
All-or-Nothing Generalized Assignment with Application to

Scheduling Advertising Campaigns∗

Ron Adany† Moran Feldman‡ Elad Haramaty‡ Rohit Khandekar§

Baruch Schieber¶ Roy Schwartz‖ Hadas Shachnai‡∗∗ Tami Tamir††

Abstract

We study a variant of the generalized assignment problem (gap) which we label all-or-
nothing gap (agap). We are given a set of items, partitioned into n groups, and a set of
m bins. Each item ` has size s` > 0, and utility a`j ≥ 0 if packed in bin j. Each bin can
accommodate at most one item from each group, and the total size of the items in a bin
cannot exceed its capacity. A group of items is satisfied if all of its items are packed. The
goal is to find a feasible packing of a subset of the items in the bins such that the total
utility from satisfied groups is maximized. We motivate the study of agap by pointing out
a central application in scheduling advertising campaigns.

Our main result is an O(1)-approximation algorithm for agap instances arising in prac-
tice, where each group consists of at most m/2 items. Our algorithm uses a novel reduction
of agap to maximizing submodular function subject to a matroid constraint. For agap in-
stances with fixed number of bins, we develop a randomized polynomial time approximation
scheme (PTAS), relying on a non-trivial LP relaxation of the problem.

We present a (3 + ε)-approximation as well as PTASs for other special cases of agap,
where the utility of any item does not depend on the bin in which it is packed. Finally, we
derive hardness results for the different variants of agap studied in the paper.

1 Introduction

Personalization of advertisements (ads) allows commercial entities to aim their ads at specific
audiences, thus ensuring that each target audience receives its specialized content in the desired
format. According to recent media research reports [20, 19], global spending on TV ads exceeded
$323B in 2011, and an average viewer watched TV over 153 hours per month, with the average
viewing time consistently increasing. Based on these trends and on advances in cable TV
technology, personalized TV ads are expected to increase revenues for TV media companies

∗A preliminary version of this paper appeared in the Proceedings of the 16th Conference on Integer Program-
ming and Combinatorial Optimization (IPCO), Valparáıso, March 2013.
†Computer Science Department, Bar-Ilan University, Ramat-Gan 52900, Israel. adanyr@cs.biu.ac.il.
‡Computer Science Department, Technion, Haifa 32000, Israel. E-mail: {moranfe,eladh,hadas}@cs.technion.ac.il.
§Knight Capital Group, Jersey City, NJ 07310. E-mail: rkhandekar@gmail.com
¶IBM T.J. Watson Research Center, Yorktown Heights, NY 10598. E-mail: sbar@us.ibm.com
‖Microsoft Research, One Microsoft Way, Redmond, WA 98052. E-mail: roysch@microsoft.com
∗∗Work partially supported by the Technion V.P.R. Fund, by Smoler Research Fund, and by funding for

DIMACS visitors.
††School of Computer Science, The Interdisciplinary Center, Herzliya, Israel. E-mail: tami@idc.ac.il.

1

and for mobile operators [6, 12, 23]. The proliferation of alternative media screens, such as
cell-phones and tablets, generate new venues for personalized campaigns targeted to specific
viewers, based on their interests, affinity to the advertised content, and location. In fact, ads
personalization is already extensively used on the Internet, e.g., in Google AdWords [11]. Our
study is motivated by a central application in personalized ad campaigns scheduling, introduced
to us by SintecMedia [25] and fully described in [1].

An advertising campaign is a series of advertisement messages that share a single idea and
theme which make up an integrated marketing communication. Given a large set of campaigns
that can be potentially delivered to the media audience, a service provider attempts to fully
deliver a subset of campaigns that maximizes the total revenue, while satisfying constraints on
the placement of ads that belong to the same campaign, as well as possible placement constraints
among conflicting campaigns. In particular, to increase the number of viewers exposed to an ad
campaign, one constraint is that each commercial break contains a single ad from this campaign.1

Also, each ad has a given length (=size), which remains the same, regardless of the commercial
break in which it is placed. This generic assignment problem defines a family of all-or-nothing
variants of the generalized assignment problem (gap).

Let [k] denote {1, . . . , k} for an integer k. In all-or-nothing gap (or agap), we are given a
set of m bins, where bin j ∈ [m] has capacity cj , and a set of N items partitioned into n groups
G1, . . . , Gn. Each group i ∈ [n] consists of ki items, for some ki ≥ 1, such that

∑
i ki = N . Each

item ` ∈ [N] has a size s` > 0 and a non-negative utility a`j if packed in bin j ∈ [m]. An item
can be packed in at most one bin, and each bin can accommodate at most one item from each
group. Given a packing of a subset of items, we say that a group i is satisfied if all items in Gi
are packed. The goal is to pack a subset of items in the bins so that the total utility of satisfied
groups is maximized. Formally, we define a packing to be a function p : [N] → [m] ∪ {⊥}. If
p(`) = j ∈ [m] for ` ∈ [N], we say that item ` is packed in bin j. If p(`) = ⊥, we say that item ` is
not packed. A packing is admissible if

∑
`∈p−1(j) s` ≤ cj for all j ∈ [m], and |p−1(j)∩Gi| ≤ 1 for

all j ∈ [m] and i ∈ [n]. Given a packing p, let Sp =
{
i ∈ [n] | Gi ⊆ ∪j∈[m]{p−1(j)}

}
denote the

set of groups satisfied by p. The goal in agap is to find an admissible packing p that maximizes
the utility:

∑
i∈Sp

∑
`∈Gi

a`p(`).
We note that agap is NP-hard already when the number of bins is fixed. Such instances

capture campaign scheduling in a given time interval (of a few hours) during the day. We further
consider the following special cases of agap, which are of practical interest. In all-or-nothing
group packing, each group Gi has a profit Pi > 0 if all items are packed, and 0 otherwise. Thus,
item utilities do not depend on the bins. In the all-or-nothing assignment problem (aap), all
items in Gi have the same size, si > 0, and same utility ai ≥ 0, across all bins.

Note that the special case of agap where all groups consist of a single item yields an instance
of classic gap, where each item has the same size across the bins. The special case of aap where
all groups consist of a single item yields an instance of the multiple knapsack problem. Clearly,
agap is harder to solve than these two problems. One reason is that, due to the all-or-nothing
requirement, we cannot eliminate large items of small utilities, since these items may be essential
for satisfying a set of most profitable groups. Moreover, even if the satisfied groups are known
a-priori, since items of the same group cannot be placed in one bin, common techniques for
classical packing, such as rounding and enumeration, cannot be applied.

1Indeed, overexposure of ads belonging to the same campaign in one break may cause lack of interest, thus
harming the success of the campaign.

2

All-or-Nothing Assignment (AAP)
(Assume: all items in a group are identical)

Strongly NP-hard [Appendix A],
PTAS special cases [Section 5]

All-or-Nothing Group Packing
(General groups with group profits)

(Assume: uniform bin capacities, group size ≤ #bins/2)
(3+)-approx [Section 4]

Maximization GAP
(Item sizes, profits depend on bins)

(e/(e-1)-)-approx [Feige-Vondrak `06]

AGAP with Assignment Restrictions
(Some (item,bin) pairs incompatible)

No O(1)-approx [Appendix A]

MKP with Assignment Restrictions
(Some (item,bin) pairs incompatible)

2-approx combinatorial algorithm
[Nutov et al. `06]

All-or-Nothing GAP (AGAP)
(Item profits depend on bins)

(Assume: uniform bin capacities, group size ≤ #bins/2)
APX-hard, (19+)-approx [Section 2]

AGAP with constant #bins
Randomized PTAS [Section 3.1]

Multiple Knapsack Problem (MKP)
(Singleton groups)

PTAS [Chekuri-Khanna `06]

AGAP with unit-sized items & bins
(e/(e-1))-approx [Section 3.2]

Figure 1: Summary of our approximation and hardness results and comparison with related
problems. An arrow from problem A to B indicates that A is a special case of B.

1.1 Our Results

Figure 1 summarizes our contributions for different variants of agap, and their relations to
each other. Even relatively special instances of aap are NP-hard. Furthermore, with slight
extensions, agap becomes hard to approximate within any bounded ratio (see Appendix A).
Thus, we focus in this paper on deriving approximation algorithms for agap and the above
special cases.

Given an algorithm A, let A(I), OPT (I) denote the utility of the solution output by A and
by an optimal solution for a problem instance I, respectively. For ρ ≥ 1, we say that A is a
ρ-approximation algorithm if, for any instance I, OPT (I)

A(I) ≤ ρ.
We note that agap with non-identical bins is hard for any constant approximation, even

if the utility of an item is identical across the bins (see Theorem A.5). Thus, in deriving our
results for agap, we assume the bins are of uniform capacities. Our main result (in Section 2)
is a (19 + ε)-approximation algorithm for agap instances arising in practice, where each group
consists of at most m/2 items.

Interestingly, agap with a fixed number of bins admits a randomized PTAS (see Section
3.1). In Section 3.2 we show that, for the special case where all items have unit sizes, with unit
bin capacities, an e

e−1 -approximation can be obtained by reduction to submodular maximization
with a knapsack constraint. In Section 4 we give a (3 + ε)-approximation algorithm for All-or-
Nothing Group Packing. This ratio can be improved to (2 + ε) if group sizes are relatively
small.

In Section 5 we present PTASs for two subclasses of instances of aap. The first is the subclass
of instances with unit-sized items; the second is the subclass of instances in which item sizes

3

are drawn from a divisible sequence,2 and group cardinalities can take the values k1, . . . , kr, for
some constant r ≥ 1. Such instances arise in our campaign scheduling application. Indeed, the
most common lengths for TV ads are 15, 30 and 60 seconds [28, 18]. Also, there are standard
sizes of 150, 300 and 600 pixels for web-banners on the Internet [27].

Finally, we present (in the Appendix) hardness results for the different all-or-nothing variants
of gap studied in the paper.

Technical Contribution Our approximation algorithm for agap (in Section 2) uses a novel
reduction of agap to maximizing a submodular function subject to matroid constraint. At the
heart of our reduction lies the fact that the sequence of sizes of large groups can be discretized to
yield a logarithmic number of size categories. Thus, we can guarantee that the set of fractionally
packed groups, in the initial Maximization Phase of the algorithm, has a total size at most m
without actually applying this knapsack constraint. Instead, we encode the knapsack constraint
as a matroid constraint, by considering feasible vectors of logarithmic size that represent the
number of groups taken from each size category. These vectors (which are implicitly enumerated
in polynomial time) are used for defining the matroid constraint.

Our definition of the submodular set function, f(S), on the way to finding a fractional
packing of items (see Section 2), in fact guarantees that the rounding that we use for group
sizes causes only small harm to the approximation ratio. This allows also to define a non-
standard polynomial time implementation of an algorithm of Calinescu et al. [3], for maximizing
a submodular function under a matroid constraint. More precisely, while the universe for our
submodular function f is of exponential size, we show that f can be computed in polynomial
time.

Our randomized approximation scheme for agap instances with constant number of bins
(in Section 3.1) is based on a non-trivial LP relaxation of the problem. While the resulting LP
has polynomial size when the number of bins is fixed, solving it in polynomial time for general
instances (where the number of variables is exponentially large) requires sophisticated use of
separation oracles, which is of independent interest. The fractional solution obtained for the
LP is rounded by using an approximation technique of [13, 14] for maximizing a submodular
function subject to a fixed number of knapsack constraints.

1.2 Related Work

All-or-nothing gap, and its more restricted variants aap, generalize several classical problems,
including gap (with same sizes across the bins), multiple knapsack (mkp), and multiple knapsack
with assignment restrictions (mkar) [21].

Recall that the special case of agap where all groups consist of a single item yields an
instance of gap, where each item takes a single size over all bins. gap is known to be APX-hard
already in this case, even if there are only two possible item sizes, each item can take two possible
profits, and all bin capacities are identical [5]. Fleischer et al. [9] obtained an e

e−1 -approximation
for gap, as a special case of the separable assignment problem. The best known ratio is e

e−1 − ε
[8].

In minimum gap (see, e.g., [15]), there are m machines and n jobs. Each machine i is
available for Ti time units, and each job has a processing time (size), and a cost of being assigned
to a machine. The goal is to schedule all the jobs at minimum total cost, where each job needs

2A sequence d1 < d2 < · · · < dD is divisible if di−1 divides di for all 1 < i ≤ D.

4

to be assigned to a single machine. The paper [24] gives an algorithm which minimizes the total
cost, using a schedule where each machine i completes within 2Ti time units, 1 ≤ i ≤ m.

The generalized multi-assignment problem extends minimum gap to include multiple assign-
ment constraints. Job processing times and the costs depend on the machine to which they are
assigned, the objective is to minimize the total costs, and all the jobs must be assigned. The
only differences from gap are the multiple assignment constraints of each job. The paper [22]
presents Lagrangian dual-based branch-and-bound algorithms that yield exact solutions for the
problem.3

We are not aware of earlier work on agap or all-or-nothing variants of other packing prob-
lems.

2 Approximation Algorithm for agap

In this section we consider general agap instances, where each item ` has a size s` ∈ (0, 1]
and arbitrary utilities across the bins. We assume throughout this section that all bins are of
the same (unit) capacity. Our approach is based on a version of agap, called relaxed-agap,
obtained by relaxing the constraint that the total size of items packed in a bin must be at most
1, and by defining the utility of a solution to relaxed-agap slightly differently. We prove that
the maximum utility of a solution to relaxed-agap upper bounds the objective value of the
optimal agap solution. Our algorithm proceeds in two phases.

Maximization Phase The algorithm approximates the optimal utility of relaxed-agap
in polynomial time, by applying a novel reduction to submodular function maximization under
matroid constraints. Let S denote the subset of groups assigned by this relaxed-agap solution.

Filling Phase The algorithm next chooses a subset S′ ⊆ S whose utility is at least a con-
stant fraction of the utility of S. Then, the algorithm constructs a feasible solution for agap
that assigns the groups in S′ (not necessarily to the same bins as the relaxed-agap solu-
tion) and achieves agap value that is at least half of the utility of S′, thereby obtaining O(1)-
approximation for agap.

2.1 Maximization phase

2.1.1 relaxed-agap:

The input for relaxed-agap is the same as that for agap. A feasible relaxed-agap solution
is a subset S of the groups whose total size is no more than m (the total size of the bins) and
a valid assignment p of the items in groups in S to bins; a valid assignment is defined as one in
which no two items from the same group are assigned to the same bin. In relaxed-agap, we
do not have a constraint regarding the total size of the items assigned to a single bin. Given
a solution (S, p) and a bin j ∈ [m], let p−1(j) ⊆ [N] be the set of items assigned by p to bin
j. The utility of a solution (S, p) is the sum of the utility contributions of the bins. We note
that since the total size of the items assigned to a single bin may exceed its unit capacity, the
profit from an (integral) assignment of groups to the bins may be smaller that the total utility
of these items. Thus, we define the utility contribution of a bin j ∈ [m] as the maximum value

3The running times of these algorithms are not guaranteed to be polynomial.

5

from (fractionally) assigning items in p−1(j) to j satisfying its unit capacity. In other words,
we solve for bin j the fractional knapsack problem. To define this more formally, we introduce
some notation.

Definition 2.1 Given a subset I ⊆ [N] of items and a bin j, define π(j, I) = max~w
∑

`∈I w`a`j,

where the maximum is taken over all weight vectors ~w ∈ <|I|+ that assign weights w` ∈ [0, 1] to
` ∈ I, satisfying

∑
`∈I w`s` ≤ 1.

It is easy to determine ~w that maximizes the utility contribution of bin j. Order the items in I
as `1, . . . , `b in a non-increasing order of their ratios of utility to size, i.e., a`1j/s`1 ≥ a`2j/s`2 ≥
· · · ≥ a`bj/s`b . Let d be the maximum index such that s =

∑d
i=1 s`i ≤ 1. Set w1 = · · · = wd = 1.

If s < 1 and d < b, set wd+1 = (1− s)/s`d+1
and set the other weights wd+2 = · · · = wb = 0. If

s = 1, set weights wd+1 = · · · = wb = 0.
Using the above notation, the utility of a solution (S, p) is given by

∑
j∈[m] π(j, p−1(j)). The

relaxed-agap is to find a solution with maximum utility.
We can extend Definition 2.1 to multiset I of [N] as follows.

Definition 2.2 Think of a multiset I of [N] as a function I : [N] → ZZ+ that maps each
` ∈ [N] to a non-negative integer equal to the number of copies of ` present in I. Define
π(j, I) = max~w

∑
`∈[N]w`a`j, where the maximum is taken over all weight vectors ~w ∈ <N+ that

assign weights w` ∈ [0, I(`)] to ` ∈ [N] satisfying
∑

`∈[N]w`s` ≤ 1.

2.1.2 Solving relaxed-agap near-optimally:

Recall that a valid assignment of a subset of items in [N] to bins is one in which no two items
from a group get assigned to the same bin. Now define a universe U as follows:

U = {(G,L) | L is a valid assignment of all items in group G to bins [m]}

A subset S ⊆ U defines a multiset of groups that appear as the first component of the pairs in
S. Below, we use G(S) to denote the multiset of such groups. For a subset S ⊆ U and a bin
j ∈ [m], let Ij =](G,L)∈SL−1(j) be the multiset union of sets of items mapped to j over all
elements (G,L) ∈ S. Note that Ij can indeed be a multiset since S may contain two elements
(G1, L1) and (G2, L2) with G1 = G2. Now define

f(S) =
∑
j∈[m]

π(j, Ij).

Claim 2.1 The function f(S) is non-decreasing and submodular.

Proof: It is easy to see that f is non-decreasing. Indeed, the sum of fractional knapsack
values of the bins in [m] can only increase when |S| increases. We proceed to show that f is
submodular. Given S ⊆ U , since f(S) is the sum of fractional utilities of the bins, it is enough
to show that the fractional utility fj(S) of any bin j is a submodular function on U . It is enough
to show that for any subsets S ⊂ T ⊆ U , and s 6∈ S, we have

fj(S ∪ {s})− fj(S) ≥ fj(T ∪ {s})− fj(T).

Now let s = (G,L). If L has no element in G assigned to bin j, it is easy to see that fj(S∪{s})−
fj(S) = fj(T ∪ {s}) − fj(T) = 0. Therefore assume that L assigns a unique element ` ∈ G to

6

bin j. Note that the value fj(W) for W ⊆ U is computed by ordering the elements `′ assigned
to bin j by assignments in W in the non-increasing order of a`′j/s`′ and taking the (fractional)
profit from a (fractional) prefix with the sum of sizes summing up to 1. Now it is easy to see
that the value fj(S ∪ {s}) − fj(S) (resp., fj(T ∪ {s}) − fj(T)) depends on the position of ` in
this order for S (resp. T). Since S ⊂ T , the position of ` in the order for S is no later than its
position in the order for T . Therefore, we have fj(S ∪ {s}) − fj(S) ≥ fj(T ∪ {s}) − fj(T) as
desired.

To identify subsets S ⊆ U that define feasible relaxed-agap solutions, we need two con-
straints.
Constraint 1. The subset S does not contain two elements (G1, L1) and (G2, L2) such that
G1 = G2.
Constraint 2. The total size of the groups in G(S), counted with multiplicities, is at most m,
i.e.,

∑
(G,L)∈S

∑
`∈G s` ≤ m.

Constraint 1 is easy to handle since it is simply the independence constraint in a partition
matroid. Unfortunately, Constraint 2, which is essentially a knapsack constraint, is not easy to
handle over the exponential-sized universe U .

Handling Constraint 2 approximately in polynomial time To this end, we split the
groups into a logarithmic number of classes. Fix ε > 0. Class 0 contains all groups G such that
s(G) :=

∑
`∈G s` ≤ εm/n. For h ≥ 1, class h contains all groups G with s(G) ∈ (εm/n · (1 +

ε)h−1, εm/n · (1 + ε)h]. We use Ch to denote class h. Since s(G) ≤ m for all groups G, there
are only H = O(1/ε · log(n/ε)) non-empty classes. We enforce an upper bound of m on the
total size of groups in G(S) by enforcing an upper bound on the total size of groups in G(S)
from each class separately. We call a vector (y1, . . . , yH) ∈ ZZH+ of non-negative integers legal if∑H

h=1 yh ≤ H(1+1/ε). Note that the number of legal vectors is
(H+H(1+1/ε)

H

)
= O(e(2+1/ε)(H+1)),

which is polynomial in n.4

Lemma 2.1 For any S ⊆ U satisfying Constraint 2, there exists a legal vector (y1, . . . , yH) such
that for all h ∈ [H], the number of groups in G(S), counted with multiplicities, that are in Ch is
at most ŷh := byhn/(H(1 + ε)h−1)c.

Proof: For h ∈ [H], let yh = d(
∑

(G,L)∈S:G∈Ch
∑

`∈G s`)/(εm/H)e. Since S satisfies Constraint

2, we have
∑H

h=1 yh ≤ H/ε + H. Thus, the vector (y1, . . . , yH) is legal. From the definition of
yh and the fact that any group in Ch has size at least εm/n · (1 + ε)h−1, the lemma follows.

This lemma implies, in particular, that the optimum solution to agap satisfies the above
property as well. With this motivation, we denote by Uh = {(G,L) ∈ U | G ∈ Ch} the collection
of groups in Ch, and define a new constraint as follows.
Constraint 2′ for a fixed legal vector (y1, . . . , yH). For each 1 ≤ h ≤ H, the number of
groups in G(S), counted with multiplicities, that are in Ch is at most ŷh, where ŷh is defined in
Lemma 2.1.

Lemma 2.2 Fix a legal vector (y1, . . . , yH). The collection of all S ⊆ U satisfying Constraint 1
and Constraint 2′ for this vector defines a laminar matroid M(y1, . . . , yH) over U . Furthermore,
an independent set S ⊆ U in this matroid satisfies

∑
(G,L)∈S

∑
`∈G s` ≤ m((1 + ε)2 + ε).

4The last equation follows from a result of [5].

7

Proof: Note that Constraint 1 (resp. Constraint 2′) alone defines a partition matroid. Since
the partition of Constraint 1 is a refinement of the partition of Constraint 2′, they together form
a laminar matroid. Now any group in class h has size at most εm/n · (1 + ε)h. This, together
with the definition of Constraint 2′ and that of a legal vector, implies that the total size of
groups in G(S) in classes 1 to H is at most m(1 + ε)2. Class 0 contributes at most εm total
size. The lemma thus follows.

Given a legal vector (y1, . . . , yH), consider a problem, called submod-matroid, of maxi-
mizing the non-decreasing submodular function f(S) over all independent sets in the matroid
M(y1, . . . , yH). Recall that Nemhauser et al. [17] proved that a greedy algorithm that starts
with an empty set and iteratively adds a “most profitable” element to it while maintaining
independence, as long as possible, is a 2-approximation. Each iteration can be implemented
in polynomial time as follows. Given the current solution S and a group G, the problem of
finding the assignment L that increases the utility f relative to S by the maximum amount can
be cast as a bipartite matching problem. To see this, create a bipartite graph with elements
in G as vertices on the left-hand-side and bins as vertices on the right-hand-side. For ` ∈ G
and a bin j, add an edge (`, j) with weight equal to the amount by which the contribution of
bin j would increase if ` is added to bin j. This quantity, in turn, can be computed by solving
a fractional knapsack problem on bin j. The maximum weight assignment corresponds to the
maximum-weight matching in this graph.

In the maximization phase, we enumerate over all (polynomially many) legal vectors and
compute a 2-approximate solution to the corresponding submod-matroid problem. In the end,
we pick the maximum valued solution over all such solutions.

Improving the approximation to e/(e− 1). Instead of the greedy algorithm of Nemhauser
et al. [17], we can also use the e

e−1 -approximate Continuous Greedy Algorithm of Calinescu et
al. [3]. This algorithm starts with an empty solution S = ∅, and improves it in rounds. In each
round it finds an independent set maximizing a linear objective. The weight of each element
(G,L) in the linear objective is the marginal value of (G,L) with respect to the original objective
function f , given the current fractional solution. The algorithm then updates its current solution,
by making a small step in the direction of this independent set. The fact that the size of the
ground set is exponential prevents a straight-forward implementation of the algorithm for two
reasons:

• Calculation of the weights of all ground set elements will require exponential time.

• The number of iterations required is polynomial in the size of the ground set, which in
turn is exponential in the size of the input.

The first difficulty can be eliminated by observing that any independent set can contain at most
one assignment for each group; therefore, it suffices to consider only the ‘best’ assignment for
each group, given the current fractional solution. A technique for finding such an assignment
(and its weight) using the bipartite matching algorithm was described earlier, in the discussion
of the greedy algorithm. The second difficulty can eliminated by observing that, with slight
changes, the proof of Calinescu et al. is valid also when the number of rounds is reduced to r2,
where r is the rank of the matroid, which in turn is at most n, the number of groups. Note also
that the total number of non-zero entries in the final fractional solution computed is at most
the number of groups, n, multiplied by the number of rounds, at most n2, and hence is at most
n3.

8

The output of the Continuous Greedy Algorithm is a fractional value corresponding to a point
inside the matroid polytope. Rounding without any loss can be done, e.g., by the the pipage
rounding technique of [2]. The standard analysis of pipage rounding shows that it runs in time
polynomial in the size of the ground set. However, an easy observation shows that elements with
zero values in the fractional solution are never accessed by the rounding algorithm. Thus, it in
fact runs in time polynomial in the number of non-zero entries in the input. Since the input to
the pipage rounding is the output of the Continuous Greedy Algorithm, which has at most n3

non-zero entries, the pipage rounding step can be applied in polynomial time as well.
In summary, we find a set S∗ ⊆ U such that

(i) each group appears at most once in G(S∗),

(ii) the total size of the groups in G(S∗) is at most m((1 + ε)2 + ε) ≤ m(1 + 4ε) (if ε ≤ 1), and

(iii) f(S∗) is at least (e− 1)/e times the maximum value achieved by such sets.

2.2 Filling phase

We show how to choose a subset of the groups in G(S∗) and a feasible assignment of the items
in these groups such that the utility of these assignments is a constant fraction of f(S∗). In the
description we use parameters u, v > 0, whose values will be optimized later.

Lemma 2.3 Assume v ≥ 4, v(1 + 4ε) < u and kmax := maxi ki ≤ m/2. In polynomial time, we
can compute a subset of groups F ⊆ G(S∗) and a feasible assignment of their items to the bins,
forming a feasible solution to agap with value at least f(S∗) ·min{1/u, 12(1/(v(1 + 4ε))− 1/u)}.

Recall that f(S∗) =
∑

j π(j, Ij), where Ij is a set of items mapped to bin j over all (G,L) ∈
S∗. Since S∗ satisfies Constraint 1, we do not have two elements (G,L1), (G,L2) ∈ S∗ for any
G. We now subdivide the value f(S∗) into the groups G ∈ G(S∗), naturally, as follows. Suppose
that π(j, Ij) is achieved by a weight-vector ~w(j). Fix any such optimum weight vector ~w∗(j)
for each j. These vectors, when combined, give a weight vector ~w∗ ∈ <N+ , assigning a unique
weight w∗` to each ` ∈ [N]. We define the contribution of a group G ∈ G(S∗) to f(S∗) as
σ∗(G) =

∑
`∈Gw

∗
`a`L(`), where (G,L) ∈ S∗.

2.2.1 Proof of Lemma 2.3

If there is a group G ∈ G(S∗) with σ∗(G) ≥ f(S∗)/u, we output F = {G} with the best
assignment of items in G to bins (computed using maximum matching, as described in Section
2.1) as solution. Clearly, the utility of this solution is at least f(S∗)/u.

Suppose that no such group exists. In this case, we consider the groups G ∈ G(S∗) in non-
increasing order of σ∗(G)/s(G). Choose the longest prefix in this order whose total size is at
most m/v. Let T ⊂ S∗ be the solution induced by these groups. We first argue that T 6= ∅.
Note that T can be empty only if the first group G in the above order has size more than m/v.
Thus σ∗(G)/(m/v) > σ∗(G)/s(G) ≥ f(S∗)/(m(1 + 4ε)). The second inequality holds since the
total size of groups in G(S∗) is at most m(1 + 4ε) and the “density” σ∗(G)/s(G) of G is at
least the overall density of G(S∗), which in turn is at least f(S∗)/(m(1 + 4ε)). This implies that
σ∗(G) > f(S∗)/(v(1 + 4ε)) > f(S∗)/u, a contradiction.

We claim that f(T) ≥ f(S∗) · (1/(v(1 + 4ε)) − 1/u). If the size of the groups in T is
exactly m/v, then since the density of T is at least the overall density of G(S∗), we have

9

f(T) ≥ f(S∗)/(m(1+4ε))·(m/v) = f(S∗)/(v(1+4ε)). Otherwise, consider the group G following
T in the sequence of the groups in G(S∗) ordered in non-increasing order of density. Since the size
of the groups in T ∪{G} is greater than m/v, we have f(T ∪{G}) > f(S∗)/(m(1+4ε)) ·(m/v) =
f(S∗)/(v(1 + 4ε)). The claim follows since σ∗(G) < f(S∗)/u.

The three steps below find a feasible solution to agap that consists of groups in G(T) and
whose value is at least f(T)/2.

1. Eliminate all zero weights Let ~w ∈ <N+ be the weight vector that determines the value
f(T). Note that the weight w` assigned to some of the items ` in groups in G(T) may be zero.
We modify the assignment of items in the solution T so that no item would have zero weight.
Note that if an item ` assigned to bin j in solution S has w` = 0, the total size of the items
assigned to bin j in S is at least 1. It follows that there are at most bm/vc bins that may contain
items of zero weight, since the total size of all items assigned in T is no more than m/v.

For each item with zero weight that belongs to a group Gi, there is at least one bin j such
that the total size of the items assigned to bin j is less than 1, and no items from group Gi are
assigned to bin j. This follows since |Gi|+ bm/vc ≤ m/2 + bm/vc < m. It follows that this item
can be assigned to bin j and be assigned non-zero weight. We can continue this process as long
as there are items with zero weight, thereby, eliminating all zero weights.

2. Evicting overflowed items Suppose there are a (respectively, b) bins that are assigned
items of total size more than 1 (respectively, more than 1/2 and at most 1). Call these bins
‘full’ (respectively, ‘half full’). Since the total volume of packed items is at most m/v, we have
a + b/2 ≤ m/v. Next, we remove some items from these a full bins to make the assignment
feasible. Consider such a bin. Recall that all items in this bin but one have weight 1. We keep
in this bin either all the items assigned to it that have weight 1, or the unique item that has
weight strictly between 0 and 1, whichever contributes more to f(T). In this step, we lose at
most half of the contribution of the full bins to f(T). We further evict all items assigned to the
least profitable b(m− a)/2c non-full bins. In this step, we lose at most half of the contribution
of the non-full bins to f(T).

3. Repacking evicted items We now repack all the evicted items to maintain feasibility of
the solution. We first repack evicted items of size at least half. Note that there are at most
a such items from full bins, and at most b such items from half full bins. These items can be
packed into evicted b(m − a)/2c bins if a + b ≤ b(m − a)/2c. This is indeed true since v ≥ 4
together with a+ b/2 ≤ m/v implies 4a+ 2b ≤ m, which in turn implies a+ b ≤ (m− a)/2. It
follows that a+ b ≤ b(m− a)/2c, since a+ b is an integer.

We are now left only with items whose size is less than half to repack. For each such item
from group i, we find a bin whose total size is less than half, and that does not contain another
item from group i, and insert the item to this bin. Note that, since the size of the item is less
than half, the solution remains feasible. Since the total size of the items to be packed is at most
m/v, there are at most b2m/vc bins of size at least half. Thus, we are guaranteed to find such
a bin in case m− b2m/vc − ki ≥ 0, i.e., ki ≤ dm(1− 2/v)e.

Recall that f(T) ≥ f(S∗) ·(1/(v(1+4ε))−1/u). The reduction in f(T) due to the eviction of
items is at most half of f(T). Thus, the value of the final solution is at least f(S∗) · 12(1/(v(1 +
4ε))− 1/u). This completes the proof.

10

Now, to bound the overall approximation ratio, we set 1/u = 1
2(1/(v(1 + 4ε)) − 1/u), i.e.,

u = 3v(1 + 4ε). Thus, with v = 4 and u = 12(1 + 4ε), we get a ratio of 1
12(1+4ε) . Since we lost a

factor of 1/2 (or (e−1)/e) in the maximization phase, we get an overall 24(1+4ε)-approximation
(or 12(1 + 4ε) e

e−1 -approximation).
This proves the following theorem.

Theorem 2.4 agap with uniform bin capacities admits a polynomial-time 12(1+ε) e
e−1 -approximation

for any 0 < ε < 1 provided any group has at most kmax ≤ m/2 items.

3 Approximating Special Cases of agap

In this section we consider two special cases of agap: In Section 3.1, we give a randomized
PTAS for instances with fixed number of bins. In Section 3.2 we present an e

e−1 -approximation
for instances where items have the same (unit) size, and all bins have unit capacity.

3.1 LP-Based Approximation Scheme for Fixed Number of Bins

We formulate the following LP relaxation for agap. For every group Gi, let Pi be the collection
of admissible packings of elements of group Gi alone (i.e., p(j) = ⊥ for every packing p ∈ Pi and
element j 6∈ Gi). The relaxation has an indicator variable xi,p for every group Gi and admissible
assignment p ∈ Pi.

(AGAP-LP) max
∑

i∈[n]
∑

p∈Pi

(
xi,p ·

∑
`∈Gi

a`p(`)
)

s.t.
∑

p∈Pi
xi,p ≤ 1 ∀ i ∈ [n] (1)∑

i∈[n]
∑

p∈Pi|∃ `:p(`)=j xi,p · s` ≤ cj ∀ j ∈ [m] (2)

xi,p ≥ 0 ∀ i ∈ [n], p ∈ Pi

Constraint (1) requires every group to have at most one assignment. Constraint (2) guar-
antees that no bin is over-packed. In this section we will be interested in the case where the
number of bins is a constant. Notice that in this case AGAP-LP has a polynomial size, and
thus, can be solved in polynomial time using standard techniques. However, for completeness,
we point out that AGAP-LP can be solved in polynomial time even for non-constant number of
bins.

Lemma 3.1 AGAP-LP can be solved in polynomial time for non-constant number of bins.

Proof: In the following we prove that AGAP-LP can be solved efficiently for non-constant
number of bins. This is done by proving that the dual of AGAP-LP has an efficient separation
oracle. Below is the dual of AGAP-LP.

(Dual) min
∑
i∈[n]

zi +
∑
j∈[m]

cjyj

s.t. zi +
∑

j∈[m]|∃ `∈Gi:p(`)=j

s`yj ≥
∑
`∈Gi

a`p(`) ∀ i ∈ [n], p ∈ Pi

zi ≥ 0 ∀ i ∈ [n]
yj ≥ 0 ∀ j ∈ [m]

11

Given a non-negative solution for the dual LP, it is infeasible if there exists a group i for
which there is an admissible packing p ∈ Pi such that:

zi <
∑
`∈Gi

a`p(`) −
∑

j∈[m]|∃ `∈Gi:p(`)=j

s`yj =
∑
`∈Gi

[a`p(`) − s`yp(`)] . (1)

Given group i, deciding whether there exists an admissible packing p ∈ Pi such that (1)
holds can be reduced to a matching problem in the following way. Construct a bipartite graph
whose left side is the set of elements in Gi, and its right side is the set of bins. For every
element ` ∈ Gi and bin j such that s` ≤ cj , the edge between their corresponding nodes has a
weight of a`j − s`yj . It is clear that any matching M of size |Gi| corresponds to an admissible
packing p of Gi inducing a value equal to the weight of M on the right hand side of (1), and
vice versa. Hence, one can find the admissible packing maximizing the right hand side of (1)
using a “maximum weight matching of size k” algorithm.

The next theorem presents an approximation scheme for constant number of bins. This
scheme draws many ideas from the rounding procedure suggested in [13, 14] for the problem of
maximizing a submodular function subject to a constant number of knapsack constraints.

Theorem 3.2 There is a randomized polynomial time approximation scheme for agap with
fixed number of bins.

The rest of this subsection is devoted to proving Theorem 3.2. Given a group Gi which is
packed by OPT , let p′i denote the packing of the elements of Gi induced by OPT . For two
packings p1 and p2 which pack a disjoint set of elements (i.e., for every ` ∈ [N], either p1(`) = ⊥
or p2(`) = ⊥). Let p1 � p2 denote the union of the two packings. Formally, if p = p1 � p2, then
for every ` ∈ [N]:

p(`) =

p1(`) if p1(`) 6= ⊥
p2(`) if p2(`) 6= ⊥
⊥ otherwise

.

Using the above notation, we present Algorithm 1 for agap. The algorithm gets a single
parameter ε which determines its approximation ratio: the smaller ε, the better the approxi-
mation factor (and the worse the time complexity). Algorithm 1 begins by guessing the set A
of the most valuable groups of OPT and their corresponding assignment in OPT . Then, the
algorithm dismisses all assignments of groups outside of A assigning an element ` to a bin j
such that s` is large in comparison to the remaining capacity rj of j. Finally, the assignment is
completed by a randomized rounding of an AGAP-LP solution.

Lemma 3.3 For a constant ε, Algorithm 1 has a polynomial time complexity.

Proof: It is clear that all parts of the algorithm beside Lines 1 and 2 can be performed in
polynomial time. Let us show that these lines can also be implemented in polynomial time.
Lines 1 and 2 together guess up to ε−4m3 pairs (Gi, p

′
i), where p′i ∈ Pi. Notice that for every

group Gi:

|Pi| ≤
m!

(m− |Gi|)!
≤ m! = O(1) .

12

Algorithm 1 Algorithm for Constant Number of Bins(ε)

1: Guess the collection A of the ε−4m3 most valuable groups of OPT .
2: Guess for every group Gi ∈ A the packing p′i induced by OPT .
3: Remove all groups of A from AGAP-LP.
4: for every bin j ∈ [m] do
5: Set the capacity of bin j in AGAP-LP to rj = cj −

∑
Gi∈A|∃ `∈Gi:p′i(`)=j

s`.
6: end for
7: An assignment p ∈ Pi of a group Gi 6∈ A is large if there exists an element ` ∈ Gi such that
s` ≥ ε3m−2 · rp(`).

8: Remove from AGAP-LP all variables xi,p corresponding to large assignments.
9: Solve the resulting LP, let y be the solution found.

10: Let P =
⊙

Gi∈A p
′
i (i.e., P is the result of applying � to all the packings p′i corresponding

to groups Gi ∈ A).
11: for every group Gi 6∈ A do
12: Randomly select at most one packing p′′i ∈ Pi, where the probability of every packing p′′i

is (1− ε) · yi,p′′i .
13: if some packing p′′i was selected then
14: P = P � p′′i .
15: end if
16: end for
17: if P is an admissible packing then
18: Return P .
19: else
20: Return an empty packing (i.e., a packing assigning all elements to ⊥).
21: end if

Hence, the number of possible pairs is only:∑
i∈[n]

|Pi| = O(n) .

The algorithm guesses only a constant number of pairs, which leaves only a polynomial
number of possible guesses.

Let us now consider the approximation ratio of Algorithm 1. The algorithm dismisses large
assignments of groups which does not belong to A. Let PB be the collection of large assignments
of groups outside of A which agree with OPT . Formally,

PB = {p′i|i 6∈ A and p′i is large} .

The following lemma upper bounds the total revenue of all packings of PB.

Lemma 3.4 The total revenue of the packings in PB is at most ε·OPT . Formally,
∑

p′i∈PB

∑
`∈Gi

a`p′i(`) ≤
ε ·OPT .

Proof: First, let us upper bound |PB|. Since all packings PB agree with OPT , which is an

13

admissible solution, we get for every bin j ∈ [m]:∑
Gi∈A|∃ `∈Gi:p′i(`)=j

s` +
∑

p′i∈PB |∃ `∈Gi:p′i(`)=j

s` ≤ cj .

By definition, the first sum is cj−rj . The second term can be lower bounded by: |PB,j |ε3m−2ri,
where PB,j is the subset of PB containing only packings assigning an element of size over ε3m−2rj
to Bj . Plugging both observations into the previous inequality gives:

|PB,j |ε3m−2rj ≤ rj ⇒ |PB,j | ≤ ε−3m2 .

Since PB,j is a subset of PB for every bin j ∈ [m], the union bound gives:

|PB| ≤
∑
j∈[m]

|PB,j | ≤ ε−3m3 .

Next, we upper bound the total revenue of the packings in PB. The total revenue of all
packings in PA = {p′i|Gi ∈ A} is at most OPT , and therefore, there exists a packing pA ∈ PA
with value of OPT/|A| = ε4m−3 · OPT or less. Each packing pB ∈ PB was not guessed by
Line 2, despite the fact that pB = p′i for some group Gi. Hence, the revenue of pB is either equal
or lower than the revenue of any packing in PA, including pA, i.e., it is at most ε4m−3 ·OPT .

The lemma now follows from multiplying the upper bound on the number of packings in PB
with the last upper bound on the revenue from each such packing.

We can now lower bound the value of the solution y of AGAP-LP that the algorithm
calculates. Let RA denote the total revenue of the packings in {p′i|Gi ∈ A}. Formally,
RA =

∑
Gi∈A

∑
`∈Gi

a`p′i(`).

Corollary 3.5 The solution y of AGAP-LP produced by Line 9 of Algorithm 1 has value of at
least (1− ε)OPT −RA.

Proof: Let us construct a packing OPT ′ inducing a feasible (integral) solution y. We start
with OPT , and remove all elements belonging to a group of A or packed by some packing in
PB. Notice that if OPT ′ packs a group Gi 6∈ A, then it does so with a packing p for which the
variable xi,p is not removed by Algorithm 1. Moreover, the total size of the elements packed by
OPT ′ into bin j is at most:∑

`∈[N]|OPT ′(`)=j

s` ≤
∑

`∈[N]|OPT (`)=j

s` −
∑

p∈PA|∃ `:p(`)=j

s` ≤ cj −
∑

p∈PA|∃ `:p(`)=j

s` = rj .

Thus, OPT ’ induces a feasible solution for the AGAP-LP instance that algorithm solves
on Line 9. The corollary now follows since, by Lemma 3.4, OPT ′ has a revenue of at least
(1− ε)OPT −RA.

Recall that P is a (possibly infeasible) packing constructed by the algorithm. Let RP denote
the total revenue of P . The following corollary lower bounds the expectation of RP .

Corollary 3.6 E[RP] ≥ (1− 2ε)OPT .

14

Proof: Every packing p of a group Gi 6∈ A gets merged into P with probability (1− ε) · yi,p.
By the linearity of the expectation, the expected contribution of these packings to RP is:

∑
Gi 6∈A

∑
p∈Pi

(1− ε) · yi,p ·
∑
`∈Gi

a`p(`)

 = (1− ε) ·
∑
Gi /∈A

∑
p∈Pi

yi,p ·∑
`∈Gi

a`,p(`)

 ,

which is exactly 1 − ε times the value of y. By Corollary 3.5, the value of y is at least (1 −
ε)OPT − RA. Hence, the groups of [n] \ A contribute to RP , in expectation, at least (1 − ε) ·
[(1− ε)OPT −RA] = (1− ε)2OPT − (1− ε)RA ≥ (1− 2ε)OPT −RA.

Notice that the contribution of the groups of A to RP is exactly RA. The lemma now follows
by adding up the expected contributions of both types of groups to RP .

Algorithm 1 outputs either P or an empty packing. The expected value of P was calculated
in Corollary 3.6. To complete the analysis of Algorithm 1 we need to bound the expected
value of P in the cases where the algorithm outputs an empty packing instead of P . Let EA
be the set of elements in the groups of A; formally, EA = ∪Gi∈AGi. Let Qj be the ratio
r−1j ·

∑
`∈[N]\EA|P (`)=j s`, and let Q = maxj∈[m]Qj . Observe that the algorithm outputs P if and

only if Q ≤ 1.

Lemma 3.7 For every bin j ∈ [m] and h ≥ 1, Pr[Qj ≥ h] ≤ εm−2h−2.

Proof: After the initialization P = �Gi∈Ap
′
i, the remaining capacity of bin j is rj . Let Lj

be the total size of the elements of groups outside of A that are added to bin j in P after the
initialization. Formally,

Lj =
∑

i∈[n]|Gi 6∈A

∑
`∈Gi|P (`)=j

s` .

It is enough to upper bound the probability that Lj exceeds hrj . Let Ej be the set of elements
that do not belong to a group of A and have a positive probability to be packed by P into bin j.
For every element ` ∈ Ej , let q` > 0 be the probability of ` to be packed by P into bin j, and let
X` an indicator for the event that ` was indeed packed by P into bin j. We can now rephrase
what we need to prove as Pr[

∑
`∈Ej

s`X` ≥ hrj] ≤ εm−2h−2. Let us state some observations
applying to the elements of Ej .

• The probability of each element of Ej to be packed in bin j is determined by the solution
y of AGAP-LP, hence,

∑
`∈Ej

s`q` ≤ (1− ε)rj .

• Large packings are removed by Algorithm 1, thus, s` ≤ ε3m−2rj for every ` ∈ Ej .

• For every two elements `1, `2 belonging to different groups, X`1 and X`2 are independent.

• For every two elements `1, `2 belonging to a single group, X`1 and X`2 are mutually exclu-
sive (i.e., X`1 ·X`2 = 0).

The first observation implies that the expected value of the sum
∑

`∈Ej
s`X` is at most (1−ε)rj .

15

Let us use the other three observations to lower bound the variance of this sum.

V

∑
`∈Ej

s`X`

 =
∑
i∈[n]

V

 ∑
`∈Gi∩Ej

s`X`

 ≤∑
i∈[n]

E

 ∑
`∈Gi∩Ej

s`X`

2
=
∑
i∈[n]

E

 ∑
`∈Gi∩Ej

s2`X`

 =
∑
`∈Ej

s2`q` ≤ max
`∈Ej

s` ·
∑
`∈E

s`q`

≤ [ε3m−2rj] · rj = ε3m−2r2j .

We are now ready to bound Pr[
∑

`∈Ej
s`X` > hri] using Chebyshev’s inequality.

Pr

∑
`∈Ej

s`X` > hrj

 ≤ Pr

∣∣∣∣∣∣
∑
`∈Ej

s`X` − E

[∑
`∈E

s`X`

]∣∣∣∣∣∣ > hεrj

 ≤ ε3m−2r2j
(hεrj)2

= εm−2h−2 .

Corollary 3.8 For every h ≥ 1, Pr[Q ≥ h] ≤ εm−1h−2.

Proof: Follows from Lemma 3.7 and the union bound.

Lemma 3.9 If Q ≤ h for some h > 1, then RP ≤ 4mh ·OPT .

Proof: P can be partitioned into 2mh admissible packings in the following manner. We order
the groups packed by P arbitrarily. The maximum prefix of groups that forms an admissible
packing becomes the first packing in the partition. We then remove from P the groups of this
prefix and repeat till P becomes empty. Notice that if some prefix cannot be extended due to
the capacity constraint of bin j, then one of following two conditions must hold:

• The elements packed by the prefix into bin j have total size of at least 0.5cj .

• The next group in the order has an element of size at least 0.5cj which is assigned by P
to bin j.

Hence, each time two prefixes are removed, the total size of the elements packed into some bin
j must decrease by at least 0.5cj . Since the total size of the elements packed into bin j by P is
at most hcj , the above procedure cannot be repeated more than 4mh times.

We are now ready to prove Theorem 3.2.
Proof: [Proof of Theorem 3.2] The expected revenue of Algorithm 1 is E[RP |Q ≤ 1]. Let us
lower bound this quantity as following:

E[RP |Q ≤ 1] =
E[RP]−

∑∞
h=1 Pr[2h−1 < Q ≤ 2h] · E[RP |2h−1 < Q ≤ 2h]

Pr[Q ≤ 1]
(2)

≥ E[RP]−
∞∑
h=1

Pr[2h−1 < Q ≤ 2h] · E[RP |2h−1 < Q ≤ 2h] .

16

By Corollary 3.6, E[RP] ≥ (1− 2ε)OPT . By Corollary 3.8, Pr[2h−1 < Q ≤ 2h] ≤ Pr[2h−1 ≤
Q] ≤ εm−122−2h. Finally, by Lemma 3.9, E[RP |2h−1 < Q ≤ 2h] ≤ 4m · 2h · OPT . Combining
all these observations into (2) gives:

E[RP |Q ≤ 1] ≥ (1− 2ε)OPT −
∞∑
h=1

(εm−122−2h) · (4m · 2h ·OPT)

= (1− 2ε)OPT − 16ε ·OPT ·
∞∑
h=1

2−h = (1− 18ε)OPT .

3.2 Approximation Algorithm for Unit Size Items

We now discuss a special case of agap in which all items have unit sizes, and all bins have unit
capacity. For such instances we obtain the best possible approximation ratio.

Theorem 3.10 agap with unit item sizes and unit bin capacities admits an e
e−1 -approximation.

Proof: We show that agap with unit item sizes can be cast as a special case of maximizing
a submodular function subject to a knapsack constraint. Let G = {G1, . . . , Gp} be a collection
of groups. Given S ⊆ G, define

f(S) = {maximum profit from packing items d ∈ S subject to bin capacities}.

It is easy to verify that f is monotone and submodular. Thus, agap with unit sized items can
be formulated as follows.

max
S∈G

f(S)

subject to :
∑
i∈S

ki ≤ m

Using a result of [26], we get an (e/(e− 1))-approximation for the problem.

4 The All-or-Nothing Group Packing Problem

Consider the special case of agap where each group Gi has a utility Pi > 0 if all of its items
are packed, and 0 otherwise. Alternatively, the utility of each item ` ∈ Gi, when packed in bin
j ∈ [m], is a`j = Pi

ki
. Let Si =

∑
`∈Gi

s` be the total size of Gi, 1 ≤ i ≤ n. We assume throughout
the discussion that kmax ≤ m/2.

We give below a (3 + ε)-approximation algorithm for the problem. Our bound (in Theorem
4.1), is given as f(α), where α = kmax

m . As α becomes small, the bound gets close to 2.

Algorithm 2 GroupPack

1: Run an FPTAS for Knapsack to find a subset of groups of maximum total utility, U1, whose
size is at most m

2 .
2: Let U2 be the total utility of the γ = b 1αc most profitable groups.
3: Output the solution of utility max{U1, U2}.

17

Theorem 4.1 Algorithm GroupPack yields a (2(γ+1)
γ +ε)-approximation for all-or-nothing group

packing, with uniform bin capacities and groups of cardinalities at most kmax ≤ m/2.

We use in the proof the next lemmas.

Lemma 4.2 For any kmax ≥ 1, any subset of groups of total size W > 0 can be packed in at
most max{2W,W + kmax} unit-sized bins.

Proof: Given a set of groups G1, . . . , Gt of total size W , consider the following balanced
coloring of the groups. We color the items of G1 in arbitrary order, using at most kmax colors
(so that each item receives a distinct color). Now, sort the items in G2 in non-increasing order
by size. Scanning the sorted list, we add the next item in G2 to the color class of minimum total
size. Similarly, we add to the color classes the items in G3, . . . , Gt. Let Wi denote the total size
of color class i, where 1 ≤ i ≤ kmax. We note that, for any two color classes i, j, it holds that
|Wi −Wj | ≤ 1. Clearly, we can pack any color class 1 ≤ i ≤ kmax, whose total size is Wi > 1, in
at most 2Wi unit sized bins (using FirstFit).

Now, to complete the proof, we distinguish between two cases for the sizes of the color classes.

(i) If for all i ≥ 1, Wi ≥ 1
2 , then either we can pack color class i in a single bin (if Wi ≤ 1),

or, we can pack it in at most 2Wi unit sized bins. Since W =
∑

iWi, it follows that, in
this case we can pack each color class in a separate set of bins, using at most 2W bins.

(ii) If there exists a color class i of total size Wi <
1
2 , then since we use a balanced coloring,

for any color class j ≥ 1, it holds that Wj ≤ 3
2 . Let c1 denote the number of color

classes i of total size Wi < 1, then for each of these color classes we can use a single bin.
Let c2 be the number of color classes i whose total size is Wi ∈ (1, 32]. For these color
classes we use at most 2c2 bins. Overall, we can pack all the color classes in at most
c1 + 2c2 = (c1 + c2) + c2 ≤ kmax +W bins.

Lemma 4.3 Given an input for all-or-nothing group packing, with α ∈ (0, 1/2], let c > 1 be
some constant. Then one of the following holds. (i) There exist γ groups whose total utility is
at least OPT

c , or (ii) There exists a set of groups of total utility in [OPT (12 −
1
γc),

OPT
2), whose

total size is at most m
2 .

Proof: Assume that (i) does not hold, then we show that (ii) holds. Consider the set of
groups in the instance. Sort these groups in non-increasing order of their utilities. Let L denote
the sorted list. We now partition L into sub-lists. Scanning the list L from the first group, we
close the first sub-list, L1, when the total utility of the groups in this sub-list exceeds for the
first time OPT (12 −

1
γc). Similarly, we define the sub-lists L2, L3,

For r ≥ 1, consider the last group, Gr`, added to Lr. Then, before Gr` was added, the total
utility of the groups in Lr was smaller than OPT (12 −

1
γc). Assume, by way of contradiction,

that after we add Gr` the total utility is at least OPT
2 ; then, the total utility of Gr` is at least

OPT
γc . Since (i) does not hold, and c ≥ 2, Lr consists of at least γ groups. Recall that the groups

in Lr are added in non-increasing order by utilities. Consider the first γ groups in Lr, then each
of this groups has total utility OPT

γc or larger. Contradiction.

Hence, the total utility of each sub-list is in [OPT (12 −
1
γc),

OPT
2). Therefore, there are at

least 2 sub-lists. It follows, that there exists a sub-list whose total size is at most m
2 .

18

Proof of Theorem 4.1: We first note that the selected groups can be feasibly packed. Indeed,
if we select the groups in Step 2, then we can pack each group Gi in a separate set of at most
αm = kmax bins, assigning a single item to each bin. Otherwise, we select the set of groups
output by the FPTAS, in Step 1. By Lemma 4.2, we can pack these groups, whose total size is
at most m

2 , in at most m bins.
For the approximation ratio, let OPT denote the total utility of an optimal solution, and

c > 1 some constant (to be determined). By Lemma 4.3, there exists a subset of groups of total
utility at least min{OPTc , OPT (12 −

1
γc)}. Such a subset is output by the algorithm. Indeed,

GroupPack either find (in Step 1) a subset satisfying condition (ii) of the lemma, or (in Step 2)

a subset satisfying condition (i). The approximation ratio is obtained by taking c = 2(γ+1)
γ .

We note that when all groups are small, i.e., Si ≤ εm, for some ε > 0, we can slightly modify
the analysis of GroupPack to obtain the following.

Corollary 4.4 If Si ≤ εm for some ε > 0, for all 1 ≤ i ≤ n, then GroupPack is a (2 + ε)-
approximation algorithm, for any kmax ≤ m

2 .

5 Approximation Schemes for Subclasses of aap

In this section we give approximation schemes for two subclasses of the all-or-nothing assignment
problem which are of practical interest.

Recall that in aap, the items form n groups, where group Gi, for i ∈ [n], consists of ki items,
each of size si and utility ai, independent of the bin to which the item is assigned. Denote by
P (Gi) the group utility of group Gi, i.e., P (Gi) = ki · ai, which is the utility obtained from
packing Gi. For a set of groups S, let P (S) be

∑
G∈S P (G). Let Pmax = maxi∈[n] P (Gi). Our

approximation schemes consist of a preprocessing step, in which item utilities are scaled and
rounded; then, the set of groups to be assigned is selected and ordered, and finally packed
greedily. The group selection and ordering step is implemented differently, depending on our
assumptions on the instance. We show how to implement this step for instances with unit-size
items, and for instances where the item sizes form a divisible sequence, and the number of
different group cardinalities is a fixed constant.

Algorithm 3 Overview of the PTAS

1: Guess the approximate overall utility O, such that max{Pmax, (1− ε)OPT} ≤ O ≤ OPT .
2: Discard all groups i for which P (Gi) ≤ εO/n.
3: Scale all group utilities by ε/n · O, such that after scaling P (Gi) ∈ [1, n/ε], for i ∈ [n].
4: Round down P (Gi) to the nearest power of (1 + ε), for all i ∈ [n].
5: Partition the groups into h ≤ (α/ε) lnn distinct sets S1, . . . , Sh, for some constant α, such

that each set consists of groups with identical scaled and rounded group utility.
6: Guess the approximate (scaled and rounded) overall utility from each utility category Sq in

some optimal solution U . Specifically, guess a tuple (w1, . . . , wh) such that wq ∈ [h/ε2], and
wq(εn/h) ≤ P (U ∩ Sq) ≤ (wq + 1)(εn/h).

7: Select the groups to be packed and order them (depending on the instance).
8: Pack the selected groups greedily using the sorted list.

Whenever ‘guessing’ is used, the algorithm actually performs a search over a polynomial-size
range, similar to the PTAS for MKP [5]. First, we guess the approximate value O of some

19

optimal solution. Since Pmax ≤ O ≤ n · Pmax, the guessing of O can be done using a binary
search over the values in {Pmax · (1 + ε)`|` ∈ [(1/ε) lnn]}. In the other guessing step (line 6),
we guess the approximate utility from each utility category in some optimal solution, while
ignoring those categories that contribute less than εn/h to the scaled and rounded utility, as
the total contribution of these sets is negligible. Since the total utility is ≤ n/ε, and since we
ignore groups of negligible size,

∑
q wq ≤

⌈
h/ε2

⌉
. The number of h-tuples (w1, . . . , wh), such that

wq ∈ [0, h/ε2] and
∑

q wq ≤
⌈
h/ε2

⌉
, is O(nO(1/ε3)) (follows from Stirling’s approximation, see also

Claims 2.4 and 2.5 in [5]). We get that the overall guessing process requires O(lnn) ·O(nO(1/ε3))
time.

We claim that the revenue loss due to the instance transformation is bounded by a factor
of O(ε). Discarding groups of utility P (Gi) ≤ εO/n (line 2) may cause a loss of at most
n · εO/n = O(ε)OPT . Rounding down the group utilities (as well as the value of O), to the
nearest power of (1 + ε) may cause a loss of at most factor of ε/(1 + ε). Finally, guessing the
h-tuple may cause a loss of at most εn to the scaled and rounded solution.

Let Gπ(1), . . . , Gπ(`) be the ordered set of groups selected in line 7 of Algorithm 3. We
describe the greedy algorithm used to pack these groups. Denote by (γi1, . . . , γ

i
m) the remaining

capacity of the bins before packing the items of group Gπ(i). Initially, for all bins j ∈ [m],
γ1j = cj . For i ∈ [`], the kπ(i) elements of Gπ(i) are assigned to the kπ(i) bins with the highest γij
values. Ties are broken arbitrarily. Afterwards, γi+1

j are updated for all these bins.
Below, we consider two subclasses of inputs for aap, for which we show how to define the

sets S1, . . . , Sh and select the groups in line 7. We then prove that Algorithm 3 is guaranteed
to succeed, yielding an (1 +O(ε)) approximation.

Instances with Unit-Size Items: Suppose that si = 1 for all i ∈ [n]. For q ∈ [h] let Sq be the
set of all groups for which the scaled and rounded group utility is (1+ε)q. Since the value of the

scaled solution is in [1, n/ε], we have h ≤
⌈
log(1+ε) n/ε

⌉
≤
⌈
(lnn/ε) · (log(1+ε) e)

⌉
≤ (1/ε) lnn/ε.

For a choice of w1, . . . , wh, for each Sq satisfying wq > 0, q ∈ [h], consider the groups in
Sq in a nondecreasing order of their cardinality and add groups to the chosen subset S′q one

by one, until P (S′q) ≥ wq(εn/h) for the first time. Order the resulting chosen set ∪hq=1S
′
q in a

nondecreasing order of group cardinality.

Theorem 5.1 Given an instance of aap with unit size items, Algorithm 3 with the defined
selection and ordering is guaranteed to succeed, yielding a feasible packing of utility at least
(1−O(ε))OPT .

Proof: It suffices to show that there are guesses in lines 1 and 6 for which the algo-
rithm produces a feasible packing of the desired utility. Consider the guess of O for which
max{Pmax, (1− ε)OPT} ≤ O ≤ OPT . Let U be an optimal solution, and let P (U ∩ Sq) be the
scaled and rounded overall utility of the groups in U∩Sq. Set w∗q = bh·P (U∩Sq)/(εn)c. Consider
the guess w∗1, . . . , w

∗
h in line 6. Suppose that |U ∩ Sq| = z, and let G∗1q , . . . , G

∗z
q be the groups in

U ∩ Sq ordered in nondecreasing order of their cardinality. Since all groups in Sq have the same
(scaled and rounded) utility, and since the algorithm chooses the smallest number of groups
whose total utility is at least w∗qεn/h, the algorithm chooses z′ ≤ z groups. Let G1

i , . . . , G
z′
i

be the groups in S′i ordered in nondecreasing order of their cardinality. Since the algorithm

chooses the smallest cardinality groups, it follows that, for j ∈ [z′], |Gjq| ≤ |G∗jq |. Thus, we can
swap the groups G∗1q . . . G∗z

′
q by the groups G1

q , . . . , G
z′
q and omit the groups G∗z

′+1
q . . . G∗zq from

20

the solution U without affecting its feasibility. We conclude that ∪q∈[h]S′q is a feasible solution.
Clearly, the (original unscaled) utility of this solution is (1−O(ε))OPT .

We need to show that the greedy procedure yields a feasible packing of ∪q∈[h]S′q. Let ` =
| ∪q∈[h] S′q|, and let Gπ(1), . . . , Gπ(`) be the groups in ∪q∈[h]S′q ordered by their cardinality. We
claim that the assignment by the greedy procedure is feasible.

Consider a feasible assignment of the groups in ∪q∈[h]S′q. (The existence of such an assignment
is proved above.) Assume that t is the smallest index such that the feasible solution assigns
items from Gπ(t) differently than the greedy procedure. Specifically, there are two bins j and
j′ such that γtj > γtj′ , and the feasible solution assigns an item x from Gπ(t) to bin j′, while it
does not assign any item from Gπ(t) to bin j. We show that it is possible to reassign x from bin
j′ to bin j without violating the feasibility of the solution. If bin j is not full then item x can
simply be moved to bin j. Otherwise, let Bj be the set of items assigned to bin j in the feasible
solution that do not belong to groups Gπ(1), . . . , Gπ(t−1), and define Bj′ similarly. Since bin j
is full, and the items are of unit size, |Bj | = γtj > |Bj′ |. Thus, Bj must contain an item y from
some group G, such that no items from G are in Bj′ . Clearly, swapping items x and y maintains
the feasibility of the solution. We continue in the same manner until the feasible solution is the
one produced by the greedy procedure.

Instances with a Constant Number of Group Cardinalities and Item Sizes that Form
a Divisible Sequence: Recall that a sequence d1 < d2 < · · · < dD is divisible if di−1 divides
di for all 1 < i ≤ D. Consider instances in which the different item sizes {si} form a divisible
sequence, and D, the number of different size values, may be arbitrary. This type of instance
arises in our applications, as mentioned in Section 1.1. In addition, assume that there is a
constant number of different group cardinalities, i.e., the cardinality values are k(1), . . . , k(r),
for some constant r.

Let h = r · h′ (for h′ to be bounded below). For j ∈ [r] and i ∈ [h′] define S(j−1)·h′+i to be
the set of all groups of cardinality k(j) for which the scaled and rounded group utility is (1+ε)i.

Since the value of the scaled solution is in [1, n/ε], we have h ≤ r
⌈
log(1+ε) n/ε

⌉
≤ (r/ε) lnn/ε.

For convenience we use from now on a double index to refer to sets, where Sj,i (and wj,i) refers
to S(j−1)·h′+i (w(j−1)·h′+i, respectively).

For a guess of w1,1, . . . , wr,h′ , for each Sj,i for which wj,i > 0, j ∈ [r] and i ∈ [h′], consider the
groups in Sj,i in a nondecreasing order of their item size, and add groups to the chosen subset
S′j,i one by one until P (S′j,i) ≥ wj,i(εn/h) for the first time. Order the resulting set of groups
∪j∈[r],i∈[h′]S′j,i in a nonincreasing order of their item size.

Theorem 5.2 Given an instance of aap with a constant number of group cardinalities and
item sizes that form a divisible sequence, Algorithm 3 with the defined selection and ordering is
guaranteed to succeed, yielding a feasible packing of utility at least (1−O(ε))OPT .

Proof: It suffices to show that there are guesses in lines 1 and 6 for which the algo-
rithm produces a feasible packing of the desired utility. Consider the guess of O for which
max{Pmax, (1 − ε)OPT} ≤ O ≤ OPT . Let U be an optimal solution, and let P (U ∩ Sj,i) be
the scaled and rounded overall utility of the groups in U ∩ Sj,i. Set w∗j,i = bh · P (U ∩ Si)/(εn)c.
Consider the guess w∗1,1, . . . , w

∗
r,h′ in line 6.

Suppose that |U∩Sj,i| = z, and let Let G∗1j,i, . . . , G
∗z
j,i be the groups in U∩Sj,i in nondecreasing

order by their item size. Since all groups in Sj,i have the same (scaled and rounded) utility, and
since the algorithm chooses the smallest number of groups whose total utility is at least w∗j,iεn/h,

21

the algorithm chooses z′ ≤ z groups. Let G1
j,i, . . . , G

z′
j,i be the groups in S′j,i in nondecreasing

order by their item size. Recall that the cardinality of all sets in Sj,i is k(j). Since the algorithm
chooses the groups with the smallest item size, it follows that, for ` ∈ [z′], s`j,i ≤ s∗`j,i. Thus, we

can swap the groups G∗1j,i . . . G
∗z′
j,i by the groups G1

j,i, . . . , G
z′
j,i and omit the groups G∗z

′+1
j,i . . . G∗zj,i

from the solution U without affecting its feasibility. We conclude that ∪j∈[r],i∈[h′]S′j,i is a feasible
solution. Clearly, the (original unscaled) utility of this solution is (1−O(ε))OPT .

We need to show that the greedy procedure yields a feasible packing of ∪j∈[r],i∈[h′]S′j,i. Let ` =
|∪j∈[r],i∈[h′]S′j,i|, and let Gπ(1), . . . , Gπ(`) be the groups in ∪j∈[r],i∈[h′]S′j,i ordered in nonincreasing
order of their item size. We claim that the assignment by the greedy procedure is feasible.

Consider a feasible assignment of the groups in ∪j∈[r],i∈[h′]S′j,i. Assume that t is the smallest
index such that the feasible solution assigns items from Gπ(t) differently than the greedy pro-
cedure. Specifically, there are two bins j and j′, such that γtj > γtj′ and the feasible solution
assigns an item x from Gπ(t) to bin j′, while it does not assign any item from Gπ(t) to bin j.
We show that it is possible to reassign x from bin j′ without violating the feasibility of the
solution. If bin j has enough free capacity to include x, we simply move x from bin j′ to bin
j. By our assumption, bin j was not assigned any item from group t earlier; therefore, this
reassignment does not violate the condition that each bin is assigned at most one item from
each group. Otherwise, let Bj be the set of items assigned to bin j in the feasible solution that
do not belong to groups Gπ(1), . . . , Gπ(t−1), and define Bj′ similarly. If the total size of the items
in Bj is no larger than the total size of the items in Bj′ then swap the items in Bj and Bj′ .
Note that, since γij ≥ γij′ , both bins are still packed within capacity, and no bin is assigned two
items from the same group. Suppose that the total size of the items in Bj is larger than the
total size of the items in Bj′ . Consider the subset B′j ⊆ Bj of items in Bj that belong to groups
that are not assigned to bin j′. Since bin j′ contains an item from Gπ(t), and bin j has no such
item, the size of B′j is at least sπ(t). Also, since the groups are sorted in nonincreasing order of
item size, the size of every item in B′j is no more than sπ(t). Since the item sizes form a divisible
sequence, we can find a subset B′′j ⊆ B′j of items whose total size is exactly sπ(t). This can be
done simply by adding the items in B′j to B′′j in nonincreasing order by size, until their total
size is sπ(t). Note that the fact that the item sizes form a divisible sequence implies that after
we add an item of size s to B′′j , s divides the difference between sπ(t) and the (current) total size
of B′′j . This implies that at some point the total size of B′′j must be exactly sπ(t). Now, swap
the items in B′′j assigned to bin j with x in bin j′. This swap maintains feasibility. We continue
in the same manner, until the feasible assignment is identical with the greedy one.

References

[1] R. Adany, S. Kraus, and F. Ordonez. Allocation algorithms for personal tv advertisements.
Multimedia Systems, 19:79–93, 2013.

[2] A. Ageev and M. Sviridenko. Pipage rounding: A new method of constructing algorithms
with proven performance guarantee. Journal Combinatorial Optimization, 8(3):307–328,
2004.

[3] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a submodular set function
subject to a matroid constraint. SIAM J. on Computing, 40(6), 2011.

22

[4] C. Chekuri and S. Khanna. On multi-dimensional packing problems. SIAM J. on Comput-
ing, 33(4):837–851, 2004.

[5] C. Chekuri and S. Khanna. A PTAS for the multiple knapsack problem. SIAM J. on
Computing, 35(3):713–728, 2006.

[6] V. Dureau. Addressable advertising on digital television. In Proceedings of the 2nd European
conference on interactive television: enhancing the experience, Brighton, UK, March–April
2004.

[7] U. Feige. A threshold of ln n for approximating set cover. J.of ACM, 45(4):634–652, 1998.

[8] U. Feige and J. Vondrák. Approximation algorithms for allocation problems: Improving
the factor of 1-1/e. In FOCS, pages 667–676, 2006.

[9] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko. Tight approximation
algorithms for maximum separable assignment problems. Math. Oper. Res., 36(3):416–431,
2011.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the Theory of
NP-Completeness. W.H. Freeman, New York, January 1979.

[11] Google AdWords. http://adwords.google.com.

[12] E. M. Kim and S. S. Wildman. A deeper look at the economics of advertiser support for
television: the implications of consumption-differentiated viewers and ad addressability. J.
of Media Economics, 19:55–79, 2006.

[13] A. Kulik, H. Shachnai, and T. Tamir. Maximizing submodular set functions subject to
multiple linear constraints. In SODA, pages 545–554, 2009.

[14] A. Kulik, H. Shachnai, and T. Tamir. Maximizing submodular set functions subject to
multiple linear constraints. Mathematics of Operations Research, 38(4):729–739, 2013.

[15] O. E. Kundakcioglu and S. Alizamir. Generalized assignment problem. In C. A. Floudas and
P. M. Pardalos, editors, Encyclopedia of Optimization, pages 1153–1162. Springer, 2009.

[16] S. Martello and P. Toth. Knapsack problems: algorithms and computer implementations.
1990.

[17] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing
submodular set functions. Math. Programming, 14:265–294, 1978.

[18] Nielsen Media Research. Advertising fact sheet. blog.nielsen.com, September 2010.

[19] Nielsen Media Research. The cross-platform report, quarter 1, 2012 – US. blog.nielsen.com,
May 2012.

[20] Nielsen Media Research. Nielsen’s quarterly global adview pulse report. blog.nielsen.com,
April 2012.

[21] Z. Nutov, I. Beniaminy, and R. Yuster. A (1-1/e)-approximation algorithm for the gener-
alized assignment problem. Operations Research Letters, 34(3):283–288, 2006.

23

[22] J. Park, B. Lim, and Y. Lee. A Lagrangian dual-based branch-and-bound algorithm for the
generalized multi-assignment problem. Management Science, 44:271–282, 1998.

[23] K. Pramataris, D. Papakyriakopoulos, G. Lekakos, and N. Mulonopoulos. Personalized
Interactive TV Advertising: The iMEDIA Business Model. Electronic Markets, 11:1–9,
2001.

[24] D. Shmoys and É. Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical Programming, 62(1):461–474, 1993.

[25] SintecMedia - On Air. http://www.sintecmedia.com/OnAir.html.

[26] M. Sviridenko. A note on maximizing a submodular set function subject to knapsack
constraint. Operations Research Letters, 32:41–43, 2004.

[27] The Interactive Advertising Bureau (IAB). http://iab.net.

[28] C. Young. Why TV spot length matters. Admap, (497):45–48, September 2008.

A Hardness Results

In this section we analyze the hardness of several restricted instances of agap. First, note
that aap with unit-utilities, unit-group size, and no assignment restrictions yields an instance
of MKP, that is known to be strongly NP-hard [16]. The presence of assignment restrictions
makes the aap problem with unit-size, unit-utility and uniform-cardinality, APX-hard, as shown
in [21] for multiple knapsack with assignment restrictions.

The rest of our hardness results refer to restricted and natural instances of agap. We first
show that agap is APX-hard already for very restricted instances.

Theorem A.1 Unless P = NP , agap cannot be approximated within factor strictly better than
e/(e − 1), even if all items have unit sizes, all bins have unit capacities, and the utility from
packing an item ` in bin j is a`j ∈ {0, 1}.

Proof: We give a reduction from the maximum coverage problem and then apply Feige’s
celebrated result [7] on the approximation threshold of maximum coverage. Given an instance
of maximum coverage, let U be the ground set of elements, and let S1, . . . , Sn ⊆ U be a collection
of subsets of elements in U . We need to select k subsets Si1, . . . , Sik such that the number of
elements covered by ∪kr=1Sir is maximized.

We use the following reduction. Let m = max{|U |/k, |S1|, . . . , |Sn|}. Define a bin of unit
capacity for each element j ∈ U . If mk > |U | define mk − |U | additional “dummy” bins of unit
capacity. Also, define a group of items, i, for each subset Si, 1 ≤ i ≤ n. The size of group i is
m and it contains an item for each element of Si and if m > |Si|, m− |Si| additional “dummy”
items. Consider an item ` in group i. If it is a “dummy” item then the utility of assigning it
to any bin is 0. Otherwise, suppose that item ` corresponds to element j ∈ Si. In this case the
utility of assigning item ` to bin j is 1 and the utility of assigning it to any other bin (including
the “dummy” bins) is 0.

Since the size of each group is m and we have exactly mk bins any k groups (or less) can
be packed feasibly. Since the utility of each group is positive we can assume that the optimal
solution packs k groups. Consider any k subsets Sπ1, . . . Sπk and the corresponding groups

24

π1, . . . , πk. To complete the proof we show in the next claim that the maximum utility that
can be obtained by packing groups π1, . . . , πk is the maximum coverage of the k subsets, i.e.,
| ∪kr=1 Sπr|.

Claim A.1 The maximum utility from packing groups π1, . . . πk is | ∪kr=1 Sπr|.

Proof: Clearly, the maximum profit from π1, . . . πk is at most | ∪kr=1 Sπr|, since we can get
utility at most 1 for any item in ∪kr=1Sπr.

To achieve this utility we assign the items in group π1 that correspond to elements of Sπ1 to
the bins corresponding to these items and thus achieve utility 1 for each such item, We proceed
in the same way with the items in group π2 that correspond to elements of Sπ2 \ Sπ1, and the
with the items in group π3 that correspond to elements of Sπ3 \ {Sπ1 ∪Sπ2}, and so on. Finally,
we assign the rest of the items in these groups arbitrarily to empty bins.

By Claim A.1, there is a solution for maximum coverage which covers w elements iff there is
a collection of groups in the agap instance whose packing yields utility w. Thus, the hardness
of approximation of maximum coverage implies the hardness of approximation of our problem.

Consider now a variant of agap in which we allow items of the same group to share a bin.

Theorem A.2 If several items of the same group can be packed in the same bin, then agap
cannot be approximated within any bounded factor, already in the case of a single group, two
unit size bins and item utility that does not depend on a bin, unless P = NP .

Proof: We show a straightforward reduction from PARTITION [10]. Given an instance
a1, ..., an of PARTITION, one can generate an instance for agap with no assignment restrictions
on items of the same group such that any bounded approximation to the agap variant implies
a solution to the PARTITION instance. Consider an agap instance where there are only two
unit size bins and one group G that contains n items of sizes si = 2ai∑n

j=1 aj
. Define the utility of

each item to be 1/n independent of the bin to which it is assigned. Note that we can pack G
iff there is partition of {ai} into two sets of the same size. In this case, we get a total utility
of 1; otherwise, the utility is 0. Any polynomial time approximation algorithm for agap would
enable us to distinguish between the two cases, thus solving PARTITION in polynomial time.

Consider now agap instances in which some bins are forbidden for some of the items (with no
restriction on the maximum number of forbidden bins for an item). We show that the problem
cannot be approximated within a polynomial in the minimum size of a group, even if the utility
of the item is independent of the bin in which it is packed.

Theorem A.3 Unless NP = ZPP , agap with forbidden bins cannot be approximated within
a polynomial in the minimum size of a group, even if the utility of each item is uniform across
all bins and the bins are unit size.

Proof: By reduction from packing integer program (PIP) defined as follows. Given A ∈
{0, 1}m×n, b ∈ Nm and p ∈ [0, 1]n a PIP seeks to maximize pTx subject to x ∈ {0, 1}n and
Ax ≤ b. Chekuri and Khanna [4] proved that PIP cannot be approximated within a factor of
Ω(m1/(B+1)−ε), for any fixed integer B, unless NP = ZPP .

We show how to solve an instance of PIP via a reduction to agap with forbidden bins, where
all the bins are of unit size. Define the groups G1, ..., Gn, where Gj consists of the items ai,j ,
for i ∈ [m]. Each item ai,j can be only in bin i (all the other bins are forbidden for ai,j). The

25

size of ai,j is Ai,j/bi (which might be 0). Let the utility of an item of Gj be pj/m. We note
that each group can be packed in a unique way, therefore a feasible solution is determined only
by the set S ⊆ [n] of the groups that are packed feasibly. One can easily verify that a set S is
a feasible solution of this agap instance iff x, its indicator vector, is a feasible solution for the
PIP instance and the total utility of the solution is pTx.

Thus, the hardness of approximation of PIP implies the hardness of approximation of this
variant of agap. Since the number of packing constraints translates to the size of the groups, m,
we get that the it is hard to approximate this variant of agap within a factor of Ω(m1/(B+1)−ε),
for any fixed integer B.

Consider now a generalization of agap in which item utilities may be negative. We note
that this version of agap is harder than agap with forbidden bins. Indeed, we can simulate a
forbidden bin for an item by setting the item utility in this bin to be infinitely negative. Thus,
we have the following.

Corollary A.4 Unless NP = ZPP , agap with negative utilities cannot be approximated within
a polynomial in the minimum size of a group, even if all bins are of unit size.

We now turn to agap instances with arbitrary bin capacities.

Theorem A.5 Unless NP = ZPP , agap with arbitrary bin capacities cannot be approximated
within a polynomial in the minimum size of a group, even if the utility of each item is uniform
across all bins.

Proof: As in the proof of Theorem A.3 we use a reduction from PIP. Given an instance
A ∈ {0, 1}m×n, b ∈ Nm and p ∈ [0, 1]n, we construct the following agap instance. Each bin
i ∈ [m] has capacity 1

(3n)i−1
∏i−1

k=1(bk+
1
2)

. The groups are G1, ..., Gn, where Gj consists of the items

ai,j , for i ∈ [m], each of utility pj/m. Let the size of an item ai,j be si,j =
Ai,j+

1
2n

(3n)i−1
∏i

k=1(bk+
1
2
)
.

We claim that si,j is greater than the capacity of bin `, for any ` > i. To see this consider
such a bin ` and compute the ratio of s(i, j) to the capacity of bin `. To lower bound this ratio
assume Ai,j = 0 and ` = i+ 1, we get that the ratio is at least 3n

2n > 1. Hence, item ai,j can be
packed only in bin i: it cannot be packed into bin ` for ` > i, since it is too small, and it cannot
be packed into bin `, for ` < i, as this bin must be occupied by item a`,j . Let S ⊆ [n] be a set
of groups. S is a feasible solution iff for every bin i,

∑
j∈S si,j is at most the capacity of bin i.

This condition is equivalent to
∑

j∈S(Ai,j + 1
2n) ≤ bj + 1

2 . Let x be the indicator vector of S.
Because Ai,j ∈ {0, 1} and |S| ≤ n, S is a feasible solution iff, for all i,

∑n
j=1Ai,jxj ≤ bi, i.e. x is

a feasible solution of the PIP instance. Note that the objective function of both problems is pTx.
It follows that the hardness of approximation of PIP implies the hardness of approximation of
this variant of agap.

26

