
Non-Preemptive Buffer Management for Latency Sensitive Packets

Moran Feldman∗ Joseph (Seffi) Naor†

July 5, 2017

Abstract

The delivery of latency sensitive packets is a crucial issue in real time applications of com-
munication networks. Such packets often have a firm deadline and a packet becomes useless if
it arrives after its deadline. The deadline, however, applies only to the packet’s journey through
the entire network; individual routers along the packet’s route face a more flexible deadline.

We consider policies for admitting latency sensitive packets at a router. Each packet is tagged
with a value. A packet waiting at a router loses value over time as its probability of arriving
at its destination on time decreases. The router is modeled as a non-preemptive queue, and
its objective is to maximize the total value of the forwarded packets. When a router receives
a packet, it must either accept it (and delay future packets), or reject it immediately. The
best policy depends on the set of values that a packet can take. We consider three natural
sets: an unrestricted model, a real-valued model, where any value over 1 is allowed, and an
integral-valued model.

We obtain the following results. For the unrestricted model, we prove that there is no
constant competitive ratio algorithm. For the real valued model, we provide a randomized
4-competitive algorithm and a matching lower bound (up to low order terms). We also give
a deterministic lower bound of φ3 − ε ≈ 4.236, almost matching the previously known 4.24-
competitive algorithm. For the integral-valued model, we show a deterministic 4-competitive
algorithm, and prove that this is tight even for randomized algorithms (up to low order terms).

1 Introduction

A router in a communication network receives, buffers, and transmits packets. Given that the
router has only bounded output capacity (and in some architectures also bounded capacity for
transferring packets between its components), the router has to decide which packets to transmit
now and which ones to keep buffered, hoping to transmit them later. Commonly studied router
policies usually make the assumption that either packets are indifferent to delays, or each packet
has a firm deadline such that the packet must be forwarded before the deadline (or else it is
deemed worthless). The first option corresponds to data packets, which are not very sensitive to
reasonable delays. In the presence of data packets, throughput is the main parameter by which
a router policy is measured. The second option corresponds to real-time applications, e.g., movie
streaming, where a packet arriving too late often becomes useless, making delay a significant issue
for such applications.

In both settings the problem faced by a router can be modeled as an online problem in which
each packet is associated with a value, and the router wants to maximize the total value of the

∗The Open University of Israel, Raanana, Israel. E-mail: moranfe@openu.ac.il.
†Computer Science Department, Technion, Haifa, Israel. E-mail: naor@cs.technion.ac.il. The research of Seffi

Naor is supported by ISF grant 1366/07.

1



transmitted packets, subject to restrictions imposed by the architecture of the router and the
requirements of the application. Different router architectures and network applications give rise
to various issues, many of which have been extensively studied in the literature (see Section 1.3 for
a few examples).

The assumption of a firm deadline for packets belonging to real-time applications is justified
from the network’s perspective. If a packet arrives at the destination on time, the network gets
credit for it, otherwise, the packet is worthless. However, when shifting our perspective from the
network to an individual router, the situation changes dramatically since a packet goes through
many routers on its way to the destination. We can assume that a router is “aware” that delaying
a packet increases the odds that it will not arrive on time to its destination, yet a router cannot be
expected to “know” for how long can a packet be delayed. Therefore, the objective of a router is
to maximize throughput, but without inducing significant delay on any of the forwarded packets.
Fiat et al. [10] describe an online model with this objective in mind. In their model, the value
of each packet is a decreasing function of the time it waits in the router. This requires the router
to consider both throughput and delays. Formally, the model of Fiat et al. [10] assumes a router
with a FIFO buffer (queue). Each time the router receives a packet it has to make an irrevocable
decision whether to buffer it or reject it. For each buffered packet, the router gets revenue equal to
the value of the packet minus the delay that the packet incurs while waiting in the queue. An online
algorithm for this problem faces a trade-off between buffering too many packets, which imposes a
large delay and negligible revenue from each packet, and buffering too few packets.

In queuing theory, one usually assumes that packet arrival is governed by some known stochastic
process. However, in many real applications, defining analytically the stochastic process is difficult,
if not impossible. For example, it is common to model network traffic as a Poisson process, yet
many studies indicate that real network traffic does not behave at all this way [14, 16, 15]. In
order to bypass this difficulty, we use competitive analysis as a performance measure for our online
algorithms. The advantage of competitive analysis is that it assumes nothing on how the input is
generated. Instead, the performance of an online algorithm is compared against an optimal off-line
algorithm (that knows the input ahead of time). Formally, let ALG be an online deterministic
algorithm, and let OPT be the optimal off-line algorithm. Given an input sequence σ, we denote
by ALG(σ) and OPT (σ) the value of the solutions that ALG and OPT output given σ. The

competitive ratio of ALG is defined as supσ
OPT (σ)
ALG(σ) . If ALG is a randomized algorithm then the

competitive ratio is defined by

sup
σ

OPT (σ)

E[ALG(σ)]
,

where the expectation is over the randomness of ALG. This definition corresponds to an oblivious
adversary1. Notice that under the above definition, the competitive ratio of an algorithm for a
maximization problem is at least 1, as no algorithm can be better than OPT . Sometimes the
competitive ratio is defined as the inverse of the above expression, which results in competitive
ratios smaller than 1 for maximization problems. However, we prefer the above definition, since we
believe that ratios larger than 1 give a better intuitive understanding of the competitiveness they
represent.

1.1 The Model

We consider a router model with a single non-preemptive FIFO buffer (queue) and continuous
time. At time 0, the queue is empty. Packets arrive at the router at non-integral times. Each

1An oblivious adversary is familiar with ALG, but does not know the results of the actual coin tosses of ALG.

2



packet is either accepted to the queue or rejected. At any integral time, the packet at the head of
the queue is dequeued and transmitted, unless the queue is empty at that time.2 As the queue is
non-preemptive, packets may not leave the queue in any other way. For packet d, define a(d) to be
its arrival time and w(d) to be its value.

In the heterogenous delay sensitive packets problem (HDSP), each packet d has a rev-
enue depending on its transmission time. If d is never transmitted (i.e., it is rejected), then its
revenue is 0. Otherwise, its revenue is equal to w(d) minus the delay it suffers (i.e., the number of
integral times d spends in the queue without being transmitted). The objective is to decide which
packets to accept into the queue in order to maximize the sum of the revenues of all packets.

In the online setting, each time a packet arrives, the online algorithm must immediately make
an irrevocable decision whether to accept the packet to the queue or reject it. The decision must
be made before any knowledge is revealed regarding future packet arrivals.
Remark: Notice that the above definition of revenue allows for negative revenues, however, this
is not an issue since the revenue of a packet can be determined upon arrival, and no reasonable
algorithm would ever let into the queue a packet having a negative revenue.

It turns out that the competitive ratio achievable for HDSP highly depends on the set of values
that the packets may take. We consider three natural sets of values, defining three variants of
HDSP.

Unrestricted model: A packet can have any positive real value.
Real-valued model: A packet can have any real value of at least 1.
Integral-valued model: A packet can have any integral positive value.

Notice that the lower bound of 1 on the value of packets in the real-valued model is not an
arbitrary choice. This lower bound comes up naturally as the revenue of a packet is reduced by 1
for each unit of time that it is delayed.

1.2 Results

We first consider the unrestricted model. We show that, unfortunately, even a randomized algorithm
cannot have a constant competitive ratio for this model. This improves upon the lower bound of
3 proved by [10] for the integral-valued model, which currently is the best lower bound for the
unrestricted model.

We then consider the real-valued model, for which we give a 4-competitive randomized algorithm
as well as a matching lower bound (up to low order terms). The best previous algorithm for this
model was a deterministic 4.9-competitive algorithm given by [10], whose competitive ratio proof
was based on heavy numerical calculations. Using additional numerical calculations, [9] was able
to fine tune the algorithm and improve this bound to 4.24. We also give an analytical proof of a
deterministic lower bound of φ3 − ε ≈ 4.236 (where φ = (

√
5 + 1)/2 ≈ 1.618 is the golden ratio

and ε is an arbitrarily small positive constant) for the same model. This bound improves upon a
deterministic lower bound of 3, and a lower bound of 4.1 for deterministic memory-less algorithms
whose, again, depended on heavy numerical calculations [10]. The last bound was later improved
to 4.23 by [9] using additional numerical calculations. Our result strengthens [10]’s conjecture that
the “right” deterministic competitive ratio, for this model, is φ3.

2We forbid packets from arriving at integral times to simply notation and avoid the need to decide whether a
packet arriving at an integral time t can be transmitted in t (assuming the queue is empty when the packet arrives).
Regardless of which decision is made, general arrival times can be easily reduced to non-integral arrival times.

3



Unrestricted Model Real Valued Model Integral-Valued Model
Known
Result

New
Result

Known
Result

New
Result

Known
Result

New
Result

Deterministic
Lower Bound

3 ∞ 3 φ3 − ε ≈ 4.236 3 4− ε

Deterministic
Upper Bound

- - 4.24 - 4.24 4

Randomized
Lower Bound

φ ≈ 1.618 ∞ φ ≈ 1.618 4− ε φ ≈ 1.618 4− ε

Randomized
Upper Bound

- - 4.24 4 4.24 4

Table 1: Summary of known and new results. ε is an arbitrarily small positive constant. All known
results in the table are inferred from [10] and [9].

Notice that randomization improves the achievable competitive ratio for the real-valued model
from φ3 to 4. On the other hand, randomization does not help the integral-valued model. For the
integral-valued model, we give a deterministic 4-competitive algorithm and prove that this is best
possible (up to low order terms), even for randomized algorithms. The previously known results
for this model were a lower bound of 3 [10] and an upper bound of 4.24 [9].

Our positive results are achieved using the following technique. First, the set of possible inputs
is reduced by showing a reduction from the general case to a more specialized set of inputs. Then,
an algorithm is given for the specialized set of inputs. The algorithms we present are combinatorial,
yet are analyzed via a linear program using the dual-fitting technique, i.e., the value of OPT is
bounded using an assignment to the dual of a linear relaxation of the problem.

Table 1 gives a short summary of the known results and our improvements. All known results
in the table either come directly from [10] and [9] or can be immediately deduced from them. A
preliminary version of this paper [8] stated the lower bounds of Table 1 without the ε term. We
added the ε’s in this version to emphasis that a lower bound of c−ε does not rule out an algorithm
whose competitive ratio is c−f(n) for some function f(n) of the number of packets that diminishes
as n increases.

Beside the three models we consider, there is another natural model where all packets have
equal value of R. For this model [10] gave a deterministic φ-competitive algorithm, and showed
that this is best possible for large values of R, even for randomized algorithms.

1.3 Related Work

There is a very rich set of online buffering problems, modeling many different kinds of router
architectures. We survey here only a few representative results and the ones that are most closely
related to the specific problem we consider in this paper. The problem in which the algorithm
is, perhaps, least restricted is the “bounded delay” problem. In this problem the router buffers
all packets that it receives, and the algorithm simply has to choose which packet to transmit at
each time slot. Each packet has a deadline, and it must be deleted from the router’s buffer if
not transmitted before its deadline. The objective is to maximize the total value of transmitted
packets.

The best known competitive ratios for the “bounded delay” problem are a deterministic 1.828
and a randomized e/(e− 1) ≈ 1.582 (see [7, 3]). On the negative side, the known lower bounds for
this problem are the golden ratio (φ ≈ 1.618) for deterministic algorithms and 5/4 for randomized

4



algorithms [1, 4]. Assumptions on the input can often improve the attainable bounds. One such
assumption is called “agreeable deadlines”. This assumption simply says that if a packet d1 arrives
before packet d2, then the deadline of d2 cannot be before that of d1. Under this assumption,
there is a deterministic online algorithm with a competitive ratio of φ, matching the lower bound
of [1] (which is still valid even with this assumption), and a randomized online algorithm with a
competitive ratio of 4/3 [13]. Other common assumptions limit the possible lengths of the period
between the arrival of a packet and its deadline (s-bounded inputs), or make this period equal for
all packets (s-uniform inputs). See [12, 5] and the references in [7] for some results under these
assumptions.

A more restrictive problem is the “preemptive FIFO” problem, in which the buffer is of limited
size B and is managed as a FIFO buffer, i.e., packets can only be transmitted in the order in
which they arrive. Somewhat surprisingly, results for variants of this problem tend to have better
competitive ratios than their corresponding “bounded delay” variants. The most general variant of
this problem has deterministic lower and upper bounds of 1.419 and

√
3 ≈ 1.732 [6]. Restrictions

on the input can help in this problem as well. For example, if the input is restricted to packets of
two values 1 and α, then the deterministic lower and upper bounds can be improved to 1.281 and
1.303 [6].

The most restrictive problem that is often considered is the “non-preemptive FIFO” model. In
this model the setting is exactly the same as in the previous problem, but the algorithm is not
allowed to remove packets from the queue. Instead, the algorithm has to decide whenever it gets
a new packet whether to accept or reject it. This new restriction has no implications on OPT ,
as there is no reason for OPT to accept a packet it does not intend to transmit. Therefore, the
competitive ratios for variants of this problem are much worse in comparison to their counterparts
for the previous problem. For example, if the input packets are restricted to the values 1 and α,
then there is only a (2α− 1)/α competitive algorithm, and this is tight for both deterministic and
randomized algorithms [1]. If the packets are allowed to have any value in the range [1, α], then
the situation becomes even worse; the best known deterministic lower and upper bounds for this
variant are 1 + lnα and e · dlnαe by [1]. Notice that HDSP is also a variant of “non-preemptive
FIFO” with two changes: the size of the buffer is unlimited, and the revenue of a packet changes
as a function of the time it waits in the buffer.

Azar and Richter [2] proposed a model in which the router has multiple inputs and one output.
Each input has its own FIFO buffer of size B which can be either preemptive or non-preemptive.
Each time the router has an opportunity to transmit a packet, the algorithm has a choice from
which input buffer to extract the packet. It was showed by [2] that any algorithm for a single buffer
can be extended to this model, with a factor 2 loss in the competitive ratio.

The rest of this paper is organized as follows. Section 2 gives an impossibility result for the
unrestricted model. Section 3 gives a reduction which is used to prove our positive results. Sec-
tions 4 and 5 give the positive results themselves: a 4-competitive deterministic algorithm for the
integral-valued model and a 4-competitive randomized algorithm for the real-valued model. It is
recommended to read Section 4 before Section 5 as the two sections use many common ideas, but
the second one is more involved. Sections 6 and 7 give the remaining lower bounds: a lower bound
of φ3 − ε for deterministic algorithms in the real-valued model and a lower bound of 4 − ε for
randomized algorithms in both the real-valued and the integral-valued models.

5



2 The Unrestricted Model

The unrestricted model is the most general model we consider. The only results known for this
model are a lower bound of 3 for deterministic algorithms and a lower bound of φ ≈ 1.618 for
randomized algorithms [10]. These lower bounds were proved for the integral-valued model and for
a model where all packets have equal values, respectively, but they apply to the unrestricted model
as well. We show that, unfortunately, no constant competitive ratio randomized algorithm for the
unrestricted model exists even against an oblivious adversary. The rest of this section is devoted
to proving this hardness result.

Let ALG be any randomized algorithm for HDSP, and let c ≥ 1 be any integer constant.
Algorithm 1 defines an oblivious adversary against which ALG is not c-competitive. The adversary
gives ALG a series of increasing value packets. ALG must accept each one of these packets with
some positive probability in order to be competitive. However, no packet in the sequence increases
the expected value of ALG by much since ALG already accepted the previous packets of the
sequence with a positive probability. The optimal solution OPT , on the other hand, has the
privilege of accepting only the last packet in the series and obtaining its entire value.

Algorithm 1: Adversary for the Unrestricted Model

1 Let t1, t2, . . . , t2c be 2c arbitrary times such that 0 < t1 < t2 < . . . < t2c < 1.
2 for i = 1 to 2c do
3 Give ALG a packet di of value (2c)i−2c at time ti.
4 Let pi be the probability ALG’s queue is empty at this point.
5 if pi ≥ 1− ic−1/2 then Terminate.

Observe that the choice of arrival times in Algorithm 1 implies that all packets accepted by
ALG are placed in the queue before the first one of them can be transmitted.

Theorem 2.1. ALG is not c-competitive against the adversary given by Algorithm 1.

Proof. For consistency of the notation, we define p0 = 1. Assume the adversary generates 1 ≤ ` ≤ 2c
packets. If 1 < ` < 2c, then we must have:

p` ≤ 1− `c−1/2 and p`−1 ≥ 1− (`− 1)c−1/2 . (1)

The same inequalities also hold for ` = 1 because p`−1 = p0 = 1 = 1− (`− 1)c−1/2 and for ` = 2c
because p` ≥ 0 = 1− `c−1/2.

The adversary generates only packets of value at most 1, thus, only the first packet accepted
has a positive revenue. By the linearity of the expectation di is accepted into an empty queue (and
therefore, has a positive revenue) with probability pi − pi−1. Thus, the revenue of ALG is:

∑̀
i=1

(pi − pi−1) · (2c)i−2c ≤ p`−1 · (2c)`−2c−1 + (p` − p`−1) · (2c)`−2c

= [p` − p`−1 · (1− c−1/2)] · (2c)`−2c

≤ [(1− `c−1/2)− (1− (`− 1)c−1/2) · (1− c−1/2)] · (2c)`−2c

= [c−1 − `c−1/2− (`− 1)c−2/4] · (2c)`−2c < c−1 · (2c)`−2c ,

where the second inequality holds due to (1). Hence, ALG is not c-competitive because OPT can
get a revenue of (2c)`−2c by accepting only d`.

6



Remark: Theorem 2.1 holds only for constant values of c (i.e., c cannot depend on the number
of packets in the instance). The reason for that is that the number of packets in the instance
produced by the adversary might depend on c. For deterministic algorithms, one can observe that
an adversary sending at most two packets is sufficient to get an unbounded competitive ratio, and
therefore, deterministic algorithms for the unbounded model have in fact an unbounded competitive
ratio.

3 Reduction

Sections 4 and 5 present positive results for the integer-valued and real-valued models. To simply
the exposition and analysis of these results, we give in this section a reduction that allows us to
consider a slightly simpler problem. Intuitively, we show that deterministic algorithms that are r-
competitive for a particular set of inputs called one-slot inputs can be transformed into algorithms
that are r-competitive for arbitrary inputs. We also show that the same observation holds for
randomized algorithms that obey a property we call tight-concentration.

We use the term input sequence to denote the packets arriving as well as their arrival times. An
input sequence is called one-slot if all its packets arrive before the first integral time, i.e., before the
algorithm has an opportunity to transmit any of them. Consider an algorithm ALG for one-slot
input sequences, and let Q be a random variable denoting the number of packets in the queue of
ALG. We say that ALG is tightly-concentrated if Q is always equal to E[Q] up to rounding. More
formally, ALG always obeys either Q = bE[Q]c or Q = dE[Q]e. Observe that every deterministic
algorithm is tightly-concentrated.

Reduction 1. If A is a tightly-concentrated algorithm for one-slot input sequences with a compet-
itive ratio of r against an oblivious adversary, then there exists an algorithm B achieving the same
competitive ratio against an oblivious adversary for all input sequences. Moreover,

• If A is deterministic, then so is B.

• If A is r competitive against one-slot input sequences of the integer-valued/real-valued model,
then B is r competitive against general input sequences of the same model.

Proof. We first describe B, and then analyze its competitive ratio. Algorithm B uses an integral
counter c, initially set to 0, and a simulation of A. When B receives a packet d, it feeds d to the
simulation of A and accepts d if and only if the simulation of A accepts d. However, B makes some
changes to the packet d before feeding it to the simulation of A. First, a(d) is changed to be less
than 1; this way A “observes” a one-slot input sequence. Second, w(d) is increased by c. Each time
an integral time arrives, B checks whether there is a positive probability that its queue is empty
just before the integral time. If so (regardless of whether the queue is in fact empty), B sets c to
0 and resets the simulation of A. Otherwise, B increases c by 1.

Consider any input sequence σ. Let k be the number of times A’s simulation is reset by B,
and let σA,1, σA,2, . . . , σA,k+1 denote the input sequences A’s simulation receives from B between
consecutive resets (σA,i is equal to a sub-sequence of σ as far as the order in which the packets
arrive is concerned, but is different from this sub-sequence in terms of the times in which the packets
arrive and their values). Notice that the input received by the simulation of A does not depend
on the random choices A makes (it depends only on the probabilities of these choices), and thus,
σA,1, σA,2, . . . , σA,k+1 are determined completely by σ. Thus, the simulations of A indeed face an
oblivious adversary. Hence, by the definition of A, r ·A(σA,i) ≥ OPT (σA,i).

7



Consider an arbitrary integral time t in which B resets the simulation of A. Since B reset the
simulation, we learn that it had a positive probability to have an empty queue just before t. Since
A is strongly-concentrated, B is guaranteed to have at most one packet in its queue just before t,
and thus, its queue is guaranteed to be empty immediately after t. In other words, B’s queue is
always empty immediately after a reset.

Assume OPT decides to accept from σA,i the same packets it would have accepted from the
corresponding sub-sequence of σ, had σ been the input sequence. Let cd be the value of the counter
c when packet d is received. Each packet d ∈ σA,i appears in σA,i before the first integral time,
whereas in σ there are cd integral times between the first packet of σA,i and the appearance of
d. Therefore, it is easy to see that d suffers in OPT (σA,i) at most an additional delay of cd (in
comparison to its delay when OPT receives σ). However, d’s value is larger in σA,i by cd, hence,
the revenue of d in OPT (σA,i) is at least as large as its revenue in OPT (σ). This is true for every

packet d ∈ σA,i, hence,
∑k+1

i=1 OPT (σA,i) ≥ OPT (σ).

Combining the last two results we have r ·
∑k+1

i=1 A(σA,i) ≥ OPT (σ). To complete the proof we
only need to show that B gets from every packet d at least the same revenue as the simulation of
A. Let σA,i be the input sub-sequence containing d and cd be the value of the counter c when d is
received. Since B transmits a packet at each integral time in which A’s simulation is not reset, B’s
queue must be shorter by at least cd packets than Ad’s queue when d is received. Consequently, d
suffers a delay shorter by at least cd under B than under A’s simulation. Note that w(d) is larger in
σA,d only by cd than in σ, thus, B’s revenue from accepting d is at least as large as the simulation’s
revenue from accepting this packet. Since B accepts d if and only if the simulation does so, B’s
revenue from d is always at least as large as the simulation’s.

4 A 4-Competitive Algorithm for the Integral-Valued Model

The integral-valued model is simpler than the real-valued one, but the best algorithm known for
both models is the 4.24-competitive algorithm of [10]. In this section we present a 4-competitive
deterministic algorithm for the integral-valued model. This might not seem like much of an improve-
ment, yet Section 7 shows that this is best possible, even for randomized algorithms. To simplify
the exposition and analysis of the algorithm, we assume one-slot input sequences throughout this
section. By Reduction 1, the same result holds also for general input sequences.

Consider Algorithm 2.3 Notice that Algorithm 2 is strongly-concentrated since it is determin-
istic.

Algorithm 2: Nearly Doubling Threshold (NDT)

1 Let Q← 0. /* Q denotes the number of packets in the the queue. */

2 foreach packet d arriving do
3 if w(d) ≥ 2Q+ 1 then
4 Accept d.
5 Let Q← Q+ 1.

We start the analysis of Algorithm 2 by showing that we can further reduce the set of inputs
we need to consider (beyond our restriction to one-slot input sequences). Let Qd be the number
of packets in the queue of NDT when packet d arrives. A one-slot input sequence is NDT-based if

3Algorithm 2 is inspired by the 5.25-competitive DT algorithm presented by [10].

8



for every packet d, w(d) ≤ 2Qd + 1. The following reduction shows that it is enough to prove that
NDT is 4-competitive for NDT-based input sequences.

Reduction 2. If NDT is r-competitive for NDT-based input sequences, then it is r-competitive for
one-slot input sequences.

Proof. Given a one-slot input sequence σ, let σ′ be an identical input sequence in which the value
of every packet d is changed to w′(d) = min{w(d), 2Qd + 1}. By the definition of NDT it ac-
cepts the same set of packets D given either σ or σ′. Thus, NDT(σ) − NDT(σ′) =

∑
d∈D[w(d) −

min{w(d), 2Qd + 1}].
Let us compare OPT (σ) and OPT (σ′). One possible option for OPT (σ′) is to accept the same

packets OPT (σ) accept. Hence, OPT (σ′) is at least as large as OPT (σ) minus the total decrease
in packet values during the transition from σ to σ′. Let us calculate this loss. The value of a packet
d ∈ D is reduced by w(d) − min{w(d), 2Qd + 1}. On the other hand, a packet d 6∈ D obeys, by
definition of NDT, w(d) < 2Qd + 1. Thus, such packets do not suffer any value loss. Adding these
observations together gives:

OPT (σ)−OPT (σ′) ≤
∑
d∈D

[w(d)−min{w(d), 2Qd + 1}] .

Since NDT is r competitive for NDT-based input sequences, we get:

NDT(σ) = NDT(σ′) +
∑
d∈D

[w(d)−min{w(d), 2Qd + 1}]

≥ OPT (σ′)

r
+
∑
d∈D

[w(d)−min{w(d), 2Qd + 1}]

≥
OPT (σ′) +

∑
d∈D[w(d)−min{w(d), 2Qd + 1}]

r
≥ OPT (σ)

r
.

The analysis of Algorithm 2 for NDT-based input sequences uses a dual-fitting argument. The
following LP formulation represents the off-line version of HDSP. Let A(d) be the set of times in
which packet d can be sent, i.e., A(d) consists of all integer times between a(d) and w(d) + a(d).
Variable y(d, t) is an indicator for the event that packet d is transmitted in integral time t.

(LP1) max
∑

d

∑
t∈A(d)(w(d)− bt− a(d)c) · y(d, t)∑

t∈A(d) y(d, t) ≤ 1 ∀ d (packet constraint)∑
d|t∈A(d) y(d, t) ≤ 1 ∀ t (time constaint)

y(d, t) ≥ 0 ∀ d, t ∈ A(d)

The coefficient of each variable y(d, t) in the objective function is the value of the corresponding
packet (w(d)) minus the number of integral times it will spend in the queue if transmitted at time t.
The packet constraints make sure that a packet is transmitted at most once. The time constraints
allow at most one packet to be transmitted at each integral time. Notice that no constraint enforces
the FIFO transmission order, however, this is not a problem because we only need the optimal value
of LP1 to upper bound OPT (in fact, the FIFO requirement does not affect OPT , and therefore,
adding a corresponding constraint to the LP will not make it any more powerful).

The dual of LP1 is:

(LP2) min
∑

t xt +
∑

d zd
xt + zd ≥ w(d)− bt− a(d)c ∀ d, t ∈ A(d)
xt, zd ≥ 0 ∀ d, t

9



By weak duality, every feasible solution for LP2 is an upper bound on the optimal solution for
LP1, and therefore, also on OPT . Thus, if ALG is an on-line algorithm for HDSP and for any
NDT-based input sequence σ there exists a feasible solution for LP2 of cost r · A(σ), then ALG is
r-competitive on NDT-based input sequences. The rest of this section is devoted for constructing a
solution for LP2 of cost at most 4 · NDT(σ) for an arbitrary NDT-based input sequence σ, proving
that NDT is 4-competitive for any NDT-based input sequence. Given an input sequence σ, we
denote by LP2(σ) the instance of LP2 resulting from this input sequence, and by Q̂σ the number of
packets accepted by NDT(σ) (in other words, Q̂σ is the final value of Q in NDT when the input is
σ).

Lemma 4.1. NDT(σ) = Q̂σ(Q̂σ + 1)/2.

Proof. Let d be the ith packets accepted by NDT when it receives σ. Since σ is a one-slot input
sequence, when d arrives NDT has i − 1 packets in its queue. In addition, since σ is NDT-based,
the value d is 2(i− 1) + 1. Therefore, the revenue NDT gets from d is [2(i− 1) + 1]− (i− 1) = i.

Summing over all packets accepted by NDT, we get: NDT(σ) =
∑Q̂σ

i=1 i = Q̂σ(Q̂σ + 1)/2.

Consider the a dual solution for LP2(σ) defined as following. Variables of type zd are assigned
a value of 0, and variables of type xt are assigned a value of max{2Q̂σ + 1− t, 0}.

Lemma 4.2. The above dual solution of LP2 is feasible and its cost is Q̂σ(2Q̂σ + 1).

Proof. Consider an arbitrary constraint xt + zd ≥ w(d) − bt − a(d)c of LP2. Since σ is a one-slot
input sequence a(d) ∈ (0, 1), which implies bt− a(d)c = t− 1. Since σ is also NDT-based:

w(d) ≤

{
2Qd + 1 ≤ 2Q̂σ − 1 if d is accepted by NDT ,

2Qd ≤ 2Q̂σ otherwise .

Plugging the above bounds into the constraint, we get: xt + zd ≥ 2Q̂σ + 1− t, which trivially holds
for the above dual solution.

The only variables of the dual solution which get a non-zero assignment are x1, x2, . . . , x2Q̂σ .
The coefficients of all these variables in the objective function is 1, hence, the cost of the dual
solution is:

2Q̂σ∑
t=1

[2Q̂σ + 1− t] =
2Q̂σ(2Q̂σ + 1)

2
= Q̂σ(2Q̂σ + 1) .

Corollary 4.3. NDT is a 4-competitive algorithm for NDT-based input sequences, and thus, there
exists a 4-competitive deterministic algorithm for general input sequences of HDSP in the integral-
valued model.

Proof. The ratio between the cost of the above dual solution and NDT(σ) is:

Q̂σ(2Q̂σ + 1)

Q̂σ(Q̂σ + 1)/2
=

4Q̂σ + 2

Q̂σ + 1
≤ 4 .

5 A 4-Competitive Randomized Algorithm for the Real-Valued
Model

Fiat et al. [10] prove that randomization does not help when all packets have equal values, but
leaves open the question of the usefulness of randomization in models that allow multiple packet

10



values. Sections 4 and 7 show that for the integral-valued model, a deterministic algorithm can
achieve the best possible competitive ratio. Surprisingly, the real-valued model is different. This
section presents a 4-competitive randomized algorithm for the real valued model; bypassing the
lower bound for deterministic algorithms described in Section 6. However, Section 7 shows that
this is as far as randomization can take us – no randomized algorithm can do better.

We would like to limit ourselves to one-slot input sequences using Reduction 1. In a sense,
Reduction 1 requires an algorithm for one-slot input sequences with somewhat limited randomness
– the size of the algorithm’s queue must always be what it is expected to be (up to rounding). On the
other hand, some randomness is required because of the lower bound for deterministic algorithms
proved in Section 6. The compromise between these requirements is Algorithm 3 (RNDT). We show
that RNDT is 4-competitive tightly-concentrated algorithm for one-slot input sequences, implying
a 4-competitive randomized algorithm for general input sequences, together with Reduction 1.

Algorithm 3: Randomized Nearly Doubling Threshold (RNDT)

// Initialization

1 Let Q← 0.
2 Let s be a uniformly random number from the range [0, 1).
// Main Loop

3 foreach packet d arriving do
4 if d is the first packet then Let pd = 1/2.
5 else Let pd = max{0,min{1, w(d)/2−Q− 0.25}}.
6 Let Qd ← Q.
7 Update Q← Q+ pd.

8 if pd > 0 and the range (Qd, Q] contains a point q such that q − bqc = s then
9 Accept d.

Before analyzing RNDT, let us give a short intuitive explanation of the underlying ideas. Recall
that NDT is 4-competitive for the integral-valued model. In the analysis of NDT, we used the
integrality of packet values only in the proof of Lemma 4.2, where we needed the observation
that if a packet d is rejected (i.e., it obeys w(d) < 2Qd + 1, where Qd is the queue size before
d arrives), then it must obey w(d) ≤ 2Q̂σ, where Q̂σ is the final size of the queue. To get a
similar property to hold in a non-integral setting, RNDT accepts a packet with probability pd =
max{0,min{1, w(d)/2−Qd−0.25}}, where Qd is the value of Q before d arrives. Observe that this
guarantees w(d) ≤ 2E[Qσ] + 0.5 for every packet d which is not accepted with probability 1, where
Qσ is the final value of Q given the input σ.

A naive implementation of the above idea would result in an algorithm which is not tightly-
concentrated. To overcome this issue, RNDT uses dependent rounding. The algorithm creates an
interval of size pd for every packet d, and packs these intervals in the positive real numbers axis. A
packet is then accepted into the queue if and only if its interval contains a point q whose fractional
part is equal to s, where s is a uniformly chosen value from the range [0, 1). Observation 5.1 shows
that this rounding method results in a tightly-concentrated algorithm.

Observation 5.1. RNDT is tightly-concentrated.

Proof. Consider the state of RNDT at an arbitrary point, and let s′ = Q−bQc. Exactly one of the
following must happen:

• With probability s′, s < s′. In this case, there are dQe packets in the queue of the algorithm.

11



• With probability 1 − s′, s ≥ s′. In this case, there are bQc packets in the queue of the
algorithm.

Hence, if Q is an integral, the number of packets in the queue of RNDT is exactly Q. Otherwise,
the expected number of packets in the queue of RNDT is:

s′ · dQe+ (1− s′) · bQc = s′ · (Q− s′ + 1) + (1− s′) · (Q− s′) = Q .

Let σ be an arbitrary one-slot input sequence, and let Q̂σ denote the final value of Q in RNDT
given σ. We say that a one-slot input sequence σ is RNDT-based input sequence if the weight of
the first packet of σ is 1 and no packet of σ has a weight larger than 2Q̂σ + 0.5. Reduction 3 is the
counterpart of Reduction 2 from Section 4.

Reduction 3. If RNDT is r-competitive for RNDT-based input sequences for some r ≥ 2, then it
is r-competitive for one-slot input sequences.

Proof. Given a one-slot input sequence σ, let d1 be its first packet. Let σ′ be an input sequence
with the same packets as σ in which the value of every packet d is changed as following. If d = d1,
then w′(d) = 1. Otherwise, w′(d) = min{w(d), 2Q̄d + 2.5}. RNDT accepts d1 with probability 1/2
regardless of its value. Every other packet d whose value is changed is accept with probability 1.
Thus, RNDT behaves the same (i.e., given the same s it will accept the same packets) given either
σ or σ′. Hence, E[RNDT(σ) − RNDT(σ′)] =

∑
d∈D\{d1}[w(d) − w′(d)] + [w(d1) − w′(d1)]/2, where

D is the set of packets whose value is changed during the construction of σ′.
Let us compare OPT (σ) and OPT (σ′). One possible option for OPT (σ′) is to accept the

same packets OPT (σ) accept. Hence, OPT (σ) − OPT (σ′) ≤
∑

d∈D∪{d1}[w(d) − w′(d)]. If σ′ is
RNDT-based input sequence, then since RNDT is r competitive for RNDT-based input sequences:

NDT(σ) = NDT(σ′) +
∑

d∈D\{d1}

[w(d)− w′(d)] + [w(d1)− w′(d1)]/2

≥ OPT (σ′)

r
+

∑
d∈D\{d1}

[w(d)− w′(d)] + [w(d1)− w′(d1)]/2

≥
OPT (σ′) +

∑
d∈D∪{d1}[w(d)− w′(d)]

r
≥ OPT (σ)

r
.

To complete the proof, we just need to prove that σ′ is an RNDT-based input sequence. Con-
sider some packet d. If d = d1, then it is accepted with probability half, and thus, Q̂σ′ ≥ 1/2.
Consequently, w′(d) = 1 < 2 ·1/2+0.5 ≤ 2Q̂σ′+0.5. Otherwise, either w′(d) = w(d) ≤ 2Qd+0.5 ≤
2Q̂σ′ + 0.5, or w(d) = 2Q̄d + 0.5 + c for some 0 < c ≤ 2. In the second case, d d is accepted by
RNDT with probability pd = w(d)/2−Qd − 0.25 = c/2. Hence:

w′(d) = 2Qd + 0.5 + c ≤ 2(Q̂σ′ − pd) + 0.5 + c = 2Q̂σ′ + 0.5 .

The rest of the analysis of RNDT goes along the same lines as the analysis of NDT in Section 4,
i.e., we consider a RNDT-based input sequence σ and show that LP2(σ) has a solution of cost at
most 4 · E[RNDT(σ)].

Lemma 5.2. The expected revenue for RNDT from a packet d is at least pd(w(d)−Qd).

Proof. The claim is clearly true for every packet with pd = 0. Hence, we may assume pd > 0.
Consider the range R = (Qd, Qd + pd]. If this range contains no integral points or Qd + pd is the

12



sole integral point in this range, then d is accepted with probability pd, and when it is accepted is
suffers a delay of bQdc. Hence, the revenue of d is:

pd(w(d)− bQdc) ≥ pd(w(d)−Qd) .

If R contains an integral point other than Qd + pd, then there are two cases in which d is
accepted. Let q = Qd − bQdc. If s happens to fall within the range (q, 1] (which happens with
probability 1−q), then d is accepted and it suffers a delay of bQdc. On the other hand, if s happens
to fall within the range (0, pd+q−1] (which happens with probability pd+q−1), then d is accepted
and it suffers a delay of dQde. Hence, the expected revenue of RNDT from d is:

(1− q)(w(d)− bQdc) + (pd + q − 1)(w(d)− dQde)
= (1− q)(w(d)−Qd + q) + (pd + q − 1)(w(d)−Qd + q − 1)

= pd(w(d)−Qd) + (1− pd)(1− q) ≥ pd(w(d)−Qd) .

Lemma 5.3. The expected revenue of RNDT is at least (2Q̂σ−1)2
8 , unless σ contains no packets.

Proof. Let di denote the ith packet accepted by RNDT with a positive probability, and let m be
the number of packets accepted with a positive probability. We abuse notation and let pi and Qi
denote pdi and Qdi , respectively. Since w(d1) = 1 (recall that σ is a RNDT-based input seequence)
and p1 = 1/2:

m∑
i=1

pi(w(di)−Qi) =
1

2
+

m∑
i=2

pi(w(di)−Qi) ≥
1

2
+

m∑
i=2

(
Qi + 2pi +

1

2

)

≥ 1

2
+

m∑
i=2

(
pi ·Qi +

p2i
2

+
pi
2

)
=

1

2
+

m∑
i=2

[∫ Qi+pi

Qi

(
x+

1

2

)]

=
1

2
+

∫ Q̂σ

1/2

(
x+

1

2

)
dx =

1

2
+
x2 + x

2

∣∣∣∣Q̂σ
1/2

=
(2Q̂σ − 1)2

8
.

Let us explain why the first inequality holds. By definition, di was accepted with positive proba-
bility, i.e., pi > 0. If pi = 1 then w(di) ≥ 2Qi + 2.5 = 2Qi + 2pi + 0.5. If 0 < pi < 1 then:

pi = w(di)/2− 0.25−Qi ⇒ w(di) = 2Qi + 2pi + 0.5 .

This completes the proof of the first inequality. The lemma now follows immediately since by
Lemma 5.2 the revenue of each packet di is at least pi(w(di)−Qi).

Consider the following dual solution for LP2(σ). Variables of type zd are assigned a value of 0
and variables of type xt are assigned a value of max{2Q̂σ + 1.5− t, 0}.

Lemma 5.4. The above dual solution of LP2(σ) is feasible and its cost is (2Ef + 1)2/2.

Proof. Consider an arbitrary constraint xt + zd ≥ w(d) − bt − a(d)c of LP2. Since σ is a one-
slot input sequence a(d) ∈ (0, 1), which implies bt − a(d)c = t − 1. Since σ is also RNDT-based,
w(d) ≤ 2Q̂σ + 0.5. Plugging the above bounds into the constraint, we get: xt + zd ≥ 2Q̂σ + 1.5− t,
which trivially holds for the above dual solution.

The only variables of the dual solution which get a non-zero assignment are x1, x2, . . . , x2Q̂σ+1.
The coefficients of all these variables in the objective function is 1, hence, the cost of the dual
solution is:

2Q̂σ+1∑
t=1

[2Q̂σ + 1.5− t] =
(2Q̂σ + 1)2

2
.

13



Corollary 5.5. RNDT is a 4-competitive algorithm for RNDT-based input sequences, and thus,
there exists a 4-competitive randomized algorithm for general input sequences of HDSP in the real-
valued model.

Proof. The ratio between the cost of the above dual solution and RNDT(σ) is:

(2Q̂σ + 1)2/2

(2Q̂σ + 1)2/8
= 4 .

6 Lower Bound for Deterministic Algorithms in the Real Valued
Model

The previously best known lower bound for deterministic algorithms in the real valued model is 3
[10]. In this section we show an improved lower bound of φ3 − ε ≈ 4.236 (where φ = (

√
5 + 1)/2 is

the golden ratio and ε is an arbitrary small positive constant). The proof uses the same technique
used by [10] for proving a lower bound of 4.1 for memory-less deterministic algorithms. Given a
constant β > 1, consider the following recursive series:

bβ,k =

{
1 if k = 0 ,

min
{
x ∈ [1,∞) |

∑bxc
j=0(x− j) ≥ β ·

∑k−1
j=0(bβ,j − j)

}
otherwise .

Notice that the definition of bβ,k guarantees that if an algorithm accepts one packet of each
value bβ,0, bβ,1, . . . , bβ,k−1 (in that order, without any of them being transmitted in the mean time),
then it will get a revenue lower by at least a factor of β compared to a scenario where it accepts
bbβ,kc+ 1 packets of value bβ,k. The following observation gives a useful property of bβ,k.

Observation 6.1. bβ,k is a non-decreasing function of both β.

Proof. We prove the lemma by induction on k. For k = 0, the lemma is trivial since bβ,0 = 1 for
any β. Assume the lemma holds for every k′ < k, and let us prove it for k. Let β′ ∈ (1, β). By the
induction hypothesis:

k−1∑
j=0

(b′β,j − j) ≤
k−1∑
j=0

(bβ,j − j) .

On other other hand
∑bxc

j=0(x− j) is a non-negative increasing function of x. Hence,

bβ,k = min

x ∈ [1,∞) |
bxc∑
j=0

(x− j) ≥ β ·
k−1∑
j=0

(bβ,j − j)


≥ min

x ∈ [1,∞) |
bxc∑
j=0

(x− j) ≥ β′ ·
k−1∑
j=0

(bβ′,j − j)

 = bβ′,k .

It is proved by [10] that if there exists a k obeying bβ,k < k, then no memoryless deterministic
algorithm can be better than β-competitive in the real valued model.4 We prove that this result
extends to non-memoryless algorithms. Moreover, we show that for every β < φ3, there exists a k
obeying bβ,k < k, hence, no deterministic algorithm is φ3 − ε competitive in the real valued model
for any constant ε > 0.

14



Algorithm 4: Adversary for Deterministic Algorithms in the Real Valued Model

// All packets generated by this adversary are given to ALG during the time

range (0, 1) in the order in which they are generated.

1 for k = 0 to ∞ do
2 Let ik ← 0.
3 repeat
4 Generate a packet of value bβ,k.
5 Update ik ← ik + 1.

6 until ALG accepted a packet of value bβ,k or ik = bbβ,kc+ 1
7 if ALG accepted no packet of value bβ,k then Terminate.

Let ALG be any deterministic online algorithm for HDSP in the real valued model, and consider
the adversary described by Algorithm 4.

The intuition behind the adversary given by Algorithm 4 is as following. If ALG is better than
β-competitive, then it must accept a packet in every iteration (otherwise, by the definition of bβ,k,
OPT can accept only the bbβ,kc+1 packets of value bβ,k and be at least β times better than ALG).
However, if k < bβ,k then the revenue ALG gets from the packet it accepts on the kth iteration is
negative (bβ,k − k), so it cannot help ALG anyway.

Notice that Algorithm 4 gives to ALG all the packets it generates before A has an opportunity
to transmit any of them. This is consistent with Reduction 1, which shows that one can give all
packets before the first integral time without affecting the hardness of the problem. We begin
the proof by showing that if k < bβ,k for some k, then no deterministic algorithm is better than
β-competitive in the real valued model.

Lemma 6.2. If ALG is β′-competitive, for some constant β′ < β, then the adversary given by
Algorithm 4 never terminates.

Proof. Assume, for the sake of contradiction, that adversary stops after its kth iteration, i.e.,
immediately after giving bbβ,kc + 1 packets of value bβ,k to ALG. By the definition of adversary,
ALG must have accepted exactly one packet in each previous iteration. Hence, the content of A’s
queue at the beginning of the kth iteration is bβ,0, bβ,1, . . . , bβ,k−1.

Since ALG does not accept any packet given during the kth iteration (otherwise, the adversary
would not have stopped after that iteration), its revenue is

∑k−1
i=0 (bβ,i − j). On the other hand

OPT can accept the bbβ,kc + 1 packets of value bβ,k generated during the kth iteration, and get a

revenue of
∑bbβ,kc

i=0 (bβ,k− j). The ratio between our bounds on the revenue of OPT and the revenue
of ALG is at least β because:

• For k > 0 this follows from the definition of bβ,k.

• For k = 0 this holds since our bound on the revenue of OPT is
∑bbβ,kc

i=0 (bβ,k − j) = bβ,k = 1

and our bound on the revenue of ALG is
∑k−1

i=0 (bβ,i − j) = 0.

Theorem 6.3. If there exists k ≥ 0 obeying bβ,k < k, then no deterministic algorithm is β′-
competitive in the real valued model for any constant β′ < β.

Proof. Assume, for the sake of contradiction, that ALG is β′-competitive algorithm. Clearly, we
can assume ALG never accepts packets of negative revenue (otherwise, we consider an algorithm

4The definition of bβ,k in [10] is slightly different, but both definitions use the same idea.

15



ALG′ which simulated ALG, but rejects packets of negative revenue that ALG accepts – clearly
ALG′ is at least as good as ALG given any input sequence, and therefore, is also β′-competitive).

Consider the behavior of ALG when faced with the adversary described by Algorithm 4.
Lemma 6.2 implies that the adversary will never stop. By the definition of the adversary, this
implies that ALG accepts exactly one packet of value bβ,k′ for every k′ ≥ 0. Thus, ALG accepts
exactly one packet d of value bβ,k, and when it does so, there are k previous packets in its queue.
Hence, the revenue of ALG from d is bβ,k − k < 0, which contradicts our assumption that ALG
accepts no packets of negative revenue.

The rest of this section is devoted for proving Theorem 6.4. Notice that the hardness we want
to prove, namely Corollary 6.5, follows immediately from Theorems 6.3 and 6.4.

Theorem 6.4. For any β < φ3, there exists a k obeying bβ,k < k.

Corollary 6.5. No deterministic algorithm is φ3 − ε competitive for any constant ε > 0 in the
real-valued model.

We prove Theorem 6.4 by showing that there exists a linear function (in k) of slope in the range
(0, 1) upper bounding the bβ,k’s. This is done in three steps:

• We first prove the bk,β’s are upper bounded by a linear function.

• We then show that if the bk,β’s are upper bounded by a linear function of some slop, then
they are also upper bounded by another linear function with a significantly smaller slope.

Let us start the first step of the proof by introducing a new recursive series. Let a = 0.795 and
b = 0.81.

ck =


1 for k = 0 ,

φ+ a for k = 1 ,

2φ+ b for k = 2 ,

kφ+ a for k > 2 .

Notice that the ck’s are clearly upper bounded by a linear function of slope φ. The next
Lemma 6.7 shows that the ck’s upper bound the bβ,k’s (and therefore, the bβ,k’s are also upper
bounded by a linear function of slope φ).

Observation 6.6. For every integer k > 5,

(kφ+ a)(kφ+ a+ 1)

2
≥ φ3 ·

k−1∑
i=0

(ci − i) . (2)

Proof. The right hand side of (2) is:

φ3 ·
k−1∑
i=0

(ci − i) = φ3 ·

(
1 + b− 2a+

k−1∑
i=0

(iφ+ a− i)

)
= φ3(1 + b− 2a+ ka) + φ3 ·

k−1∑
i=0

i

φ

= φ3(1 + b− 2a+ ka) +
φ2k(k − 1)

2
.

On the other hand, the left hand side of (2) is:

(kφ+ a)(kφ+ a+ 1)

2
=
k2φ2 + 2kφa+ a2 + kφ+ a

2
.

16



Thus, the observation holds if:

k2φ2 + 2kφa+ a2 + kφ+ a

2
≥ φ3(1 + b− 2a+ ka) +

φ2k(k − 1)

2
⇔ 2kφa+ kφ+ kφ2 − 2kφ3a ≥ 2φ3(1 + b− 2a)− a2 − a

⇔ k ≥ 2φ3(1 + b− 2a)− a2 − a
2φa+ φ+ φ2 − 2φ3a

,

which is true for integer k > 5 since

2φ3(1 + b− 2a)− a2 − a
2φa+ φ+ φ2 − 2φ3a

≈ 5.962 .

Lemma 6.7. For every k ≥ 0 and β ≤ φ3, ck ≥ bφ3,k ≥ bβ,k.

Proof. The inequality bφ3,k ≥ bβ,k follows from Observation 6.1. The proof of the inequality ck ≥
bφ3,k is done by induction on k. For k = 0, bφ3,0 = 1 = c0 so there is nothing to prove. Assume the
lemma holds for k − 1 ≥ 0, and let us prove it for k. Since bφ,k is the lowest number (not smaller

than 1) obeying
∑bckc

i=0 (ck − i) ≥ φ3 ·
∑k−1

i=0 (bφ3,i − i), it is sufficient to prove:

bckc∑
i=0

(ck − i) ≥ φ3 ·
k−1∑
i=0

(ci − i) ≥ φ3 ·
k−1∑
i=0

(bφ3,i − i) . (3)

The second inequality in (3) follows from the induction hypothesis. The first one can be checked
manually for 1 ≤ k ≤ 5, so it is enough to prove it for k > 5. Let dk = ck − bckc ∈ (0, 1). Then,
the left hand side of the first inequality in (3) can be lower bounded by:

bckc∑
i=0

(ck − i) =
(bckc+ 1)(2ck − bckc)

2
=

(ck − dk + 1)(ck + dk)

2
=
ck(ck + 1) + dk − d2k

2

≥ ck(ck + 1)

2
=

(kφ+ a)(kφ+ a+ 1)

2
≥ φ3 ·

k−1∑
i=0

(ci − i) ,

where the last inequality follows from Observation 6.6.

Recall that the next step we need to prove is that if bβ,k is upper bounded by a linear function
of some slope, then it is also upper bounded by a linear function of significantly smaller slope.

Lemma 6.8. Fix some β ≤ φ3. If, for every k ≥ 0, bβ,k ≤ mk + n for some m ∈ [1, φ] and n ≥ 0,

then, for every k ≥ 0, bβ,k ≤
√
β/φ3 ·mk + n′ for some n′ ≥ 0.

Proof. For k > 5, we have:

φ3 ·
k−1∑
i=0

(bβ,i − i) ≤ φ3 ·
k−1∑
i=0

[(m− 1)i+ n]

≤ m− 1

φ− 1
· φ3 ·

(
1 + b− 2a+

k−1∑
i=0

[(φ− 1) · i+ a]

)
+ φ3nk

= φ(m− 1) · φ3 ·
k−1∑
i=0

(ci − i) + φ3nk ≤ φ(m− 1) · (kφ+ a)(kφ+ a+ 1)

2
+ φ3nk

17



≤
(kφ ·

√
φ(m− 1) + a)(kφ ·

√
φ(m− 1) + a+ 1)

2
+ φ3nk

≤ (mk + a)(mk + a+ 1)

2
+ φ3nk ≤ (mk + φ3n+ a)(mk + φ3n+ a+ 1)

2
,

where the second inequality holds since a, 1 + b− 2a ≥ 0, the third from Observation 6.6, the forth
since (m − 1)φ ≤ 1 and the sixth since φ ·

√
φ(m− 1) ≤ m. Multiplying the last inequality by

β/φ3 ≤ 1 gives:

β ·
k−1∑
i=0

(bβ,i − i) ≤
(
√
β/φ3 ·mk + φ3n+ a)(

√
β/φ3 ·mk + φ3n+ a+ 1)

2

≤
b(
√
β/φ3·mk+φ3n+a+1c∑

i=0

[
(
√
β/φ3 ·mk + φ3n+ a+ 1)− i

]
.

By the definition of bβ,k, the last inequality implies:

bβ,k ≤ max{1,
√
β/φ3 ·mk + φ3n+ a+ 1} .

This completes the proof of the lemma for k > 5 with n′ = max{1, φ3n + a + 1}. We can always
make the lemma hold for k ≤ 5 by choosing a large enough n′.

Corollary 6.9. For any β < φ3 there are constants m ∈ (0, 1) and n ≥ 0 such that bβ,k ≤ mk + n
for every k ≥ 0.

Proof. By Lemma 6.7, bβ,k ≤ ck ≤ φ·k+1. Assume, for the sake of contradiction, that the corollary
is not correct. Hence, there must be m ∈ [1, φ] and n ≥ 0 such that bβ,k ≤ mk+ n for every k ≥ 0,

but the same is not true for any m′ ≤ m+
√
β/φ3 − 1.

On the other hand, by Lemma 6.8, there exists n′ ≥ 0 such that for every k ≥ 0, bβ,k ≤√
β/φ3·mk+n′, which is a contradiction since

√
β/φ3·m = m+m(

√
β/φ3−1) ≤ m+

√
β/φ3−1.

Theorem 6.4, now, follows immediately from Corollary 6.9.

7 Lower Bound for Randomized Algorithms in the Integral Valued
Model

For a model in which all packets have equal values, [10] gave a lower bound of φ on the competitive
ratio of randomized algorithms (where φ is the golden ratio). This is the strongest lower bound
known for randomized algorithms even in models allowing multiple packet values. In this section,
we show that no randomized algorithm is (4 − ε)-competitive for any constant ε > 0 against an
oblivious adversary in the integral valued model. Notice that this result extends to the real valued
model as well, since the real valued model generalizes the integral valued model. Throughout the
section, we consider some β ∈ [1, 4) and assume, for the sake of contradiction, the existence of a
β-competitive randomized algorithm ALG. Consider the adversary given by Algorithm 5.

The idea of Algorithm 5 is as following. If at some iteration Rk < k(k + 1)/(2β), then ALG
is not β-competitive because OPT can get a revenue of k(k + 1)/2 by simply accepting only the
k packets of value k. Thus, ALG must accept at each iteration enough packets to guarantee
Rk ≥ k(k + 1)/(2β). However, as more and more iterations go by, ALG has to accept more and

18



Algorithm 5: Adversary for Randomized Algorithms in the Integer Valued Model

// All packets generated by this adversary are given to ALG during the time

range (0, 1) in the order in which they are generated.

1 for k = 1 to ∞ do
2 Generate k packets of value k.
3 Let Rk be the expected revenue of the algorithm at this point.
4 if Rk < k(k + 1)/(2β) then Terminate.

more packets to keep up with this goal. This makes ALG’s queue increase, which diminishes the
revenue received from new packets, and eventually fail ALG.

The following lemma gives a lower bound on Rk.

Lemma 7.1. Since ALG is β-competitive by our assumption, the adversary never terminates.
Hence, Rk ≥ k(k + 1)/(2β) for every k ≥ 1.

Proof. If the adversary terminates after the kth iteration, then the expected revenue of ALG is
Rk < k(k + 1)/(2β). On the other hand, OPT can accept only the k packets generated by the
adversary on the kth iteration, which results in a revenue of k(k+1)/2. Thus, the competitive ratio
of ALG is worse than:

k(k + 1)/2

k(k + 1)/(2β)
= β .

The last lemma gives a lower bound on Rk; the next lemma establishes an upper bound. Let
di,j denote the jth packet the adversary sends in the ith iteration, pi,j denote the probability that
ALG accepts di,j and pi =

∑i
j=1 pi,j . Notice that pi is also the expected number of packets of value

i accepted by ALG.

Lemma 7.2. For every k ≥ 1, Rk ≤
∑k

i=1 pi(i+ 1/2)− (
∑k
i=1 pi)

2

2 .

Proof. Let Qk and Wk be random variables denoting the number of packets in ALG’s queue after
the kth iteration of the adversary (i.e., immediately after the k packets of value k are generated)
and the total value of the packets ALG accepted up to this this point, respectively. The revenue
of ALG after the kth iteration can be written as:

Wk −
Qk−1∑
i=0

i = Wk −
Qk(Qk − 1)

2
.

Notice that Rk is the expectation of the above expression. Thus,

Rk = E
[
Wk −

Qk(Qk − 1)

2

]
= E[Wk]−

E[Q2
k]− E[Qk]

2
(4)

= E[Wk]−
Var[Qk] + (E[Qk])

2 − E[Qk]

2
≤ E[Wk]−

(E[Qk])
2 − E[Qk]

2
,

where Var[Qk] is the variance of Qk. The expected values of Qk and Wk can be calculated as
following:

E[Wk] =

k∑
i=1

i∑
j=1

[pi,j · w(di,j)] =
k∑
i=1

i · i∑
j=1

pi,j

 =
k∑
i=1

ipi ,

19



and

E[Qk] =
k∑
i=1

i∑
j=1

pi,j =
k∑
i=1

pi .

Plugging these expectations into Inequality (4) completes the proof of the lemma.

The lower and upper bounds given by Lemmata 7.1 and 7.2, together, imply the following
inequality:

k(k + 1)

2β
≤

k∑
i=1

(i+ 1/2) · pi −

(∑k
i=1 pi

)2
2

⇔ k(k + 1)

β
≤

k∑
i=1

(2i+ 1) · pi −

(
k∑
i=1

pi

)2

.

Let Q̄k =
∑k

i=1 pi denote the expected number of packets in ALG’s queue after the kth iteration
of the adversary. For consistency, we also define Q̄0 = 0. The above inequality can be written in
terms of Q̄k as following:

k(k + 1)

β
≤

k∑
i=1

(2i+ 1) · pi −

(
k∑
i=1

pi

)2

= Q̄k(2k + 1)− Q̄2
k − 2 ·

k∑
i=1

Q̄i−1 . (5)

The rest of this section is devoted for proving that the above formula leads to a contradiction.

Observation 7.3. For every m ∈ [0, 1− β−1], 1−
√

1−m− β−1 ≥ m+ β−1 − 1/4.

Proof. Notice that:

1−
√

1−m− β−1 ≥ m+ β−1 − 1/4⇔ 5/4−m− β−1 ≥
√

1−m− β−1

⇔ 25/16 +m2 + β−2 − 5m/2− 5β−1/2 + 2mβ−1 ≥ 1−m− β−1

⇔ m2 +m(2β−1 − 3/2) + 9/16 + β−2 − 3β−1/2 ≥ 0 .

For the last inequality to hold for every m, we need:

(2β−1 − 3/2)2 − 4(9/16 + β−2 − 3β−1/2) ≤ 0

⇔ (4β−2 + 9/4− 6β2)− (9/4 + 4β−2 − 6β−1) ≤ 0 .

Lemma 7.4. If there exist constants m ≥ 0 and n ≤ 0 such that Q̄k ≥ mk + n for every k ≥ 0,
then: m ≤ 1−β−1 and there exists n′ ≤ 0 such that Q̄k ≥ (m+β−1/2−1/8)k+n′ for every k ≥ 0.

Proof. By Equation (5):

Q̄k −
Q̄2
k

2k + 1
≥

2 ·
∑k

i=1 Q̄i−1 + k(k+1)
β

2k + 1
≥

2 ·
∑k

i=1[m(i− 1) + n] + k(k+1)
β

2k + 1

=
mk(k − 1) + 2nk + k(k+1)

β

2k + 1
≥ (m+ β−1)

2
· k + n−m .

If m > 1− β−1, then for large enough k, (m+β−1)
2 · k + n−m ≥ (k + 1)/2. Hence, Q̄k must obey:

Q̄2
k

2k + 1
− Q̄k +

k + 1

2
≤ 0 ,

20



which is a contradiction since this inequality has no solution because:

1− 4 · 1

2k + 1
· k + 1

2
= 1− 2k + 2

2k + 1
< 0 .

Thus, it is safe to assume m ≤ 1− β−1. Let A = (m+ β−1)/2 ≤ 1/2 and B = n−m ≤ 0. Then,

Q̄k ≥
1−

√
1− 4Ak+4B

2k+1

2
2k+1

≥ k ·

(
1−

√
(2− 4A)k + (1− 4B)

2k + 1

)

≥ k ·

(
1−

√
1− 2A+

1− 4B

2k

)
≥ k ·

(
1−
√

1− 2A
)
−
√
k ·
√

1− 4B

2

= k ·
(

1−
√

1−m− β−1
)
−
√
k ·
√

1− 4B

2
≥ k(m+ β−1 − 1/4)−

√
k ·
√

1− 4B

2
,

where the forth inequality holds since
√
a+ b ≤

√
a+
√
b for a, b ≥ 0 and the last one follows from

Observation 7.3. Since β < 4, for large enough k: k(β−1/2− 1/8) ≥
√
k ·
√

1−4B
2 . For such k’s the

lemma holds with n′ = 0. By choosing small enough n′, the lemma can be made to hold also for
the finitely many smaller values of k.

Theorem 7.5. No algorithm is β-competitive for any β ∈ [1, 4).

Proof. Recall that we assumed ALG is β competitive, and let us show this assumption leads to a
contradiction. Let m ≥ 0 and n ≤ 0 be such values obeying:

• Q̄k ≥ mk + n for every k ≥ 0.

• For every n′ ≤ 0, there exists k ≥ 0 for which Q̄k < (m+ β−1/2− 1/8)k + n′.

Such a pair of values must exist since Q̄k ≥ 0 · k + 0 for every k ≥ 0, but by Lemma 7.4 for every
m′ > 1 − β−1 and n′ ≤ 0 there exists k ≥ 0 for which Q̄k < (m + β−1/2 − 1/8)k + n′. On the
other hand, the existence of such a pair of values is an immediate contradiction to the second part
of Lemma 7.4.

8 Conclusion

We considered three variants of HDSP corresponding to three sets of allowed packet values. For
the unrestricted model we showed that there is no hope of a constant competitive ratio algorithm.
For the integral valued model we gave a 4-competitive deterministic algorithm, and showed that no
better constant competitive ratio is possible, even for randomized algorithms. For the real valued
model we gave a 4-competitive randomized algorithm, and a matching lower bound (up to low
order terms). However, there is still a small gap in this model in terms of deterministic algorithms.
We gave a lower bound of φ3− ε ≈ 4.236 while the best upper bound known for this model is 4.24.
Closing the gap, probably by finding a φ3-competitive deterministic algorithm, is an obvious open
problem.

One can consider a general model in which all values larger than c are allowed, for some
c ≥ 0. Notice that this general model includes the real valued and the unrestricted models as
special cases (with c = 1 and c = 0, respectively). As the real valued model has a 4-competitive
randomized algorithm, and the unrestricted model has no constant competitive ratio, it is clear

21



that the competitive ratio depends on c. It may be interesting to explore the exact connection
between c and the competitive ratio.

In a sense, the online setting captures the worst case scenario in which there is no future
knowledge. For many real life situations, this assumption is too pessimistic. One model that
makes a weaker assumption is the stochastic model where the adversary is only allowed to choose
a distribution for the input requests. The requests are then drawn from this distribution using
independent sampling. Garg et al. [11] showed that in this model there is an O(1)-competitive
algorithm for Steiner Tree, Steiner Forest, facility location and vertex cover. The positive results we
present in this paper have matching lower bounds showing that they are tight (up to low order
terms). To improve over these results one must consider a somewhat different setting such as a
stochastic model.

References

[1] N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing policies for QoS switches. In
SODA, pages 761–770, 2003.

[2] Y. Azar and Y. Richter. Management of multi-queue switches in QoS networks. Algorithmica,
43(1-2):81–96, 2005.

[3] Y. Bartal, F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W. Jawor, R. Lavi, J. Sgall, and T. Tichy.
Online competitive algorithms for maximizing weighted throughput of unit jobs. In STACS,
pages 187–198, 2004.

[4] F. Y. L. Chin and S. P. Y. Fung. Online scheduling with partial job values: Does timesharing
or randomization help? Algorithmica, 37(3):149–164, 2003.

[5] M. Chrobak, W. Jawor, J. Sgall, and T. Tichý. Improved online algorithms for buffer man-
agement in QoS switches. ACM Trans. Algorithms, 3(4):50, 2007.

[6] M. Englert and M. Westermann. Lower and upper bounds on fifo buffer management in QoS
switches. Algorithmica, 53(4):523–548, 2009.

[7] M. Englert and M. Westermann. Considering suppressed packets improves buffer management
in quality of service switches. SIAM J. Comput., 41(5):1166–1192, 2012.

[8] M. Feldman and J. S. Naor. Non-preemptive buffer management for latency sensitive packets.
In INFOCOM, pages 186–190, 2010.

[9] A. Fiat, Y. Mansour, and U. Nadav. Competitive queue management for latency sensitive
packets. PEGG, 2007.

[10] A. Fiat, Y. Mansour, and U. Nadav. Competitive queue management for latency sensitive
packets. In SODA, pages 228–237, 2008.

[11] N. Garg, A. Gupta, S. Leonardi, and P. Sankowski. Stochastic analyses for online combinatorial
optimization problems. In SODA, pages 942–951, 2008.

[12] L. Jeż. A universal randomized packet scheduling algorithm. Algorithmica, 67(4):498–515,
2013.

22



[13] L. Jeż, F. Li, J. Sethuraman, and C. Stein. Online scheduling of packets with agreeable
deadlines. ACM Trans. Algorithms, 9(1):5:1–5:11, Dec 2012.

[14] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-similar nature of
ethernet traffic (extended version). IEEE/ACM Trans. Netw., 2(1):1–15, 1994.

[15] V. Paxson and S. Floyd. Wide-area traffic: The failure of poisson modeling. IEEE/ACM
Transactions on Networking, 3:226–244, 1995.

[16] A. Veres and M. Boda. The chaotic nature of tcp congestion control. In INFOCOMM, pages
1715–1723, 2000.

23


