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Abstract. Competition for clients among service providers is a classi-
cal situation discussed in the economics literature. While better service
attracts more clients, in some cases clients may prefer to keep using a
low quality service if their friends are also using the same service—a phe-
nomenon largely encouraged by the Internet and online social networks.
This is evident, for example, in competition between cloud storage ser-
vice providers such as DropBox, Microsoft SkyDrive and Google Drive. In
such settings, the utility of a client depends on both the proposed service
level and the number of friends or colleagues using the same service.
We study how the welfare of the clients is affected by competition in the
presence of social connections. Quite expectantly, competition among
two firms can significantly increase the clients’ social welfare in compari-
son with the monopoly case. However, we show that a further increase in
competition triggered by the entry of additional firms may be hazardous
for the society (i.e., to the clients), which stands in contrast to the typ-
ical situation in competition. Indeed, we show via equilibrium analysis
that the social benefit of additional firms beyond the duopoly is limited,
whereas the potential loss from such an addition is unbounded.

1 Introduction

Competition between firms has received much attention in the economics liter-
ature [4,16,5], and recently also in the computer science literature [13,1,12,17].
In standard models of competition, firms compete over clients (or workers), by
offering a certain level of service or payoff. The utility of the firm is derived
from the set of clients that select it, and can be based either purely on their
number, or on a more sophisticated combinatorial function. The utility of the
clients on those models is assumed to be affected only by the service they receive
and by their preferences over firms. In particular, it is assumed that clients are
indifferent to the decisions of other clients.

This kind of competition leads to models where the introduction of additional
firms always improves the total welfare of the clients, and the introduction of
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additional clients always improves the total welfare of the firms [10,16,5]. How-
ever, this kind of competition is an oversimplification of reality. In many real
world scenarios, the decisions of clients have significant positive or negative ef-
fect on the utility of other clients, an effect known as network externalities (see
the related work section). For example, people may prefer a restaurant that has
fewer clients (e.g., when they wish to maintain privacy), or alternatively choose
one that is highly attended (e.g., if they believe it is a signal to quality, or enjoy
the crowd). In quite many cases, such preference may be based on social connec-
tions, as people prefer to spend time with their friends and benefit from their
presence.

The above is particularly relevant for long-term selection of online services
such as cloud storage services, social networks, cellular providers and, to some
extent, e-mail providers, where the benefit one generates from a service highly
depends on its adoption by colleagues and friends. For example, calls within
a single cellular network are sometimes cheaper or have fewer interruptions.
Similarly, sharing files is easier between users who use the same cloud storage
service provider.

A motivating example As a concrete example, consider two competing cloud
services, Grand-docs (G) offering 3GB of storage and Medium-drive (M) offering
5GB. Suppose a client of G called Alice considers moving to M. Alice wants to
be able to share a workspace with her colleague Bob, which is another user of
G. Alice values the convenience of sharing a platform with each single colleague
as equivalent to 1GB of storage. Thus, Bob alone would not prevent her from
switching to M. However if Alice has, say, five colleagues using G, and only one
who uses M, then she will (perhaps reluctantly) keep using G. Eve, on the other
hand, is a freelance who uses cloud services for storage only. Thus, she prefers
M regardless of the actions of other clients.

In this work we consider a model where clients’ utilities depend both on the
price or quality of the offered service and on the number and identity of their
friends who have chosen the same firm. Our model is a two-phase game. In the
first phase firms commit to a particular level of service which can be measured,
for example, by bandwidth, storage capacity or accessible content of interest.4

In the second phase, each client independently selects a firm. Each firm gains
a fixed value for every client it recruits, from which it subtracts the cost of the
service. The utility of a client is composed of the service level offered by her
chosen firm, and an additional utility the client gains for every friend selecting
the same firm.

A monopoly of a single firm guarantees that all social links are used, but
gives the firm no incentive to provide a decent service level. Given a set of service
providers, with fixed offers, and assuming positive externalities, the society can

4 We consider services that are given for free, such as e-mail and some cloud services,
but where service level varies. A different interpretation of the model is where service
level is uniform, whereas price varies across firms. A similar analysis can be applied
in the latter case of price competition, with some adjustments.



still utilize all social connections, if all clients subscribe to a single provider
(say, the one offering the best service). However, there may be idiosyncratic
preferences over firms (see Remark 1), in which case such a partition would not
be optimal. Further, even if clients do not discriminate among providers, there
may be many other partitions of clients that are also stable. Since some social
connections are not exploited, these outcomes are less efficient, and we focus on
the worst case partitions that are still stable.

Social connections may give rise to interesting dynamics in the market. For
example, a new firm will have to provide a significantly higher level of service
than an incumbent competitor, and even then it will only be able to attract
clients who have low value for social connections. However, after this initial
small wave, other clients may also move as now they might already have friends
using the new service. A third and forth wave may occur, until every client
achieves balance between her desired service level and social connections. While
clients act myopically (as they may be unaware of the global structure of the
network), firms try to predict the eventual partition of clients that will follow a
given change in the service level. We, therefore, introduce an equilibrium concept
that takes this behavior into consideration.

Our goal is to study the effect of competition on the social welfare of the
clients, which is defined as the sum of their utilities, derived from both service
and social connections. To that aim, we define the clients’ value of competi-
tion of a given game as the ratio between the clients’ social welfare under the
worst equilibrium, and their social welfare under the monopoly outcome. We
ask whether the value of competition increases or decreases with respect to the
number of firms in the market. In particular, we are interested in how many
firms should a market have to (approximately) maximize the social welfare.

Our contribution On the conceptual side, our two-phase model of competition
and the corresponding solution concept allows for a focused study of the interac-
tion between the network structure, number of firms and clients’ welfare, while
isolating them from other factors which are kept simple (such as production
costs).

Our first result is that while a monopoly may be infinitely worse for the clients
than any equilibrium under two firms or more, further increasing the number of
firms in the market is not always beneficial for the clients. Surprisingly, the entry
of additional firms beyond two cannot increase the value of competition by more
than a constant factor. In contrast, the value of competition can decrease linearly
with the number of firms, i.e., by an unbounded factor. This demonstrates that
in markets where social connections play an important role too much competition
may produce an adverse result.

We further study bounds on the value of competition under the special case
of a complete social graph. In particular, we show that the value of competi-
tion may still decrease with the number of firms, but only when the number
of clients is sufficiently large. A complete social graph is interesting because,
in some sense, it represents the opposite case of models ignoring social effects.
Finally, while the value of competition refers to the clients’ welfare, one can also



define a complementary concept with regard to the firms’ revenue. We present
a preliminary result in this direction.

Due to space limitations, most proofs were deferred to Appendix B.

2 The Model

We consider a two-phase game with two types of players: firms and clients. The
clients are the nodes of a graph that represents the social network. In the first
phase, each firm declares a payoff or service level (e.g., how much storage is
allocated for clients joining it). In the second phase, the clients join firms. The
objective of the firms is to get as many clients as possible, while supplying the
least amount of service. The objective of the clients is to share a firm with as
many of their neighbors as possible, while getting a high service level.

More formally, consider an undirected graph G = 〈N,Γ 〉 whose nodes are
the n clients. The edges of G have positive weights wj,j′ , reflecting the benefit to
clients cj , cj′ ∈ N from sharing a firm with each other.5 We denote by Γ (cj) ⊆ N
the set of neighbors of cj , i.e., all clients cj′ for which wj,j′ > 0. In addition,
each client cj ∈ N is associated with a constant aj , which is the value cj gets
from each unit of good (e.g., 1 Mb of disk space) it receives from the host firm.
We denote by a ∈ Rn+ the vector of clients’ parameters, and assume that the
information on a is implicitly contained in N (and thus in G). In other words,
whenever we have a set N of clients, or a graph G, we also have a vector a
associated with them.

In addition, the set F consists of m firms f1, f2, . . . , fm. Each firm fi ∈ F
is associated with an integer constant ri, representing the revenue of fi from
each client joining it. We similarly denote all firms’ parameters by r ∈ Rm+
(where information on r is implicitly contained in F ). An instance of our game
is, therefore, represented by a pair I = 〈G,F 〉, i.e., a graph of clients and a
collection of firms. We write Im = 〈G,m, r〉 when F consists of m identical firms
with ri = r.

The strategies available to each firm are committing to a certain service level
(payoff) xi. An outcome of the game (also called configuration) can be written
as E = 〈x, P 〉, where x is a payoff vector, and P = (C1, . . . , Cm) is a partition
of the clients to firms. We denote by f(c, P ) ∈ F the firm selected by client c,
i.e., f(c, P ) = fi for all c ∈ Ci. Given an outcome E = 〈x, P 〉 in game 〈G,F 〉,
the utilities of the agents are as follows.

– The utility of each firm fi ∈ F is given by vi(E) = (ri − xi) · |Ci|.
– The utility of each client cj ∈ Ci is given by uj(E) = aj ·xi+

∑
j′∈Ci\{cj} wj,j′ .

For any particular outcome E in game 〈G,F 〉, we denote by SW (G,F,E) (or
SW (I, E)) the social welfare of the clients, i.e., SW (G,F,E) =

∑
cj∈N uj(E).

In the rest of this paper, we sometimes omit the parameters I, G, F and E when

5 In the general case, clients cj and cj′ may have a different value for sharing a firm
with one another. See a more detailed discussion in Remark 2.



they are clear from the context. The rest of this section is devoted for defining
and explaining the solution concept we use.

Remark 1 [Preferences over firms]. In some models of competition each client
is assumed to have preferences over the different firms, reflecting differences be-
tween the products not captured by the other parameters of the model [16,17,18].
Suppose we denote by qj,i ∈ R+ the preference of client cj to firm fi, and re-
define her utility when choosing firm fi as u∗j = uj + qj,i. It is not hard to see
that such preferences can be completely emulated by adding one “fixed client”
c∗i per firm, with w(cj , c

∗
i ) = qj,i. These new clients are not part of N , they can-

not choose a different firm, and their utility is not counted as part of the social
welfare. To simplify the exposition, we do not explicitly consider preferences or
fixed clients in the remainder of the paper. However, most of our results (except
in Section 5.1, where the complete graph is studied) hold even if we allow the
inclusion of such fixed clients—and thus also hold if we add preferences.

2.1 Client dynamics

Suppose firms commit to some given service levels, (x1, . . . , xm). Clients can
now choose which firms to join. Since the utility of each client is affected by
the decision of her friends, there might not be dominant strategies. However,
given any current partition of clients P = (C1, . . . , Cm), every client cj has a
straight-forward best response, which is to join the firm fi maximizing aj · xi +∑
j′∈Ci\{cj} wj,j′ . It is easy to see that a pure Nash equilibrium (PNE) for the

clients exists (e.g., when all clients join the firm offering the best service), how-
ever, there may be more than one such equilibrium. We argue that every sequence
of best responses by clients must converge to some pure Nash equilibrium.

Proposition 1 If the strategies of the firms are fixed (i.e., firms are not play-
ers), and the clients switch strategies according to a best response dynamics, then
the client strategies converge into a PNE.

Remark 2 [Symmetry]. The proof of Proposition 1 is due to the fact that the
clients’ game admits a potential function. This proof is the only place in this
paper where the symmetry assumption is applied (i.e., that every two clients
cj and cj′ gain the same value from sharing a firm with each other). We note
that there are other cases where Proposition 1 holds even without symmetry. For
example, if cj attributes the same positive value for every neighbor sharing a
firm (say, some constant wj). Interestingly, both symmetry and equal weight to
neighbors turn out to be sufficient conditions for the existence of pure equlibrium
in other models based on social connections [7,22]. It is important to emphasize
that all of our results in the rest of this paper hold even without the symmetry
assumption, as long as the clients are guaranteed to converge to an equilibrium.

2.2 The two-phase game and equilibria concepts

Knowing that for any profile of payoffs the clients must converge, we can define
a game in extensive form. Our game proceeds in two phases as follows.



– In the first phase, each firm fi declares a non-negative integer xi, which is the
payoff (or service level) fi gives to each client joining it. Note that firms are
not allowed to discriminate between clients. We denote the vector of firms’
strategies by x ∈ Nm.6

– In the second phase, each client cj chooses a firm. Then, the clients follow a
best response dynamics until they converge to a Nash equilibrium, i.e., to a
partition P .

Consider an outcome E = (x, P ) obtained from this two-phase game. Clearly,
the clients have no incentive to deviate in E, however, the firms might deviate.
Once a firm deviates, the clients can reach a new equilibrium, in which case
we get a new outcome E′. Given a firm fi, a strategy x′i and two outcomes
E,E′ which are PNEs for the clients, we say that a outcome E′ is the projected
outcome obtained from E via the deviation x′i of firm fi if:

– x′i > xi, i.e., firm fi offers a higher service level.
– There is a sequence of best-responses by clients starting from the state

((x′i, x−i), P ) that converges to E′.

The projected outcome is clearly unique if there are two firms, as clients will
only join the deviating firm, until no more clients want to join. When there are
three firms or more, the clients’ best response dynamics might be able to reach
multiple Nash equilibria. In such cases, the projected outcome is determined
by one of these equilibria arbitrarily. Thus in what follows, we treat the pro-
jected outcome E′ as unique given E, i and x′i. Using the above definition of the
projected outcomes, we are now ready to define our solution concept.

Definition 1. An outcome E = (x, P ) is a commitment equilibrium (CME)
if: (a) E is a PNE for the clients; and (b) For any firm fi and any x′i > xi,
vi(E

′) ≤ vi(E), where E′ is the projected outcome obtained from E via the
deviation x′i.

In other words, the last condition states that no firm is better off increasing
its payment, assuming that following this deviation the game will reach the
projected outcome associated with this deviation.7 The following section gives
some theoretical and practical justifications for the definition of CME.

3 Properties of commitment equilibria

Suppose that firms announce some payoff vector x, which results in a config-
uration E = (x, P ). Moreover, suppose firm fi deviates by announcing payoff

6 The firms’ strategies are constrained to integers. In many cases this is a realistic
requirement as resources, such as storage and bandwidth, are measures in integer
quantities. See Appendix A regarding more theoretical reasons for this requirement.

7 Clearly, the selection of the projected outcome E′ associated with every possible
deviation may determine whether E is a CME or not. For example, if E′ is assumed to
be the best outcome for the deviator, we get the strongest (and narrowest) definition
of CME. In what follows, we do not assume any particular tie-breaking scheme
among projected outcomes.



x′i 6= xi upon seeing the outcome E. In the unfolding of events, some clients
may join fi or desert it. This in turn may cause other clients to switch firms and
so on. By Proposition 1, the clients will eventually reach a stable configuration
E′ = ((x′i, x−i), P

′). The deviation is profitable for fi if vi(E
′) > vi(E).

Note that in theory, a firm may either gain by increasing its service level,
thereby triggering a cascade of new clients joining it; or by decreasing payoff
and thus reducing expenses (hopefully without driving away too many clients).
However, deviations of the latter type are largely impractical in most situations.
Often, the service level offered by the firm is considered by the clients as a
commitment. If Google or Dropbox will announce tomorrow that they cut the
available space they offer by half, this move is likely to have a serious impact on
their reputation. This is why CME considers only deviations to a higher level of
service. Decreasing the level of service is not considered an option.

Other, more technical, justifications for the restrictions imposed by CMEs
(on the firm strategies) are given in Appendix A. The next two properties show
that CMEs exist, and that they are closely related to other solution concepts.

Observation 2 For every game instance, best response dynamics (of the firms)
must converge into a CME.

Proof. Note that the only strategies of a firm fi that can result from best response
dynamics are 0, 1, . . . , ri−1, i.e., a finite set. The observation now follows directly
from Proposition 1, the fact that firms can only alternate between a finite number
of strategies, and that they can never repeat a strategy by lowering payoff. ut

Proposition 3 Given a commitment equilibrium E of the extensive form game,
there exists a pure sub-game perfect equilibrium in which the utilities of all clients
and firms are equal to their utilities in E.

The last proposition allows us to think of CMEs as an equilibrium selection
criterion, which favors sub-game perfect equilibria that are attained via a natural
iterative process: if a firm deviates, the resulting configuration of the clients can
be achieved from the original one by a sequence of best responses.

4 Benefits of Competition

In this section we discuss the possible benefit to the clients from competition
between firms. To do that, we first define a way to measure the effect of compe-
tition on the social welfare of the clients. Given a network G, For every instance
I we denote the social welfare in the worst CME by SW ∗(I). Under a monopoly,
all clients select the single firm, and in the worst case get no service. We define
the monopoly welfare MW (G) = SW ∗(G, 1, 0). Note that for I = 〈G,F 〉, MW
only depends on G.

The clients’ value of competition of the instance I = 〈G,F 〉 is now defined as
the ratio CV C(I) = SW ∗(I)/MW (G). Thus, values of CV C(I) greater than 1
indicate that the society (of clients) gains from the competition between firms,



whereas values lower than 1 mean that the competition had an adverse effect on
the clients.

For reference, we also define OPT (I) as the maximal social welfare of any
outcome of I. It clearly holds that

OPT (I) ≤
∑
j,j′∈N

wj,j′ + max
fi∈F

ri ·
∑
j

aj ,

and when there are no preferences over firms, then this is an equality: in the
best outcome all clients share the same firm, and the firm is paying the maximal
payoff.

There are several reasons for focusing on the worst equilibrium. First, firms
may use non-binding agreements to settle on outcomes that are good for them
and bad for the clients. Second, this is a worst case assumption allowing us
to put a lower bound on the welfare in any other case. And finally, the best
CME coincides with the optimal outcome described above, and is therefore quite
trivial.

In this section we focus on the network structure, and hence assume (unless
explicitly mentioned otherwise), that aj = a for all cj ∈ N and ri = r for all
fi ∈ F . These simplifying assumptions will be relaxed in Section 5.

The clients’ value of competition measures how much the clients gain from
competition. It is natural to predict that competition will improve the outcome
for the clients. Indeed, a duopoly (two firms) typically yields significantly higher
welfare than a monopoly (although not always, see Prop. 8). The following propo-
sition shows that the clients value of competition can be infinite. Informally, it
implies that a second firm can significantly improve the total utility of the clients.

Proposition 4 There is a game instance I where CV C(I) =∞.

Proof. Consider a game instance with two firms f1 and f2 having r > 0, and one
client with a = 1. In every CME of this game, there must be a firm giving payoff
of xi ≥ r − 1. Hence, SW ∗(I) ≥ r − 1. On the other hand, if there was a single
firm, the utility the client would have been 0, as the firm would have paid 0 and
the client has no neighbors. Thus CV C(I) ≥ (r − 1)/0 =∞. ut

In contrast to the potentially significant improvement in the social welfare
produced by a second firm, the next theorem shows that additional firms can
only have a limited positive effect on the clients. We prove this strong negative
result by showing that a duopoly already extracts a constant fraction of the
optimal social welfare (which in itself is a positive statement on duopolies). 8

Theorem 5. Let Im = 〈G,m, r〉 be an arbitrary game instance (with aj = a for
all cj ∈ N and ri = r for all fi ∈ F ). Let B be any CME outcome in Im for
m ≥ 2. Then, SW (Im, B) ≤ β · SW ∗(I2) for some constant β < 7.

8 We emphasize that the theorem still holds under preferences/fixed clients (see Re-
mark 1), with some modifications of the proof.



Proof sketch. Denote by A the worst CME of I2, and let x1 and x2 denote the
payoff levels of firms f1 and f2 in A, respectively. Also, denote by C1, C2 ⊆ N
the sets of clients of outcome A corresponding to firms f1 and f2, respectively,
and let n1 = |C1|, n2 = |C2|. We assume, w.l.o.g., n1 ≥ n2. For every client
cj ∈ Ci, we denote γj =

∑
cj′∈Ci

wj,j′ , and δj =
∑
cj′∈N\Ci

wj,j′ . We also use

the average values γ∗i = 1
ni

∑
cj∈Ci γj and δ∗i = 1

ni

∑
cj∈Ci δj .

Observe that for every CME E: SW (Im, E) ≤ OPT (Im) = OPT (I2), and
in particular this inequality holds for E = B. Therefore to prove a constant
bound, it is sufficient to bound the price of anarchy9 with 2 firms, i.e., to show
that OPT (I2) ≤ O(SW (I2, A)). Let uj(A), uj(OPT ) be the utility of client j
under the configurations A and OPT (in instance I2). For j ∈ Ci, it holds that
uj(A) = axi + γj , whereas uj(OPT ) = r + γj + δj .

The minimal increase in x−i that can convince client cj ∈ Ci to switch firms
is εj = (γj/a+xi)− (δj/a+x−i + 1) ≥ 0. Assume that clients in Ci are ordered
by non-decreasing εj . By comparing firm’s utility with and without the increase,
we can show that fi cannot gain by attracting clients c1, . . . , cj :

(r − x−i) · n−i ≥ (r − (x−i + εj))(n−i + j) . (1)

By rearranging, we now get: r ≤ εj
(

1 + n−i
j

)
+ x−i.

For any non-decreasing vector z = (z1, . . . , zm) of non-negative numbers,
denote its average by z∗ = 1

m

∑
j≤m zj . Let τ ∈ (0, 1) be some fraction, and let

ατ = max
z≥0
{zdτme/z∗}, Θτ = ατ (1 + 1/τ) .

For example, if τ = 1/2 (i.e., zdτnie is the median of z), then Θτ = 6.

Let ε∗i = 1
ni

∑
cj∈Ci εj . In what follows, we will take an arbitrary fraction τ ,

and prove our bound as a function of Θτ . We assume n1, n2 are sufficiently large
so as to ignore rounding (i.e., that dτnie ∼= τni).

Applying the inequality above for j = τni gives us

r ≤
(

1 +
n−i
τni

)
ετni + x−i ≤

(
1 +

n−i
τni

)
ατ (γ∗i /a− δ∗i /a+ xi + 1). (2)

In particular, for the larger firm f1:

r ≤
(

1 +
1

τ

)
ατ (γ∗1/a− δ∗1/a+ x1 + 1) = Θτ (γ∗1/a− δ∗1/a+ x1 + 1) , and∑

j∈C1

uj(OPT ) ≤
∑
cj∈C1

(ar + δj + γj) = n1(ar + δ∗1 + γ∗1 )

≤ n1(Θτ (γ∗1 + ax1 + a) + γ∗1 ) ≤ (Θτ+1)
∑
j∈C1

(γj + ax1 + a) ∼= (Θτ+1)
∑
j∈C1

uj(A) .

9 The price of anarchy of a game is the ratio between the optimal social welfare
achievable by any configuration, and the worst social welfare of any Nash equilibrium.



This means that at least the clients of the larger firm f1 cannot gain on average
more than a factor of Θτ + 1, plus some additive term O(na) that does not
depend on the welfare. Moreover, this term goes to zero when we use smaller
minimal units of storage a. As for the smaller firm f2 we consider two cases.

The first case is γ∗2/a− δ∗2/a+ x2 ≥ γ∗1/a− δ∗1/a+ x1. In this case, for i = 2

r ≤ Θτ (γ∗1/a− δ∗1/a+ x1 + 1) ≤ Θτ (γ∗2/a− δ∗2/a+ x2 + 1) ,

and therefore, the same arguments used above can also be used to bound∑
j∈C2

uj(OPT ). This concludes the first case, as

OPT (I2) ≤ (Θτ +1)
∑
j∈C1

uj(A)+(Θτ +1)
∑
j∈C2

uj(A)+O(na) ∼= (Θτ+1)·SW (A).

We now consider the second case, where γ∗2/a−δ∗2/a+x2 < γ∗1/a−δ∗1/a+x1.
Denote γ∗∗i = γ∗i + axi. Using this notation, the above inequality becomes:
γ∗∗2 − δ∗2 < γ∗∗1 − δ∗1 . Observe that:

SW (A) =
∑
j∈C1

uj(A) +
∑
j∈C2

uj(A) = n1γ
∗∗
1 + n2γ

∗∗
2 , (3)

and therefore:

OPT (I2) =
∑
j∈C1

uj(OPT ) +
∑
j∈C2

uj(OPT ) = n1(ar + γ∗1 + δ∗1) + n2(ar + γ∗2 + δ∗2)

≤ n1(ατ (γ∗∗1 −δ∗1 +a)(1+
n2

τn1
) + γ∗1 + δ∗1) + n2(ατ (γ∗∗2 − δ∗2 + a)(1+

n1

τn2
) + γ∗2 + δ∗2)

≤ (ατ+1)n1(γ∗∗1 +a) +
ατ
τ
n2(γ∗∗1 +a−δ∗1) + (ατ+1)n2(γ∗∗2 +a) +

ατ
τ
n1(γ∗∗2 +a−δ∗2)

∼= (ατ + 1)SW (A) + ατ/τ(n2(γ∗∗1 − δ∗1) + n1(γ∗∗2 − δ∗2)) , (By Eq. (3))

where the first inequality holds by applying Equation (2) once with i = 1, and
once with i = 2. Finally, since w ≥ x, y ≥ z implies wz + xy ≤ wy + xz,

OPT (I2) / (ατ+1)SW (A) +
ατ
τ

(n1γ
∗∗
1 +n2γ

∗∗
2 ) = (ατ + 1)SW (A) +

ατ
τ
SW (A)

= (1 + ατ (1 + 1/τ))SW (A) = (Θτ + 1)SW (A) ,

where w = (γ∗∗1 − δ∗1); x = (γ∗∗2 − δ∗2); y = n1; z = n2.
This completes the proof of the inequality SW (Im, B) ≤ (Θτ+1)SW (I2, A)+

O(na). Since by selecting the median τ = 1/2 we get Θτ = 6, the ratio is at most
7 (plus some additive term that diminishes with the resolution). ut

By optimizing the value of τ in the proof of Theorem 5, it can be shown that
β = Θτ ≤ 6.828 (for sufficiently large n). A possible extension of the theorem,
which we leave open for future research, is how the ratio changes as a function of
the vector r in the presence of heterogeneous firms (i.e., when not all the entries
in r are identical). We conjecture that if the ri values are close to one another,
then the benefit of having more competing firms will still be limited.



The next theorem complements the upper bound by showing that there exist
games in which introducing a third firm (or more) can increase the social welfare
by a factor of 2. It remains as an open question to close the gap between these
two constants.

Proposition 6 For any m > 2, there exists an instance Im = 〈G,m, r〉 s.t.
SW ∗(Im) ≥ (2− o(1))SW ∗(I2).

Notice that the proof of Theorem 5 in particular shows that the price of
anarchy (for clients) is upper bounded by 6.828. Any better bound on the clients’
value of competition that uses a similar proof technique must also translate into
an upper bound on the price of anarchy. The following proposition shows that
the price of anarchy is at least 4.26 in the worst case. Thus, matching the lower
bound introduced by Proposition 6 will probably require different techniques.

Proposition 7 There exists an instance I2 = 〈G, 2, r〉, s.t. OPT (I2) ≥ (1 +
1

1−ln 2 )SW ∗(I2) ∼= 4.26SW ∗(I2).

5 The Cost of Competition

In this section we are interested in the question: “how low can the client value of
competition be?”. We start with a negative example, showing that the welfare
of clients can linearly degrade with the number of firms, i.e., that without fur-
ther restrictions the damage to clients from excessive competition is essentially
unbounded.

While our construction uses a particular structure, we later show in Prop. 11
that a milder linear degradation may also occur under the complete graph.

Proposition 8 For every m ≥ 2, ε > 0, there exists a game instance Im with
CV C(Im) ≤ 1/m + ε.

Our next results show that Proposition 8 demonstrates the worst possible
case. If the number of firms m is bounded then so is the value of competition.
Interestingly, the proof of Theorem 9 provides a lower bound on the welfare not
just in a CME, but in fact in any outcome where clients are stable (regardless
of firms’ strategies). The same is true for Theorem 10.

Theorem 9. For every game instance I = 〈G,F 〉 with m firms, SW ∗(I) ≥
MW (G)/m. That is, CV C(I) ≥ 1/m.

Proof. If there is only a single firm, all clients join it and get zero payoff. Hence,
the monopoly welfare is MW (G) =

∑n
j=1

∑
j′ 6=j wj,j′ . Let us now focus on an

arbitrary CME E of I. Consider a client cj which joins firm fi under E. Clearly,
for every other firm fi′ it must hold that:

aj · xi +
∑

j′∈Ci\{cj}

wj,j′ ≥ aj · xi′ +
∑

j′∈Ci′\{cj}

wj,j′ . (4)



Observe that this inequality trivially holds also when i = i′. Hence, we can sum
the inequalities for every 1 ≤ i′ ≤ m, and get:

m ·

aj · xi +
∑

j′∈Ci\{cj}

wj,j′

 ≥
m∑
i′=1

aj · xi′ +
∑

j′∈Ci′\{cj}

wj,j′

 (5)

=
∑
j′ 6=j

wj,j′ +

m∑
i′=1

aj · xi′ ≥
∑
j′ 6=j

wj,j′ .

Rearranging, we get that the utility of cj is at least
∑
j′ 6=j wj,j′/m. Hence, the

total utility of all clients is at least: 1
m ·
∑n
j=1

∑
j′ 6=j wj,j′ = 1

m ·MW (G). ut
In the last theorem, the number of firms can also be replaced with the max-

imum degree. See Proposition 4 in the appendix.

5.1 The complete graph

The above results use examples of dense graphs to show that the clients’ value of
competition tend to be low. It thus makes sense to consider the complete graph,
with equal edge weights (if different edge weights were allowed, non-complete
graphs could be simulated by giving some edges very low weights, making them
insignificant). For ease of notation, let us assume that all edge weights are 1. We
note that the case of a complete graph models the situation where clients only
care about the number of other clients sharing their firm, as in [15].

The main result of this section states that with complete graphs over a small
set of clients, the loss due to competition (even with many firms) cannot be too
high.

Theorem 10. For any game instance I = 〈G,F 〉 where G is a complete graph,
it holds that CV C(I) = Ω(n−1/3).

Moreover, the above bound is tight up to low order terms:

Proposition 11 There is a family of instances (Im)m≥1, each with a complete
social graph over n(m) clients (where n(m) is a bounded function of m), for
which CV C(Im) = O(n−1/3).

The instances constructed in the proof of the last proposition have the addi-
tional property that CV C(In) = O(1/m). Hence, the proof also shows that the
bound given by Theorem 9 is tight (up to lower order terms) even if we restrict
ourselves to complete graphs (but allow ri to vary, and allow n = Ω(m3)).

6 Firms’ Revenue

While the main bulk of this paper is devoted to study the effect of increased
competition on the welfare of clients, it is also important to understand how
social connections change the revenue of the competing firms. In this section we
provide a preliminary result in this direction. Given a game instance I, we define
the firms’ revenue as the sum of firms’ utilities in the best CME of this game



instance (best for the firms), i.e., FR(I) = max{
∑
fi∈F vi(E) | E is CME of I}.

The choice of the best CME in the definition of FR(I) is justified by the ob-
servation that there always exists a CME with 0 utility for the firms (the one
where xi = ri for every firm fi).

The example constructed in Proposition 6 can be analyzed to show that the
addition of a third firm decreases the total revenue by half. The next theorem
shows that similar examples exist for any value of m.

Theorem 12. For any m > 1, there exists an instance Im = 〈G,m, r〉 for
which the total firms’ revenue strictly decreases with the addition on an extra
firm. Formally, Im+1 = 〈G,m+ 1, r〉 obeys FR(Im+1) ≤ m−1

m−2+lnm · FR(Im).

The fact that increased competition can lead to lower revenue may sound trivial.
However it should be noted that the marginal value of each client to a firm
is fixed. Hence, without the network structure the number of firms does not
affect the total revenue at all. It is the presence of social connections that makes
competition potentially harmful for the firms. We leave for future research finding
the maximal loss in revenue that may result by adding a firm. Another interesting
question that we leave open is whether the firms’ total revenue can also increase
when a new firm is introduced into the game.

7 Discussion

We introduced a natural network-based model of competition with positive ex-
ternalities between clients, and analyzed the effect of the number of firms on the
welfare of clients.

7.1 Related work

Katz and Shapiro [15] coined the term “network externalities” to denote situ-
ations where the decision of clients effect their neighbors in the network. They
described a market where consumers’ utility is partly derived from the size of
the network they select, i.e., the number of other clients selecting the same firm.
Subsequently, Banerji and Dutta [3] studied an extension of the model that does
take into account the structure of the network, by describing the interaction
among groups of clients in the limited case of two firms.

Both of these papers, as well as our work, can be classified under the “macro
approach” of Economides, which seeks to understand the effect of positive ex-
ternalities on consumption patterns, rather than to explain their source [11].

The utility structure of the clients in our model is similar to the one in
[15], but the clients are sensitive to the identity of their peers, rather than to
their number only (as in [3]). Moreover, we assume a simple myopic behavior by
clients whereas in the Katz and Shapiro model clients predict the expected size
of the firms and act accordingly. Thus our equilibrium concepts are substantially
different.

Beyond the technical differences between the models, our paper brings a
novel perspective. In particular, the main focus of Banerji and Dutta is on the



structure of the outcome partition in the case of two firms. Whereas we study
the effect of the number of firms on the the clients’ social welfare under network
externalities. Similarly to Economides but due to different considerations, we
arrive at the conclusion that excessive competition may compromise clients’
welfare.

In particular, compatibility and standardization play a major role in some
models of network externalities as in [15,11]. In our model the level of compat-
ibility among competing services is assumed to be fixed (at least in short time
scales). The strategic decisions of firms are therefore simplified to setting the
price/service level, as in traditional Bertrand competition [4].

Other aspects of network externalities that have been studied focused on
factors such as price discrimination [14], or particular diffusion dynamics [13].

A two-phase framework has been suggested as a model for competition in
other domains, where firms first commit to strategies, and clients follow by play-
ing a game induced by firms’ actions. Examples of such games are available in
the domain of group buying, where each vendor commits to a discount sched-
ule based on quantity [8,9,18]. While the utility structure of both vendors and
buyers in the group buying domain is substantially different, our work demon-
strates how such a two-phase framework can be applied for modeling the effect
of network externalities.

7.2 Conclusions

We showed that excessive competition can fragment the network and eliminate
most of the clients’ utility. On the other hand, two competing firms already
guarantee at least a constant fraction of the clients’ maximal welfare, and thus,
the positive effect of adding more competitors is bounded, whereas the poten-
tial damage is much more significant. These results complement the findings
by Economides and others on the potential damage in excessive competition,
and provide some formal justification to statements that unregulated competi-
tion can be inefficient or even hazardous for society. For example, the necessity
of regulation against competition has been discussed in domains such as labor
markets, banking, and others [20,6,19]. A recent formal treatment of auctions
with partial information reveals a similar effect to the one we found, showing
that the entry of additional auctioneers incurs a loss on the bidders’ welfare [21].

A loss of welfare is quite expected when there are negative externalities for
firms’ actions, such as pollution or waste of resources [2]. We emphasize, however,
that the potential negative effect of competition in our model is not due to the
typical race-to-the-bottom scenario, but rather due to (positive) externalities
between the clients or workers themselves.

Future work In order to focus on the effect of network externalities, we simplified
some factors that are necessary for a better understanding of real markets. Pos-
sible future work will consider non-linear utilities for the firms (reflecting, e.g.,
decreasing marginal production costs that are typical to economies of scale), par-
tial information of the network, and far-sighted strategies used by the clients.



This work outlined bounds on the value of competition assuming either ar-
bitrary or complete networks. Networks in the real world tend to have certain
characteristics and structure, that can possibly be exploited to get better bounds
on the effect of competition under real world externalities.

Finally, we introduced only a preliminary result on the firms’ revenue. Much
more work is needed in order to gain an understanding of this quantity. For
example, we showed that there is a class of instances where the introduction
of a new firm decreases the firms’ total revenue by at least a given factor. We
conjecture that the converse does not hold, i.e., that the introduction of addi-
tional firms can never increase the total revenue. This conjecture, if true, implies
that both firms and clients are prone to the effects of excessive competition, and
further emphasizes the importance of regulation.
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A Relaxing equilibrium requirements

CMEs restrict the firms’ strategies to be increasing and discrete. In this appendix we show the necessity
of these restrictions. First, we show that relaxing each one of these restrictions can result in a game where
firms’ actions may not converge to a CME. Thus without these restrictions, Observation 2 does not hold.

Let us begin with the “discrete strategies” restriction. Assume firms may only increase payoff, but
continuous payoffs are allowed.10 Then, in the presence of a single client, firms may compete by offering an
increasingly smaller improvement in service. This observation is summarized by the following proposition.

Proposition 1. Assuming firm fi is allowed to increase xi to any larger value. Then, the game may not
converge to a CME.

Let us consider, now, what happens if we relax the “increasing strategies” restriction. The following
proposition shows that in this case a CME may not even exist.

Proposition 2. Assuming firm fi is allowed to change xi to any integer value. Then, there are games
(even with two firms) where there is no CME.

Proof. We have two firms with r = 6. There are 4 clients: {a, b, c} form a triangle, where w(a, b) = w(b, c) =
2, w(a, c) = 1. A fourth client d is linked to b, with w(b, d) = 1 + 1/2 (thus, clients b, d are never indifferent
between firms). The triangle clients are always together except in extreme cases (treated separately in the
end of the proof), so we can treat them like a single agent A, which requires a difference of > 3 in payoff
to switch firms.

Assume toward a contradiction that a CME exists. W.l.o.g., the triangle A is with firm 1, which gains
either 3(6 − x1), or 4(6 − x1) if it also has d. In the first case, x1 ≤ max{0, x2 − 3}, as otherwise it
can reduce service level to x′1 = max{0, x2 − 3} without losing clients, and similarly in the second case
x1 ≤ max{0, x2 − 1}.

Assume the first case. Then, since firm 2 has d, x2 ≥ x1 + 1.5 ≥ 1.5 ⇒ x2 ≥ 2, and thus, v2 =
1(6 − x2) ≤ 4. If x1 = 0, then by setting x2 to 4, firm 2 will get all clients, and earn 4(6 − 4) = 8 > v2 -
a contradiction. If x1 > 0, then x2 ≥ x1 + 3. Thus, firm 2 can reduce x2 by 1 without losing its client - a
contradiction. This rules out the case where firm 2 has d.

Suppose case 2, i.e., firm 1 has all clients. By setting x′2 = 5, firm 2 cannot attract any client, and
in particular client d. Thus, x1 ≥ 5 − 1.5 = 3.5, i.e., x1 ∈ {4, 5}. Then, v1 ≤ 4(6 − 4) = 8. by setting
x′1 = 3 = 6− 3 ≥ x2 − 3, firm 1 will lose at most client d (and maybe not even her). The revenue will be
v′1 ≥ 3(6− 3) = 9 > v1. Again a contradiction.

It remains to handle the case where the triangle is split, by showing that clients cannot be in equilibrium
when this happens. If the cut separates {a, c} from {b}, then in both sides we have clients that have more
neighbors across the cut. This entails both x1 > x2 and x2 > x1, i.e., a contradiction. Similarly with the
cut ({a, b}; {c, d}). If the cut separates {a} from {c} (w.l.o.g., {a, b, d} are with firm 1, {c} is with firm 2)
then x2 ≥ x1 + 3. But this means that a wants to switch to firm 2. A contradiction. ut
Moreover, the following simple example shows that even when a CME does exist, a sequence of best-
responses by firms may result in a cycle.

Consider a single game of two clients connected by an edge of weight 1 and two firms with r = 3.
Assume that in the initial configuration c1 and c2 both belong to f1 and x1 = x2 = 0. Now, every firm

10 A CME still exists of course, where all firms are offering the maximal service level
xi = ri.



fi in turn will increase xi to 2 in order to acquire both clients. Right after that, the firm will decrease its
service level back to 0.

Finally, let us consider what happens when we remove both restrictions. The next result shows that,
for two firms, removing both restrictions results in a game with no interesting equilibria.

Proposition 3. Assuming firm fi is allowed to change xi to any value. Then, in every CME (if exists)
of two firms, either xi = 0 for every firm that has clients, or some xi = ri. That is, either there is a firm
making no profit, or all clients get no service.

Proof. Suppose there is some client c getting a non-zero payoff. W.l.o.g., we may assume c ∈ C1, which
implies x1 > 0. Since f1 has clients, it could benefit from reducing x1 by ε > 0. However, since it does not
do that (E is an equilibrium), we learn that any reduction in x1 will result in a reduction in the number
of clients of f1. That is, there is at least one client c′ ∈ C1 that will desert to the other firm f2.

From the view point of the clients, the exact value of xi is not important when selecting a firm. The only
important thing is the difference between the payoffs given by the two firms. Assume toward a contradiction
that x2 < r2. Hence, f2 can get at least one additional client by raising x2 by any ε > 0. For small enough
ε, this increases the utility of f2, which leads to a contradiction. ut

B Omitted proofs

Proposition 1. If the strategies of the firms are fixed (i.e. they are not players), and the clients switch
strategies according to a best response dynamics, then the client strategies converge into a pure Nash
equilibrium.

Proof. Assume the service level of the firms is fixed x = (x1, x2, . . . , xm). Our objective in this section is
to prove that best response dynamics of the clients converge into a pure NE. Given a client c, let x(c) and
C(c) denote the set of clients, and service level of the firm c is using, respectively. Consider the following
potential function, whose value depends on the partition P = (C1, . . . , Cm):

Φ(P ) =

n∑
j=1

aj · x(cj) +
1

2

∑
j′∈C(cj)−{cj}

wj,j′

 .

We claim that this potential function strictly increases with every best response move, and therefore, best
response dynamics must converge to a Nash equilibrium. Consider a move of cj . Assume, w.l.o.g., that cj
switch from firm f1 to f2. Then the difference in j’s utility is

aj · x2 +
∑
j′∈C2

wj,j′ − aj · x1 +
∑

j′∈C1−{cj}

wj,j′ . (6)

The change in the potential function has two parts. First, the term of j changes by:

aj · x2 +
1

2

∑
j′∈C2

wj,j′ − aj · x1 −
1

2

∑
j′∈C1−{cj}

wj,j′ .

Since the gain of cj and cj′ from sharing a firm with each other is equal, the change in the other terms is
equal to the change due to social connections in the first part, i.e.:

Φ(C1 \ {j}, C2 ∪ {j}, C3, . . .)− Φ(P ) = aj · x2 +
1

2

∑
j′∈C2

wj,j′ − aj · x1 −
1

2

∑
j′∈C1−{cj}

wj,j′

− 1

2

∑
k∈C1\{j}

wk,j +
1

2

∑
k∈C2

wk,j

= aj · x2 +
∑
j′∈C2

wj,j′ − aj · x1 −
∑

j′∈C1−{cj}

wj,j′ ,



i.e., exactly equals the change in utility from Eq. (6). We emphasize that the proposition holds even in the

presence of fixed clients. It thus still holds, by Remark 1, for games where clients have preferecens over
firms. Preferences can also be handled directly, by replacing ajxi with ajxi + qj,i everywhere. ut

Proposition 3. Given a commitment equilibrium E of the extensive form game, there exists a pure
sub-game perfect equilibrium in which the utilities of all clients and firms are equal to their utilities in E.

Proof. A sub-game perfect equilibrium in our context means the following.
– The strategy of each firm fi is still a number xi ∈ N.
– The strategy of each client is a function that specifies the firm it will join given every possible com-

bination of firm strategies. More formally, the strategy of cj is a function sj : Nm → {1, 2, . . . ,m}
specifying the firm cj will join given any strategy vector x ∈ Nm of the firms.

– A configuration is a sub-game perfect equilibrium if:
• Given a fixed strategy vector x ∈ Nm, no client cj can gain by changing sj .
• Given that the strategies of the clients are fixed, no firm fi can gain by increasing xi.

Consider now a CME E. We would like to construct from it a sub-game perfect equilibrium P . We define
the strategies of the firms in P to be identical to the strategies of the firms in E. Let x ∈ Nm be the
vector of the strategies of the firms in E (and P ). For every client cj we define sj(x) to be equal to the
strategy played by cj in E. Consider a strategies vector x′ ∈ Nm that can be reached from x by increasing
one coordinate i, let E(x′) be the projected outcome obtained from E via deviation x′, let fi deviate by
increasing xi to be equal to x′i, and then let the clients reach a new Nash equilibrium. We define sj(x

′)
to be equal to the strategy of cj in E(x′). Observe that every vector x′ ∈ Nm can be reached in that way
from x by at most one way, hence, this construction does not assign multiple values to sj(x

′). Finally, all
values of sj that are not defined above are set arbitrarily.

Clearly the utility of every firm and client in E and P are equal. Let us prove that the configuration P
is indeed a sub-game perfect equilibrium. First consider a deviation by a firm fi. If fi deviates by increasing
xi, than the a new strategies vector x′ ∈ Nm is only different from x in the ith coordinate. Hence, by the
above construction, for every client cj , sj(x

′) is equal to the strategy of cj in E(x′). Thus, the utility of
all firms and clients after the deviation is equal to their utility in E(x′). On the other hand, the definition
of CME implies that the utility of fi in E(x′) is no larger than its utility in E. Hence, fi has no incentive
to deviate.

Let us now consider a deviation by a client cj . When considering deviations of the clients, we assume
the strategies of the firms are fixed. Hence, the only important thing about the new strategy of cj is the
firm fi to which cj goes given the fixed strategies of the firms. If, given P , cj has an incentive to deviate
to a strategy that assigns it to fi, than by construction, it also has such an incentive to deviate to fi given
E. However, this is a contradiction since the clients are in a Nash equilibrium in E. ut

Theorem 5. Let Im = 〈G,m, r〉 be an arbitrary game instance (with aj = a for all cj ∈ N and ri = r
for all fi ∈ F ). Let B be any CME outcome in Im for m ≥ 2. Then, SW (Im, B) ≤ β · SW ∗(I2) for some
constant β.

Proof. Denote by A the worst CME of I2, and let x1 and x2 denote the payoff levels of firms f1 and f2 in
A, respectively. Also, denote by C1, C2 ⊆ N the sets of clients of outcome A corresponding to firms f1 and
f2, respectively, and let n1 = |C1|, n2 = |C2|. We assume, w.l.o.g., n1 ≥ n2. For every client cj ∈ Ci, we
denote γj =

∑
cj′∈Ci

wj,j′ , and δj =
∑
cj′∈N\Ci

wj,j′ . We also use the average values γ∗i = 1
ni

∑
cj∈Ci γj

and δ∗i = 1
ni

∑
cj∈Ci δj .

Observe that for every CME E: SW (Im, E) ≤ OPT (Im) = OPT (I2), and in particular this inequality
holds for E = B. Therefore to prove a constant bound, it is sufficient to bound the price of anarchy with
2 firms, i.e., to show that OPT (I2) ≤ O(SW (I2, A)). Let uj(A), uj(OPT ) be the utility of client j under
the configurations A and OPT (in instance I2). For j ∈ Ci, it holds that uj(A) = axi + γj , whereas
uj(OPT ) = ar + γj + δj .

The minimal increase in x−i that can convince client cj ∈ Ci to switch firms is εj = (γj/a + xi) −
(δj/a+ x−i + 1) ≥ 0. Assume that clients in Ci are ordered by non-decreasing εj . We would like to prove



that fi cannot gain by attracting clients c1, . . . , cj :

(r − x−i) · n−i ≥ (r − (x−i + εj))(n−i + j) . (7)

If x−i + εj > r, then the right hand side is negative whereas the left hand side is non-negative (the
left hand side represents the revenue of f−i under B and a firm never has a negative revenue in a CME).
Otherwise, observe that by offering x′−i = x−i + εj , firm f−i can attract at least j more clients,11 to a
utility of at least

(r − x−i) · n−i ≥ (r − x′−i)(n−i + j) = (r − x−i − εj)(n−i + j) .

Since firm −i has no deviation, it must hold that the current profit is at least the new potential profit,
which completes the proof of (7). By rearranging, we now get:

(r − x−i) · n−i ≥ (r − (x−i + εj))(n−i + j) ⇐⇒ r · n−i − r(j + n−i) ≥ −εj(j + n−i)− jx−i

⇐⇒ r ≤ εj
(

1 +
n−i
j

)
+ x−i . (8)

For any non-decreasing vector z = (z1, . . . , zm) of non-negative numbers, denote its average by z∗ =
1
m

∑
j≤m zj . Let τ ∈ (0, 1) be some fraction, and let

ατ = max
z≥0
{zdτme/z∗}, Θτ = ατ (1 + 1/τ) .

For example, if τ = 1/2 (i.e., zdτnie is the median of z), then Θτ = 6. This is since the median equals at
most twice the average (i.e., α1/2 ≤ 2). Thus

Θ1/2 = (1 + 1/τ)ατ ≤ (1 +
1

1/2
)2 = 3 · 2 = 6 .

The inequality becomes an equality e.g. for a sequence with bm/2c zeros and dm/2e ones, where zdτme = 1
and z∗ ∼= 1/2.

Let ε∗i = 1
ni

∑
cj∈Ci εj . In what follows, we will take an arbitrary fraction τ , and prove our bound as a

function of Θτ . We assume n1, n2 are sufficiently large so as to ignore rounding (i.e., that dτnie ∼= τni).

Applying inequality (8) for j = τni gives us

r ≤
(

1 +
n−i
τni

)
ετni + x−i ≤

(
1 +

n−i
τni

)
ατε

∗
i + x−i

=

(
1 +

n−i
τni

)
ατ (γ∗i /a− δ∗i /a+ xi − x−i + 1) + x−i

≤
(

1 +
n−i
τni

)
ατ (γ∗i /a− δ∗i /a+ xi + 1) . (9)

In particular, for the larger firm f1:

r ≤
(

1 +
n2
τn1

)
ατ (γ∗1/a− δ∗1/a+ x1 + 1) ≤

(
1 +

1

τ

)
ατ (γ∗1/a− δ∗1/a+ x1 + 1)

= Θτ (γ∗1/a− δ∗1/a+ x1 − x2 + 1) + x2 = Θτ (γ∗1/a− δ∗1/a+ x1 + 1) .

11 After the j clients of the first wave, which immediately benefit from switching, other
clients may follow.



∑
j∈C1

uj(OPT ) ≤
∑
cj∈C1

(ar + δj + γj) = n1(ar + δ∗1 + γ∗1 ) ≤ n1(Θτ (γ∗1 − δ∗1 + ax1 + a) + δ∗1 + γ∗1)

≤ n1(Θτ (γ∗1 + ax1 + a) + γ∗1) = n1((Θτ + 1)γ∗1 + ax1 + a)

=
∑
j∈C1

((Θτ + 1)γj +Θτ (ax1 + a)) ≤ (Θτ + 1)
∑
j∈C1

(γj + ax1 + a)

= (Θτ + 1)
∑
j∈C1

uj(A) +O(n1a) .

This means that at least the clients of the larger firm f1 cannot gain on average more than a factor of
Θτ + 1, plus some additive term that does not depend on the welfare. Moreover, this term goes to zero
when we use smaller minimal units of storage. As for the smaller firm f2 we consider in two cases.

The first case is γ∗2/a− δ∗2/a+ x2 ≥ γ∗1/a− δ∗1/a+ x1. In this case, for i = 2

r ≤ Θτ (γ∗1/a− δ∗1/a+ x1 + 1) ≤ Θτ (γ∗2/a− δ∗2/a+ x2 + 1) ,

and therefore, the same arguments used above show that
∑
j∈C2

uj(OPT ) ≤ (Θτ + 1)
∑
j∈C2

uj(A) +
n2a. This concludes the first case, as

OPT (I2) =
∑
j∈C1

uj(OPT ) +
∑
j∈C2

uj(OPT ) ≤ (Θτ + 1)
∑
j∈C1

uj(A) + (Θτ + 1)
∑
j∈C2

uj(A) +O(na)

= (Θτ + 1) · SW (A) +O(na) = O(SW (A)) .

We now consider the second case, where γ∗2/a− δ∗2/a+ x2 < γ∗1/a− δ∗1/a+ x1. Denote γ∗∗i = γ∗i + axi.
Using this notation, the above inequality becomes: γ∗∗2 − δ∗2 < γ∗∗1 − δ∗1 . Observe that:

SW (A) =
∑
j∈C1

uj(A) +
∑
j∈C2

uj(A) = n1γ
∗∗
1 + n2γ

∗∗
2 , (10)

and therefore:

OPT (I2) =
∑
j∈C1

uj(OPT ) +
∑
j∈C2

uj(OPT ) = n1(ar + γ∗1 + δ∗1) + n2(ar + γ∗2 + δ∗2)

≤ n1(ατ (γ∗∗1 −δ∗1+a)(1+
n2
τn1

) + γ∗1 + δ∗1) + n2(ατ (γ∗∗2 − δ∗2 + a)(1+
n1
τn2

) + γ∗2 + δ∗2)

= ατn1(γ∗∗1 + a)− ατn1δ∗1 +
ατ
τ
n2(γ∗∗1 + a)− ατ

τ
n2δ
∗
1 + n1(γ∗1 + δ∗1)

+ ατn2(γ∗∗2 + a)− ατn2δ∗2 +
ατ
τ
n1(γ∗∗2 + a)− ατ

τ
n1δ
∗
2 + n2(γ∗2 + δ∗2)

≤ (ατ+1)n1(γ∗∗1 +a) +
ατ
τ
n2(γ∗∗1 +a−δ∗1) + (ατ+1)n2(γ∗∗2 +a) +

ατ
τ
n1(γ∗∗2 +a−δ∗2)

= (ατ + 1)SW (A) +
ατ
τ

(n2(γ∗∗1 − δ∗1) + n1(γ∗∗2 − δ∗2)) +O(na) , (By Eq. (10))

where the first inequality holds by applying Equation (9) once with i = 1, and once with i = 2. Finally,
since w ≥ x, y ≥ z implies wz + xy ≤ wy + xz, we get in case 2:

OPT (I2) ≤ (ατ + 1)SW (A) +
ατ
τ

(n1(γ∗∗1 − δ∗1) + n2(γ∗∗2 − δ∗2)) +O(na)

≤ (ατ+1)SW (A) +
ατ
τ

(n1γ
∗∗
1 +n2γ

∗∗
2 ) +O(na) = (ατ + 1)SW (A) +

ατ
τ
SW (A) +O(na)

= (1 + ατ (1 +
1

τ
))SW (A) +O(na) = (Θτ + 1)SW (A) +O(na) = O(SW (A)) ,

where w = (γ∗∗1 − δ∗1); x = (γ∗∗2 − δ∗2); y = n1; z = n2.



This completes the proof of the inequality SW (Im, B) ≤ (Θτ +1)SW (I2, A)+O(na). Since by selecting
the median τ = 1/2 we get Θτ = 6, the ratio is at most 7 (plus some additive term that diminishes with
the resolution).

To find the optimal τ , we note that ατ ≤ 1/1−τ (zτm/z
∗ is maximized when there are (1− τ)m entries

with high value zτm and the rest of the entries are 0). Thus Θτ ≤ (1 + 1/τ)1/1−τ. We get the lowest upper

bound for τ =
√

2− 1, for which Θ1 =
√
2

3
√
2−4
∼= 5.828, and the price of anarchy is at most Θτ + 1 = 6.828.

ut

Proposition 6. For any m > 2, there exists an instance Im = 〈G,m, r〉 s.t. SW ∗(Im) ≥ (2 −
o(1))SW ∗(I2).

Proof. In G there are n clients arranged in two cliques of size n/2 with edge weights of 1. For every client cj ,
we set a = 1. In addition, we set r = n−3. Consider I2 = 〈G, 2, r〉. In configuration A, each one of the firms
gets a single clique of clients and x1 = x2 = 0. The utility of each client is, thus, uj(A) = |Γ (j)| = n/2− 1.
Note that if a firm wants to deviate, it must increase its payoff by at least x′ ≥ n/2−1 in order to change the
configuration of the clients. However, such an increase will result in utility of at most n(r−x′) = n(n/2−2),
which is lower than the current utility of the firms n(n− 3)/2 = n(n/2− 1.5). Hence, A is a CME in I2.

Observe that for any number of firms m ≥ 2, the following configuration B is also a CME in Im: the
clients of each clique belong to a single firm (maybe the same one), and all firms pay at least x∗ = n/2−3.
In fact, it can be checked that for any m > 2, every CME of Im must have this structure due to the
following argument: When a clique is partitioned between two or more firms, there is always a client that
wants to switch firms, and thus, it cannot be a CME. Hence, in every CME each of the two cliques belongs
to a single firm, and there is at least one “empty” firm. Now, suppose that one of the non-empty firms
offers xi < n/2−3. Then an empty firm fi′ can attract the entire clique by offering x′i′ = r−1, since every
client cj will get

r − 1 = n− 4 = (n/2− 3) + (n/2− 1) = x∗ + |Γ (j)| > xi + |Γ (j)|.

The utility of each client is thus uj(B) ≥ x∗ + |Γ (j)| = n − 4, which approaches 2uj(A) as n grows.
Thus, SW ∗(Im) = SW (Im, B) ≥ (2− o(1))SW (I2, A) ≥ SW ∗(I2). ut

Proposition 7. There exists an instance I2 = 〈G, 2, r〉, s.t. OPT (I2) ≥ (1 + 1
1−ln 2 )SW ∗(I2) ∼=

4.26SW ∗(I2).

Proof. Our network will be composed of only pairs of clients. Each pair has weight, which is the weight
of the edge linking the two clients. We construct an outcome A = (x, (C1, C2)) as follows. x = (0, 0). We
create each of C1, C2 from T = n/4 distinct pairs, with weights wt = 2t

n/2+2tr = t
T+tr (assume r = r(n) is

large enough so weights are integers). We first show that A is a CME.
Indeed, for firm 1 the current utility is v1 = r · n/2. In order to attract t pairs of clients from firm 2,

firm 1 will have to increase the payoff to x′1 ≥ wt, for a utility of at most

v′1 = (r − x′1)(n/2 + 2t) ≤ r(1− 2t
n/2 + 2t

)(n/2 + 2t) = r(n/2 + 2t− 2t) = r · n/2 = v1.

An identical analysis works for firm 2 as well. Next, we compute the utility of each client in OPT and
in A.

OPT (I2)

SW ∗(I2)
=
SW (OPT )

SW (I2, A)
=

4
∑T
t=1(wt + r)

4
∑T
t=1 wt

= 1 +
Tr∑
t wt

= 1 +
T∑T

t=1
t

T+t

,

where,

T∑
t=1

t

T + t
= T − T

T∑
t=1

1

T + t
= T − T

2T∑
t=T+1

1

t
∼= T − T (ln 2T − lnT ) = T (1− ln 2) .

Thus, for large n (and T ), the above ratio approaches 1+ 1
1−ln 2

∼= 4.26, which gives us the required bound.
ut



Proposition 8. For every m ≥ 2, ε > 0, there exists a game instance Im with CV C(Im) ≤ 1/m + ε.

Proof. Consider a graph G with n = m` clients, where ` > 1. For every client aj = 1. The social network
of the clients is formed as following. Start with a complete graph, and partition it into m equal size parts.
Next, index the clients in each part, and remove edges between clients of different partitions having the
same index. More formally, let us label the clients as {(h, k)|1 ≤ h ≤ m and 1 ≤ k ≤ `}. Two clients
(h1, k1) and (h2, k2) have an edge between them if and only if k1 6= k2. All edge weights are 1.

F has m firms with ri = r = 10. We are interested in the CME outcome A, where every firm gives
payoff of ri− 1 and every client (h, k) goes to firm fh (recall that h is in the range 1, 2, . . . ,m). The utility
of each client (h, k) is r + ` − 2 under this CME, because there are only ` − 1 other clients using firm
fh. On the other hand, deviation to another firm fh′ will not increase the utility of the client, because
(h, k) is connected to only ` − 1 other clients using fh′ . Thus, the configuration A is indeed a CME, and
SW ∗(Im) ≤ SW (Im, A) = m`(r + `− 2).

Let us now calculate the monopoly value of the above game. If there was only a single firm, and all
clients would have joined it, then each client would have got a value of m(` − 1) + 1, equal to its degree.
Thus, the social welfare of the monopoly is: m`[m(`− 1) + 1]. Hence,

CV C(Im) =
SW ∗(Im)

MV (G)
=

m`(r + `− 2)

m`[m(`− 1) + 1]
=

10 + `− 2

m(`− 1) + 1
.

For sufficiently large ` (independent of m), the last ratio approaches 1/m. ut

Proposition 4. For every instance I = 〈G,F 〉 with m firms, where the degree of every node in G is at
most d, then SW ∗(I) ≥MW (G)/d. That is, CV C(I) ≥ 1/d.

Proof. Consider the proof of Theorem 9. Intuitively, if client cj has d ≤ m friends, which are arbitrarily
divided to m sets, one of these sets must contain at least 1/d of the friends (i.e., at least 1).

Formally, in the proof of Theorem 9, the bound on the utility of each client cj is constructed as follows.
Inequality (4) is proved for every firm fi′ . Then, all these inequalities are combined to form Inequality (5).
The bound of 1/m follows since m inequalities are summed to produce Inequality (5). However, for the
proof to work, one only needs to sum inequalities corresponding to firms having neighbors of cj as clients,
and the number of such firms cannot exceed the degree of cj . ut

B.1 Complete graphs

In this appendix we prove Theorem 10 amd Proposition 11. First, let us restate the theorem.

Theorem 10. For any game instance I = 〈G,F 〉 where G is a complete graph, it holds that CV C(I) =
Ω(n−1/3).

Let I be a game with the complete graph as a social network, and let E be an arbitrary CME of I. For
simplicity of the exposition, we assume that E contains no firms of zero clients. This assumption simplifies
the proofs, and does not effect our results.

First we show that there exists an order of firms with some useful properties.

Lemma 1. No two firms have the same number of clients under E.

Proof. Assume for the sake of contradiction that E contains two firms f1 and f2 having both k > 0 clients.
Assume, without loss of generality, x1 ≥ x2. Now, consider some client cj of f2. If cj deviates to f1, it
will share firm with more neighbors, and at the same time will lose nothing in terms of the space it gets;
contradicting the assumption that E is a CME. ut

Lemma 2. If firm f1 has more clients than f2 under E, than x1 < x2.



Proof. Assume for the sake of contradiction that x1 ≥ x2. Then every client of f2 has an incentive to
deviate to f1, since this will increase the number of neighbors it shares a firm with, and at the same time
will not decrease the amount of space it gets. ut

Corollary 1. The firms can be ordered in such a way that under E they have: a strictly decreasing number
of clients, and strictly increasing payments.

Proof. Follows immediately from Lemmata 1 and 2. ut
Denote by f1, f2, . . . , fm the order of the firms suggested by Corollary 1. Let ni be the number of clients

firm fi has under E, and let ai,min and ai,max denote the minimal and maximal, respectively, aj parameters
of clients associated with fi.

Observation 13 Under E, for every 1 ≤ i < m, it must hold that ai+1,minxi+ni ≤ ai+1,minxi+1+ni+1−1,
and also, ai,maxxi+1 + ni+1 ≤ ai,maxxi + ni − 1.

Proof. If the first inequality is not true, it is beneficial for some client of fi+1 to deviate to fi, and if the
second inequality is not true, it is beneficial for some client of fi to deviate to fi+1. ut

The last observation yields the following lower bound on the value of the ai,min’s.

Lemma 3. Under E, for every 2 ≤ i ≤ m, ai,min ≥ 2(i−1)2
xi

.

Proof. Rearranging the inequalities stated in Observation 13, we get for every 1 ≤ j < m:

aj,max(xj+1 − xj) + 1 ≤ nj − nj+1 ≤ aj+1,min(xj+1 − xj)− 1⇒ aj,max ≤ aj+1,min −
2

xj+1 − xj
.

Adding the above inequalities for all 1 ≤ j < i, we get:

ai,min ≥
i−1∑
j=1

2

xj+1 − xj
≥ 2(i− 1)

(xi − x1)/(i− 1)
=

2(i− 1)2

xi − x1
≥ 2(i− 1)2

xi
.

ut
We can now get a lower bound on the total utility of the clients.

Lemma 4. Under E, the total utility of the clients is lower bounded by Ω(n5/3).

Proof. Let us consider two cases. The first case is that
∑bn1/3c
i=1 ni ≥ n/2 (if bn1/3c > m, the last term is

undefined. However, the proof still works with small modifications). In this case, the utility of the clients
due to the social connections between them is at least:

bn1/3c∑
i=1

ni(ni − 1)

2
.

Note that for every x, y ∈ R, it holds that:

(x− y)2 ≥ 0⇒ x2 + y2 ≥ (x+ y)2

2
⇒ x(x− 1) + y(y − 1) ≥ 2 · x+ y

2

(
x+ y

2
− 1

)
.

Hence, the above utility is minimized when the ni’s are all equal, i.e., it can be lower bounded by:

bn1/3c∑
i=1

ni(ni − 1)

2
≥
bn1/3c∑
i=1

0.5n2/3(0.5n2/3 − 1)

2
= Ω(n5/3) .



We now consider the case
∑bn1/3c
i=1 ni ≤ n/2. In that case, at least n/2 clients get a payment of at least

2(n1/3 − 1)2 = Ω(n2/3). Hence, the total payments that the clients get is at least Ω(n5/3). ut
Our upper bound follows directly from the last lemma, and completes the proof of the first part of

Theorem 10. Indeed, if there was only a single firm, the total utility of the clients was MW (G) = O(n2).
On the other hand, by Lemma 4, the clients get under any CME E a total utility of Ω(n5/3). Hence, the
value of competition is always at least Ω(n−1/3).

Proposition 11. There is a family of instances (Im)m≥1, each with a complete social graph over n(m)
clients (where n(m) is a bounded function of m), for which CV C(Im) = O(n−1/3).

Proof. Given m, we construct a game instance Im with m firms and n clients, where n is a function of m
(which will be given later). Firm fi has ri = i, and is associated with a set Fi of ni = (m− i)(m+ i− 2)
clients. Each client cj ∈ Fi has aj = a′i = 2(i − 1). We consider a CME E of this game constructed as
following. Every firm fi has a payoff of xi = i− 1, and all clients of Fi use the services of fi. Clearly, the
firms do not have an incentive to deviate in this CME since any deviation must decrease their revenue to
0. Thus, we are left to show that the clients do not have an incentive to deviate. Consider a client of firm
i. The value gained by this client is:

(m− i)(m+ i− 2)− 1 + 2(i− 1)2 .

If this client deviates to firm j, its value will be:

(m− j)(m+ j − 2) + 2(i− 1)(j − 1) .

The difference between these quantities is:[
(m− i)(m+ i− 2)− 1 + 2(i− 1)2

]
− [(m− j)(m+ j − 2) + 2(i− 1)(j − 1)]

= [m2 − i2 − 2m+ 2i]− [m2 − j2 − 2m+ 2j]− 1 + 2(i− 1)(i− j)
= (j + i)(j − i) + 2(i− j)− 1 + 2(i− 1)(i− j) = (j − i) · [(j + i)− 2− 2(i− 1)]− 1

= (j − i)2 − 1 ≥ 0 ,

where the last inequality holds since |i− j| ≥ 1. This completes the proof that E is indeed a CME. Next,
let us calculate the utility of the clients under E.

SW (E) =

m∑
i=1

[
ni(ni − 1)

2
+ 2ni(i− 1)2

]
≤

m∑
i=1

[
(2m2)2

2
+ 4m2(m)2

]
= O(m5) . (11)

To calculate the monopoly utility, we need first to calculate the total number n of clients in Im.

n =

m∑
i=1

ni =

m∑
i=1

(m− i)(m+ i− 2) =

m∑
i=1

(m2 − i2 + 2m− 2i)

= m3 − m(m+ 1)(2m+ 1)

6
+ 2m2 −m(m− 1) =

2m3

3
+
m2

2
+

5m

6
= Θ(m3) .

Thus, the monopoly welfare is n(n − 1)/2 = Ω(m6). Combining this with (11), we get CV C(Im) =
O(1/m) = O((m3)−1/3) = O(n−1/3). ut

B.2 Revenue ramifications

Theorem 12. For any m > 1, there exists an instance Im = 〈G,m, r〉 for which the total firms’ revenue
strictly decreases with the addition on an extra firm. Formally, Im+1 = 〈G,m+ 1, r〉 obeys FR(Im+1) ≤

m−1
m−2+lnm · FR(Im).



Proof. Let us fix two positive integer constants r � B � 1. Consider a game instance Im constructed as
following. Each firm fi has ri = r, and is associated with a pair Pi of clients. Every pair Pi of clients is
connected by an edge of weight B, and no other edges appear in the graph. All clients have aj = 1. The
instance Im+1 is the same as Im with an additional firm, identical to the firms of Im.

We begin the proof by considering the possible CMEs of Im+1. Notice that in every CME, both clients
of each pair Pi must belong to the same firm. Hence, at least one firm must have no clients. Since, this is
a CME, this firm must be unable to win any clients. For that to happen, every firm that does have clients
must give payoff of at least R−B. Thus, the firms revenue from such a CME is at most:

FR(Im+1) ≤ 2m · [R− (R−B)] = 2mB .

Next, we describe a CME E of Im. For 1 ≤ i < m, xi is given by R−B · {1 +m/[(m− 1)(i+ 1)]}. We
also set xm = R−mB/(m− 1). First, let us prove that this is indeed a CME. Consider a client of firm i.
Notice that the value of xi is non-decreasing as i increases. Hence, client c of fi has no incentive to deviate
to a firm of lower index. We would like to prove that it also has no incentive to deviate to firm fj such
that i < j < k. The utility of the client c under E is:

B + xi = B +R−B ·
{

1 +
m

(m− 1)(i+ 1)

}
= R−B ·

{
m

(m− 1)(i+ 1)

}
≥ R−B ·

{
m

2(m− 1)

}
.

On the other hand, if c deviates to firm j, its utility will be:

xj = R−B ·
{

1 +
m

(m− 1)(j + 1)

}
≤ R−B ·

{
1 +

1

m− 1

}
= R−B · m− 2

m− 1
.

Hence, c has an incentive to deviate only when m/2 > m − 2. However, this inequality holds only for
m < 4/3. Thus, it is never beneficial for a client to make such a deviation in our case. We also need to
consider the possibility that c will deviate to firm m. Notice that firms m− 1 and m are actually identical,
and therefore, c does not have an incentive to deviate to firm m either, since it does not have an incentive
to deviate to firm m−1. Thus, we can conclude that no client has an incentive to deviate. To complete the
proof that the above configuration is a two phases equilibrium, we need also to consider deviations of the
firms. Clearly, a deviation of a firm fj makes sense only if xj becomes xi +B + 1, where fi is some other
firm (otherwise, fj can win the same set of clients with a lower increase in xj). If i < m, then fj wins at
most 2i new clients (the clients of firms 1, 2, . . . , i, excluding maybe its own clients if i > j). If i = m− 1
or i = m, then fj wins only 2(m − 1) ≤ 2i new clients because these are all the client it does not have
already). Hence, the utility of fj after the deviation is at most:

[R− (xi +B + 1)] · 2(i+ 1) <

[
R−R+B ·

{
1 +

m

(m− 1)(i+ 1)

}
−B

]
· 2(i+ 1)

= B · m

(m− 1)(i+ 1)
· 2(i+ 1) =

2Bm

m− 1
.

On the other hand, before the deviation, the utility of fj was:

[R− xj ] · 2 =

[
R−R+B ·

{
1 +

m

(m− 1)(j + 1)

}]
· 2 ≥

[
B ·
{

1 +
1

m− 1

}]
· 2 =

2Bm

m− 1
.

Therefore, fj does not gain from any deviation. Finally, we are left to consider deviations of fm. However,
since firms fm−1 and fm are symmetric, fm does not have an incentive to deviate because fm−1 does not
have such an incentive. Thus, the above configuration is a CME. Let us calculate the total utility of the



firms in E.

2 ·
m−1∑
i=1

(R− xi) + 2(R− xm)

= 2 ·
k−1∑
i=1

(
R−R+B ·

{
1 +

m

(m− 1)(i+ 1)

})
+ 2 ·

(
R−R+B · m

m− 1

)

= 2B ·
m−1∑
i=1

(
1 +

m

(m− 1)(i+ 1)

)
+ 2B · m

m− 1
= 2B · (m− 1) +

2Bm

m− 1
·
m−1∑
i=1

1

i+ 1
+

2Bm

m− 1

= 2B · (m− 1) +
2Bm

m− 1
·
m−1∑
i=0

1

i+ 1
≥ 2B · (m− 1) +

2Bm

m− 1
·
∫ m−1

0

dx

x+ 1

= 2B · (m− 1) +
2Bm

m− 1
· lnm .

The last value lower bounds FR(Im). The ratio between this value and 2mB (our upper bound on
FR(Im+1)) is:

m− 1

m
+

1

m− 1
· lnm ≥ m− 2

m− 1
+

1

m− 1
· lnm =

m− 2 + lnm

m− 1
.

ut
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