost out-branching. The only tool we

have for tasks of finding low cost out- and in-branchings is the recursive greedy algorithm of

[3].

Hence, in the directed setting a more careful definition of junction tree is used [4]. A

junction tree is an in-branching TI into r plus an out-branching TO out of r connecting

several pairs from D [4]. In the definition of [4], TI and TO are allowed to intersect. 1

1It seems more natural to require that TI ∩ TO = ∅. However, this makes no difference. It is easy to

handle the extra requirement TI ∩ T0 = ∅ by taking shortest siti-paths, after joining via the junction node

two copies of the input graph.
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We present a few details of the [4] algorithm. Setting the goal of achieving a roughly√
k-approximation, a simple averaging argument shows that there is a node r so that at

least
√

k siti-paths go via it (otherwise, a
√

k ratio is easily derived [4]) giving a low density

junction tree. 2

The question is how to find such a low density junction tree. This is a non-trivial

challenge. The goal is to “match” the ”source” si with the proper terminal ti. A “naive”

application of [3] is guessing the root r and the number k′ of sources in TI (which equals the

number of terminals in TO), and finding an in-branching with k′ sources and an out-branching

with k′ terminals using [3]. This method fails because the sources in the in-branching and

the terminals in the out-branching found may not match.

In [4], some clever manipulations are performed to overcome that difficulty. This includes

a phase called paths splitting and a use of a “density type” linear program that in effect

“forces” the sources to match the terminals. See a simpler application of a density type LP

in [6]. The situation in [6] is simpler then here as the graph in [6] is undirected.

We overcome some of the above difficulties using junction star-trees. A junction star-tree

is a star with leaves si entering a root r joined to an out-branching covering the respective

ti. If we can find a junction star-tree of low density the difficulties of matching si and ti no

longer apply. There is an easy way to force the si, ti to match by ”attaching” each si as a

child of ti with a directed edge tisi of cost c(sir). Thus, the si become the terminals, and

si belongs to the solution if and only if ti does (see a more formal proof of this in Section

4). We show that the metric completion of the input graph G always contains a junction

star-tree of good density. Hence the problem is reduced to k′-DST problem (we still need

to guess the root r and the number k′ of pairs in the junction star-tree), and we do not

need to use LP methods. Obviously, a drawback is that it is harder to prove the existence

of a low density junction star-tree (see the Junction Star-Tree Theorem 4.5 and its proof in

Section 4.1), than just the existence of a low density junction tree.

Another disadvantage of the LP method used by [4] is that it is unable to deal with

the k-DSF problem. The LP may connect an arbitrary number of pairs (albeit, it returns a

solution of good density). Hence, the number of pairs the LP connects may be much larger

than k. The use of junction star-trees allows us to use the algorithm of [3] for k-DST (by

solving the k′-DST problem, k′ ≤ k) instead of the LP methods, which in turn allows us to

control the number of pairs connected.

2Technically speaking, a union of siti-paths all going via r is not a junction tree as defined in [4]. However,

is easy to see that it contains a junction tree.
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1.3.2 A novel LP for cheap paths in the sublinear algorithm for DSF

Intuitively, a pair st ∈ D is “good” if there are “many” nodes r so that a “cheap” st-path

via r exists; otherwise, the pair is “bad”. There are three main procedures in our sublinear

algorithm for DSF:

1. The first procedure uses randomization to find a relatively small “junction subset”

R ⊂ V through which all good pairs can be connected. As R is small, and the paths

are cheap, we can show that the cost incurred in connecting all good pairs via R is

Õ(n4/5) · opt. After all good pairs are connected, they are excluded from D, and we

remain with bad pairs only.

2. If in some optimal solution at least half of the bad pairs are connected by “long paths”

then we prove, by standard averaging, the existence of a low density junction-tree (as

defined in [4]). A sub-graph with density close to the density of such a tree is found

using the procedure of [4].

3. The difficult case is when optimal solution connect most of the bad pairs by “cheap”

paths. To handle this case, we formulate a novel LP-relaxation which asks to connect

pairs by cheap paths only. This LP assigns capacity xe to every edge e so that it will

be possible to send a unit of siti-flow (separately for every i) along cheap paths, and

so that
∑

e∈E c(e)xe is minimized. We show how to find approximate solutions for this

LP in polynomial time, and that rounding up entries xe of large enough value gives a

low density augmentation.

2 Preliminaries

2.1 The ρ-Greedy Algorithm

We use a known result about the performance of a Greedy Algorithm for the following type

of problems:

Covering Problem

Instance: A groundset E and non-negative functions ν, c on 2E, given by an evaluation

oracle.

Objective: Find F ⊆ E with ν(F ) = 0 and c(F ) minimized.
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We call ν the deficiency function (it measures how far is F from being a feasible solution)

and c the cost function.

Definition 2.1 Let F ⊆ E be a partial solution (partial cover) for an instance of Covering

Problem and let J ⊆ E. Let ρ(x) be a positive function, and let opt be the optimal solution

value for Covering Problem. We say that J ⊆ E obeys the ρ(x)-Density Condition if:

σF (J) =
c(J)

ν(F ) − ν(F ∪ J)
≤ opt · ρ(ν(F ))

ν(F )
(1)

The quantity σF (J) in (1) is the density of J (w.r.t. F ). The ρ(x)-Greedy Algorithm

starts with F = ∅ and iteratively adds to F a subset J ⊆ E obeying (1).

Definition 2.2 A set-function f on 2E is:

• Decreasing if f(F2) ≤ f(F1) for any F1 ⊆ F2 ⊆ E.

• Subadditive if f(F1 ∪ F2) ≤ f(F1) + f(F2) for any F1, F2 ⊆ E.

The following statement is well known (e.g., see a slightly weaker version in [3]), for

completeness we also provide here the proof.

Theorem 2.1 If ν is decreasing, c is subadditive, and ρ(x)/x is a decreasing function, then

the ρ(x)-Greedy Algorithm computes a solution F with:

c(F ) ≤ opt ·
∫ ν(∅)

0

ρ(x)

x
dx (2)

Proof: Let ℓ be the number of steps performed by the algorithm. Let Ji be the set that the

algorithm adds to its partial cover in the i-th iteration, and let Fi denote the partial cover

before the i-th iteration, namely, Fi = ∪i−1
j=1Jj. Since Ji obeys the ρ(x)-Density Condition:

σFi
(Ji) ≤ opt · ρ(ν(Fi))

ν(Fi)
⇒ c(Ji) ≤ opt · (ν(Fi) − ν(Fi ∪ Ji)) ·

ρ(ν(Fi))

ν(Fi)
≤ opt ·

∫ ν(Fi)

ν(Fi∪Ji)

ρ(x)

x
dx

The last inequality follows from the decreasing property of ν and ρ(x)/x. Let F = ∪ℓ
j=1Jj

be the result of the algorithm. Using the subadditivity of c we get:

c(F ) ≤
ℓ

∑

i=1

c(Ji) ≤
ℓ

∑

i=1

(

opt ·
∫ ν(Fi)

ν(Fi∪Ji)

ρ(x)

x
dx

)

= opt ·
∫ ν(F1)=ν(∅)

ν(F)=0

ρ(x)

x
dx

2

In our setting, the ground-set is the set E of edges of the graph. For every partial

solution F ⊆ E, the deficiency ν(F ) of F is the number of ordered pairs not connected

by F . Formally, ν(F ) = max{k − |D(F )|, 0}, where D(F ) denotes the set of pairs from D

connected by F . Clearly, ν is decreasing, and c is subadditive.11



2.2 Some simple reductions

We briefly describe some well known reductions to be used later that we can apply with

negligible loss (in time complexity or approximation ratio) on a given k-DSF instance.

Reduction 1 We may assume that S ∩ T = ∅ and that no edge enters S or leaves T .

This can be achieved by adding for every node v two new nodes sv, tv with edges svv, vtv of

cost 0 each, and replacing every ordered pair (u, v) ∈ D by the pair (us, vt).

Reduction 2 We may assume that G is transitively closed and that the costs are metric.

This is achieved by applying metric completion.

Given an instance of k-DSF, Reductions 1 and 2 can be implemented in O(n3) time,

hence negligible in our context, and result in an instance with 3n = O(n) nodes.

Reduction 3 We may assume that we know τ such that opt ≤ τ ≤ 2 · opt.

This can be done by checking all values τ ∈ {1, 2, 4, . . . , 2⌈log2
c(E)⌉}; and for simplicity of

exposition we assume that τ = opt, this assumption only effects the multiplicative constants.

3 A sublinear algorithm for DSF (Proof of Theorem 1.1)

Given an instance of DSF assume that all reductions from Subsection 2.2 are implemented.

In what follows, let p, α, ℓ be parameters eventually set to:

p = 2 ln k/n2/5, α = n2/5, ℓ = τ/α2

For a graph H, let distH(u, v) denote the minimum cost of a uv-path in H.

Definition 3.1 A path P is short if c(P ) ≤ ℓ, and long otherwise. For (s, t) ∈ D, let

U(s, t) = {u ∈ V : distG(s, u), distG(u, t) ≤ ℓ}. A pair (s, t) ∈ D is good if |U(s, t)| ≥ α, and

bad otherwise.

3.1 Connecting good pairs

Lemma 3.1 There exists a polynomial time algorithm that given an instance of DSF finds

an edge set F of cost c(F ) ≤ 4pn2ℓ = Õ(n4/5) · τ that connects all good pairs.

Proof: Form a set R ⊆ V by picking every node v ∈ V into R with probability p. For a

given good pair (s, t) we have:

Pr[R ∩ U(s, t) = ∅] ≤ (1 − p)α ≤ 1

k2
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By the union bound, the probability that R∩U(s, t) 6= ∅ for every good pair (s, t) is at least

1 − 1/k. |R| is a random variable with binomial distribution B(n, p). Thus E(|R|) = pn.

Using the Chernoff Bound we get:

Pr[|R| ≤ 2pn] = Pr[|R| ≤ 2 · E(|R|)] > 1 − e−pn/4 .

For pn/4 ≥ ln k we get that with high probability both |R| ≤ 2pn and R ∩ U(s, t) 6= ∅ for

every good pair (s, t). This procedure can be derandomized using the method of conditional

probabilities. We connect by a short path every node s ∈ S to every node v ∈ R, if such

path exists. Similarly, we connect by a short path every node v ∈ R to every node t ∈ T , if

such path exists. Let H be the sub-graph constructed by the above procedure. Clearly H

connects all good pairs. As |S| + |T | ≤ 2n, we get that c(H) ≤ |R| · 2n · ℓ ≤ 2pn · 2n · ℓ =

4pn2τ/α2 = τ · Õ
(

n4/5
)

. 2

3.2 Connecting bad pairs

After all good pairs are connected using the algorithm of Lemma 3.1, they are excluded from

D, and we remain with bad pairs only.

Lemma 3.2 There exists an algorithm that given a DSF instance without good pairs and a

constant ε > 0, computes in polynomial time an edge set J ⊆ E of density Õ(n4/5+ε) · τ/|D|.

In the rest of this section we prove Lemma 3.2. We compute two edge sets using two

different algorithms, and choose among them the one with lower density. For the analysis,

let us fix some optimal solution H, so c(H) = opt = τ . Let L = {(s, t) ∈ D : distH(s, t) ≥ ℓ}.
We will consider two cases: |L| ≥ |D|/2 and |D − L| > |D|/2, clearly these cases are

exhaustive and mutually exclusive.

Definition 3.2 (From [4]) An edge set J in a directed graph is called junction tree if it

is the union of an in-branching and an out-branching (not necessarily edge disjoint), both

rooted at the same node r.

Lemma 3.3 (Due to [4]) The problem of finding a minimum density junction tree admits

an O(kε)-approximation scheme.

Proposition 3.4 H contains a junction tree J of density at most

σ(J) ≤ τ

ℓ
· τ

|L| = n4/5 · τ

|L|

Hence if |L| ≥ |D|/2, the algorithm of [4] finds a junction tree J of density O(n4/5+ε) ·τ/|D|.
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Proof: Let Π(L) be a set of paths in H corresponding to the pairs in L. The sum of the

costs of the paths in Π(L) is at least |L| · ℓ. Since the paths of Π(L) are in H, there must be

an edge of H which belongs to at least |L| · ℓ/τ paths. Therefore, the union of these paths,

which is a subgraph of H, contains a junction tree connecting at least |L| · ℓ/τ pairs from

Π(L). The density of such tree is at-most c(H)/(|L| · (ℓ/τ)) ≤ (τ/|L|) · (τ/ℓ), as claimed. 2

Now suppose that |L| < |D|/2, so |D − L| > |D|/2. Consider the following LP-

relaxation (LP1) for the problem of connecting at least k′ ≤ |D − L| pairs from D =

{(s1, t1), . . . , (sk, tk)}. Intuitively, (LP1) decides on a capacity xe for every e ∈ E and an

amount yi of siti-flow. The sum of the yi’s is at least k′. The main restriction is that the flow

has to be delivered on (simple) paths of cost ≤ ℓ. Since we deal only with bad pairs, this

implies that the LP cannot disturb the flow of any pair over “too many” paths. This is done

as follows. Let Π(i) be the set of (simple) siti-paths in G of cost ≤ ℓ, and let Π =
⋃

i Π(i).

For every i, decompose the final siti-flow in the graph into flow paths. For every P ∈ Π(i),

the variable fP is the amount of siti-flow through P . The total siti-flow equals the sum of

the flows on the paths in Π(i), namely, yi =
∑

P∈Π(i) fP . For every i and e ∈ E, the capacity

constraint is
∑

Π(i)∋P∋e fP ≤ xe; namely, the total siti-flow through e is at most xe. Note that

it holds for every pair separately, namely, it may not be possible to deliver simultaneously

flows yi and yi′ , i 6= i′.

(LP1) min
∑

e∈E c(e)xe

s.t.
∑

i yi ≥ k′
∑

Π(i)∋P∋e fP ≤ xe ∀ i, e ∈ E
∑

P∈Π(i) fP = yi ∀ i

yi, xe ≤ 1 ∀ i, e ∈ E

yi, fP , xe ≥ 0 ∀ i, P ∈ Π, e ∈ E

The corresponding dual LP is:

(LP2) max
∑

e∈E xe +
∑

i yi − W · k′

s.t.
∑

i zi,e + c(e) ≤ xe ∀ e ∈ E

yi + wi ≥ W ∀ i

wi ≤ ∑

e∈P zi,e ∀ i, P ∈ Π(i)

W, xe, yi, zi,e ≥ 0 ∀ i, e ∈ E

Lemma 3.5 For any k′ ≤ |D −L| the optimal value of (LP1) is at most opt. Furthermore,

a solution for (LP1) of value ≤ (1 + ε) · opt can be found in polynomial time.
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Proof: The first statement is obvious, as (LP1) is a relaxation for the problem. We show

how to find an approximate solution in polynomial time. Although the number of variables in

(LP1) might be exponential, any basic feasible solution to it has at-most O(|D| ·m) non-zero

variables. Now, if we had a polynomial time separation oracle for (LP2), we could compute

an optimal solution to (LP1) (the non-zero entries) in polynomial time. The number of

non-zero entries in such a computed solution is polynomial in O(|D| ·m). Such an oracle can

be constructed for all the constraints, except for the constraints of the form wi ≤
∑

e∈P zi,e,

unfortunately, for these constraints, a polynomial time separation oracle may not exist, since

the separation problem defined by a specific pair (si, ti) is equivalent to the following problem,

which is NP-hard (see [29] for NP-hardness proof):

Restricted Shortest Path

Instance: A directed graph G = (V,E), transition times {z(e) : e ∈ E}, edge lengths

{ℓ(e) : e ∈ E}, a pair (s, t), and an integer Z.

Objective: Find a minimum length st-path P such that
∑

e∈P z(e) ≤ Z.

The Restricted Shortest Path problem admits an FPTAS (see [19] and an improved

result in [29]), therefore we get an approximate separation oracle, which for any ε > 0 checks

whether there exists a path P ∈ Π(i) so that wi ≤
∑

e∈P zi,e/(1 + ε). This implies that we

can solve the following linear program in time polynomial in 1/ε and the size of the original

DSF problem:

(LP3) max
∑

e∈E xe +
∑

i yi − W · k′

s.t.
∑

i zi,e + c(e) ≤ xe ∀ e ∈ E

yi + wi ≥ W ∀ i

wi ≤ ∑

e∈P zi,e/(1 + ε) ∀ i, P ∈ Π(i)

W, xe, yi, zi,e ≥ 0 ∀ i, e ∈ E

Thus we can also solve the dual of (LP3), which is:

(LP4) min
∑

e∈E c(e)xe

s.t.
∑

i yi ≥ k′
∑

Π(i)∋P∋e fP ≤ xe · (1 + ε) ∀ i, e ∈ E
∑

P∈Π(i) fP = yi ∀ i

yi, xe ≤ 1 ∀ i, e ∈ E

yi, fP , xe ≥ 0 ∀ i, P ∈ Π, e ∈ E

Let opt(ε) denote the optimal value of (LP4). Clearly, opt(ε) ≤ opt. Note that since
∑

Π(i)∋P∋e fP ≤ yi < 1, if x(ε) is a feasible solution to (LP4) then by replacing the value of
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Figure 2: A cut between a bad pair nodes (s, t)

s1, s2, . . . , sm and t1, t2, . . . , tk are the nodes transferring positive flow on the respective sides of the cut.

Since (s, t) is a bad pair, we have m, t ≤ α, and therefore the number of positive flow edges crossing the cut

is bounded by m · t ≤ α2.

every variable xe in x(ε) by min{1, xe · (1 + ε)} we get a new solution x which is a feasible

solution to (LP1). The value of such x is at most (1 + ε) · opt(ε) ≤ (1 + ε) · opt. 2

The following lemmas show that any feasible solution to (LP1) can be rounded, incuring

an increase of the cost by a factor of only O(n4/5). Figure 2 present some of the ideas behind

these lemmas.

Lemma 3.6 Let x, y be a feasible solution to (LP1) and let 0 ≤ β < k′/|D| arbitrary. Then

at most (|D| − k′)/(1− β) pairs in D have flow yi < β. Thus, the number of pairs in D that

have flow yi ≥ β is at least:

|{i : yi ≥ β}| ≥ |D| − |D| − k′

1 − β
=

k′ − β|D|
1 − β

Proof: If more than (|D| − k′)/(1 − β) pairs in D have flow strictly less than β, then the

sum of the flows between all pairs must be strictly less than:

|D| − k′

1 − β
· β +

(

|D| − |D| − k′

1 − β

)

· 1 = |D| + (β − 1) · |D| − k′

1 − β
= k′

This is a contradiction, since in any feasible solution of (LP1), the sum of the flows between

all pairs must be at least k′. 2

Lemma 3.7 Let x, y be a feasible solution to (LP1) and let 0 ≤ β < 1. If yi ≥ β for some

i then J = {e ∈ E : xe ≥ 4β/α2} contains an siti-path.

Proof: We claim that C ∩ J 6= ∅ for every siti-cut C. Suppose to the contrary that

C ∩ J = ∅ for some siti-cut C, namely, xe < 4β/α2 for every e ∈ C. Thus |C| ≥ α2/4, since
∑

e∈C xe ≥ yi ≥ β. Every edge e = uv ∈ C that carries a positive amount of siti-flow belongs
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to some short siti-path, thus u, v ∈ U(si, ti). We got that U(si, ti) contains end nodes of at

least α2/4 edges of the cut C, implying that U(si, ti) contains at least 2
√

α2/4 = α nodes.

Thus (si, ti) is a good pair, contradicting our assumption that all the pairs are bad. 2

Corollary 3.8 Assuming k′ ≤ |D − L|, let (x, y) be any solution to (LP1) found using

Lemma 3.5. Then for any 0 ≤ β < k′/|D|, the edge set J = {e ∈ E : xe ≥ 4β/α2} has

density at most:
α2opt · (1 + ε)

4β
· (1 − β)

k′ − β|D|
In particular, for k′ = |D|/2 ≤ |D − L| and β = 1/4, the density of J is at most 3α2 · opt ·
(1 + ε)/D = O(n4/5) · opt/|D|.

Proof: Since k′ ≤ |D − L|, the value of (LP1) is at most opt · (1 + ε), by Lemma 3.5. Thus

c(J) ≤ opt · (1 + ε)/(4β/α2) = opt · (1 + ε)α2/(4β). By Lemmas 3.6 and 3.7, |D(J)| ≥
(k′ − β|D|)/(1 − β). Thus:

σ(J) =
c(J)

|D(J)| ≤
opt · (1 + ε)α2/(4β)

(k′ − β|D|)/(1 − β)
=

α2opt · (1 + ε)

4β
· (1 − β)

k′ − β|D|
2

Proof of Lemma 3.2: We execute two algorithms to compute edge sets J ′, J ′′ and choose

among them the one with the better density. The set J ′ is computed using the algorithm of

Lemma 3.3. The set J ′′ is computed using the algorithm of Corollary 3.8 with parameters

k′ = |D|/2 and β = 1/4. If |L| ≥ |D|/2 then the density of J ′ is Õ(n4/5+ε)·τ/|D|. Otherwise,

if |D−L| ≥ |D|/2, the density of J ′′ is O(n4/5) · τ/|D|. In any case, one of J ′, J ′′ has density

Õ(n4/5+ε) · τ/|D|. 2

3.3 Putting everything together

Implement Reductions 1, and 2, in this order. Assuming that we know τ (Reduction 3), the

entire algorithm is as follows:

1. Find an edge set F as in Lemma 3.1, and exclude all good pairs from D.

2. While F is not a feasible solution do:

- Find an edge set J as in Lemma 3.2;

- F ← F + J ; D ← D − D(J).

EndWhile

3. Return F .
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The reductions incur only a constant loss in the approximation ratio. The total cost of

the edges added at Step 1 is Õ(n4/5) · τ , by Lemma 3.1. Step 2 is essentially a ρ-Greedy

Algorithm with ρ = Õ(n4/5+ε), by Lemma 3.2. Thus by Theorem 2.1, the total cost of the

edges added at Step 2 is Õ(n4/5+ε) · τ . This finishes the proof of Theorem 1.1.

Remark: Note that during the algorithm we do not zero the cost of the edges accumulated

by the partial solution at Steps 1,2, but only exclude the pairs already connected from D.

This is since zeroing costs of edges might make bad pairs good, while we connect the good

pairs only once, at the beginning of the algorithm at Step 1. Although it does not improve

the ratio we can prove, it is possible to zero the costs of the edge sets found, by postponing

the connection of the good pairs to the end of the algorithm. This might improve the ratio

in practice, and is achieved as follows. First, connect the bad pairs only; at every iteration

zero the costs of the edge sets added into the partial solution, and update accordingly the

set of bad pairs. Second, when no bad pairs remain, connect all good pairs by the algorithm

of Lemma 3.1.

4 An algorithm for k-DSF (Proof of Theorem 1.2)

This section is organized as follows: Subsection 4.1 defines the notation of “junction star-

trees” and proves the “The Junction Star-Tree Theorem” which ensures the existence of

a good density junction star-tree in the metric completion of any graph. Subsection 4.2

describes the algorithm for k-DSF.

4.1 Junction star-trees

Definition 4.1 Let G be a graph with a set D = {(s1, t1), . . . , (s|D|, t|D|)} of ordered pairs;

S = {s1, . . . , s|D|} are sources and T = {t1, . . . , t|D|} are terminals. A subgraph J of G is a

junction star-tree if it is a union of an out-branching JT rooted at r in (G− S) ∪ {r} and a

star JS ingoing to r in (G − T ) ∪ {r}.

Roughly speaking, J is a junction star-tree if it can be obtained by taking a tree rooted

at r (with no source nodes, except for r) that connects r to a set T ′ of terminals, and adding

for every s ∈ S ′ (where S ′ is a set of non-terminal nodes) the edge sr. Our main interest

will be in the case where S ′ is the set of sources corresponding to the terminals of T ′.

The main result of this section is the following statement that is used in the algorithm

presented in the next section, and which we believe is of independent interest.
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Theorem 4.1 (The Junction Star-Tree Theorem) Let H = (V,E) be a graph with

edge costs {c(e) : e ∈ E} containing a set Π of k paths connecting a set D ⊆ S × T of

k node pairs, so that S ∩ T = ∅ and so that no edge enters S or leaves T . If c(P ) ≥ c(H)/g

for every P ∈ Π then the metric completion of H contains a junction star-tree J of density

at most:
c(J)

|D(J)| ≤ c(H) ·
(

g

k
+

2

g

)

(3)

In the rest of this section we will prove Theorem 4.1. For every st-path P ∈ Π, the

truncated path P̄ of P is the maximal sv-subpath of P so that c(P̄ ) < c(H)/g. Let eP be

the edge in P − P̄ leaving the last node of P̄ . Since c(P ) ≥ c(H)/g, then by the definition

of P̄ : eP always exists, and c(P̄ + eP ) ≥ c(H)/g. Let Π̄ = {P̄ : P ∈ Π}.

Definition 4.2 We say that two (not necessarily different) truncated paths in Π̄ collide if

they have a node in common.

Lemma 4.2 There exists a partition P̄1, . . . , P̄q of Π̄ into q ≤ g parts, and a set of pairwise

non-colliding paths {P̄i ∈ P̄i : i = 1, . . . , q}, such that P̄i collides with every path in P̄i,

i = 1, . . . , q. Thus there is a path P̄ ∈ Π̄ colliding with at least ℓ ≥ k/q ≥ k/g paths in Π̄.

Proof: We will construct the partition iteratively. Assuming that at the end of iteration

i − 1 we constructed a subpartition {P̄1, . . . , P̄i−1} of Π̄, which is not yet a partition of Π̄,

in iteration i perform two steps:

1. Pick a path P̄i ∈ Π̄ which does not belong to any part yet, and place it in a new part P̄i.

2. Add to P̄i every path that collides with P̄i and does not belong to any other part yet.

By the construction, it is clear that eventually we will get a partition of Π̄, such that P̄i

collides with every path in P̄i for every i, and that {P̄i}q
i=1 are pairwise non-colliding. Hence

we only need to show that the number q of parts is bounded by g. Let ei = ePi
, i = 1, . . . , q.

Note that since P̄1, . . . , P̄q are pairwise node disjoint, the paths P̄1 + e1, . . . , P̄q + eq are

pairwise edge-disjoint. Thus their total cost is at most c(H). Since c(P̄i + ei) ≥ c(H)/g for

every i, the statement follows. 2

Focus on a path P̄ ∈ Π̄ and a set of P̄ = {P̄1, . . . , P̄ℓ} of ℓ ≥ k/g truncated paths colliding

with P̄ (P̄ ∈ P̄), which existence is guaranteed by Lemma 4.2. Let P = {P1, . . . , Pℓ} ⊆ Π

be the set of corresponding non-truncated paths. Let S̄ = {s1, . . . , sℓ} and T̄ = {t1, . . . , tℓ}
be the sets of sources and terminals of the paths in P , respectively. Let r1, . . . , rd be the

sequence of nodes of P̄ arranged in reverse order; rd is the first node of P̄ , rd−1 is the second,

and so on; the last node of P̄ is r1 (see Fig. 3(a)).

19



21

d rmr

s

rir2

t

r1

dJ JJ

(a) (b)

Figure 3: Construction of the junction star-trees

(a) The trees J1, . . . , Jd hanged on the path P̄ ; the trees are edge disjoint, but might not be node disjoint;

some of the trees might consist of the root only. (b) Illustration of property 3 in Lemma 4.3 and the

”shortcut” in the proof of Corollary 4.4.

Lemma 4.3 There exists in H a family J1, . . . , Jd of pairwise edge disjoint trees so that (see

Fig. 3(b)):

1. Every Ji is rooted at ri, i = 1, . . . , d.

2. Every t ∈ T̄ belongs exactly one tree Ji, 1 ≤ i ≤ d.

3. If t ∈ T̄ ∩Ji and (s, t) ∈ D, then there is m ≥ i so that rm belongs to a path in P̄ starting

at s.

Proof: We construct the trees iteratively. J1 is any inclusion minimal tree in H rooted at

r1 that contains the set T1 of all the terminals in T̄ that are reachable in H from r1. J2 is

any inclusion minimal tree in H rooted at r2 that contains the set T2 of all the terminals in

T̄ − T1 that are reachable in H from r2. And, in general, Ji is any inclusion minimal tree in

H rooted at ri that contains the set Ti of all the terminals in T̄ − T1 ∪ · · · ∪ Ti−1 that are

reachable in H from ri. By the construction, and since every path in P̄ collides with P̄ and

no edge leave the terminals, it is clear that the first two properties given in the lemma hold.

We explain why property (3) holds too. Let t ∈ T̄ ∪ Ji, since t ∈ T̄ , we know that there is

a path P ′ ∈ P ending in t. Since every path in P̄ collides with P̄ , there must be a node rm

common to P̄ and P ′. By the construction either t ∈ Jm or t is included in one of the trees

J1, J2, . . . , Jm−1. Since we know that t ∈ Ti, we have to conclude m ≥ i.

We now show that the trees J1, . . . , Jd are pairwise edge disjoint. Otherwise, there are

1 ≤ m < i ≤ d so that Jm and Ji have an edge uv in common. By the minimality of Ji, there

is a terminal t ∈ T̄i reachable from v in Ji (possibly v = t). But then t is also reachable from

rm, hence, by the construction, t should have appeared in Jm and not in Ji, contradiction.

2
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Using Lemma 4.3, we show that the metric completion of H contains a low density

junction star-tree as a subgraph. For a subgraph J of H let k(J) = |V (J) ∩ T̄ | denote the

number of terminals from T̄ in J .

Corollary 4.4 There exists a junction star-tree J in the metric completion of H, such that

(3) holds.

Proof: Let J1, . . . , Jd be the decomposition of H into trees as in Lemma 4.3. We will extend

these rooted trees to junction star-trees by adding for every st path in P an edge sri from s to

the root ri of the tree Ji which includes t (see Fig. 3(b), if s = ri we need not add any edge).

The cost of each new edge is at most 2c(H)/g, since it shortcuts a path that is obtained by

joining two subpaths of truncated paths (recall that each truncated path has cost less than

c(H)/g). Let J+
1 , . . . , J+

d denote the resulting junction star-trees. Every junction star-tree

connects all its sources to the corresponding terminals, and therefore
∑d

i=1 k(J+
i ) = ℓ. On

the other hand we can bound the sum of the costs of the junction star-trees as follows:

d
∑

i=1

c(J+
i ) <

d
∑

i=1

c(Ji) + ℓ · 2c(H)

g
≤ c(H) + ℓ · 2c(H)

g

The last inequality holds because J1, . . . , Jd are subgraphs of H that are pairwise edge

disjoint. Using an averaging argument we get that there must be a junction star-tree J = J+
i

whose density is bounded by:

c(J)

k(J)
≤ c(H) + ℓ · 2c(H)/g

ℓ
=

c(H)

ℓ
+

2c(H)

g
≤ c(H) ·

(

g

k
+

2

g

)

The last inequality holds because ℓ ≥ k/g. 2

4.2 The algorithm

Given a k-DSF instance assume that Reduction 1 and 2 are implemented.

Lemma 4.5 For any k-DSF instance (after applying Reductions 1, 2), there exists a junction

star-tree J so that c(J)/|D(J)| ≤ opt ·
√

8/k.

Proof: This follows from Theorem 4.1 by choosing H as an optimal solution of a k-DSF

instance (after applying Reductions 1, 2) and g =
√

2k. Indeed, if c(P ) ≤ c(H)/g for some

st-path P with (s, t) ∈ D, then P is a junction star-tree of density ≤ c(H)/g = c(H)/
√

2k;

otherwise, by Theorem 4.1, H contains a junction star-tree J of density c(J)/|D(J)| ≤
√

8/k · c(H). 2
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Figure 4: An example showing that the bound in Lemma 4.5 is tight

Example: The following example shows that the bound in Lemma 4.5 is tight up to a

constant factor. Consider the graph in Fig. 4, where D = {(si, tj) : 1 ≤ i, j ≤ k}. Here k =

q2, and the lowest possible density of a junction star-tree is (q + 1)/q > 1 (since no junction

star-tree of finite cost can include at the same time multiple sources and multiple terminals),

while the density of the optimal solution (which is the entire graph) is 2q/q2 = 2/q. Notice

that this example also implies the same bound over the best density junction tree.

Lemma 4.6 Suppose that there exists an algorithm that given an instance of k-DSF finds

an edge set J of density σ ≤ opt ·ρ(k)/k and the set D(J) of demand pairs that J connects in

T ′(n, k) time. Then the ρ(x)-Greedy Algorithm for k-DSF can be implemented in O(kT ′(n, k))

time.

Proof: We need to show how to find a low density edge set J for every instance G, c,D of

k-DSF and every partial cover F . For that, set D ← D−D(F ) to get an instance G, c,D′ of

(k−|D(F )|)-DSF. Then use the given algorithm for finding an edge set J of density at most

opt′ · ρ(k− |D(F )|)/(k− |D(F )|) = opt′ · ρ(ν(F ))/ν(F ) ≤ opt · ρ(ν(F ))/ν(F ), where opt and

opt′ denote the optimum solution values of the instances G, c,D and G, c,D′, respectively.

The number of iterations is at most k, since in each iteration at least one more demand pair

is satisfied. Hence the time complexity is O(kT ′(n, k)). 2

If we could find a low-density junction star-tree as in Lemma 4.5 in polynomial time, then

we would obtain an O(
√

k)-Greedy Algorithm for k-DSF, by Lemma 4.6. Such an algorithm

has an approximation ratio of O(
√

k) by Theorem 2.1, since
∫ k
0

√
x

x
dx = 2

√
k. We will show

how to find a junction star-tree of approximately optimal density using any approximation

algorithm for k-DST; in particular, we can use the algorithm of [3].
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Corollary 4.7 If k-DST admits an α-approximation in T (n, k) time then there exists an

algorithm that given an instance of k-DSF finds a junction star-tree J satisfying σ(J) ≤
opt · α ·

√
8k/k and D(J) in O(nkT (2n + k, k)) time.

Proof: We may assume that we know the root r of some optimal density star-junction tree,

as we may try every r ∈ V . For every demand pair (s, t) ∈ D, add a new node t′ and the

edge tt′ of cost c(sr) (if s = r let the cost of the edge be 0). Let T ′ be the set of nodes

added. For every 1 ≤ k′ ≤ k apply the α-approximation algorithm on the obtained instance

of k′-DST with root r and terminal set T ′. From the solutions computed, output one J ′

of the minimum density. The junction star-tree J is obtained from J ′ by replacing every

terminal t′ of J ′ by the corresponding edge sr. It is easy to see that J ′ is as required, and

that it is possible to calculate D(J) without increasing the time complexity. The graph on

which we call the algorithm for k′-DST has n + |T | + |S| + k nodes due to Reduction 1 and

the addition of the nodes of T ′. However, |S| of these nodes are sources (into which no edge

enters) and can be removed before the algorithm for k′-DST is called. The time complexity

follows. 2

Combining Corollary 4.7 with the result of [3], Theorem 2.1, and Lemma 4.6, gives

Theorem 1.2.

Remark: When using the algorithm of [3] for k-DST, the time complexity in Corollary 4.7

is in fact O(nT (2n+k, k)), since this algorithm works by uniting minimum density augmen-

tation trees for k-DST, and therefore it approximates such trees within the same time bound

as approximating k-DST.

5 Conclusions and open problems

We presented the first sub-linear, in terms of n, approximation algorithm for the DSF prob-

lem. Due to a reduction from LABEL-COVERmax [9], obtaining an approximation ratio better

than O(
√

n) (namely, O(n1/2−ε) for some constant ε > 0) for DSF implies improving the best

ratio for LABEL-COVERmax due to Peleg [32]. Still, it is an open question whether this ratio is

indeed feasible. We also presented a simple combinatorial O(
√

k)-approximation algorithm

for k-DSF, which matches the best known LP-based algorithm of Chekuri et al. [4] for the

less general problem DSF. Our result also (almost) matches the best know ratio in terms

of k for the undirected version of the problem by Gupta et al. [2]. It is interesting to note

that the situation is completely different in terms of n, as there is no known non-trivial

approximation ratio for k-DSF in terms of n, while the undirected version admits an O(
√

n)-
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approximation [2]. It is an open question whether the asymmetry between the parameters

n and k can be reduced.

Almost every aspect of the more general Directed Steiner Network problem is still an

open problem. No non-trivial approximation ratio is known for this problem, not even for

the simple case when the maximum requirement is 2. In contrast, the Undirected Steiner

Network problem was studied extensively, and admits a 2-approximation algorithm due to

Jain [21].

Note that the Directed Steiner Network problem can be trivially solved using min-cost

flow techniques when there is only a single positive requirement pair. This fact can be used to

achieve a k approximation for the Directed Steiner Network problem, where k is the number

of positive requirement pairs: Simply solve independently for every positive requirement

pair and combine the resulting graphs. A similar algorithm also extends to the more general

problem of k-Directed Steiner Network, where we are only required to connect k positive

requirement pairs. Again, we can solve the problem separately for each positive requirement

pair and then combine the k cheapest resulting graphs.

We also note that on directed graphs, there is an approximation ratio preserving reduction

between the edge-weighted and the node-weighted versions, but this is not so for undirected

graphs. On undirected graphs, the best known ratio for the Node-Weighted Steiner Forest

is O(log |U |) due to Klein and Ravi [25] and this is tight (up to a constant factor), where

U is the set of nodes involved in a positive requirement pair. Recently, an rmax · O(ln |U |)-
approximation algorithm for the undirected Node-Weighted Steiner Network problem was

presented by Nutov [31], where rmax is the largest requirement.

We believe that it should be possible to approximate the Directed Steiner Network prob-

lem to a factor of rmax · ρDSF, where ρDSF is the approximation ratio of the DSF problem. A

possible way to approach this ratio is through the Rooted Directed Steiner Network prob-

lem, a restricted version of the Directed Steiner Network problem in which the set of pairs

with positive requirement is a subset of {s} × V , for some node s ∈ V . We believe that

an approximation ratio of rmax · ρDST should be feasible for this problem (where ρDSF is the

approximation ratio of the DST problem). We also believe that using the ideas presented in

this thesis, the Direct Steiner Network problem can be reduced to a variant of Rooted Direct

Steiner Network, in a way resembling our reduction from the DSF problem to a variant of

DST.
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