
Nonmonotone Submodular Maximization via a
Structural Continuous Greedy Algorithm

Moran Feldman⋆, Joseph (Seffi) Naor⋆⋆, and Roy Schwartz

Computer Science Dept., Technion, Haifa, Israel
{moranfe,naor,schwartz}@cs.technion.ac.il

Abstract. Consider a suboptimal solution S for a maximization prob-
lem. Suppose S’s value is small compared to an optimal solution OPT
to the problem, yet S is structurally similar to OPT . A natural question
in this setting is whether there is a way of improving S based solely on
this information. In this paper we introduce the Structural Continuous
Greedy Algorithm, answering this question affirmatively in the setting
of the Nonmonotone Submodular Maximization Problem. We im-
prove on the best approximation factor known for this problem. In the
Nonmonotone Submodular Maximization Problem we are given a
non-negative submodular function f , and the objective is to find a subset
maximizing f . Our method yields an 0.42-approximation for this prob-
lem, improving on the current best approximation factor of 0.41 given
by Gharan and Vondrák [5]. On the other hand, Feige et al. [4] showed
a lower bound of 0.5 for this problem.

1 Introduction

Consider a situation where one has a suboptimal solution S for a maximization
problem. The most natural measure for the quality of S is its value with respect
to the objective function. However, an additional measure is the structural simi-
larity of S to an optimal solution OPT of the problem. We are interested in the
relation between these two measures. Suppose S is structurally similar to OPT ,
yet its value is small. We call problems in which such sets exist uncorrelated
objective-structure problems. For such problems it is possible for an algorithm to
produce a solution which is structurally very similar to OPT , and yet is a poor
approximation with respect to values. For example, in the Max Cut problem,
suppose the input is a star. If we put all vertices on one side of the cut, we get
a solution of value 0 which is only different from OPT in one vertex.

For every uncorrelated objective-structure problem P, a natural question is
whether there is an efficient algorithm that, given a solution S structurally sim-
ilar to OPT , produces a solution S′ of large value; i.e., we look for an algorithm
trading structural similarity to OPT for value. If we find such an algorithm for

⋆ Moran Feldman is a recipient of the Google Europe Fellowship in Market Algorithms,
and this research is supported in part by this Google Fellowship.

⋆⋆ This work was partly supported by ISF grant 1366/07.

problem P, then we can improve approximation algorithms for P which produce
(directly, or indirectly) solutions that are structurally similar to OPT .

In this paper we suggest the structural continuous greedy algorithm trading
structural similarity to OPT for value in the context of the Nonmonotone
Submodular Maximization Problem (NSM). Given a ground set E , a func-
tion f : 2E → R is called submodular if for every A,B ⊆ E , f(A) + f(B) ≥
f(A∪B)+ f(A∩B). An instance of NSM consists of a non-negative submodu-
lar function f , and its objective is to find a subset of E maximizing f . An explicit
representation of f might be exponential in the size of E . Hence, we assume the
value oracle model in which the algorithm has access to an oracle that given a set
S returns f(S). This model is probably the most standard one, and is common
throughout the literature.

To see why NSM is indeed an uncorrelated objective-structure problem, ob-
serve the following example. Consider the groundset E = [n]×{a, b}, and the sub-
modular function: f(S) =

∑n
i=1 g(S∩{(i, a), (i, b)}), where g is an indicator func-

tion for the event that its argument is a set of size 1. The set E ′ = [n/2]×{a, b}
has f(E ′) = 0 although it contains half of the elements of every optimal solution.

In the next section we describe the structural continuous greedy algorithm.
We need a few well known terms, which we define here for completeness. Given
a function f , if f(∅) = 0 we say that f is normalized, and if for every A ⊆
B ⊆ E , f(A) ≤ f(B) (respectively, f(A) ≥ f(B)), we say that f is monotone
(respectively, down monotone). Also, we use the notation of OPT throughout
the article to denote an optimal solution to the problem in question. If there are
multiple optimal solutions, OPT denotes an arbitrary fixed one.

1.1 The Structural Continuous Greedy Algorithm

Let us formally define the structural similarity of a set S to OPT . One natural
definition is f(S∩OPT). This definition makes sense for a monotone f . However,
when f may be nonmonotone, we need a definition that also captures structural
similarity due to elements outside of OPT missing also from S. Thus, we define
the structural similarity of a set S to OPT as f(S ∩OPT) + f(S ∪OPT).1

Consider a set S. Removing all elements of S − OPT changes the value of
this set to f(S ∩OPT); hence, if f(S ∩OPT) > f(S), removing all the elements
of S − OPT from S increases the objective function. By submodularity, the
last property also implies that there is at least one element in S − OPT whose
removal from S increases its value. Putting it all together, f(S ∩OPT) > f(S)
implies the existence of an element e ∈ S −OPT such that f(S − {e}) > f(S).
Similarly, f(S ∪OPT) > f(S) implies the existence of an element e ∈ OPT −S
such that f(S∪{e}) > f(S). We can now relate our observations to the definition
of structural similarity: if f(S ∩ OPT) + f(S ∪ OPT) > 2f(S), then the value
of S can be improved by adding or removing a single element from it.

1 The structural similarity is defined with an arbitrary optimal solution (in case there
are multiple options). Hence, the continuous greedy algorithm is guaranteed to im-
prove a set if it is structurally similar to any optimal solution.

The last conclusion seems to suggest that given a set S which is structurally
similar to OPT , and yet has a low value, S can be improved using a local search
algorithm seeking at every stage to improve S by adding or removing a single
element. However, as this algorithm adds and removes elements, the structural
similarity toOPT might decrease; and we do not know how to relate this decrease
to the increase in f(S). Therefore, although we can conclude that such a local
search algorithm will improve S, it is not clear how to give any positive lower
bound on this improvement.

To work around this difficulty, we propose the structural continuous greedy
algorithm. This algorithm maintains a fractional set (i.e., a set in which every
element appears independently with some probability). Initially, every element
of the input set S appears in the fractional set S′ with probability 1, and every
other element appears in it with probability 0. In every iteration the probability
of each element can be changed by a small δ. The probability of an element is
increased if doing so increases the expected value of the fractional set, assuming
all other probabilities are unchanged; and decreased otherwise.

Using arguments similar to those above, we can lower bound the improve-
ment in every iteration of the structural continuous greedy algorithm in terms
of E[f(S′ ∩OPT) + f(S′ ∪OPT)− 2f(S′)]. Hence, as long as S′ is structurally
similar to OPT , in expectation, the structural continuous greedy is guaranteed
to improve it by changing the probabilities of elements. Moreover, after m itera-
tions, the change in the structural similarity of S′ to OPT can be upper bounded
using the following observation: every element of the original set S appears in
S′ with probability at least 1 −mδ, and every element outside of S appears in
S′ with probability at most mδ; which intuitively means that S′ is quite similar
(structurally) to S, and therefore, also to OPT .

The structural continuous greedy inherits much of its structure from an algo-
rithm of Vondrák [16] called “continuous greedy”; however, the two algorithms
are analyzed very differently. The roots of [16]’s continuous greedy algorithm
can be traced back to Wolsey [18], who also gives an algorithm called “continu-
ous greedy”, although, the two “continuous greedy” algorithms share only vague
general ideas. The continuous greedy algorithm of [16] starts with an empty set,
and then only increases the probabilities of elements. This is fine since [16] deals
with monotone submodular functions. On the other hand, the structural contin-
uous greedy, introduced in this paper, works with nonmonotone functions, which
requires both modifications of the algorithm and its analysis (with respect to the
algorithm and analysis of [16]).

There are two differences between our structural continuous greedy algo-
rithm, and the “continuous greedy” algorithm of [16]. First, the initial point
of the structural continuous greedy algorithm is an arbitrary set, and second,
it may both increase and decrease probabilities. Though these differences are
quite minor, the analysis of the two algorithms is completely different. The con-
tinuous greedy of [16] constructs a solution starting with an empty set, and its
analysis strongly uses the monotonicity of f (which implies that increasing the
probabilities of OPT ’s elements is always good). On the other hand, the struc-

tural continuous greedy improves existing sets, and its analysis is based on the
structural similarity of the input to OPT .

1.2 Taking Advantage of the Structural Continuous Greedy

The structural continuous greedy algorithm can improve sets that are already
structurally similar to OPT (at the cost of possibly decreasing their structural
similarity to OPT). However, it is not clear, at first glance, how this can be
used to produce an approximation algorithm for NSM. In order to answer this
question, we have to understand the details of the known algorithms for NSM.

The first constant factor approximation algorithms for NSM were given by
Feige et al. [4]. The simplest algorithm they provide simply selects every element
of the ground set with probability 1/2. Feige et al. [4] showed that this simple
algorithm already achieves a 1/4-approximation. They also suggested a local
search algorithm which basically starts with an arbitrary set and adds or removes
single elements as long as this improves the value of the set. The output set of
this algorithm is called locally optimal because it cannot be improved by adding
or removing a single element. In [4], it is shown that any locally optimal set gives
a 1/3-approximation for NSM.

The problem with local search algorithms is that they tend to get “stuck” in
local optima. One way to get around that is to add some noise to the system. For
that purpose, [4] defines for every set S, a random set R(S) containing every ele-
ment of S with probability 2/3 and every other element with probability 1/3 (in
other words, to get R(S), we start with S and switch the state of every element,
from being in S to being outside of it or vice versa, with probability 1/3). The
local search algorithm now tries to find a set maximizing E[f(R(S))]. Somewhat
surprisingly, this randomized local search has an improved approximation ratio
of 2/5. Looking more carefully at the analysis of [4], it actually shows that if S
is a locally optimal set (with respect to the last algorithm), then:

E[f(R(S))] +
f(S̄)

9
≥ 4f(OPT)

9
.

This inequality guarantees that the expected values of max{f(S̄), f(R(S))} is
at least 0.4f(OPT). Now, observe that f(S ∩OPT) + f(S̄ ∩OPT) ≥ f(OPT),
and f(S ∪OPT)+ f(S̄ ∪OPT) ≥ f(OPT). This suggests a negative correlation
between the structural similarity to OPT of S and S̄ in the following sense: if one
of them is structurally far from OPT , then the other one must be structurally
close to OPT . Since R(S) is basically S with some noise, we also get a negative
correlation between the structural similarity to OPT of R(S) and S̄. Hence, if
R(S) has a low expected value, and it is too far from OPT for the structural
continuous greedy algorithm to improve it significantly, then S̄ must have both:
significant value and structural similarity to OPT ; hence, running the structural
continuous greedy algorithm on it is guaranteed to produce a good set.

Using the above observations, we can get a 0.413-approximation, which al-
ready slightly improves on the state of the art algorithm of Gharan and Von-
drack [5] that gives a 0.41-approximation (we defer details to a full version of this

paper). However, we can do better if we use the structural continuous greedy
algorithm together with [5]’s algorithm, though the combination of these two
techniques requires some work. The algorithm of [5] is a simulated annealing
algorithm. It starts as a local search algorithm with a lot of noise (i.e., R(S) is
obtained from S by adding or removing every element with high probability),
and gradually decreases the noise level. Intuitively, starting with a lot of noise
should help the algorithm avoid inferior local maxima.

Simulated annealing algorithms are common in practice, but they often turn
out to be very hard to analyze. The analysis of [5] works as following. For some,
relatively high, level of noise p0, the algorithm is analyzed as a noisy local search
algorithm, producing a lower bound on the value of the algorithm’s solution at
noise level p0. Now, observe what happens as the algorithm reduces the noise
level. In a locally optimal solution, infinitesimally increasing the probability of
every element inside the solution, and decreasing the probability of every el-
ement outside of the solution, only improve the solution. This change in the
probabilities is exactly equivalent to a reduction in the noise level. Hence, when-
ever the algorithm reduces the noise level, since the current solution is locally
optimal (the algorithm does not reduce the noise level unless this is the case),
the reduction in the noise level can only improve the solution.

The main observation of [5] is a way to show a positive lower bound on the
improvement achieved when the noise is reduced. This lower bound is negatively
correlated with f(S̄), where S is the current solution of the algorithm. This
immediately implies that either the set S̄ is good at some point, or the value
of S significantly increases as the noise level decreases. Together with the lower
bound on the value of S at noise level p0, an approximation guarantee follows.

The above description does not give an obvious way to combine [5]’s algo-
rithm with the structural continuous greedy. In order for the structural con-
tinuous greedy algorithm to be useful, we must find sets in the proof of [5]’s
algorithm with the following properties.

– Structurally similar to OPT , at least when [5]’s algorithm behaves poorly.
– Has large value, again, at least when [5]’s algorithm behaves poorly.

If we find such a set, it can be improved using the structural continuous greedy
algorithm, and then be used as an alternative solution. In other words, whenever
the original algorithm behaves poorly, the structural continuous greedy produces
a good alternative solution, which results in an improved approximation ratio.

To this end, we make the following observation. The bound, given by [5],
on the improvement achieved when the noise is reduced is actually positively
correlated with f(S ∩ OPT) + f(S ∪ OPT). The negative correlation of the
bound with f(S̄) follows since, by submodularity, f(S̄) ≥ f(OPT) − f(S ∩
OPT) − f(S ∪ OPT). Another inequality that follows from f ’s submodularity
is f(S̄ ∩OPT)+ f(S̄ ∪OPT) ≥ 2f(OPT)− f(S ∩OPT)− f(S ∪OPT). Hence,
the lower bound is also negatively correlated with the structural similarity of S̄
to OPT . In conclusion, if at some point the value of the algorithm’s solution
does not improve fast enough, then at that point S̄ has two properties: it has a
relatively high value and it is structurally similar to OPT . Therefore, applying

the structural continuous greedy algorithm to S̄ is guaranteed to produce a good
set. This is the intuition behind our 0.42 approximation for NSM.

We note that [4] showed that no algorithm making only a polynomial number
of oracle queries gives better than 1/2-approximation for NSM. This hardness
result holds even when f is symmetric, i.e., f(S) = f(E − S), in which case it is
tight [4].

1.3 Related Work

It is well known that submodular functions can be minimized in polynomial time
[14]. However, maximizing a submodular function turns out to be a much more
difficult task. Maximization of nonnegative submodular functions generalizes
well known NP-hard problems such as Max-Cut [6], and [4] proved it impos-
sible to give better than 0.5-approximation for it using a polynomial number
of oracle queries. Related problems ask to maximize a nonnegative submodular
function subject to various combinatorial constraints on the sets that we are
allowed to choose [7, 11, 12, 17] or minimize a submodular function subject to
such constraints [15, 8, 9].

Another line of work deals with maximizing normalized monotone submodu-
lar functions, again, subject to various combinatorial constraints. A continuous
greedy algorithm was given by Calinescu et al. [1] for maximizing a normal-
ized monotone submodular function subject to a matroid constraint. Later, Lee
et al. [12] gave a local search algorithm achieving 1/p − ε approximation for
maximizing such functions subject to intersection of p matroids. Kulik et al.
[10] showed a 1 − 1/e − ε approximation algorithm for maximizing a normal-
ized monotone submodular function subject to multiple knapsack constraints.
Recently, Chekuri et al. [3], gave a nonmonotone counterpart of the continuous
greedy algorithm of [16]. This result improves several nonmonotone submodular
optimization problems. Some of the above results were generalized by Chekuri et
al. [2], which gives a dependent rounding for various polytopes, including matroid
and matroid-intersection polytops. The advantage of this rounding technique is
that it guarantees strong concentration bounds for submodular functions.

Organization. Section 2 formally defines NSM and the notation we use. In
addition, this section also states a few useful known technical lemmata. Section 3
describes the structural continuous greedy algorithm, and Section 4 shows how
to combine this algorithm with the simulated annealing algorithm of [5].

2 Preliminaries

Formally, in NSM, we are given a nonnegative submodular function f : 2E →
R+. The objective is to find a subset S ⊆ E maximizing f(S). We denote the
size of the ground set E by n. In all algorithms presented, we assume n is larger
than any given constant (if this is not the case, one can solve NSM optimally
using an exhaustive search).

There are two well known extensions of a submodular function f : 2E → R+

to the hypercube [0, 1]E . The first one is F (x) : [0, 1]E → R+, the multilinear
extension introduced by [1]. For a given vector z ∈ [0, 1]E , let R(z) be a set con-
taining every element e ∈ E with probability ze, independently. The multilinear
extension of f is defined as F (z) = E[R(z)]. This extensions is called multilinear
because it can also be written as follows:

F (z) =
∑
S⊆E

∏
e∈S

ze ·
∏
e ̸∈S

(1− ze) · f(S)

 .

The other known extension of submodular functions is the Lovász extension
introduced in [13]. Define Tλ(z) to be the set of elements whose coordinate in z is
at least λ. The Lovász extension of a submodular function f : 2E → R+ is defined

as f̂(z) =
∫ 1

0
f(Tλ(z))dλ. This definition can also be interpreted in probabilistic

terms as the expected value of f over the set Tλ(z), where λ is uniformly selected
from the range [0, 1]. In this paper, the Lovász extension is used only to lower
bound the multilinear extension. This is done using the following theorem.

Theorem 1 (Lemma A.4 in [17]). Let F (z) and f̂(z) be the multilinear and
Lovász extensions of a submodular function f , respectively. Then, for every z ∈
[0, 1]E , F (z) ≥ f̂(z).

We abuse notation, and write F (z ∪ S) to denote E[f(R(z) ∪ S)], F (z − S)
to denote E[f(R(z) − S)] and so on. We also use the shorthand ∂eF (z) for
F (z ∪ e) − F (z − e). The multilinear nature of F yields the following useful
observation which relates these notations.

Observation 1 Let F (z) be the multilinear extension of a submodular function
f : 2E → R+. Then, for every e ∈ E,

∂eF (z) =
F (z ∪ e)− F (z)

1− ze
=

F (z)− F (z − e)

ze
,

assuming the denominators are not 0.

The following lemma shows that the change in F (z) induced by making a
small modification to the coordinates of z is almost equal to the sum of changes
that would have resulted from modifying each coordinate independently. This
kinds of lemmata are standard, however, we include its proof in Appendix A for
completeness.

Lemma 1. Consider two vectors z, z′ ∈ [0, 1]E such that for every e ∈ E, |ze −
z′e| ≤ δ, for δ ≤ n−3. Then, F (z′)− F (z) ≥

∑
e∈E(z

′
e − ze) · ∂eF (z)−O(n−1δ).

Given a set S ⊆ E and a number p ∈ [0.5, 1], let zp(S) be a vector of [0, 1]E ,
containing p in the coordinate of every element of S, and 1 − p in all other
coordinates. Since the structural similarity of S to OPT is often used in our
proofs, we denote it by V (S), i.e., V (S) = f(S ∩ OPT) + f(S ∪ OPT). For
simplicity of the exposition we assume f(OPT) = 1. This assumption removes
some clattering from the mathematical calculations, and can be easily removed.

3 The Structural Continuous Greedy Algorithm

In this section we show the structural continuous greedy algorithm for NSM.
The structural continuous greedy algorithm improves a set S which has some
structural resemblance to OPT (at the cost of possibly making the set less
structurally similar to OPT).

Structural Continuous Greedy for NSM (f, S, E):
1. Let δ = n−3. Initialize t = 0 and z0 = 1S .
2. While t < 1 do:
3. For every element e ∈ E do:
4. If ∂eF (zt) > 0,a (zt+1)e = min{1, (zt)e + δ}.
5. If ∂eF (zt) < 0, (zt+1)e = max{0, (zt)e − δ}.
6. t← t+ δ
7. Return R(z1)
a The algorithm does not have access to ∂eF (zt), however, it can approximate it
up to any required accuracy by averaging independent random samples. This is
a standard practice, and we omit details (e.g., see [1]). Taking the error induced
by the random sampling into account effects our results, with high probability,
only by a lower order term.

We prove in this section the following theorem.

Theorem 2. Assuming V (S) ≥ 2f(S), the Structural Continuous Greedy Algo-
rithm for NSM produces a solution of expected value at least

V (S)

4
·
[
2− ln

[
3− 4f(S)

V (S)

]]
−O(n−1) .

We define a few sets of elements that we will refer to. Let E0t (resp. E1t)
be the set of elements whose coordinates in zt are 0 (resp. 1), E+t be the set
{e ∈ E|∂eF (zt) ≥ 0}, and E−t be E − E+t .

The following lemma shows that there is a set of elements for which the gain
achieved by changing the coordinate of each one of them independently (i.e.,
when we change one coordinate, we assume the others are kept unchanged) is
significant.

Lemma 2. At every time t,
∑

e∈OPT∩(E+
t −E1

t)
∂e(zt)−

∑
e∈OPT∩(E−

t −E0
t)
∂e(zt) ≥

F (OPT ∩ zt) + F (OPT ∪ zt)− 2F (zt).

Proof. Observe that:

∑
e∈OPT∩(E−

t −E1
t)

F (zt ∪ e)− F (zt) =
∑

e∈OPT∩(E−
t −E1

t)

(1− (zt)e) · ∂eF (zt) ≤ 0 .

Using this observation, we get:∑
e∈OPT∩(E+

t −E1
t)

∂eF (zt) ≥
∑

e∈OPT∩(E+
t −E1

t)

(1− (zt)e) · ∂eF (zt) (1)

=
∑

e∈OPT∩(E+
t −E1

t)

F (zt ∪ e)− F (zt)

≥
∑

e∈OPT−E1
t

F (zt ∪ e)− F (zt)

≥ F (zt ∪ (OPT − E1t))− F (zt) = F (zt ∪OPT) .

Analogously, we can also get:∑
e∈OPT∩(E−

t −E0
t)

∂eF (zt) ≤ F (zt)− F (zt −OPT) . (2)

The lemma now follows by combining (1) and (2).

Together with Lemma 1, Lemma 2 shows that there is a set of elements whose
coordinates can be changed together to produce a significant improvement. The
following lemma shows that the algorithm indeed finds such a set.

Lemma 3. F (zt+δ)−F (zt) ≥ δ[F (OPT∩zt)+F (OPT∪zt)−2F (zt)]−O(δn−1).

Proof. The algorithm increases the coordinates of all elements in E+t − E1t by
δ, and decreases the coordinates of all elements in E−t − E0t by δ. Hence, by
Lemma 1,

F (zt+δ)− F (zt) ≥ δ
∑

e∈E+
t −E1

t

∂eF (z)− δ
∑

e∈E−
t −E0

t

∂eF (z)−O(n−1δ) .

The lemma now follows by combining this inequality with Lemma 2.

The following lemma lower bounds the similarity of R(zt) to OPT in terms
of the similarity of the original set S to OPT and the time that passed so far.

Lemma 4. For every time t, the following two inequalities hold:

– F (zt ∩OPT) ≥ (1− t) · f(S ∩OPT).
– F (zt ∪OPT) ≥ (1− t) · f(S ∪OPT).

Proof. Clearly, for every element e ∈ OPT , f(OPT) ≥ f(OPT − e). By sub-
modularity, this implies that f is monotone on subsets of OPT . Observe that
f(X ∩OPT) is also a submodular function. Therefore, we can apply Theorem 1
to it, and get

F (zt ∩OPT) ≥
∫ 1

0

f(Tλ(zt) ∩OPT)dλ ≥
∫ 1−t

0

f(Tλ(zt) ∩OPT)dλ .

At time t, every element e ∈ S must have (zt)e ≥ 1− t, therefore, the set Tλ(zt)
in the integrand must contain S. Hence, by plugging this observation into the
previous inequality, and using the monotonicity of f over subsets of OPT , we
get

F (zt ∩OPT) ≥
∫ 1−t

0

f(S ∩OPT)dλ = (1− t) · f(S ∩OPT) .

The other inequality guaranteed by the lemma is proved analogously.

Plugging Lemma 4 into Lemma 3, we get the following lower bound on the
improvement made by the algorithm at each step.

Corollary 1. F (zt+δ)−F (zt) ≥ δ[(1−t)[f(S∩OPT)+f(S∪OPT)]−2F (zt)]−
O(n−1δ) = δ[(1− t)V (S)− 2F (zt)]−O(n−1δ).

Let g be the function which is the solution of the following recursive formula.
g(t+δ)−g(t) = δ[(1−t)V (S)−2g(t)], with the boundary condition g(0) = f(S).
Lemmata 5 and 6 prove that it is sufficient to show that at some point g(t) ≥ X
in order to prove F (z1) ≥ X −O(n−1).

Lemma 5. For evert time t, F (zt) ≥ g(t)−O(n−1t).

Proof. Let c be the constant hiding behind the big O in Corollary 1. We prove
by induction that F (zt) ≥ g(t) − cn−1t. For time t = 0, the claim holds since
F (z0) = f(S) = g(0). Assume the claim holds for some time t, let us prove it for
time t+ δ via Corollary 1.

F (zt+δ) ≥ (1− t)δV (S) + (1− 2δ)F (zt)− cn−1δ

≥ (1− t)δV (S) + (1− 2δ)g(t)− cn−1(δ + t) = g(t+ δ)− cn−1(δ + t) .

Lemma 6. For every time t, F (z1) ≥ F (zt)−O(n−1).

Proof. The algorithm increases only coordinates of elements with a positive
∂eF (zt), and decreases only coordinates of elements with a negative ∂eF (zt).
Hence, by Lemma 1, for every time t, F (zt+δ) ≥ F (zt) − O(n−1δ). Hence, the
value of F (zt) can decrease only by O(n−1δ) in every time step. Since there are
only δ−1 time steps, the lemma follows.

Let h be the function h(t) = 3
4V (S) ·

[
1− 2t

3 − e−2t
]
+ e−2t · f(S) . Observe

that dh/dt = (1 − t)V (S) − 2h(t). The next lemma shows that h lower bounds
g (given some condition), and therefore, also lower bounds the value of the
algorithm’s solution.

Lemma 7. If for every t′ ≤ t, g(t′) ≤ 0.5(1− t)V (S), then g(t) ≥ h(t).

Proof. We prove the lemma by induction on t. For time t = 0 the lemma follows
from the definition of h(0). Assume that the lemma holds for some time t, let

us prove it for time t+ δ. Let t1 be the last time in the range [t, t+ δ] in which
h(t1) ≤ g(t).

h(t+ δ) = h(t1) +

∫ t+δ

t1

h′(τ)dτ = h(t1) +

∫ t+δ

t1

((1− τ)V (S)− 2h(τ)) dτ

≤ g(t) +

∫ t+δ

t1

((1− t)V (S)− 2g(t)) dτ

= g(t) + (t+ δ − t1) ((1− t)V (S)− 2g(t))

≤ g(t) + δ ((1− t)V (S)− 2g(t)) = g(t+ δ) .

Let t∗ = 0.5 ln
[
3− 4f(S)

V (S)

]
. Notice that if f(S∪OPT)+f(S∩OPT) ≥ 2f(S),

then ℓ∗ ∈ [0, 0.5 ln 3] ⊆ [0, 1].

Lemma 8. Assuming V (S) ≥ 2f(S), h(t∗) = 0.25V (S) ·
[
2− ln

[
3− 4f(S)

V (S)

]]
.

Proof.

h(t∗) = h

(
0.5 ln

[
3− 4f(S)

V (S)

])

=
3

4
V (S)

1− ln
[
3− 4f(S)

V (S)

]
3

− V (S)

3V (S)− 4f(S)

+ f(S) · V (S)

3V (S)− 4f(S)

=
3

4
V (S)

1− ln
[
3− 4f(S)

V (S)

]
3

− V (S)

4
=

1

4
V (S)

[
2− ln

[
3− 4f(S)

V (S)

]]
.

We are now ready to prove Theorem 2.

Proof (of Theorem 2). First let us claim that somewhere g gets the value:

0.25V (S) ·
[
2− ln

[
3− 4f(S)

V (S)

]]
−O(n−3) .

If the assumption of Lemma 7 does not hold for t∗, then g gets, somewhere,
the value:

0.5(1− t∗)V (S) = 0.5

(
1− 0.5 ln

[
3− 4f(S)

V (S)

])
V (S) .

Which proves the claim. Therefore, we can safely assume that the assumption of
Lemma 7 holds, which implies that g gets value of at least h(δ · ⌊t∗/δ⌋). In order
to lower bound this value, we can use the observation that for every t ∈ [0, t∗],
h′(t) ≤ 2. Hence,

h(δ · ⌊t∗/δ⌋) ≥ h(t∗)− 2δ ≥ h(t∗)− 2n−3 .

And the theorem now follows from Lemmata 5 and 6.

4 Simulated Annealing Algorithm

Given a set S, let us denote by C(S) the random set resulting from running the
structural continuous greedy algorithm on S. Consider the following algorithm.

Simulated Annealing Algorithm for NSM (f, E):
1. Let d = 0.752−

√
2/(1 +

√
2) and δ = d⌈n3d⌉−1.a

2. Initialize p =
√
2/(1 +

√
2) and Ap = ∅.

3. Repeat:
4. Set Bp ← Ap

5. While there exists a set S such that:
(i) |S ⊕Bp| = 1
(ii) F (zp(S)) > F (zp(Bt))

6. Replace Bp with S
7. Set Ap+δ ← Bp

8. Update p← p+ δ
9. Until p = 0.752.
10. Return the best set in {R(z0.752(B0.752))} ∪ {B̄p, C(B̄p)}0.752

p=
√

2
1+

√
2

a Informally δ is the inverse of a number which is both at least n3 and dividable
by d.

Remark: As written the Simulated Annealing algorithm does not run in poly-
nomial time for two reasons: the number of iterations that the algorithm makes
might be exponential, and checking condition exactly ii cannot be done in poly-
nomial time using only value oracle access to f . However, both problems can be
solved using standard means (see, e.g., [12, 1]), at the cost of losing a lower order
term in the approximation ratio. We omit the details.

Theorem 3. The Simulated Annealing Algorithm for NSM returns a solution
whose expected value is at least 0.42.

The proof of the theorem combines ideas from the proof of the simulated
annealing algorithm of [5] with the new observations described in Section 1.2.
Due to lack of space, this proof is differed to Appendix B.

References

1. Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrak. Maximizing
a monotone submodular function subject to a matroid constraint. To appear in
SIAM Journal on Computing.

2. Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized
rounding via exchange properties of combinatorial structures. In FOCS, 2010.

3. Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function max-
imization via the multilinear relaxation and contention resolution schemes. In to
appear in STOC ’11, 2011.

4. Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone
submodular functions. In FOCS, pages 461–471, 2007.

5. Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated
annealing. To appear in SODA 2011.

6. Michel X. Goemans and David P. Williamson. Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite program-
ming. Journal of the ACM, 42(6):1115–1145, 1995.

7. Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained
non-monotone submodular maximization: Offline and secretary algorithms. To
appear in WINE 2010.

8. Satoru Iwata and Kiyohito Nagano. Submodular function minimization under
covering constraints. In FOCS, pages 671–680, 2009.

9. Stefanie Jegelka and Jeff Bilmes. Cooperative cuts: Graph cuts with submodular
edge weights. Technical Report 189-03-2010, Max Planck Institute for Biological
Cybernetics, Tuebingen, 2010.

10. Ariel Kulik, Hadas Shachnai, and Tami Tamir. Maximizing submodular set func-
tions subject to multiple linear constraints. In SODA, pages 545–554, 2009.

11. Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Max-
imizing non-monotone submodular functions under matroid or knapsack con-
straints. SIAM Journal on Discrete Mathematics, 23(4):2053–2078, 2010.

12. Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over
multiple matroids via generalized exchange properties. In APPROX, pages 244–
257, 2009.

13. László Lovász. Submodular functions and convexity. In A. Bachem, M. Grötschel,
and B. Korte, editors, Mathematical Programming: the State of the Art, pages
235–257. Springer, 1983.

14. L. Lovász M. Grötschel and A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatoria, 1(2):169–197, 1981.

15. Zoya Svitkina and Lisa Fleischer. Submodular approximation: Sampling-based
algorithms and lower bounds. In FOCS, pages 697–706, 2008.

16. Jan Vondrák. Optimal approximation for the submodular welfare problem in the
value oracle model. In STOC, pages 67–74, 2008.

17. Jan Vondrák. Symmetry and approximability of submodular maximization prob-
lems. In FOCS, pages 651–670, 2009.

18. L. A. Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica, 2(4):385–393, 1982.

A Proof of Lemma 1

First, we need a few definitions. Let A be the set of elements e with z′e > ze,
and let B be the set of elements with z′e < ze. For the sake of the proof, we
assume R(z′) is formed from R(z) using the following process. Every element
of A − R(z) is added to a set D with probability of 1 − (1 − z′e)/(1 − ze), and
every element of B ∩R(z) is added to D with probability 1− z′e/ze. Then, R(z′)
is defined as R(z) ⊕ D. Observe that every element e ∈ E gets into D with
probability |ze − z′e| ≤ δ, independently. We are now going to bound the value
of F (z′)− F (z) = E[f(R(z′))− f(R(z))], given various constraints on D.

Lemma 9.
∑

e∈E(z
′
e − ze) · ∂eF (z) ≤

∑
e∈E Pr[D = {e}] · E[F (z′) − F (z)|D =

{e}] + 2n−1δ.

Proof. Let E+ be the set of elements from E which have (z′e − ze) · ∂eF (z) ≥ 0.
Observe that for every e ∈ E+,

(z′e − ze) · ∂eF (z) = |z′e − ze| · E[F (z′)− F (z)|D = {e}]

=
Pr[D = {e}] · E[F (z′)− F (z)|D = {e}]∏

e′∈E−e (1− |z′e′ − ze′ |)

≤ Pr[D = {e}] · E[F (z′)− F (z)|D = {e}]∏
e′∈E−e (1− δ)

= (1− δ)
1−|E| · Pr[D = {e}] · E[F (z′)− F (z)|D = {e}]

< (1− δ)
−n · Pr[D = {e}] · E[F (z′)− F (z)|D = {e}] .

And the term, (1− δ)n can be lower bounded as following.

(1− δ)n ≥ (1− n−3)n ≥ n2
√
e−1(1− n−3) ≥ e−2n−2

≥ 1− 2n−2 .

Also, for every e ∈ E − E+,

(z′e − ze) · ∂eF (z) = |z′e − ze| · E[F (z′)− F (z)|D = {e}]

=
Pr[D = {e}] · E[F (z′)− F (z)|D = {e}]∏

e′∈E−e (1− |z′e′ − ze′ |)
≤ Pr[D = {e}] · E[F (z′)− F (z)|D = {e}] .

Combining everything, we get:∑
e∈E

(z′e − ze) · ∂eF (z)− 2n−1δ ≤
∑
e∈E

(z′e − ze) · ∂eF (z)− δn(2n−2)

≤
∑
e∈E

[(z′e − ze) · ∂eF (z)− 2n−2 · |(z′e − ze) · ∂eF (z)|]

≤
∑
e∈E

Pr[D = {e}] · E[F (z′)− F (z)|D = {e}] .

Lemma 10. E[F (z′)− F (zt) | D = ∅] = 0.

Proof. D = ∅ implies R(z′) = R(z).

Lemma 11. Pr[|D| ≥ 2] · E[F (z′)− F (z) | |D| ≥ 2] ≥ −2n−1δ.

Proof. Let us bound the probability that |D| ≥ 2. Since every element enters
into D with probability at most δ ≤ n−3:

Pr[|D| ≥ 2] ≤ 1− (1− δ)n − n · δ · (1− δ)n−1 ≤ 1− (1 + nδ) · (1− δ)n

≤ 1− (1 + nδ) · e−nδ · (1− nδ2) ≤ 1− (1 + nδ)(1− nδ)(1− nδ2)

= 1− (1− n2δ2)(1− nδ2) ≤ 2n2δ2 ≤ 2n−1δ .

Therefore, we get:

Pr[|D| ≥ 2] · E[F (z′)− F (z) | |D| ≥ 2] ≥ −Pr[|D| ≥ 2] ≥ −2n−1δ .

Lemma 1 now follows immediately from the above lemmata and the law of
total probability.

B Proof of Theorem 3

In this section we assume for the sake of contradiction that the Theorem 3 is
wrong, i.e., the expected value of the simulated annealing’s solution is less than
0.42.

Observation 2 For every time p, F (zp(Bp)) ≥ F (zp(Ap)).

Proof. Clearly, the value of F (zp(Bp)) never decreases. The observation now
follows because the original value of F (zp(Bp)) is F (zp(Ap)).

Every set Bp is a local optimum, i.e., there is no set S ⊆ E such that:
(i) S is produced from Bp by adding or removing a single element.
(ii) F (zp(S)) > F (zp(Bp)) The following lemma applies to local optima.

Lemma 12 (Lemma 3.5 of [5]). Let q ∈ [1/3, 1/(1 +
√
2)], p = 1− q and let

S be a local optimum with respect to F (zp(S)). Let β = f(S̄). Then,

F (zp(S)) ≥ 1

2
(1− q2)− q(1− 2q)β .

Corollary 2. For p′ =
√
2/(1 +

√
2), F (zp

′
(Bp′)) ≥ 0.384.

Proof. By plugging q = 1−p′ = 1/(1+
√
2) into Lemma 12, we get F (zp

′
(Bp′)) ≥√

2−1−(5
√
2−7)f(B̄p′). Since we assumed Theorem 3 is wrong, we get f(B̄p′) <

0.42, and plugging this into the previous inequality yields

F (zp
′
(Bp′)) ≥

√
2− 1− (5

√
2− 7) · 0.42 ≥ 0.384 .

The next step is to show that every set Bp is structurally similar to OPT .

Lemma 13. For x ≥ 2y ≥ 0, the expression E = x ·
[
2− ln

[
3− 4y

x

]]
is an

increasing function of x.

Proof. The derivative of E by x is

dE

dx
=

[
2− ln

[
3− 4y

x

]]
− x ·

[
3− 4y

x

]′
3− 4y

x

=

[
2− ln

[
3− 4y

x

]]
− x ·

4y
x2

3− 4y
x

= 2− ln

[
3− 4y

x

]
−

4y
x

3− 4y
x

.

Replacing 4y/x by z, and deriving the derivative by z, we get[
2− ln [3− z]− z

3− z

]′
=

1

3− z
− (3− z) + z

(3− z)2
=

3− z − 3

(3− z)2
≤ 0 .

Hence, increasing the value of z decreases the derivative. Therefore,

dE

dx
≥ 2− ln

[
3− 4y

2y

]
−

4y
2y

3− 4y
2y

= 2− ln [3− 2]− 2

3− 2
= 2− ln 1− 2 = 0 .

Lemma 14. For every p, V (Bp) ≥ 0.689.

Proof. Since we assumed Theorem 3 is wrong, f(B̄p), f(C(B̄p)) < 0.42. Assume,
also, f(Bp ∪OPT) + f(Bp ∩OPT) = V (Bp) < 0.689. Then:

– f(B̄p) ≥ 1− [f(Bp ∪OPT) + f(Bp ∩OPT)] ≥ 0.311.
– V (B̄p) = f(B̄p∪OPT)+f(B̄p∩OPT) ≥ 2−[f(Bp∪OPT)+f(Bp∩OPT)] ≥

1.311.

We know 2f(B̄p) ≤ 0.84 ≤ 1.311, hence, we can use Theorem 2 and Lemma 13.

C(B̄p) ≥ 0.25V (B̄p) ·
[
2− ln

[
3− 4f(B̄p)

V (B̄p)

]]
−O(n−1)

≥ 0.25 · 1.311 ·
[
2− ln

[
3− 4 · 0.311

1.311

]]
−O(n−1) ≥ 0.42 .

Which contradicts the assumptions that Theorem 3 is wrong.

We now use the knowledge that Bp is structurally similar to OPT in order
to lower bound the improvement the algorithm achieves when p increases.

Lemma 15. For every p,

(1− p) · [F (zp+δ(Ap+δ))− F (zp(Bp))] ≥

(1− p)δ

 ∑
e∈Bp∩OPT

∂eF (zp(Bp))−
∑

e∈B̄p−OPT

∂eF (zp(Bp))

− pδ

 ∑
e∈Bp−OPT

∂eF (zp(Bp))−
∑

e∈B̄p∩OPT

∂eF (zp(Bp))

−O(n−1δ) .

Proof. Since Ap+δ = Bp, the coordinate of every element of Bp is larger in
zp+δ(Ap+δ) by δ in comparison to its value in zp(Bp). Similarly, the elements of
B̄p are smaller by δ. Hence, by Lemma 1,

F (zp+δ(Ap+δ))− F (zp(Bp)) ≥ δ
∑
e∈Bp

∂eF (zp(Bp)) (3)

− δ
∑
e ̸∈Bp

∂eF (zp(Bp))−O(n−1δ) .

Since F is multilinear, for every element e ∈ Bp with ∂eF (zp(Bp)) < 0, removing
e from Bp will increase the value of F (zp(Bp)), which contradicts our assumption
that Bp is locally optimal. Hence, for every e ∈ Bp, ∂eF (zp(Bp)) ≥ 0. Similarly,
we can also get that for every e ̸∈ Bp, ∂eF (zp(Bp)) ≤ 0. Therefore,∑

e∈Bp−OPT

∂eF (zp(Bp))−
∑

e∈B̄p∩OPT

∂eF (zp(Bp)) ≥ 0 . (4)

The lemma follows by multiplying (3) by (1− p) and combining it with (4).

Lemma 16. For every p,

(1− p) · [F (zp+δ(Ap+δ))− F (zp(Bp))]

≥ δ[2(1− p) + (2p− 1)V (Bp)− 2F (zp(Bp))] .

Proof. Observe the following inequality.

(1− p) ·

 ∑
e∈Bp∩OPT

∂eF (zp(Bp))−
∑

e∈B̄p−OPT

∂eF (zp(Bp))

− p

 ∑
e∈Bp−OPT

∂eF (zp(Bp))−
∑

e∈B̄p∩OPT

∂eF (zp(Bp))

=

∑
e∈Bp∩OPT

F (zp(Bp) ∪ e)− F (zp(Bp))−
∑

e∈B̄p−OPT

F (zp(Bp))− F (zp(Bp)− e)

−
∑

e∈Bp−OPT

F (zp(Bp))− F (zp(Bp)− e) +
∑

e∈B̄p∩OPT

F (zp(Bp) ∪ e)− F (zp(Bp))

≥ F (zp(Bp) ∪OPT)− F (zp(Bp))− F (zp(Bp)) + F (zp(Bp)−OPT)]

(∗)
≥ 2(1− p) + (2p− 1)V (Bp)− 2F (zp(Bp)) .

Where (∗) follows from Theorem 1. Plugging this inequality into Lemma 15
completes the proof.

Corollary 3. For every p, (1 − p) ·
[
F (z̄t+δ(Bt+δ))− F (z̄t(Bt))

]
≥ δ[1.317 −

0.634p− 2F (zp(Bp))]−O(n−1δ).

Proof. Follows immediately from Lemmata 16 and 14.

Let g be the function which is the solution of the following discrete recursive
formula. (1−p) · [g(p+ δ)− g(p)] = δ[(1.317−0.634p)f(OPT)−2g(p)], with the
boundary condition g(

√
2/(1 +

√
2)) = 0.384.

Lemma 17. For every p, F (zp(Bp)) ≥ g(p)−O(pn−1) = g(p)−O(n−1).

Proof. Let c be the constant hiding behind the big O notation in Corollary 3.
We prove by induction that F (zp(Bp)) ≥ g(p) − 5cpn−1. For p =

√
2/(1 +

√
2)

the claims follows immediately from Corollary 2. Assume that the claim holds

for some p, let us prove it for p+ δ.

F (zp+δ(Bp+δ)) ≥ F (zp(Bp)) +
δ[1.317− 0.634p− 2F (zp(Bp))]− cn−1δ

1− p

= F (zp(Bp)) ·
[
1− 2δ

1− p

]
+

δ(1.317− 0.634p)− cn−1δ

1− p

≥
[
g(p)− 5cpn−1

]
·
[
1− 2δ

1− p

]
+

δ(1.317− 0.634p)− cn−1δ

1− p

≥ g(p) +
δ[1.317− 0.634p− 2g(p)]

1− p
− 5c(p+ δ)n−1

= g(p+ δ)− 5c(p+ δ)n−1

Let h be the function:

h(p) =
0.0405− 0.634

√
2

1+
√
2

2
5+2

√
2

(1− p)2 + 0.634(1− p) + 0.3435 .

Observe that h if a solution of the differential equation (1 − p) · dhdp = 1.317 −
0.634p − 2h(p). The maximum of h is attained at about p = 0.752, and h(p) is
monotonically increasing in the range [

√
2/(1+

√
2), 0.752]. Moreover, h(0.752) >

0.42, hence, it will be enough if we show that g(p) is close to h(p).

Lemma 18. For p ≤ 0.752, g(p) ≥ h(p).

Proof. We prove the lemma by induction on p. For p =
√
2/(1+

√
2), g(p) = h(p),

and therefore, the lemma holds. Assume now that the lemma holds for some p,
we will prove it for p+ δ. Observe the derivative of h(p) is decreasing, hence,

h(p+ δ) = h(p) +

∫ p+δ

p

h′(ρ)dρ ≤ h(p) +

∫ p+δ

p

h′(p)dρ = h(p) + δ · h′(p)

= h(p) + δ · 1.317− 0.634p− 2h(p)

1− p

= h(p) ·
(
1− 2δ

1− p

)
+ δ · 1.317− 0.634p

1− p

≤ g(p) ·
(
1− 2δ

1− p

)
+ δ · 1.317− 0.634p

1− p
= g(p+ δ) .

We are now ready to complete the proof of prove Theorem 3 by proving that
our assumption that it is wrong leads to a contradiction. The value of F (zp(Bp))
at p = 0.752 is:

F (zp(Bp)) ≥ g(0.752)−O(n−1) ≥ h(0.752)−O(n−1) > 0.42 .

