
Interviewing Secretaries in Parallel

Moran Feldman*and Moshe Tennenholtz�

Abstract

Motivated by the parallel nature of on-line internet help-desks and human inspections, we
introduce the study of interviewing secretaries in parallel, extending upon the study of the
classical secretary problem. In our setting secretaries arrive into multiple queues, and are
interviewed in parallel, with the aim of recruiting several secretaries in a timely manner. We
consider a variety of new problems that fit this setting, and provide both upper and lower bounds
on the efficiency of the corresponding interviewing policies, contrasting them with the classical
single queue setting.

1 Introduction

On-line help desks have become a central issue in the service industry. For example, companies
such as LivePerson conduct on-line chat support in order to solve problems on-line in a timely
manner. In such settings, multiple human service providers face, in parallel, a stream of clients. A
major constraint is that only a small number of the clients can be transitioned to a higher authority
treatment. Thus, the service providers must decide on line, and in parallel, which clients need such
a treatment the most.

A similar setting arise from inspection procedures in airports. Here, each inspector is associated
with her queue of people. The inspector has to interview the people in her queue serially, and refer
the suspected ones to further inquiry. Again, only a limited number of people can be referred
to such an inquiry, and therefore, the inspectors have to select on line, and in parallel, the most
suspected people.

In both the above examples, there are two types of agents: interviewers and experts. Each
interviewer gets a portion of the clients, and interview them serially. Clients that require more
than a short interview are then refereed to further treatment by an expert. A similar setting
with only one type of agents exists too. Again, each interviewer gets a portion of the clients,
and interview them serially. However, if a client needs further treatment, the interviewer herself
provides this treatment, and ignores the rest of the clients from this point on (till she is done with
the current one).

To illustrate the above consider a situation of two inspectors working in parallel, each interview-
ing half of the population serially (due to time constraints, it might not be possible to interview
serially more people). Assume that each interview takes one time unit, and each inspector is ex-
pected to choose one person for detailed inspection immediately after interviewing him, and release
all others. We face here a novel secretary problem in which the secretaries randomly partition
into two queues, and a single secretary is to be selected from each queue. Comparison is possible
only between secretaries belonging to the same queue (because they are interviewed by the same
inspector).

*Microsoft Research
�Microsoft Research

1

The intuitive approach for the above problem is for each inspector to apply the classical secretary
algorithm1 to its queue. However, that turns out to be suboptimal. Also, notice that the parallelism
is the factor preventing the inspectors from selecting two secretaries of the same queue. A näıve
attempt to improve the system, and still comply with the time constraints, might be as follows.
Let one inspector interview half the secretaries, and hire two of the secretaries interviewed. The
rest of the secretaries are released immediately without being interviewed. It turns out that such
a modification strictly decreases the probability of the inspectors to select the right secretaries.

1.1 The Model

In the classical secretary problem [16, 7], the input consists of a set of secretaries and a strict
total order among them. The secretaries arrive online in a random order. Each time a secretary
arrives, the algorithm can compare him to the previously seen secretaries, and then it must either
hire or dismiss the secretary. Both decisions are irreversible. The algorithm can hire only a single
secretary, and its objective is to hire the best secretary.

Our model is a generalization of the classical secretary problem. Here the set of secretaries is
evenly and randomly partitioned into multiple queues. The order of the secretaries in each queue
is also random. Only the first D secretaries of each queue can be interviewed before the deadline,
the others are never considered by the algorithm. Each time a secretary arrives, the algorithm can
compare him to the previously seen secretaries of that queue (secretaries of different queues can
never be compared), and then it must either hire or dismiss the secretary. The algorithm can hire k
secretaries, and its objective is to hire as many top k secretaries as possible, where k is a parameter
of the problem.

Two sub-models correspond to the two kinds of settings discussed above. In the first sub-model,
the algorithm can hire at most one secretary from each queue. This sub-model corresponds to the
case where the interviewer has to select one client to whom she will provide further treatment on
her own. We say that this sub-model has “exclusive” positions, because each queue is associated
with a single secretary position that can be manned from this queue only.

In the other sub-model we consider, the algorithm can hire secretaries from all queues, as long
as less than k secretaries have been hired so far. This sub-model corresponds to the case where
clients selected for further treatment are transferred from the interviewer to an expert; leaving the
interviewer to continue inspecting clients.

Information shared between policies of different queues. In the above description of the
model, we assume that secretaries of different queues cannot be compared. The idea behind this
assumption is that scores given by different interviewers are not comparable (e.g., some interviewers
might be harsher than others). Let us argue that once we make this assumption, the only meaningful
information that can be shared between policies is the number of secretaries hired so far by each
policy. From the viewpoint of every single policy, its input is simply a random permutation.
Moreover, these random permutations are independent. Thus, information about the relative value
of secretaries in the input of one policy is of no use to the other policies. Despite of this argument,
our hardness results assume nothing beside the inability to compare secretaries of different queues.

1The classical secretary algorithm skips the first 1/e fraction of the secretaries, and then hire the first secretary
better than any previous one [16, 7].

2

Table 1: Subcases for k = 2 and D = n/2

Sub Case Algorithm Hardness

One Queue 0.192 [Cor 4.6] 0.266 [Thm 4.3]
Two queues with “exclusive” positions 0.319 [Cor 4.10] 0.321 [Thm 4.12]
Two queues with “shared” positions 0.356 [Cor 4.17] -

Table 2: Subcases for large k and D = n/k

Sub Case Algorithm Hardness

One Queue 1/k − o(1) [Thm 6.1] 1/k [Thm 6.1]
k queues with “exclusive” positions 0.288 [Thm 6.6] 0.816 [Thm 6.2]
k queues with “shared” positions 0.288 [Thm 6.6] 0.301 [Thm 6.4]

1.2 Our Results

We first consider the case of k = 1 and D = n/d, i.e., we need to hire a single secretary, and
each interviewer has time to interview only a fraction of 1/d of the secretaries. This is a simple
setting for which we can give tight results. We compare the two extreme cases of a single queue
and d queues (having more than d queues clearly does not help the algorithm). For a single queue
we show that the best possible competitive ratio is (de)−1. On the other hand, d queues allow a
competitive ratio of d−d/(d−1) − o(1). Notice that for large d, the improvement in the competitive
ratio approaches a factor of e. The last result is tight up to low order terms.

Next, we consider the case of k = 2 and D = n/2. This setting allows us to compare “exclusive”
and “shared” positions, and still is simple enough to produce strong results. We consider three
subcases which are summarized in Table 1.

Table 1 shows that the three sub cases considered have strictly different optimal competitive
ratios. As one might expect, two queues with “shared” positions is the strongest mechanism.
However, the relation between the two other mechanisms is not that easy to predict. Two queues
with “exclusive” positions gets to interview twice as many secretaries as the one queue mechanism,
but enjoys less freedom since it must hire at most one secretary from each queue.

We next shift our attention to hiring a large number of secretaries, i.e., n ≫ k ≫ 1. We consider
two extreme values for D: n/2 and n/k. If D = n/2, then we get a competitive ratio of 1− o(1) for
two queues and 1/2 − o(1) for one queue. Both ratios are tight up to the o(1) term. The results
for D = n/k are summarized in Table 2.

There is one important result which does not appear in Table 2. An intuitive strategy for the
case of k queues with “exclusive” positions is to apply the classical secretary algorithm to each
queue independently. We give evidence that the approximation ratio of this policy is only about
0.274, i.e., suboptimal.

1.3 Related Work

The Classical Secretary Problem was introduced during the 60’s of the 20th century, nobody is sure
exactly when [16, 7, 9]. Since its introduction, many variants of the problem have been proposed
and researched. We survey here only the most relevant ones.

3

One of the most common extensions of the classical problem allows the algorithm to hire up
to k secretaries. For the case where every subset of k secretaries can be hired, two incomparable
competitive ratios of e−1 and 1−O(k−0.5) were obtained by Buchbinder et al. [2] and Kleinberg [13],
respectively. Related problems impose either knapsack [2] or matroid constraints on the set of
secretaries hired [3, 6, 12, 14].

Babaioff et al. [1] consider time constraints imposed on the interviewing process. In their model
secretaries lose value over time, making it more profitable to hire a somewhat inferior but early
secretary than a better secretary that arrives late. The use of soft time constraints in this model
make it very different from ours.

Another interesting line of work consider ground sets with a partial order [10, 15] (as opposed
to the full order assumed in the classical problem). Partial order implies that the algorithm cannot
compare every pair of two secretaries. This resembles the incomparability of secretaries of different
queues in our model. However, under partial order, a pair of secretaries is always either compa-
rable or incomparable, whereas, every pair of secretaries in our model is comparable with some
probability.

Buchbinder et al. [5] show an interesting relation between linear programs (LPs) and many
variants of the secretary problem. An LP represents a problem P if any feasible solution x of the
LP with value V (x) implies an algorithm for P with a competitive ratio of V (x), and vice versa.
Buchbinder et al. [5] show how to construct an LP representing some variants of the secretary
problem, including the classical one. Such LPs are useful for two reasons: finding an optimal
solution for a given n (the number of secretaries), and proving hardness results using dual-fitting.

Fekdnab et ak, [8] suggest using an alternative view of the arrival process. Instead of assum-
ing the secretaries arrive at a random order, [8] assumes the secretaries arrive at random times
during the interval [0, 1]. Under most variants of the secretary problem, both arrival processes
are equivalent; however, the alternative view is often the easier one to analyze. Feldman et al. [8]
demonstrate this observation by improving the competitive ratio known for a few submodular sec-
retarty problems (i.e., secretary problems with a submodular objective function). Submodular
secretary problems were also considered in other works [4, 11].

2 Preliminaries

In all problems considered in this paper, the input includes of a set S of n secretaries, and a strict
total order ≺ on the secretaries of S. We say that secretary s is better than s′ if s ≺ s′. The
objective of the algorithm is to hire up to k secretaries. For every secretary s hired, the algorithm
gets a point if s is one of the top k secretaries in S.2

In every single problem there are two additional parameters Q and D. The parameter Q deter-
mines the number of input queues (we assume for simplicity that Q divides n), and is considered to
be a constant. A distinct random subset of n/Q secretaries of S arrive to each queue in random or-
der.3 The parameter D determines the number of secretaries of each queue that can be interviewed
(before the deadline).

An algorithm ALG for our problems describes a policy for each one of the queues. A policy P
of a queue q considers the secretaries of q sequentially. For secretary s considered, P must decide,

2A similar model associates an adversary chosen distinct value with every secretary. Under this model, the
algorithm observes the value of each arriving secretary, and its revenue from hiring the secretary is equal to the
observed value. Our algorithms work for this model as well, and yield the same competitive ratios.

3The following is an alternative view of the input model. The n secretaries arrive at random order. The secretaries
at positions 1, Q+ 1, 2Q+ 2, . . . are sent to the first queue, the secretaries at positions 2, Q+ 2, 2Q+ 2, . . . are sent
to the second queue, and so on.

4

irreversibly, whether to hire s. When deciding about s, the policy P has access only to the following
information.

I1 The total number of secretaries.

I2 The relation ≺ between the secretaries of q already seen.

I3 The number of secretaries already hired from each one of the queues.

The k positions available for secretaries can be either “exclusive” or “shared”. If the positions
are “exclusive”, then every position is associated with a single queue; and only the policy of this
queue can hire for that position. On the other hand, if the positions are “shared”, every policy of
every queue can hire to each one of the positions.

For “shared” positions, we need to assume that all policies of all queues advance at equal
rates (i.e., they all consider the secretary at position i of their respective queues before any of them
consider the secretary at position i+1 of their respective queue). The order in which the secretaries
at position i are considered does not affect our results. For simplicity, we assume this order agrees
with the indexes of the queues. Observe that for “exclusive” positions, the assumption of equal
rates and I3 are redundant.

The competitive ratio of ALG is defined as the ratio between the expected value of the algorithm
(i.e., the expected number of points gained by the algorithm), and k, where the expectation is over
the randomness of the arrival model.

2.1 Random Arrival Times

Recall that in the classical secretary problems, it is assumed that the secretaries arrive in a random
order. This arrival model is used by most of the results mentioned above. Following [8], our
algorithms are described in terms of a somewhat different arrival model. In this model, each queue
q gets a random disjoint subset of D secretaries. Each of these D secretaries arrive at a random
time from the range [0, 1]. Notice that if D < n/Q, then some of the secretaries never arrive to
any of the queues. Alternatively, we can think that each queue gets n/Q secretaries, but n/Q−D
secretaries of each queue arrive too late to be interviewed. For “exclusive” positions the arrival
model described above reduces to this model as described in Algorithm 1.4

ALGORITHM 1: Reduction

1 for each queue q do
2 Choose a set Tq of D random arrival times.
3 Sort the times of Tq.
4 Assign the times of Tq sequentially to the first D secretaries of q upon arrival.

5 end

For “shared” positions, the two models are not equivalent because the assumption that all
queues advance at equal rates cannot be stated in terms of the random arrival times model. To
bypass this problem, we use the idea of “well-representation”. Given an input IP for the random
arrival order model (random permutation), Algorithm 1 produces a random input IT for the random
arrival times model. Let i(s, IP) denote the index of the position at which secretary s appears, in
its queue, in input IP , and let t(s, IT) denote the arrival time of secretary s in input IT . We say

4In fact the two models are equivalent.

5

that IT is a well-representation of IP if for every two secretaries s, s′ ∈ S: i(s, IP) ≤ i(s′, IP) ⇒
t(s, IT) < t(s′, IT) +D−1/3.

Well-representation gives additional relation between the positions and times which allows us
to take the assumption that the queues advance at equal rates into consideration when analyzing
our algorithms. Moreover, the following lemma shows that well-representation happens with high
probability.

Lemma 2.1. Given an input IP for the random arrival order model, Algorithm 1 produces a
random input IT for the random arrival times model which is a well representation of IP with
probability 1− o(1).

Proof. Algorithm 1 uses n random time variables. Let X1 and X2 be two such random variables,
and let s1 and s2 be the random secretaries assigned the random arrival times X1 and X2. If
X1 and X2 are associated with the same queue, then clearly s1 and s2 will not violate the well-
representation property. Hence, we can concentrate from now on on variables X1 and X2 associated
with different queues.

Fix the random times X1 and X2. We would like to upper bound the the probability that s1
and s2 violate the well-representation property. Assume without loss of generality X1 ≤ X2. s1
and s2 violate the well-representation property if and only if the two following conditions hold:

C1 X1 ≤ X2 −D−1/3.

C2 i(s1, IP) ≥ i(s2, IP).

Assume C1, i.e., X1 ≤ X2 −D−1/3, and let us upper bound the probability that C2 holds as well.
Let q1 and q2 be the two queues corresponding to X1 and X2, respectively. For the purpose of this
proof we allow a queue to have less than D times. If this is the case, the secretaries are assigned
times sequentially upon arrival, till no more times are available. Secretaries that arrive after all
times have been exhausted get no time.

Consider the following process. The process has D steps. Let us denote the values of i(s1, IP)
and i(s2, IP) at step j by ij(s1, IP) and iJ(s2, IP), respectively. At step 0, both queues have a single
time allocated to each one of them: X1 to q1 and X2 to q2. The first secretary of q1 gets time X1

and becomes s1. Similarly, the first secretary of q2 becomes X2. Hence, i0(s1, IP) = i0(s2, IP) = 1.
In each step we add two additional random times, one for q1 and one for q2, and update the choice
of s1 and s2. Observe that for every 1 ≤ j ≤ D − 1,

ij(s1, IP)− ij−1(s1, IP) =
{

1 with probability X1

0 otherwise
.

A similar observation holds for ij(s2, IP)− ij−1(s2, IP) also, with X2 replacing X1. Moreover,
both quantities are independent (because q1 ̸= q2). Let us define for every 0 ≤ j ≤ D − 1,
Yj = ij(s1, IP)− ij(s2, IP) + j · (X2 −X1). Notice that Y0 = i0(s1, IP)− i0(s2, IP) = 0. Consider
the quantity Yj − Yj−1 for some 1 ≤ j ≤ D − 1. It can be observed that:

Yj − Yj−1 =

1 +X2 −X1 with probabilitiy X1(1−X2)
X2 −X1 with probabilitiy X1X2 + (1−X1)(1−X2)
−1 +X2 −X1 with probabilitiy X2(1−X1)

Hence, E[Yj − Yj−1] = 0, and the series {Yj}D−1
j=0 is a martingale. Using Azuma’s inequality, we

6

get:

Pr[iD−1(s1, IP) ≥ iD−1(s1, IP)] = Pr[YD−1 ≥ (D − 1)(X2 −X1)]

≤ e
− (D−1)2(X2−X1)

2

2(D−1)(1+X2−X1)
2

(∗)
≤ e−

(D−1)D2/3

8 ≤ e−
D1/3

9 ,

where (*) holds since we assumed C1, which implies: 1 ≥ X2 − X1 ≥ D1/3. Notice that at step
D − 1, both q1 and q2 already have D random times, and therefore, iD−1(s1, IP) = i(s1, IP) and
iD−1(s2, IP) = i(s2, IP). Thus, the last inequality implies that given C1, with probability at least

1− e−
(n/k)1/3

9 , C2 does not hold. Hence, with probability 1− e−
(n/k)1/3

9 , s1 and s2 does not violate
the well-representation property.

The number of pairs of random time variables is less than n2, and therefore, by the union bound,

with probability at least 1 − n2e−
(n/k)1/3

9 = 1 − o(1), no pair of random times are assigned to two
secretaries violating the well-representation property, i.e., IT is a well-representation of IP .

2.2 Hardness Results

Some of the hardness results we describe are based on the method of [5]. This method works as
following. For a given number n of secretaries, one constructs a primal maximization LP with the
following properties.

� The variables of the primal LP represent the probabilities of different events assuming an
arbitrary algorithm ALG is applied to the problem.

� The objective function of the primal LP is the competitive ratio of ALG, resulting from the
above probabilities.

� The constraints of the primal LP are inequalities that the above probabilities must obey
regardless of the algorithm ALG considered.

Clearly, any algorithm ALG induces a solution for the primal LP whose value is the competitive
ratio of this algorithm for n secretaries. Hence, any solution for the dual LP provides an upper
bound on the best achievable competitive ratio for n secretaries. In this paper we get hardness
results using this machinery via two methods:

� Upper bounding the value of the dual solution for every n.

� Finding a dual solution of value at most α for some n0 secretaries, and proving that any
algorithm with a competitive ratio β > α for some n > n0 implies a β-competitive ratio for
n0 as well.

3 A Single Position

In this section we consider the case that we want to hire only a single secretary, i.e., k = 1. The
single position available is of course “shared” among the queues (as opposed to being “exclusive” for
one queue). This is a relatively simple case on which we can demonstrate many of our techniques.
Assume the deadline D = n/d for some positive integer d, i.e., we can interview at most n/d
secretaries of each queue. We compare two extreme cases Q = 1 and Q = d. Due to space
constraints, some proofs of this section are deferred to Appendix A.

7

3.1 A Single Queue

Let us start with the case Q = 1. In this case we have a single queue, but we can interview only
the first n/d secretaries of this queue.

Theorem 3.1. There is a (de)−1-competitive algorithm for the case Q = 1 and D = n/d, and this
is the best possible up low order terms.

3.2 d Queues

We now consider the case of Q = d, i.e., each queue gets n/d secretaries, and all secretaries can be
interviewed. Observe that since we cannot compare secretaries of different queues, it is not possible
even after interviewing all secretaries to determine which queue contained the best secretary. Hence,
we might guess that this case is equivalent to the previous one (here we must guess the right queue,
whereas in the previous case the input was a randomly chosen queue). However, this intuition is
not correct, as we prove in this section.5

ALGORITHM 2: Algorithm for k = 1, Q = d and D = n/d

1 for each queue independently do
2 Wait till time t = d−1/(d−1).
3 Let s be the first secretary after time t which is better than any previously seen secretary.
4 if no secretary was hired before (by another queue) then
5 Hire s.
6 end

7 end

We suggest Algorithm 2 for the problem. Let s1 be the best secretary, and let q1 be the queue
it arrives to. We now define a set C as following. Given an input IP of the random order model
(such an input is simply a random permutation of the secretaries of S), let IT be any input of the
random arrival times model that might be produced from IP using Algorithm 1. The pair (IP , IT)
is in C if all the following conditions hold:

D1 t(s1, IT) > t.

D2 The best secretary of q1 in the range [0, t(s1, IT)) arrives before time t, or this range is empty.

D3 In any queue other than q1, the best secretary in the range [0,min{1, t(s1, IT)+D−1/3}] arrives
before time t, or this range is empty.

A random pair (IP , IT) is a pair constructed as following. A random input IP for the random
order model is selected. Algorithm 1 is them used to produce from IP an input IT for the random
arrival times model.

Observation 3.2. The arrival time of every secretary in a random pair (IP , IT) is uniformly
random and independent of the arrival times of the other secretaries.

Proof. The same distribution of random pairs can also be constructed as following. Construct IT
by choosing a random partitioning of the secretaries to queues, and an independent arrival time
for each secretary. Next, the order induced by the arrival times of the secretaries in each queue
becomes their order in IP .

5For off-line algorithms, which can interview all secretaries before making their decisions, this intuition turns out
to be correct. For such algorithms it can be easily shown that the best approximation ratio under both cases is d−1.

8

Lemma 3.3. For a random pair (IP , IT), Pr[(IP , IT) ∈ C] ≥ d−d/(d−1) − o(1).

Proof. Let Ax be the event that s1 arrives at time x. Given that Ax occurs for some x > t, we
know that:

� D1 is guaranteed to hold.

� Due to symmetry arguments, D2 holds with probability t/x.

� Due to similar symmetry arguments, D3 holds with probability [t/(min{x+D−1/3, 1})]Q−1.

� D2 and D3 are independent.

Thus,

Pr[(IP , IT) ∈ C|Ax] =
t

x
·
(

t

min{x+D−1/3, 1}

)Q−1

.

The probability that s1 arrives in an interval of size ℓ is ℓ. Hence, the probability it arrives in
an infinitesimal interval of size dx is dx. Therefore, by the law of total probability, the probability
Pr[(IP , IT) ∈ C] is lower bounded by:∫ 1

t

t

x
·
(

t

min{1, x+D−1/3}

)Q−1

dx =

∫ 1

t

t

x
·
(
t

x

)Q−1

dx− o(1) =

∫ 1

t

(
t

x

)Q

dx− o(1)

= − tQ

(Q− 1)xQ−1

∣∣∣∣1
t

− o(1)

=
tQ

(Q− 1)tQ−1
− tQ

Q− 1
− o(1)

=
t(1− tQ−1)

Q− 1
− o(1) =

d−1/(d−1)(1− 1/d)

d− 1
− o(1)

= d−d/(d−1) − o(1) .

Corollary 3.4. For a random pair (IP , IT), with probability at least d−d/(d−1)−o(1), (IP , IT) ∈ C
and IT is well-representation of IP .

Proof. Follows from Lemmata 2.1 and 3.3 and the union bound.

We say that Algorithm 2 got a pair (IP , IT) if the original input for the random order model
was IP , and it was converted to the input IT of the random arrival times model by Algorithm 1.

Lemma 3.5. Assuming Algorithm 2 gets a pair (IP , IT) ∈ C as input. Then, if IT is a well-
representation of IP , then Algorithm 2 hires s1.

Proof. We say that a queue q attempts to hire a secretary s if s is a secretary of queue q, and
Algorithm 2 gets to Line 4 with this secretary. Since (IP , IT) ∈ C, we know that D1 and D2 hold.
Thus, queue q1 attempts to hire s1. In order to prove that Algorithm 2 hires s1, we are left to show
that no other queue attempts to hire a secretary s with i(s, IP) ≤ i(s1, IP).

Assume some queue q ̸= q1 attempts to hire a secretary s. Since D3 holds, the secretary s
that the queue attempts to hire must arrive after time tT (s1) + (k/n)1/3. However, since IT is a
well-representation of IP , this this implies i(s1, IP) < i(s, IP).

9

Corollary 3.6. Algorithm 2 is a (d−d/(d+1) − o(1))-competitive algorithm.

Proof. Corollary 3.4 and Lemma 3.5 imply that with probability d−d/(d+1), Algorithm 2 hires s1
when given a random pair.

Next, we use the method of [5] to prove that Algorithm 2 is optimal up to low order terms.
Consider the following linear program.

(LP1) max 1
n ·

∑d
i=1

∑n/d
j=1 fi,j

s.t. fi,j +
∑d

h=1

∑j−1
ℓ=1

fh,ℓ
ℓ +

∑i−1
h=1

fh,j
j ≤ 1 ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ n/d

fi,j ≥ 0 ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ n/d

Lemma 3.7. The optimal value of (LP1) is an upper bound on the competitive ratio of any algo-
rithm for the case k = 1, Q = d and D = n/d.

Finding the optimal assignment to (LP1) is difficult. Instead, we upper bound the optimal
value of (LP1) using its dual (LP2).

(LP2) min
∑d

i=1

∑n/d
j=1 yi,j

s.t. yi,j +
∑d

h=1

∑n/d
ℓ=j+1

yh,ℓ
j +

∑d
h=i+1

yh,j
j ≥ 1

n ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ n/d

yi,j ≥ 0 ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ n/d

Lemma 3.8. (LP2) has a solution of value at most d−d/(d−1) +O(n−0.5).

Corollary 3.9. No algorithm for the case k = 1, Q = d and D = n/d has a better competitive
ratio than d−d/(d−1) +O(n−n).

Proof. Follows from Lemmata 3.7 and 3.8, and the observation that any solution of (LP2) provides
an upper bound on the optimal solution of (LP1).

4 Two Positions

In this section we consider the case of k = 2 and D = n/2, i.e., two positions need to be manned
and at most half the secretaries can be interviewed in each queue. We devote a section for this case
because on the one hand it is complex enough so that new concepts such as “exclusive” positions
can be presented, and on the other hand it simple enough to produce many (almost) tight results.
We consider the following subcases. Due to space constraints some of the proofs of this section are
deferred to Appendix B.

� One queue, i.e., Q = 1.

� Two queues with “exclusive” positions, i.e., Q = 2 and at most one secretary is hired from
each queue.

� Two queue with “shared” positions, i.e., Q = 2 and secretaries can be hired from both queues
as long as there is still an unmanned position.

Our objective in this section is to prove the following claim.

Claim 4.1. The above cases are in a strictly increasing competitive ratios order.

10

4.1 One Queue

In this section we consider the sub case where there is only one queue, i.e., Q = 1. Notice that
under these settings, only the first half of the secretaries can be interviewed. We begin our study
by showing a hardness result for this case. Consider the following linear program.

(LP3) max 1
2

[
1
n ·

∑n/2
i=1 fi +

1
n ·

∑n/2
i=1

(
n−i
n−1 · fi + i−1

n−1si

)]
s.t. f1

i + f2
i = fi ∀ 1 ≤ i ≤ n/2

s1i + s2i = si ∀ 1 ≤ i ≤ n/2

f1
i + f1

1 +
∑i−1

j=2

f1
j +s1j
j ≤ 1 ∀ 2 ≤ i ≤ n/2

s1i + f1
1 +

∑i−1
j=2

f1
j +s1j
j ≤ 1 ∀ 2 ≤ i ≤ n/2

f2
i − f1

1 +
∑i−1

j=2

f2
j +s2j−f1

j −s1j
j ≤ 0 ∀ 2 ≤ i ≤ n/2

s2i − f1
1 +

∑i−1
j=2

f2
j +s2j−f1

j −s1j
j ≤ 0 ∀ 2 ≤ i ≤ n/2

f2
1 = 0
f1
i , s

1
i , f

2
i , s

2
i ≥ 0 ∀ 1 ≤ i ≤ n/2

Lemma 4.2. The optimal value of (LP3) is an upper bound on the competitive ratio of any algo-
rithm for the case k = 2, Q = 1 and D = n/2.

Theorem 4.3. No algorithm is better than 0.266-competitive for the case k = 2, Q = 1 and
D = n/2.

Proof. By numerically solving (LP3) for n = 1000, it can be shown that no algorithm with com-
petitive ratio better than 0.2652 exists for 1000 secretaries. Assume for the sake of contradiction
that there exists an algorithm ALG with a competitive ratio α > 0.266 for n′ secretaries, where
n′ > n. Let us use ALG to get an algorithm for n secretaries with a competitive ratio better than
0.2652.

From the view point of ALG it gets a random permutation of a random set of n′/2 secretaries
that can contain at most two secretaries that give a point to ALG when hired. Let Ei be the
expected number of points ALG gets when given a random permutation of a set containing i
secretaries that give a point when hired (note that this expectation depends only on i). Our
assumption that ALG is α competitive implies:

E1

2
· n′/2

n′ − 1
+

E2

2
· n

′/2− 1

n′ − 1
≥ α .

We now construct an algorithm for n secretaries using ALG. Our algorithm feeds ALG with
the input it gets plus additional (n′ − n)/2 dummy secretaries that are worse than any secretary
of S. The positions of the dummy secretaries are chosen at random from the n′/2 positions in the
input of ALG. The competitive ratio of this algorithm is:

E1

2
· n/2

n− 1
+

E2

2
· n/2− 1

n− 1
≥ E1

2
· n′/2

n′ − 1
+

E2

2
·
[
n′/2− 1

n′ − 1
− n

2(n− 1)2

]
≥ α− n

2(n− 1)2
> 0.2652 .

11

ALGORITHM 3: Algorithm for k = 2, Q = 1 and D = n/2

1 Wait till time t = 1−
√
1/3.

2 Let st be the second best secretary before time t (if less than 2 secretaries arrive before time t, let
st be a dummy secretary worse than any other).

3 After time t: hire the first two secretaries better than st.

Next, we give a positive result for the above case. This result is probably far from being tight,
however, we prove it for completeness. Notice that this result is not required for the proof of
Claim 4.1.

Let s1 and s2 be the best and second best secretaries, respectively.

Lemma 4.4. Algorithm 3 hires s1 with probability at least t(t− 2)(t− 1)/2.

Proof. Let Ax be the event that s1 arrives at time x. If Ax occurs for some x > t, then s1 is hired
if at least two of the top 3 secretaries in the range [0, x) arrive before time t (or there are less
than 3 secretaries in this range, and at most 2 of them arrive after time t). Hence, given Ax, the
probability of the s1 to be hired is:(

t

x

)3

+ 3 ·
(
t

x

)2

·
(
1− t

x

)
.

The probability that Ax occurs for some x in a range R is proportional to half the size of R (because
with probability 1/2, s1 is never interviewed). Hence, by the low of total probability, the probability
of s1 to be hired is:∫ 1

t

[(
t

x

)3

+ 3 ·
(
t

x

)2(
1− t

x

)]
· 1
2
· dx =

t2

2
·
∫ 1

t

[
t

x3
+

3

x2
− 3t

x3

]
dx =

t2

2
·
[
t

x2
− 3

x

]1
t

=
t2

2
·
[
t− 3 +

2

t

]
=

t(t− 2)(t− 1)

2
.

Lemma 4.5. Algorithm 3 hires s2 with probability at least t(t− 2)(t− 1)/2.

Proof. Let us pair inputs for Algorithm 3 as following. Given some input, its pair is the same input
with the rolls of s1 and s2 switched (i.e., if s1 arrives in the original input at time t1, then s2 will
now arrive at time t1, and vice versa). Notice that this is a one-to-one pairing between the set of
inputs for Algorithm 3 and itself.

Notice that st is never s1 or s2, unless both s1 and s2 arrive before time t, in which case neither
of them is hired. Hence, if s1 is hired in a given input I of Algorithm 3, then s2 is hired in the input
paired to I, and vice versa. Thus, s1 and s2 are hired with the same probability by Algorithm 3.
The lemma now follows from Lemma 4.4.

Corollary 4.6. Algorithm 3 is at least t(t− 2)(t− 1)/2 ≥ 0.192-competitive.

Proof. Follows from the linearity of the expectation and Lemmata 4.4 and 4.5

12

ALGORITHM 4: Algorithm for k = 2, Q = 2 and D = n/2 with “exclusive” positions

1 for each queue independently do
2 Wait till time t1 = 0.35.
3 Let st1 be the best secretary before time t1 (if no secretaries arrive before time t1, let st1 be a

dummy secretary worse than any other).
4 Between time t1 and time t2 = 0.8: hire the first secretary better than st1 .
5 if No secretary is hired till time t2 then
6 Let st2 be the second best secretary before time t2 (if less than 2 secretaries arrive before

time t2, let st2 be a dummy secretary worse than any real secretary).
7 After time t2: hire the first secretary better than st2 .

8 end

9 end

4.2 Two Queue with Exclusive Positions

In this section we consider the sub case where there are two queues, i.e., Q = 2, and each queue
has a single “exclusive” position to man. We suggest Algorithm 4 for this sub case.

Lemma 4.7. Algorithm 4 hires s1 with probability at least t1 ln t2 − t1 ln t1 + t1 − t1t2.

Lemma 4.8. Assuming s1 and s2 arrive at the same queue, then Algorithm 4 hires s1 with proba-
bility at least t1 ln t2 − 2t1t2 − t1 ln t1 + t21 + t1.

Lemma 4.9. Algorithm 4 hires s1 with probability at least t1 ln t2 − 1.5t1t2 − t1 ln t1 + 0.5t21 + t1.

Proof. Let H be the event that s2 is hired, and let A be the event that s1 and s2 arrive both to
the same queue. Using a proof identical to the one of Lemma 4.7, we get Pr[H|Ā] ≥ t1 ln t2 −
t1 ln t1 + t1 − t1t2. On the other hand, Lemma 4.8 can be formally written as: Pr[H|A] ≥ t1 ln t2 −
2t1t2 − t1 ln t1 + t21 + t1. Hence, by the law of total expectation expectation, we can lower bound
the probability that s2 is hired by:

Pr[H] ≥ Pr[A] · (t1 ln t2 − 2t1t2 − t1 ln t1 + t21 + t1) + Pr[Ā] · (t1 ln t2 − t1 ln t1 + t1 − t1t2)

= t1 ln t2 − t1 ln t1 + t1 − t1t2 − Pr[A] · t1 · (t2 − t1)

For large number of secretaries, it is clear that Pr[A] ≈ 1/2. However, we need something a bit
stronger than that. Given that s1 arrives to some queue q, clearly, the probability that s2 also
arrive to q somewhat decreases. Hence, we always have Pr[A] < 0.5. Plugging this inequality into
the previous one completes the proof of the lemma.

Corollary 4.10. The competitive ratio of Algorithm 4 is at least 0.319.

Proof. From Lemmata 4.7 and 4.9, the competitive ratio of Algorithm 4 is at least:

0.5 [t1 ln t2 − t1 ln t1 + t1 − t1t2] + 0.5
[
t1 ln t2 − 1.5t1t2 − t1 ln t1 + 0.5t21 + t1

]
= t1 ln t2 − t1 ln t1 + t1 − 1.25t1t2 + 0.25t21 .

The corollary follows by plugging the values of t1 and t2 into the above expression.

Next, we give an almost matching hardness. Consider the following linear program.

13

(LP4) max 1
n ·

∑n/2
i=1 fi +

1
n ·

∑n/2
i=1

(
n−i
n−1 · fi + i−1

n−1si

)
s.t. fi + f1 +

∑i−1
j=2

fj+sj
j ≤ 1 ∀ 2 ≤ i ≤ n

si + f1 +
∑i−1

j=2
fj+sj

j ≤ 1 ∀ 2 ≤ i ≤ n

fi, si ≥ 0 ∀ 1 ≤ i ≤ n

Lemma 4.11. The optimal value of (LP4) is an upper bound on the competitive ratio of any
algorithm for the case of “exclusive” positions with k = 2, Q = 2 and D = n/2.

The following theorem provides an upper bound on the best possible competitive ratio for the
case of “exclusive” positions with k = 2, Q = 2 and D = n/2. The proof of the theorem is similar
to the one of Theorem 4.3, with Lemma 4.11 taking the role of Lemma 4.2.

Theorem 4.12. No algorithm is better than 0.321-competitive for the case of “exclusive” positions
with k = 2, Q = 2 and D = n/2.

4.3 Two Queue with Shared Positions

In this section we consider the sub case where there are two queues, i.e., Q = 2, and the two
available positions are “shared” between the queues (i.e., each queue can man up to 2 positions).
We suggest Algorithm 5 for this sub case.

ALGORITHM 5: Algorithm for k = 2, Q = 2 and D = n/2 with “shared” positions

1 for each queue independently do
2 Wait till time t1 = 0.348.
3 while no secretary was hired (from any of the queues), for every secretary s arriving do
4 if s is better than any previously seen secretary then
5 Hire s.
6 end

7 end
8 Wait till time time t2 = 0.563 (if we did not reach this time yet).
9 while one position is still unmanned, for every secretary s arriving do

10 if s is better than any previously seen secretary then
11 Hire s.
12 end

13 end

14 end

Let s1 (s2) be the (second) best secretary, and let q1 (q2) be the queue he arrives to. We also
denote by q̄1 (q̄2) the queue which is not q1 (q2). We now define two sets C1 and C2 as following.
Given an input IP of the random order model (such an input is simply a random permutation of
the secretaries of S), let IT be any input of the random arrival times model that might be produced
from IP using Algorithm 1. The pair (IP , IT) is in C1 if one of the following conditions holds:

E1 t(s1, IT) ∈ (t1, t2 −D−1/3) and the best secretary in the range [0, t(s1, IT)) arrives before time
t1.

E2 t(s1, IT) > t2, the best secretary of the range [0, t(s1, IT) +D−1/3] in q̄1 arrives before time t1,
and at least one of the two following happens:

� The best secretary in the range [0, t(s1, IT)) in q1 arrives before time t2.

14

� The second best secretary in the range [0, t(s1, IT)) in q1 arrives before time t1.

E3 t(s1, IT) > t2, the best secretary of the range [0, tT (s1)) in q1 arrives before time t1, and at
least one of the following happens:

� The best secretary in the range [0, t(s1, IT) +D−1/3] in q̄1 arrives during [t1, t2).

� The best secretary in the range [0, t(s1, IT) +D−1/3] in q̄1 arrives after time t2, and the
second best secretary in the same range and queue arrives before t1.

Regardless the membership of (IP , IT) in C1. The pair (IP , IT) is in C2 if one of the following
conditions holds:

F1 The pair satisfies one of the conditions to be included in C1 with s1 replaced by s2 and q1
replaced by q2, and also one of the following holds.

� q1 ̸= q2

� s1 appears after s2 in one queue.

F2 t(s2, IT) > t(s1, IT) > t2, q1 = q2, the best secretary in the range [0, t(s2, IT) +D−1/3) in q̄2
appears before time t1, and the best secretary in the range [0, t(s2, IT)) in q1 other than s1
and s2 also appears before time t1.

Lemma 4.13. For a random pair (IP , IT), Pr[(IP , IT) ∈ C1] ≥ t1 ln(t2/t1) + t21t2 − t21 − 2t1t2 +
2t1 − o(1) ≥ 0.4186.

Lemma 4.14. For a random pair (IP , IT), Pr[(IP , IT) ∈ C2] ≥ t1 ln(t2/t1) + t1t2 ln t2 + 0.5t21t2 −
2.5t1t2 + 2t1 − o(1) ≥ 0.2951.

Corollary 4.15. For a random pair (IP , IT), with probability at least 0.418, (IP , IT) ∈ C1 and
IT is well-representation of IP , and with probability at least 0.295, (IP , IT) ∈ C2 and IT is well-
representation of IP .

Proof. Follows from Lemmata 2.1, 4.13 and 4.14 and the union bound.

We say that Algorithm 5 got a pair (IP , IT) if the original input for the random order model
was IP , and it was converted to the input IT of the random arrival times model by Algorithm 1.

Lemma 4.16. Assuming Algorithm 5 gets a pair (IP , IT) in which IT is a well-representation of
IP . Then, if (IP , IT) ∈ C1, Algorithm 5 hires s1, and if (IP , IT) ∈ C2, Algorithm 5 hires s2

Proof. The proof of this lemma is technical and uses the same kind of arguments as the proof of
Lemma 3.5. Thus, we omit it.

Corollary 4.17. Algorithm 5 is a 0.356-competitive algorithm.

Proof. Corollary 4.15 and Lemma 4.16 imply that when given a random pair: with probability 0.418
Algorithm 2 hires s1, and with probability 0.295 Algorithm 2 hires s2. Hence, by the linearity of
the expectation, Algorithm 2 earns in expectation at least 0.713 points.

5 k Positions and Half the Required Time

In this section we start the analysis of the case of k positions, where k is assumed to be large.
Here we assume that there is enough time to interview half of the secretaries (i.e., D = n/2), and
therefore, the number of queues is either 1 or 2. This case is interesting on its own right, and will
also serve us as a warm up for the next section.

15

5.1 One Queue

Let us begin with the case of Q = 1.

Theorem 5.1. There is a 1/2 − o(1) competitive algorithm for the case of D = n/2, Q = 1 and
large k.

Proof. We apply the algorithm of [13] for hiring k secretaries to the n/2 secretaries that we inter-
view. Let us analyze this algorithm.

The last algorithm has a competitive ratio of 1 − o(1). That means that if we fix the set of
secretaries that are interviewed, then our algorithm earns a value of [1− o(1)] ·N , where N is the
number of top k secretaries that are interviewed. Clearly E[N] = k/2, and therefore, by the law
of total expectation, the expected value that our algorithm earns is at least: E[[1 − o(1)] · N] =
[1− o(1)] · E[N] = [1/2− o(1)] · k.

Theorem 5.2. No better than 1/2-competitive algorithm exists for the case D = n/2, Q = 1.

Proof. The expected number of top k secretaries that are interviewed is only k/2, and clearly no
algorithm can hire more top k secretaries than it interviews.

5.2 Two Queues

We now consider the case of Q = 2. Notice that in this case, it is possible to interview all secretaries.
Algorithm 6 is our algorithm for this case. Algorithm 6 was designed for the “exclusive” positions
model, however, it works also for “shared” positions.

ALGORITHM 6: Algorithm for Q = 2, D = n/2 and large k

1 for each queue independently do
2 Use the algorithm of [13] to hire k/2 secretaries from this queue.
3 end

Let Sk be the set of the top k secretaries. For every secretary s ∈ Sk, let us denote by Xs an
indicator for the event that s arrives to the first queue.

Lemma 5.3. For every subset S ⊆ Sk, Pr[
∏

s∈S Xs = 1] ≤ 2−|S| =
∏

s∈S Pr[Xs = 1].

Proof. If |S| > n/2, then clearly, Pr[
∏

s∈S Xs = 1] = 0 ≤ 2−|S|. If |S| ≤ n/2, then:

Pr

[∏
s∈S

Xs = 1

]
=

(n−|S|
n/2−|S|

)(
n

n/2

) =

(n−|S|)!
(n/2−|S|)!(n/2)!

n!
(n/2)!(n/2)!

=
(n− |S|)!(n/2)!
(n/2− |S|)!n!

=

∏n/2
i=n/2−|S|+1 i∏n
i=n−|S|+1 i

=
n∏

i=n−|S|+1

i− n/2

i
≤ 2−|S| .

Lemma 5.3 implies that we can apply the generalized Chernoff bound of [17] to sums of the
form

∑
s∈S Xs where S is a subset of Sk. We use this observation in the proof of the following

theorem.

16

Theorem 5.4. Algorithm 6 is a 1− o(1) competitive algorithm for the case Q = 2, D = n/2 and
large k.

Proof. Lemma 5.3 implies that we can apply the generalized Chernoff bound of [17] to sums of the
form

∑
s∈S Xs where S is a subset of Sk. Let S ′ be the set of top k − k2/3 secretaries. We can

upper bound Pr[
∑

s∈S′ Xs ≥ k/2] as following.

Pr

[∑
s∈S′

Xs ≥ k/2

]
≤ e

−2(k−k2/3)

(
k/2

k−k2/3
−0.5

)2

= e
−0.5· k4/3

k−k2/3 ≤ e−0.5·k1/3 = o(1) .

Hence, with probability 1 − o(1), the first queue contains no more than k/2 secretaries of S ′.
Since the two queues are symmetric, we can use the union bound to show that this property holds
in both queues at the same time with probability 1− o(1). Let us denote this event by E.

Notice that the event E depends only the distribution of secretaries between the queues. Fix
some distribution P for which E holds. Given P , the queues get a random permutation of two sets
S1 and S2 of secretaries with the following property. The sets S1 ∩ S ′ and S2 ∩ S ′ both contain at
most k/2 secretaries. The competitive ratio of the algorithm of [13] is 1− o(1). Hence, given P , it
must collect an expected values of [1− o(1)] · |S1 ∩S ′| and [1− o(1)] · |S2 ∩S ′| from the two queues,
respectively. Combing the value from both queues, we get that Algorithm 6 collects a total value
of:

[1− o(1)] · |S1 ∩ S ′|+ [1− o(1)] · |S2 ∩ S ′| = [1− o(1)] · |S ′| = [1− o(1)] · k . (1)

The above calculation was done assuming a fixed distribution P of the secretaries among the
queues which respects E. However, (1) is independent of the distribution, and therefore, it is also
the expected value of Algorithm 6 given just E. Hence, by the law of total expectation, without
any assumptions, the value Algorithm 6 collects is at least: Pr[E] · [1− o(1)] · k ≥ [1− o(1)]2 · k =
[1− o(1)] · k.

6 k Positions and 1/k of the Required Time

In this section we continue the analysis of the case of k positions. Here we assume that there is
enough time to interview only 1/k of the secretaries (i.e., D = n/k). This is the shortest time that
still allows us to interview all secretaries under the “exclusive” positions model (because we cannot
have more queues than positions under this model). We consider the two extreme cases in terms
of the number of queues: Q = 1 and Q = k. Due to space limitations, some of the proofs of this
section are deferred to Appendix C.

Theorem 6.1. For the case Q = 1, there is a 1/k − o(1) competitive algorithm, and no algorithm
can be better than 1/k competitive for this case.

Proof. Follows from a slight modification of the proofs of Theorems 5.1 and 5.2.

In the rest of this section we consider the case Q = k.

Theorem 6.2. No better than 1− 1/(2e) + o(1) ≈ 0.816-competitive algorithm exists for the case
Q = k, D = n/k for large k and “shared” positions.

Consider the following auxiliary problem. n secretaries arrive at random order to a single queue.
The algorithm for the problem can hire at most one secretary. The algorithm gets a point if the
secretary hired is a top i secretary.

17

Lemma 6.3. If there exists an α-competitive algorithm for the auxiliary problem with n secretary,
then there is a α-competitive algorithm for the auxiliary problem with n′ secretaries for every i ≤
n′ < n.

Proof. Let ALG be the α-competitive algorithm for the auxiliary problem with n secretaries. The
algorithm we suggest for n′ secretaries feeds ALG with an input constructed as following.

� Randomly select n− n′ positions for dummy secretaries worse than any real secretary.

� The real secretaries fill in the other positions in the same order that they arrive.

Since ALG is α competitive, it will hire a top i secretary with probability at least α.

Lemma 6.3 allows us to prove hardness results for the auxiliary problem (for a given value of i)
by numerically solving a LP defined in [5]. The proof of the following theorem shows how to convert
these hardness results into a hardness for the case Q = k, D = n/k for large k and “exclusive”
positions.

Theorem 6.4. No better than 0.301-competitive algorithm exists for the case Q = k, D = n/k for
large k and “exclusive” positions.

We now shift our attention to positive results. In the case of Q = k, D = n/k and “exclusive”
positions, at most one secretary is hired from each queue. The natural intuition for this case is
to use the classical secretary algorithm for every queue independently, i.e., use Algorithm 7 with
t = e−1. The next theorem analyzes this algorithm. The theorem is given using the exponential
integral function Ei(x), which is defined by Ei(x) =

∫ x
−∞(et/t)dt.

ALGORITHM 7: Algorithm for Q = k and D = n/k

1 for each queue independently do
2 Wait till time t.
3 while no secretary was hired from the current queue, for every secretary s arriving do
4 if s is better than any previously seen secretary then
5 Hire s.
6 end

7 end

8 end

Theorem 6.5. Algorithm 7 is a t ·
[
Ei(−1) + e−1 − 1− Ei(−t)− e−t

t + t−1
]
competitive algorithm

for the case Q = k and D = n/k. Hence, for t = 0.323, Algorithm 7 is a 0.276-competitive
algorithm.

Numerically, it can be shown that the value of t maximizing the competitive ratio given by
Theorem 6.5 is about 0.323. Notice that for t = e−1 ≈ 0.368, this analysis provides only an inferior
competitive ratio of 0.274. We believe this analysis is tight, i.e., the best value for t is not e−1.

Based on our results for the case Q = k = 2, D = n/2 and “exclusive” positions, we suspect
that an optimal algorithm for the case Q = k, D = n/k and “exclusive” positions should use k
different time threshold t1 < t2 < · · · < tk. A policy of such an algorithm will hire a secretary s
that arrives between time ti and ti+1 if no secretary was hired from the queue of this policy before,
and s is better than all previously seen secretaries except i − 1. Unfortunately, analyzing such
an algorithm seems to be too complicated. Instead, we analyze Algorithm 8 which uses only two
time thresholds. This gives some idea about the improvement that can achieved by additional time
thresholds.

18

ALGORITHM 8: Algorithm for Q = k and D = n/k with “exclusive” positions

1 for each queue independently do
2 Wait till time t1 = 0.34.
3 while time t2 = 0.748 was not reached yet, for every secretary s arriving do
4 if no secretary was hired before, and s is better than any previously seen secretary then
5 Hire s.
6 end

7 end
8 Let s′ be the best secretary seen up to this point.
9 for every secretary s arriving do

10 if no secretary was hired before, and s is better than any previously seen secretary other
than s′ then

11 Hire s.
12 end

13 end

14 end

Theorem 6.6. For large k, Algorithm 8 is a 0.288-competitive algorithm for the case Q = k and
D = n/k.

Acknowledgment

The authors would like to thank Ron Lavi for many useful discussions.

References

[1] M. Babaioff, M. Dinitz, A. Gupta, N. Immorlica, and K. Talwar. Secretary problems: Weights
and discounts. In 20th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1245–
1254, 2009.

[2] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A knapsack secretary problem with
applications, volume 4628 of LNCS, pages 16–28. Springer, Heidelberg, 2007.

[3] M. Babaioff, N. Immorlica, and R. Kleinberg. Matroids, secretary problems, and online mech-
anisms. In 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 434–443,
2007.

[4] M. H. Bateni, M. T. Hajiaghayi, and M. Zadimoghaddam. Submodular secretary problem and
extensions. Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, 6302:39–52, 2010.

[5] Niv Buchbinder, Kamal Jain, and Mohit Singh. Secretary problems via linear programming.
In IPCO, pages 163–176, 2010.

[6] N. B. Dimitrov and C. G. Plaxton. Competitive weighted matching in transversal matroids.
Automata, Languages and Programming, 5125:397–408, 2008.

[7] E. B. Dynkin. The optimum choice of the instant for stopping a markov process. Soviet Math.
Dokl., 4:627–629, 1963.

19

[8] Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. Improved competitive ratios for sub-
modular secretary problems. In 14th international workshop and 15th international conference
on Approximation, randomization, and combinatorial optimization: algorithms and techniques
(APPROX), pages 218–229, 2011.

[9] Thomas S. Ferguson. Who solved the secretary problem? Statistical Science, 4(3):282–289,
1989.

[10] Nicholas Georgiou, Malgorzata Kuchta, Michal Morayne, and Jaroslaw Niemiec. On a universal
best choice algorithm for partially ordered sets. Random Struct. Algorithms, 32:263–273, May
2008.

[11] A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar. Constrainted non-monotone submodular
maximization: Online and secretary algorithms. Internet and Network Economics, 6484:246–
257, 2010.

[12] S. Im and Y. Wang. Secretary problems: Laminar matroid and interval scheduling. In 22nd
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1096–1116, 2011.

[13] R. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions. In
16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 630–631, 2005.

[14] N. Korula and M. Pál. Algorithms for secretary problems on graphs and hypergraphs. Au-
tomata, Languages and Programming, 5556:508–520, 2009.

[15] Ravi Kumar, Silvio Lattanzi, Sergei Vassilvitskii, and Andrea Vattani. Hiring a secretary from
a poset. In 12th ACM conference on Electronic Commerce (EC), pages 39–48, 2011.

[16] D. V. Libdley. Dynamic programming and decision theory. Applied Statistics, 10:39–51, 1961.

[17] Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via an
extension of the chernoff–hoeffding bounds. SIAM J. Comput., 26:350–368, April 1997.

APPENDIX

A Omitted Proofs of Section 3

Theorem 3.1. There is a (de)−1-competitive algorithm for the case Q = 1 and D = n/d, and
this is the best possible up low order terms.

Proof. Let S ′ ⊆ S be the set of the first n/d, and let s1 be the best secretary in S. The algorithm we
suggest is to apply the algorithm for the classical secretary problem to the first n/d secretaries. Let
us analyze this algorithm. Fix S ′, then the input to the algorithm for the classical secretary problem
is a random permutation of S ′. If s1 ̸∈ S ′ then clearly the algorithm cannot hire s1. Otherwise,
s1 is also the best secretary in S ′, and therefore, the algorithm hires him with probability at least
e−1. Thus, the expected value of the algorithm is at least:∑

A⊆S | |A|=n/d,s1∈A

Pr[S ′ = A] · e−1 = e−1 · Pr[s1 ∈ S] = (ed)−1 .

We are left to prove that no algorithm can do better. Consider some algorithm ALG. We can
use ALG to solve the classical secretary problem with n/d secretaries as following. Given an input

20

I for the classical secretary problem, we give ALG the n/d secretaries of I and after them n−n/d
arbitrary other secretaries. Since ALG can interview only n/d secretaries, it must return a feasible
solution for the classical secretary problem. Due to the hardness known for the classical secretary
problem, ALG can hire the best secretary of I with probability at most e−1 + o(1).

Let us now return to our problem. Fix the subset S ′ ⊆ S of the n/d first secretaries input of
ALG. Since ALG must hire a secretary of S ′ (or no secretary at all), it follows that ALG gets no
value when s1 ̸∈ S ′. From the above reduction to the classical secretary problem, we learn that
even when s1 ∈ S, ALG hires him with probability at most e−1+ o(1). Thus, the competitive ratio
of ALG can be upper bounded by:∑

A⊆S | |A|=n/d,s1∈A

Pr[S ′ = A] · (e−1 + o(1)) = (e−1 + o(1)) · Pr[s1 ∈ S] = (ed)−1 + o(1) .

Lemma 3.7. The optimal value of (LP1) is an upper bound on the competitive ratio of
any algorithm for the case k = 1, Q = d and D = n/d.

Proof. Consider some arbitrary algorithm ALG for the problem. We assume ALG never hires a
secretary if a better secretary from the same queue was already interviewed. Clearly, any algorithm
can be made to act this way without deteriorating its competitive ratio. Let us construct an
assignment for (LP1) using ALG. Let fi,j be the probability that ALG hires the best secretary,
given that he arrives at position j of queue i.

First, notice that the best secretary has equal probability of 1/n to get to every one of the
positions in every one of the queues. Hence, given the above assignment, the objective function of
(LP1) becomes equal to the competitive ratio of ALG.

Second, we need to prove that the above assignment is feasible. Let us calculate the probability
that the algorithm hires the secretary of position j in queue i. With probability (j − 1)/j, the
secretary at this position is not better than all previously seen secretaries of this queue. In this
case ALG clearly does not hire the secretary since it has 0 probability of being the best secretary.
On the other hand, with probability 1/j, the secretary at the above position is the best that ALG
interviewed up to this from queue i. Notice that ALG cannot distinguish this case from the case
that the best secretary is at position j of queue i, and therefore, it must hire the secretary of this
position with probability fi,j . In conclusion, ALG hires the secretary at position j of queue i with
probability:

j − 1

j
· 0 + 1

j
· fi,j =

fi,j
j

.

Let us now prove that the constraint associated with position j of queue i holds. Fix the best
secretary to this position. By definition, ALG hires the best secretary with probability fi,j . For
every position ℓ of queue h for which either ℓ < j or ℓ = j and h < i, it can easily seen that the
above discussion holds even though we fixed the position of the best secretary, i.e., the secretary
at position ℓ of queue h is hired with probability fh,ℓ/ℓ. The constraint now follows, since ALG
can hire at most one secretary.

In conclusion, any algorithm, including the optimal one, induces a feasible solution for (LP1)
whose value is equal to the competitive ratio of the algorithm. Hence, the optimal value of (LP1)
upper bounds the optimal competitive ratio.

Lemma 3.8. (LP2) has a solution of value at most d−d/(d−1) +O(n−0.5).

21

Proof. Consider the following solution.

yi,j =

{
0 if j ≤ nd−d/(d−1)

dd(j/n)d−1−1
n(d−1) otherwise

We first need to prove that this solution is feasible. Consider a constraint corresponding to some
1 ≤ i ≤ d and nd−d/(d−1) ≤ j ≤ n. Let us lower bound the left hand side of this constraint.

yi,j +
d∑

h=1

n/d∑
ℓ=j+1

yh,ℓ
j

+
d∑

h=i+1

yh,j
j

≥ yi,j +
d∑

h=1

n/d∑
ℓ=j+1

yh,ℓ
j

=
dd(j/n)d−1 − 1

n(d− 1)
+

n/d∑
ℓ=j+1

dd+1(ℓ/n)d−1 − d

jn(d− 1)

≥ dd(j/n)d−1 − 1

n(d− 1)
+

∫ n/d

j

dd+1(x/n)d−1 − d

jn(d− 1)
dx

=
dd(j/n)d−1 − 1

n(d− 1)
− d(n/d− j)

jn(d− 1)
+

dd(x/n)d

j(d− 1)

∣∣∣∣n/d
j

=
[ddjd/nd−1 − j] + [jd− n] + [n− ddjd/nd−1]

jn(d− 1)
=

1

n
.

Consider now a constraint corresponding to 1 ≤ i ≤ d and 1 ≤ j ≤ nd−d/(d−1), let us lower
bound the left hand side of this constraint.

yi,j +

d∑
h=1

n/d∑
ℓ=j+1

yh,ℓ
j

+

d∑
h=i+1

yh,j
j

≥
d∑

h=1

n/d∑
ℓ=j+1

yh,ℓ
j

= d ·
∫ n/d

j

yh,⌈x⌉

j
dx

≥ d

j
·
∫ n/d

nd−d/(d−1)

dd(x/n)d−1 − 1

n(d− 1)
dx

(∗)
=

1

j
·
∫ 1

d−1/(d−1)

dzd−1 − 1

d− 1
dz

=
1

j
· z

d − z

d− 1

∣∣∣∣1
d−1/(d−1)

=
1

j
· d

−1/(d−1) − d−d/(d−1)

d− 1
=

d−d/(d−1)

j

≥ d−d/(d−1)

nd−d/(d−1)
=

1

n
,

where (*) follows from substituting z = dx/n. This completes the proof that the above solution is

22

feasible. To complete the proof of the lemma, we need to upper bound the value of this solution.

d∑
h=1

n/d∑
ℓ=1

yh,ℓ = d ·
∫ n/d+1

1
yh,⌊x⌋dx = d ·

∫ n/d+1

nd−d/(d−1)

yh,⌊x⌋dx

≤ d ·
∫ n/d+1

nd−d/(d−1)

dd(x/n)d−1 − 1

n(d− 1)
dx

(∗∗)
=

∫ 1+d/n

d−1/(d−1)

dzd−1 − 1

d− 1
dz =

zd − z

d− 1

∣∣∣∣1+d/n

d−1/(d−1)

=
(1 + d/n)d − 1− d/n

d− 1
− d−d/(d−1) − d−1/(d−1)

d− 1
≤ ed

2/n − 1

d− 1
+ d−d/(d−1)

(∗∗∗)
≤ d−d/(d−1) +

d/
√
n

(d− 1)
= k−d/(d−1) +O(n−0.5) ,

where (**), again, follows from substituting z = dx/n, and (***) follows since ex − 1 ≤
√
x for

0 ≤ x ≤ 16−1.

B Omitted Proofs of Section 4

Lemma 4.2. The optimal value of (LP3) is an upper bound on the competitive ratio of any
algorithm for the case k = 2, Q = 1 and D = n/2.

Proof. Consider some arbitrary algorithm ALG for the problem. We assume ALG never hires a
secretary if two better secretaries were already interviewed. Clearly, any algorithm can be made
to act this way without deteriorating its competitive ratio. Let us construct an assignment for
(LP3) using ALG. Let fi (si) be the probability that ALG hires the secretary at position i given
that he is the (second) best secretary seen so far. We also need f1

i (f2
i) which is the same as fi

with the additional requirement that the secretary at position i is the first (second) secretary hired.
Similarly, we also define s1i and s2i . Observe that since ALG never hires more than two secretaries,
the above solution obeys the two types of equalities in (LP3).

The best secretary appears in every one of the first n/2 positions in the queue with equal
probability of 1/n. When this secretary appears in position i, it is hired with probability fi (ALG
cannot distinguish the best secretary from every other secretary in position i which is better than
all previous secretaries). Hence, the probability that ALG hires the best secretary is:

1

n
·
n/2∑
i=1

fi . (2)

The second best secretary also appears in each one of the first n/2 positions with equal probability.
When it appears in position i, it is the best secretary up to this point with probability (i−1)/(n−1),
and the second best secretary up to this point otherwise (depending on the position of the single
better secretary). ALG accepts the secretary in question with probability fi in the first case, and
probability si in the second case. Thus, the probability that ALG hires the second best secretary
is:

1

n
·
n/2∑
i=1

(
n− i

n− 1
· fi +

i− 1

n− 1
si

)
. (3)

23

By combining (2) and (3), we get the value of the solution suggested is equal to the competitive
ratio of ALG.

We say that ALG hires a secretary as the first secretary if no secretary was hired by ALG
before, and as the second secretary otherwise.

Consider the case that the secretary in position i is the best secretary up to that point. ALG
hires this secretary as the first secretary probability f1

i . One the other hand, consider some position
j < i. If the secretary at this position is the best up to this point (which happens with probability
1/j), ALG hires him with probability f1

j as the first secretary. Similarly, if the secretary at this
position is the second best up to this point (which happens with probability 1/j for j ≥ 2), ALG
hires him with probability s1j as the first secretary. Since ALG can hire at most one secretary as
the first secretary, the above discussion implies that the inequalities of the first type are satisfied
by the above solution. Inequalities of the second type are satisfied because of a similar argument
for the case that the secretary in position i is the second best secretary up to this point.

Still considering the case that the secretary in position i is the best secretary up to that point.
The above discussion implies that the probability that some secretary gets hired as the first secretary

before ALG gets to position i is: f1
1 +

∑i−1
j=2

f1
j +s1j
j . Similar arguments show that the probability

that some secretary gets hired as the second secretary before ALG gets to position i is:
∑i−1

j=2

f2
j +s2j
j .

Hence, the probability that exactly one secretary is hired till ALG gets to position i is the difference
between the above expressions, i.e.,

f1
1 +

i−1∑
j=2

f1
j + s1j − f2

j − s2j
j

.

Clearly, the probability of the event that the secretary at position i is hired as the second secretary
is upper bounded by this difference. On the other hand, this probability is exactly f2

i . From this
argument we get that the inequalities of the third type hold for the solution constructed. This kind
of argument also prove that inequalities of the fourth type are satisfied when applied to the case
that the secretary in position i is the second best secretary up to this point.

In conclusion, any algorithm, including the optimal one, induces a feasible solution for (LP3)
whose value is equal to the competitive ratio of the algorithm. Hence, the optimal value of (LP3)
upper bounds the optimal competitive ratio.

Lemma 4.7. Algorithm 4 hires s1 with probability at least t1 ln t2 − t1 ln t1 + t1 − t1t2.

Proof. Let Ax be the event that s1 arrives at time x. If Ax occurs for some x ∈ (t1, t2], then s1 is
hired if the best secretary in the range [0, x) arrives before time t1 (or the range is empty), which
occurs with probability t1/x. On the other hand, if Ax occurs for some x > t2, then s2 is hire if the
best secretary in the range [0, x) arrives before time t1 and the second best secretary in the same
range arrives before time t2 (or the range is empty), which occurs with probability t1t2/x

2.
The probability that Ax occurs for some x in a range R is proportional to the size of R (because

s1 arrives at a random time of the range [0, 1]). Hence, by the law of total probability, the probability
of s1 to be hired is:∫ t2

t1

t1
x
dx+

∫ 1

t2

t1t2
x2

dx = t1 lnx|t2t1 −
t1t2
x

∣∣∣∣1
t2

= t1 ln t2 − t1 ln t1 + t1 − t1t2 .

24

Lemma 4.8. Assuming s1 and s2 arrive at the same queue, then Algorithm 4 hires s1 with
probability at least t1 ln t2 − 2t1t2 − t1 ln t1 + t21 + t1.

Proof. Let Ax be the event that s2 arrives at time x. If Ax occurs for some x ∈ (t1, t2], then s2 is
hired if s1 arrives after it, and the best secretary in the range [0, x) arrives before time t1. Both
events occur with probability (1− x) · t1/x. If Ax occurs for some x > t2, then s2 is hired if one of
the following happens:

� s1 arrives before time t1, and the best secretary in the range [0, x) (excluding s1) arrives
before time t2 (or the range is empty except for s1).

� s1 arrives after time x, the best secretary in the range [0, x) arrives before time t1, and the
second best secretary in the range [0, x) arrives before time t2 (or the range is empty).

The probability that one of these events occur is:

t1 ·
t2
x

+ (1− x) · t1t2
x2

=
t1t2
x

.

The probability that Ax occurs for some x in a range R is proportional to the size of R (because s1
arrives at a random time of the range [0, 1]). Hence, by the law of total probability, the probability
of s2 to be hired is:∫ t2

t1

(
(1− x) · t1

x

)
dx+

∫ 1

t2

t1t2
x2

=

∫ t2

t1

(
t1
x

− t1

)
dx+

∫ 1

t2

t1t2
x2

dx

= [t1 lnx− t1x]
t2
t1
− t1t2

x

∣∣∣∣1
t2

= t1 ln t2 − 2t1t2 − t1 ln t1 + t21 + t1 .

Lemma 4.11. The optimal value of (LP4) is an upper bound on the competitive ratio of
any algorithm for the case of “exclusive” positions with k = 2, Q = 2 and D = n/2.

Proof. Consider some arbitrary algorithm ALG for the problem. We assume each queue policy
of ALG never hires a secretary if it has already interviewed two better secretaries. Clearly, any
algorithm can be made to act this way without deteriorating its competitive ratio. Let us construct
an assignment for (LP4) using ALG. Let fi (si) be the probability that ALG hires the secretary
at position i given that he is the (second) best secretary seen so far.

The best secretary appears in position i of some queue with probability 2/n for every position
1 ≤ i ≤ n/2. When this secretary appears in position i, it is hired with probability fi (ALG cannot
distinguish the best secretary from every other secretary in position i given that it is better than
all previous secretaries). Hence, the probability that ALG hires the best secretary is:

2

n
·
n/2∑
i=1

fi . (4)

The second best secretary also appears in each one of the n/2 possible positions with equal proba-
bility of n/2. When it appears in position i, it is the best secretary up to this point with probability
(i−1)/(n−1), and the second best secretary up to this point otherwise (depending on the position

25

of the single better secretary). ALG accepts the secretary in question with probability fi in the
first case, and probability si in the second case. Thus, the probability that ALG hires the second
best secretary is:

2

n
·
n/2∑
i=1

(
n− i

n− 1
· fi +

i− 1

n− 1
si

)
. (5)

By combining (4) and (5), we get the value of the solution suggested is equal to the competitive
ratio of ALG.

¿From now on, let us fix a single queue policy of ALG. Consider the case that the secretary in
position i is the best secretary seen by the policy up to that point. The policy hires this secretary
with probability fi. One the other hand, consider some position j < i. If the secretary at this
position is the best up to this point in this queue (which happens with probability 1/j), the policy
hires him with probability fj . Similarly, if the secretary at this position is the second best up to this
point (which happens with probability 1/j for j ≥ 2), the secretary hires him with probability sj .
Since each policy can hire at most one secretary, the above discussion implies that the inequalities
of the first type in (LP4) are satisfied by the above solution. Similarly, it is possible to prove that
inequalities of the second type are also satisfied by this solution using the same argument for the
case that the secretary in position i is the second best secretary up to this point.

In conclusion, any algorithm, including the optimal one, induces a feasible solution for (LP4)
whose value is equal to the competitive ratio of the algorithm. Hence, the optimal value of (LP4)
upper bounds the optimal competitive ratio.

Theorem 4.12. No algorithm is better than 0.321-competitive for the case of “exclusive”
positions with k = 2, Q = 2 and D = n/2.

Proof. By numerically solving (LP4) for n = 1500, it can be shown that no algorithm with com-
petitive ratio better than 0.3205 exists for 1500 secretaries. Assume for the sake of contradiction
that there exists an algorithm ALG with a competitive ratio α > 0.321 for n′ secretaries, where
n′ > n. Let us use ALG to get an algorithm for n secretaries with a competitive ratio better than
0.3205.

ALG is composed of two policies, one for each queue. From the view point of the policy of the
first queue, it gets a random permutation of a random set of n′/2 secretaries that can contain at
most two secretaries that give a point to the policy when hired. Let Ei,1 be the expected number
of points this policy gets when given a random permutation of a set containing i secretaries that
give a point when hired (note that this expectation depends only on i). The expected number of
points gained by this policy is:

E1,1 ·
n′/2

n′ − 1
+ E2,1 ·

n′/2− 1

n′ − 1
.

Let us we define Ei,2 as the expected number of points gained by the policy of the second queue
when given a random permutation of a set containing i secretaries that give a point when hired.
Using an argument similar to the above, we can prove that the expected number of points gained
by this policy is:

E1,2 ·
n′/2

n′ − 1
+ E2,2 ·

n′/2− 1

n′ − 1
.

At this point, we can use the linearity of the expectation to calculate the expected number of points
gained by ALG as a whole. Using this notation, our assumption that ALG is α-competitive can
be stated as:

E1,1 + E1,2

2
· n′/2

n′ − 1
+

E2,1 + E2,2

2
· n

′/2− 1

n′ − 1
≥ α .

26

We now construct an algorithm for n secretaries using ALG. Each policy of our algorithm
feeds the corresponding policy of ALG with the input it gets plus additional (n′ − n)/2 dummy
secretaries that are worse than any secretary of S. The positions of the dummy secretaries are
chosen at random from the n′/2 positions in the input of ALG. The competitive ratio of this
algorithm is:

E1,1 + E1,2

2
· n/2

n− 1
+

E2,1 + E2,2

2
· n/2− 1

n− 1

≥ E1,1 + E1,2

2
· n′/2

n′ − 1
+

E2,1 + E2,2

2
·
[
n′/2− 1

n′ − 1
− n

2(n− 1)2

]
≥ α− n

2(n− 1)2
> 0.3205 .

Lemma 4.13. For a random pair (IP , IT), Pr[(IP , IT) ∈ C1] ≥ t1 ln(t2/t1) + t21t2 − t21 −
2t1t2 + 2t1 − o(1) ≥ 0.4186.

Proof. Let Ax be the event that s1 arrives at time x. Given that Ax occurs for some x ∈ (t1, t2 −
D1/3), E1 holds with probability t1/x. If x > t2, than:

� E2 holds with probability:

t1

x+D−1/3
·
[
t2
x

+

(
1− t2

x

)
· t1
x

]
.

� E3 holds with probability:

t1
x

·
[

t2 − t1

x+D−1/3
+

(
1− t2

x+D−1/3

)
· t1

x+D−1/3

]
.

Moreover, E1, E2 and E3 are disjoint events. Thus for x ∈ (t1, t2 −D1/3),

Pr[(IP , IT) ∈ C1|Ax] =
t1

x+D−1/3
,

and for x > t2,

Pr[(IP , IT) ∈ C1|Ax] =
t1

x+D−1/3
·
[
t2
x

+

(
1− t2

x

)
· t1
x

]
+

t1
x

·
[

t2 − t1

x+D−1/3
+

(
1− t2

x+D−1/3

)
· t1

x+D−1/3

]
.

The probability that s1 arrives in an interval of size ℓ is ℓ. Hence, the probability it arrives in
an infinitesimal interval of size dx is dx. Therefore, by the law of total probability, the probability

27

Pr[(IP , IT) ∈ C1] is lower bounded by:∫ t2−D−1/3

t1

t1
x
dx+

∫ 1

t2

t1

x+D−1/3
·
[
t2
x

+

(
1− t2

x

)
· t1
x

]
dx

+

∫ 1

t2

t1
x

·
[

t2 − t1

x+D−1/3
+

(
1− t2

x+D−1/3

)
· t1

x+D−1/3

]
dx

≥
∫ t2

t1

t1
x
dx+

∫ 1

t2

t1
x

·
[
t2
x

+

(
1− t2

x

)
· t1
x

]
dx

+

∫ 1

t2

t1
x

·
[
t2 − t1

x
+

(
1− t2

x

)
· t1
x

]
dx− o(1)

≥
∫ t2

t1

t1
x
dx+

∫ 1

t2

t1
x

·
[
t1 + 2t2

x
− 2t1t2

x2

]
dx− o(1)

= t1 lnx|t2t1 +
[
t21t2
x2

− t1(t1 + 2t2)

x

]1
t2

− o(1)

= t1 ln(t2/t1) + [t21t2 − t21 − 2t1t2]− [t21/t2 − t21/t2 − 2t1]− o(1)

= t1 ln(t2/t1) + t21t2 − t21 − 2t1t2 + 2t1 − o(1) .

Lemma 4.14. For a random pair (IP , IT), Pr[(IP , IT) ∈ C2] ≥ t1 ln(t2/t1) + t1t2 ln t2 +
0.5t21t2 − 2.5t1t2 + 2t1 − o(1) ≥ 0.2951.

Proof. Let Ax be the event that s2 arrives at time x. Given that Ax, the probability that q1 ̸= q2
or s1 arrives after s2 is (2−x)/2. Hence, the probability that F1 occurs is equal to the probability
that E1, E2 or E3 occurs times (2− x)/x. For x > t2, we also have that the probability that F2
occurs is:

x− t2
2

· t1

t(s2, IT) +D−1/3
· t1
t(s2, IT)

.

Moreover, F1, and F2 are disjoint events. Thus for x ∈ (t1, t2 −D1/3),

Pr[(IP , IT) ∈ C2|Ax] =
2− x

2
· t1

x+D−1/3
,

and for x > t2,

Pr[(IP , IT) ∈ C1|Ax] =
t1

x+D−1/3
·
[
t2
x

+

(
1− t2

x

)
· t1
x

]
+

t1
x

·
[

t2 − t1

x+D−1/3
+

(
1− t2

x+D−1/3

)
· t1

x+D−1/3

]
+

x− t2
2

· t1

t(s2, IT) +D−1/3
· t1
t(s2, IT)

.

The probability that s2 arrives in an interval of size ℓ is ℓ. Hence, the probability it arrives in
an infinitesimal interval of size dx is dx. Therefore, by the law of total probability, the probability

28

Pr[(IP , IT) ∈ C2] is lower bounded by:∫ t2−D−1/3

t1

2− x

2
· t1
x
dx+

∫ 1

t2

2− x

2
· t1

x+D−1/3
·
[
t2
x

+

(
1− t2

x

)
· t1
x

]
dx

+

∫ 1

t2

2− x

2
· t1
x

·
[

t2 − t1

x+D−1/3
+

(
1− t2

x+D−1/3

)
· t1

x+D−1/3

]
dx

+

∫ 1

t2

x− t2
2

· t1

x+D−1/3
· t1
x
dx

≥
∫ t2

t1

2− x

2
· t1
x
dx+

∫ 1

t2

2− x

2
· t1
x

·
[
t2
x

+

(
1− t2

x

)
· t1
x

]
dx

+

∫ 1

t2

2− x

2
· t1
x

·
[
t2 − t1

x
+

(
1− t2

x

)
· t1
x

]
dx+

∫ 1

t2

x− t2
2

(
t1
x

)2

dx− o(1)

(∗)
= [t1 ln(t2/t1) + t21t2 − t21 − 2t1t2 + 2t1]

−
∫ t2

t1

t1
2
dx−

∫ 1

t2

t1
2
·
[
t2
x

+

(
1− t2

x

)
· t1
x

]
dx

−
∫ 1

t2

t1
2
·
[
t2 − t1

x
+

(
1− t2

x

)
· t1
x

]
dx+

∫ 1

t2

x− t2
2

(
t1
x

)2

dx− o(1)

= [t1 ln(t2/t1) + t21t2 − t21 − 2t1t2 + 2t1]− t1(t2 − t1)/2−
∫ 1

t2

t1
2
·
[
2t2
x

− t1t2
x2

]
dx− o(1)

= [t1 ln(t2/t1) + t21t2 − t21/2− 2.5t1t2 + 2t1]−
t1
2
·
[
2t2 lnx+

t1t2
x

]1
t2

− o(1)

= [t1 ln(t2/t1) + t21t2 − t21/2− 2.5t1t2 + 2t1]−
t1
2
· [t1t2 − 2t2 ln t2 − t1]− o(1)

= t1 ln(t2/t1) + t1t2 ln t2 + 0.5t21t2 − 2.5t1t2 + 2t1 − o(1) ,

where (*) follows from the proof of Lemma 4.13.

C Omitted Proofs of Section 6

Theorem 6.2. No better than 1− 1/(2e) + o(1) ≈ 0.816-competitive algorithm exists for the
case Q = k, D = n/k for large k and “shared” positions.

Proof. Consider some algorithm ALG for the problem. Fix some distribution P of the secretaries
among the queue. After fixing P the randomness of the input means that each queue gets a random
permutation of a constant set of n/k secretaries. Each queue has some probability pi that at least
one secretary is hired from this queue. Notice that the probabilities pi are independent of the
distribution P because the algorithm can only compare the secretaries of one queue to each other.

Let us now lower bound the total number of secretaries that ALG man with non-top k secre-
taries. Each queue qi contains no top k secretary with probability:

(1− 1/k)k ≥ e−1 · (1− 1/k) = e−1 − o(1) .

29

On the other hand, ALG hires from qi with probability at least pi, regardless of D, and therefore,
ALG hires from qi a non-top k secretary with probability at least:

[e−1 − o(1)] · pi .

Summing over all top k secretaries, we can lower bound the total number of non-top k secretaries
hired by:

[e−1 − o(1)] ·
k∑

i=1

pi . (6)

Next, we lower bound the total number of top k secretaries that ALG does not hire. Each top
k secretary s arrives to each queue qi with equal probability. If no secretary is hired from qi (which
happens with probability 1− pi), then clearly ALG does not hire s. Hence, the probability that s
is not hired is at least: ∑k

i=1 1− pi
k

.

Summing over all top k secretaries, we can lower bound the total number of top k secretaries not
hired by:

k∑
i=1

1− pi (7)

Combining (6) and (7), we get that the competitive ratio of ALG is at most:

1−
max

{
[e−1 − o(1)] ·

∑k
i=1 pi,

∑k
i=1 1− pi

}
k

≤ 1− e−1

2
+ o(1) .

Theorem 6.4. No better than 0.301-competitive algorithm exists for the case Q = k,
D = n/k for large k and “exclusive” positions.

Proof. Consider some arbitrary algorithm ALG for the problem. Notice that ALG can hire at most
one secretary from each queue. Let us upper bound the probability of the event Eq that ALG hires
a top k secretary from some queue q.

First let us lower bound the probability that q contains i secretaries for some constant i. For
i ≥ 1, we can use the following lower bound:(

k

i

)
· k−i(1− 1/k)k−i =

k! · (1− 1/k)k−i

ki(k − i)! · i!
=

(1− 1/k)k−i

i!
≥ e−1

i!
.

For i = 0, we use the lower bound:

(1− 1/k)k ≥ e−1 · (1− 1/k) = e−1 − o(1) .

Assume now that we have an upper bound Bi on the probability that ALG manages to hire
a top k secretary from q assuming there are i top k secretaries there. Using the previous lower
bounds on the probability that there are exactly i top k secretaries in q, we get the following lower
bound on Pr[Eq].

Pr[Eq] ≤ 1−
ℓ∑

i=0

(1−Bi) ·
e−1

i!
, (8)

30

Table 3: Bi values

i Bi n used

2 0.575 1100
3 0.709 1000
4 0.800 900
5 0.862 800

where ℓ is an arbitrary constant (the larger is ℓ the better is the bound).
Notice that by the linearity of the expectation, the expected value that ALG collects is given

by
∑k

j=1 Pr[Eqj], where Eqj is the event that ALG hires a top k secretary from queue qj . Since (8)
holds for all queues qj , we get that the competitive ratio of ALG is also upper bounded by (8).

Hence, it all boils down to providing good upper bounds Bi. For i = 0, there is no top k
secretary in q, and therefore, ALG has zero probability of hiring such a secretary from q, i.e.,
Bi = 0. For i = 1, there is a single top k secretary in q, i.e., we get the classical secretary problem
in q. No algorithm can hire this single secretary with probability over B1 = e+ o(1).

Plugging the two above values of Bi into (8) results in an upper bound of ≈ 0.632. To strengthen
this result we use the method of [5]. Notice that Bi is upper bounded by the achievable competitive
ratio for the auxiliary problem. Buchbinder et al. [5] describe an LP whose value is the competitive
ratio of the auxiliary problem for n secretaries. Due to Lemma 6.3, such a solution is also an upper
bound on the competitive ratio of the auxiliary problem for a general number of secretaries, i.e., it
is a possible value for Bi. Table 3 give some Bi values achieved this way. The theorem follows by
plugging these values of Bi into (8).

Theorem 6.5. Algorithm 7 is a t ·
[
Ei(−1) + e−1 − 1− Ei(−t)− e−t

t + t−1
]
competitive

algorithm for the case Q = k and D = n/k. Hence, for t = 0.323, Algorithm 7 is a 0.276-competitive
algorithm.

Proof. Let sj be the jth best secretary in S. Assuming that sj arrives at time x > t, he is hired if:

� No better secretary appears before him.

� The best secretary in the range [0, x) arrives before time t, or this range is empty.

And both conditions occur with probability at least (t/x) · (1− x/k)j−1. Dropping the assumption
that sj arrives at time time x, we get that sj is hired with at least the following probability.∫ 1

t

t

x
·
(
1− x

k

)j−1
dx .

Summing over all top k secretaries, we get that the expected number of top k secretaries that are

31

hired by Algorithm 7 is at least:

k∑
j=1

(∫ 1

t

t

x
·
(
1− x

k

)j−1
dx

)
=

∫ 1

t

 t

x
·

k∑
j=1

(
1− x

k

)j−1

 dx

=

∫ 1

t

(
t

x
· (1− x/k)k − 1

(1− x/k)− 1

)
dx

= − tk ·
∫ 1

t

(
(1− x/k)k − 1

x2

)
dx ≥ −tk ·

∫ 1

t

(
e−x − 1

x2

)
dx

= tk ·
[
Ei(−x) +

e−x

x
− x−1

]1
t

= tk ·
[
Ei(−1) + e−1 − 1− Ei(−t)− e−t

t
+ t−1

]
.

Theorem 6.6. For large k, Algorithm 8 is a 0.288-competitive algorithm for the case
Q = k and D = n/k.

Proof. Let sj be the jth best secretary in S. Let us calculate the probability sj is hired. Using
argument from the proof of Theorem 6.5, we get that if sj arrives at some time x ∈ (t1, t2), he is
hired with probability:

t1
x

·
(
1− x

k

)j−1
.

Consider now the case that sj arrives at time x > t2. There are two options to consider. The first
option is that no better secretary arrives before sj . This options occurs with probability (1−x/kj−1.
If this option occurs, then sj is hired if the best secretary of the range [0, x) arrives before time
t1 (or this range is empty), and the second best secretary of this range arrives before time t2 (or
there are less than 2 secretaries in this range). Hence, a secretary sj is hired due to this option
with probability:

t2
x

· t1
x

·
(
1− x

k

)j−1
.

The other option is that exactly one better secretary sb arrives before sj , and it arrives before
time t1. This option occurs with probability (j − 1) · (t1/k) · (1− x/k)j−2 For sj to be hired under
this option, the second best secretary of the range [0, x) must arrive before time t2 (or this range
contains sb alone). Hence, a secretary sj is hired due to this option with probability:

(j − 1) · t1
k

·
(
1− x

k

)j−2
· t2
x

.

Since the two above options are disjoint, the sum of the above two probabilities is the probability
that sj is hired by Algorithm 8 given that x > t2. Removing the assumption that sj arrives on
time x, we get he is hired with probability:∫ t2

t1

t1
x

·
(
1− x

k

)j−1
dx+

∫ 1

t2

t2
x

· t1
x

·
(
1− x

k

)j−1
dx+

∫ 1

t2

(j − 1) · t1
k

·
(
1− x

k

)j−2
· t2
x
dx .

32

Summing over all top k secretaries, we get that the expected number of top k secretaries hired by
Algorithm 8 is at least:

k∑
j=1

(∫ t2

t1

t1
x

·
(
1− x

k

)j−1
dx+

∫ 1

t2

t2
x

· t1
x

·
(
1− x

k

)j−1
dx (9)

+

∫ 1

t2

(j − 1) · t1
k

·
(
1− x

k

)j−2
· t2
x
dx

)
.

In the proof of Theorem 6.5, the sum of the first terms of (9) was lower bounded by:

t1k ·
[
Ei(−t2) +

e−t2

t2
− t−1

2 − Ei(−t1)−
e−t1

t1
+ t−1

1

]
.

Next, let us now lower bound the sum of the second terms of (9).

k∑
j=1

(∫ 1

t2

t2
x

· t1
x

·
(
1− x

k

)j−1
dx

)
= t1t2 ·

∫ 1

t2

x−2 ·

 k∑
j=1

(
1− x

k

)j−1

 dx

= t1t2 ·
∫ 1

t2

x−2 ·
(
(1− x/k)k − 1

(1− x/k)− 1

)
dx

= − t1t2k ·
∫ 1

t2

(1− x/k)k − 1

x3
dx

≥ − t1t2k ·
∫ 1

t2

e−x − 1

x3
dx

= − t1t2
2

·
[
Ei(−x) +

1 + e−x(x− 1)

x2

]1
t2

=
t1t2
2

·
[
Ei(−t2) +

1 + e−t2(t2 − 1)

t22
− Ei(−1)− 1

]
.

33

Finally, let us lower bound the sum of the third terms of (9).

k∑
j=1

(∫ 1

t2

(j − 1) · t1
k

·
(
1− x

k

)j−2
· t2
x
dx

)

=

∫ 1

t2

 t1t2
kx

·
k∑

j=2

(j − 1) ·
(
1− x

k

)j−2

 dx

= −
∫ 1

t2

 t1t2
x

· d

dx

 k∑
j=2

(
1− x

k

)j−1

 dx

= −
∫ 1

t2

(
t1t2
x

· d

dx

[(
1− x

k

)
· (1− x/k)k−1 − 1

(1− x/k)− 1

])
dx

=

∫ 1

t2

(
t1t2
x

· d

dx

[(
k

x
− 1

)
· [(1− x/k)k−1 − 1]

])
dx

= −
∫ 1

t2

(
t1t2
x

·
[
k · [(1− x/k)k−1 − 1]

x2
+

(
k

x
− 1

)
· (k − 1)(1− x/k)k−2

k

])
dx

= −
∫ 1

t2

(
t1t2
x

·
[
k · [(1− x/k)k−1 − 1]

x2
+

(k − 1)(1− x/k)k−1

x

])
dx

≥ −
∫ 1

t2

(
t1t2
x

·
[
k · [e−x/(1− 1/k)− 1]

x2
+

(k − 1)e−x/(1− 1/k)

x

])
dx

=
t1t2

1− 1/k
·
∫ 1

t2

(
k · [1− 1/k − e−x]

x3
− (k − 1)e−x

x2

)
dx

=
t1t2

2(1− 1/k)
·
[
(k − 2)Ei(−x) +

1− k + e−x[kx+ k − 2x]

x2

]1
t2

=
t1t2

2(1− 1/k)
·
[
(k − 2)Ei(−1) + 1− k + e−1[2k − 2]− (k − 2)Ei(−t2)

− 1− k + e−t2 [kt2 + k − 2t2]

t22

]
.

Plugging all the above lower bounds into (9), and diviing by k, we get the following lower bound
for the competitive ratio of Algorithm 8.

t1 ·
[
Ei(−t2) +

e−t2

t2
− t−1

2 − Ei(−t1)−
e−t1

t1
+ t−1

1

]
+
t1t2
2

·
[
Ei(−t2) +

1 + e−t2(t2 − 1)

t22
− Ei(−1)− 1

]
+

t1t2
2k(1− 1/k)

·
[
(k − 2)Ei(−1) + 1− k + e−1[2k − 2]− (k − 2)Ei(−t2)

− 1− k + e−t2 [kt2 + k − 2t2]

t22

]
.

34

As k increases, this competitive ratio goes to:

t1 ·
[
Ei(−t2) +

e−t2

t2
− t−1

2 − Ei(−t1)−
e−t1

t1
+ t−1

1

]
+
t1t2
2

·
[
Ei(−t2) +

1 + e−t2(t2 − 1)

t22
− Ei(−1)− 1

]
+
t1t2
2

·
[
Ei(−1) + e−1(2− e)− Ei(−t2) +

1− e−t2(t2 + 1)

t22

]
= t1 ·

[
Ei(−t2)− Ei(−t1)−

e−t1

t1
+ t−1

1 + t2(e
−1 − 1)

]
.

The theorem now follows by plugging the values of t1 and t2 into the above expression.

35

