
Interviewing Secretaries in Parallel

MORAN FELDMAN and MOSHE TENNENHOLTZ, Microsoft Research

Motivated by the parallel nature of on-line internet help-desks and human inspections, we introduce the

study of interviewing secretaries in parallel, extending upon the study of the classical secretary problem. In
our setting secretaries arrive into multiple queues, and are interviewed in parallel, with the aim of recruiting
several secretaries in a timely manner. We consider a variety of new problems that fit this setting, and provide
both upper and lower bounds on the efficiency of the corresponding interviewing policies, contrasting them

with the classical single queue setting.

Categories and Subject Descriptors: F.2.2 [Theory of Computing]: Analysis of Algorithms and Problem
Complexity—Nonnumerical Algorithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Secretary problems, parallelization, time constraints, competitive anal-
ysis

1. INTRODUCTION
On-line help desks have become a central issue in the service industry. For example,
companies such as LivePerson conduct on-line chat support in order to solve problems
on-line in a timely manner. In such settings, multiple human service providers face,
in parallel, a stream of clients. A major constraint is that only a small number of the
clients can be transitioned to a higher authority treatment. Thus, the service providers
must decide on line, and in parallel, which clients need such a treatment the most.

A similar setting arise from inspection procedures in airports. Here, each inspector
is associated with her queue of people. The inspector has to interview the people in her
queue serially, and refer the suspected ones to further inquiry. Again, only a limited
number of people can be referred to such an inquiry, and therefore, the inspectors have
to select on line, and in parallel, the most suspected people.

In both the above examples, there are two types of agents: interviewers and experts.
Each interviewer gets a portion of the clients, and interview them serially. Clients that
require more than a short interview are then refereed to further treatment by an ex-
pert. A similar setting with only one type of agents exists too. Again, each interviewer
gets a portion of the clients, and interview them serially. However, if a client needs fur-
ther treatment, the interviewer herself provides this treatment, and ignores the rest
of the clients from this point on (till she is done with the current one).

To illustrate the above consider a situation of two inspectors working in parallel,
each interviewing half of the population serially (due to time constraints, it might not
be possible to interview serially more people). Assume that each interview takes one
time unit, and each inspector is expected to choose one person for detailed inspec-
tion immediately after interviewing him, and release all others. We face here a novel

Authors addresses: M. Feldman and M. Tennenholtz, Microsoft Research, Herzelia, Israel.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
EC’12, June 4–8, 2012, Valencia, Spain. Copyright 2012 ACM 978-1-4503-1415-2/12/06...$10.00.



secretary problem in which the secretaries randomly partition into two queues, and
a single secretary is to be selected from each queue. Comparison is possible only be-
tween secretaries belonging to the same queue (because they are interviewed by the
same inspector).

The intuitive approach for the above problem is for each inspector to apply the clas-
sical secretary algorithm1 to its queue. However, that turns out to be suboptimal. Also,
notice that the parallelism is the factor preventing the inspectors from selecting two
secretaries of the same queue. A naı̈ve attempt to improve the system, and still com-
ply with the time constraints, might be as follows. Let one inspector interview half the
secretaries, and hire two of the secretaries interviewed. The rest of the secretaries are
released immediately without being interviewed. It turns out that such a modification
strictly decreases the probability of the inspectors to select the right secretaries.

1.1. The Model
In the classical secretary problem [Libdley 1961; Dynkin 1963], the input consists of
a set of secretaries and a strict total order among them. The secretaries arrive online
in a random order. Each time a secretary arrives, the algorithm can compare him to
the previously seen secretaries, and then it must either hire or dismiss the secretary.
Both decisions are irreversible. The algorithm can hire only a single secretary, and its
objective is to hire the best secretary.

Our model is a generalization of the classical secretary problem. Here the set of
secretaries is evenly and randomly partitioned into multiple queues. The order of the
secretaries in each queue is also random. Only the first D secretaries of each queue can
be interviewed before the deadline, the others are never considered by the algorithm.
Each time a secretary arrives, the algorithm can compare him to the previously seen
secretaries of that queue (secretaries of different queues can never be compared), and
then it must either hire or dismiss the secretary. The algorithm can hire k secretaries,
and its objective is to hire as many top k secretaries as possible, where k is a parameter
of the problem.

Two sub-models correspond to the two kinds of settings discussed above. In the first
sub-model, the algorithm can hire at most one secretary from each queue. This sub-
model corresponds to the case where the interviewer has to select one client to whom
she will provide further treatment on her own. We say that this sub-model has “exclu-
sive” positions, because each queue is associated with a single secretary position that
can be manned from this queue only.

In the other sub-model we consider, the algorithm can hire secretaries from all
queues, as long as less than k secretaries have been hired so far. This sub-model cor-
responds to the case where clients selected for further treatment are transferred from
the interviewer to an expert; leaving the interviewer to continue inspecting clients.

Information shared between policies of different queues.. In the above description of
the model, we assume that secretaries of different queues cannot be compared. The
idea behind this assumption is that scores given by different interviewers are not com-
parable (e.g., some interviewers might be harsher than others). Let us argue that once
we make this assumption, the only meaningful information that can be shared be-
tween policies is the number of secretaries hired so far by each policy. From the view-
point of every single policy, its input is simply a random permutation. Moreover, these
random permutations are independent. Thus, information about the relative value of
secretaries in the input of one policy is of no use to the other policies. Despite of this

1The classical secretary algorithm skips the first 1/e fraction of the secretaries, and then hire the first
secretary better than any previous one [Libdley 1961; Dynkin 1963].



Table I. Subcases for k = 2 and D = n/2

Sub Case Algorithm Hardness
One Queue 0.192 [Cor 4.6] 0.266 [Thm 4.3]
Two queues with “exclusive” positions 0.319 [Cor 4.10] 0.321 [Thm 4.12]
Two queues with “shared” positions 0.356 [Cor 4.17] -

Table II. Subcases for large k and D = n/k

Sub Case Algorithm Hardness
One Queue 1/k − o(1) [Thm 6.1] 1/k [Thm 6.1]
k queues with “exclusive” positions 0.288 [Thm 6.6] 0.816 [Thm 6.2]
k queues with “shared” positions 0.288 [Thm 6.6] 0.301 [Thm 6.4]

argument, our hardness results assume nothing beside the inability to compare secre-
taries of different queues.

1.2. Our Results
We first consider the case of k = 1 and D = n/d, i.e., we need to hire a single secretary,
and each interviewer has time to interview only a fraction of 1/d of the secretaries. This
is a simple setting for which we can give tight results. We compare the two extreme
cases of a single queue and d queues (having more than d queues clearly does not help
the algorithm). For a single queue we show that the best possible competitive ratio is
(de)−1. On the other hand, d queues allow a competitive ratio of d−d/(d−1)−o(1). Notice
that for large d, the improvement in the competitive ratio approaches a factor of e. The
last result is tight up to low order terms.

Next, we consider the case of k = 2 and D = n/2. This setting allows us to compare
“exclusive” and “shared” positions, and still is simple enough to produce strong results.
We consider three subcases which are summarized in Table I.

Table I shows that the three sub cases considered have strictly different optimal
competitive ratios. As one might expect, two queues with “shared” positions is the
strongest mechanism. However, the relation between the two other mechanisms is not
that easy to predict. Two queues with “exclusive” positions gets to interview twice as
many secretaries as the one queue mechanism, but enjoys less freedom since it must
hire at most one secretary from each queue.

We next shift our attention to hiring a large number of secretaries, i.e., n ≫ k ≫
1. We consider two extreme values for D: n/2 and n/k. If D = n/2, then we get a
competitive ratio of 1 − o(1) for two queues and 1/2 − o(1) for one queue. Both ratios
are tight up to the o(1) term. The results for D = n/k are summarized in Table II.

There is one important result which does not appear in Table II. An intuitive strat-
egy for the case of k queues with “exclusive” positions is to apply the classical secretary
algorithm to each queue independently. We give evidence that the approximation ratio
of this policy is only about 0.274, i.e., suboptimal.

1.3. Related Work
The Classical Secretary Problem was introduced during the 60’s of the 20th century,
nobody is sure exactly when [Libdley 1961; Dynkin 1963; Ferguson 1989]. Since its
introduction, many variants of the problem have been proposed and researched. We
survey here only the most relevant ones.

One of the most common extensions of the classical problem allows the algorithm
to hire up to k secretaries. For the case where every subset of k secretaries can be
hired, two incomparable competitive ratios of e−1 and 1 − O(k−0.5) were obtained by
Babaioff et al. [2007a] and Kleinberg [2005], respectively. Related problems impose
either knapsack [Babaioff et al. 2007a] or matroid constraints on the set of secretaries



hired [Babaioff et al. 2007b; Dimitrov and Plaxton 2008; Im and Wang 2011; Korula
and Pál 2009].

Babaioff et al. [2009] consider time constraints imposed on the interviewing process.
In their model secretaries lose value over time, making it more profitable to hire a
somewhat inferior but early secretary than a better secretary that arrives late. The
use of soft time constraints in this model make it very different from ours.

Another interesting line of work consider ground sets with a partial order [Georgiou
et al. 2008; Kumar et al. 2011] (as opposed to the full order assumed in the classical
problem). Partial order implies that the algorithm cannot compare every pair of two
secretaries. This resembles the incomparability of secretaries of different queues in our
model. However, under partial order, a pair of secretaries is always either comparable
or incomparable, whereas, every pair of secretaries in our model is comparable with
some probability.

Buchbinder et al. [2010] show an interesting relation between linear programs (LPs)
and many variants of the secretary problem. An LP represents a problem P if any feasi-
ble solution x of the LP with value V (x) implies an algorithm for P with a competitive
ratio of V (x), and vice versa. Buchbinder et al. [2010] show how to construct an LP
representing some variants of the secretary problem, including the classical one. Such
LPs are useful for two reasons: finding an optimal solution for a given n (the number
of secretaries), and proving hardness results using dual-fitting.

Feldman et al. [2011] suggest using an alternative view of the arrival process. In-
stead of assuming the secretaries arrive at a random order, [Feldman et al. 2011] as-
sumes the secretaries arrive at random times during the interval [0, 1]. Under most
variants of the secretary problem, both arrival processes are equivalent; however, the
alternative view is often the easier one to analyze. Feldman et al. [2011] demonstrate
this observation by improving the competitive ratio known for a few submodular sec-
retarty problems (i.e., secretary problems with a submodular objective function). Sub-
modular secretary problems were also considered in other works [Bateni et al. 2010;
Gupta et al. 2010].

2. PRELIMINARIES
In all problems considered in this paper, the input includes of a set S of n secretaries,
and a strict total order ≺ on the secretaries of S. We say that secretary s is better
than s′ if s ≺ s′. The objective of the algorithm is to hire up to k secretaries. For every
secretary s hired, the algorithm gets a point if s is one of the top k secretaries in S.2

In every single problem there are two additional parameters Q and D. The parame-
ter Q determines the number of input queues (we assume for simplicity that Q divides
n), and is considered to be a constant. A distinct random subset of n/Q secretaries of
S arrive to each queue in random order.3 The parameter D determines the number of
secretaries of each queue that can be interviewed (before the deadline).

An algorithm ALG for our problems describes a policy for each one of the queues.
A policy P of a queue q considers the secretaries of q sequentially. For secretary s
considered, P must decide, irreversibly, whether to hire s. When deciding about s, the
policy P has access only to the following information.

I1 The total number of secretaries.

2A similar model associates an adversary chosen distinct value with every secretary. Under this model, the
algorithm observes the value of each arriving secretary, and its revenue from hiring the secretary is equal
to the observed value. Our algorithms work for this model as well, and yield the same competitive ratios.
3The following is an alternative view of the input model. The n secretaries arrive at random order. The
secretaries at positions 1, Q + 1, 2Q + 2, . . . are sent to the first queue, the secretaries at positions 2, Q +
2, 2Q+ 2, . . . are sent to the second queue, and so on.



I2 The relation ≺ between the secretaries of q already seen.
I3 The number of secretaries already hired from each one of the queues.

The k positions available for secretaries can be either “exclusive” or “shared”. If the
positions are “exclusive”, then every position is associated with a single queue; and
only the policy of this queue can hire for that position. On the other hand, if the posi-
tions are “shared”, every policy of every queue can hire to each one of the positions.

For “shared” positions, we need to assume that all policies of all queues advance at
equal rates (i.e., they all consider the secretary at position i of their respective queues
before any of them consider the secretary at position i+1 of their respective queue). The
order in which the secretaries at position i are considered does not affect our results.
For simplicity, we assume this order agrees with the indexes of the queues. Observe
that for “exclusive” positions, the assumption of equal rates and I3 are redundant.

The competitive ratio of ALG is defined as the ratio between the expected value of
the algorithm (i.e., the expected number of points gained by the algorithm), and k,
where the expectation is over the randomness of the arrival model.

2.1. Random Arrival Times
Recall that in the classical secretary problems, it is assumed that the secretaries arrive
in a random order. This arrival model is used by most of the results mentioned above.
Following [Feldman et al. 2011], our algorithms are described in terms of a somewhat
different arrival model. In this model, each queue q gets a random disjoint subset of
D secretaries. Each of these D secretaries arrive at a random time from the range
[0, 1]. Notice that if D < n/Q, then some of the secretaries never arrive to any of the
queues. Alternatively, we can think that each queue gets n/Q secretaries, but n/Q−D
secretaries of each queue arrive too late to be interviewed. For “exclusive” positions
the arrival model described above reduces to this model as described in Algorithm 1.4

ALGORITHM 1: Reduction
1 for each queue q do
2 Choose a set Tq of D random arrival times.
3 Sort the times of Tq.
4 Assign the times of Tq sequentially to the first D secretaries of q upon arrival.
5 end

For “shared” positions, the two models are not equivalent because the assumption
that all queues advance at equal rates cannot be stated in terms of the random arrival
times model. To bypass this problem, we use the idea of “well-representation”. Given
an input IP for the random arrival order model (random permutation), Algorithm 1
produces a random input IT for the random arrival times model. Let i(s, IP ) denote
the index of the position at which secretary s appears, in its queue, in input IP , and
let t(s, IT ) denote the arrival time of secretary s in input IT . We say that IT is a well-
representation of IP if for every two secretaries s, s′ ∈ S: i(s, IP ) ≤ i(s′, IP ) ⇒ t(s, IT ) <
t(s′, IT ) +D−1/3.

Well-representation gives additional relation between the positions and times which
allows us to take the assumption that the queues advance at equal rates into con-
sideration when analyzing our algorithms. Moreover, the following lemma shows that
well-representation happens with high probability.

4In fact the two models are equivalent.



LEMMA 2.1. Given an input IP for the random arrival order model, Algorithm 1
produces a random input IT for the random arrival times model which is a well repre-
sentation of IP with probability 1− o(1).

PROOF. Algorithm 1 uses n random time variables. Let X1 and X2 be two such
random variables, and let s1 and s2 be the random secretaries assigned the random
arrival times X1 and X2. If X1 and X2 are associated with the same queue, then clearly
s1 and s2 will not violate the well-representation property. Hence, we can concentrate
from now on on variables X1 and X2 associated with different queues.

Fix the random times X1 and X2. We would like to upper bound the the probability
that s1 and s2 violate the well-representation property. Assume without loss of gener-
ality X1 ≤ X2. s1 and s2 violate the well-representation property if and only if the two
following conditions hold:

C1 X1 ≤ X2 −D−1/3.
C2 i(s1, IP ) ≥ i(s2, IP ).

Assume C1, i.e., X1 ≤ X2−D−1/3, and let us upper bound the probability that C2 holds
as well. Let q1 and q2 be the two queues corresponding to X1 and X2, respectively. For
the purpose of this proof we allow a queue to have less than D times. If this is the
case, the secretaries are assigned times sequentially upon arrival, till no more times
are available. Secretaries that arrive after all times have been exhausted get no time.

Consider the following process. The process has D steps. Let us denote the values
of i(s1, IP ) and i(s2, IP ) at step j by ij(s1, IP ) and iJ(s2, IP ), respectively. At step 0,
both queues have a single time allocated to each one of them: X1 to q1 and X2 to q2.
The first secretary of q1 gets time X1 and becomes s1. Similarly, the first secretary of
q2 becomes X2. Hence, i0(s1, IP ) = i0(s2, IP ) = 1. In each step we add two additional
random times, one for q1 and one for q2, and update the choice of s1 and s2. Observe
that for every 1 ≤ j ≤ D − 1,

ij(s1, IP )− ij−1(s1, IP ) =
{
1 with probability X1

0 otherwise .

A similar observation holds for ij(s2, IP ) − ij−1(s2, IP ) also, with X2 replacing X1.
Moreover, both quantities are independent (because q1 ̸= q2). Let us define for every
0 ≤ j ≤ D − 1, Yj = ij(s1, IP ) − ij(s2, IP ) + j · (X2 −X1). Notice that Y0 = i0(s1, IP ) −
i0(s2, IP ) = 0. Consider Yj − Yj−1 for some 1 ≤ j ≤ D − 1. It can be observed that:

Yj − Yj−1 =

{
1 +X2 −X1 with probabilitiy X1(1−X2)
X2 −X1 with probabilitiy X1X2 + (1−X1)(1−X2)
−1 +X2 −X1 with probabilitiy X2(1−X1)

Hence, E[Yj − Yj−1] = 0, and the series {Yj}D−1
j=0 is a martingale. Using Azuma’s

inequality, we get:

Pr[iD−1(s1, IP ) ≥ iD−1(s1, IP )] = Pr[YD−1 ≥ (D − 1)(X2 −X1)]

≤ e
− (D−1)2(X2−X1)2

2(D−1)(1+X2−X1)2
(∗)
≤ e−

(D−1)D2/3

8 ≤ e−
D1/3

9 ,

where (*) holds since we assumed C1, which implies: 1 ≥ X2−X1 ≥ D1/3. Notice that at
step D − 1, both q1 and q2 already have D random times, and therefore, iD−1(s1, IP ) =
i(s1, IP ) and iD−1(s2, IP ) = i(s2, IP ). Thus, the last inequality implies that given C1,

with probability at least 1 − e−
(n/k)1/3

9 , C2 does not hold. Hence, with probability 1 −
e−

(n/k)1/3

9 , s1 and s2 does not violate the well-representation property.



The number of pairs of random time variables is less than n2, and therefore, by the
union bound, with probability at least 1 − n2e−

(n/k)1/3

9 = 1 − o(1), no pair of random
times are assigned to two secretaries violating the well-representation property, i.e.,
IT is a well-representation of IP .

2.2. Hardness Results
Some of the hardness results we describe are based on the method of [Buchbinder
et al. 2010]. This method works as following. For a given number n of secretaries, one
constructs a primal maximization LP with the following properties.

— The variables of the primal LP represent the probabilities of different events assum-
ing an arbitrary algorithm ALG is applied to the problem.

— The objective function of the primal LP is the competitive ratio of ALG, resulting
from the above probabilities.

— The constraints of the primal LP are inequalities that the above probabilities must
obey regardless of the algorithm ALG considered.

Clearly, any algorithm ALG induces a solution for the primal LP whose value is the
competitive ratio of this algorithm for n secretaries. Hence, any solution for the dual
LP provides an upper bound on the best achievable competitive ratio for n secretaries.
In this paper we get hardness results using this machinery via two methods:

— Upper bounding the value of the dual solution for every n.
— Finding a dual solution of value at most α for some n0 secretaries, and proving that

any algorithm with a competitive ratio β > α for some n > n0 implies a β-competitive
ratio for n0 as well.

3. A SINGLE POSITION
In this section we consider the case that we want to hire only a single secretary, i.e.,
k = 1. The single position available is of course “shared” among the queues (as opposed
to being “exclusive” for one queue). This is a relatively simple case on which we can
demonstrate many of our techniques. Assume the deadline D = n/d for some positive
integer d, i.e., we can interview at most n/d secretaries of each queue. We compare two
extreme cases Q = 1 and Q = d. Due to space constraints, some proofs of this section
are omitted from this extended abstract.

3.1. A Single Queue
Let us start with the case Q = 1. In this case we have a single queue, but we can
interview only the first n/d secretaries of this queue.

THEOREM 3.1. There is a (de)−1-competitive algorithm for the case Q = 1 and D =
n/d, and this is the best possible up low order terms.

3.2. d Queues
We now consider the case of Q = d, i.e., each queue gets n/d secretaries, and all secre-
taries can be interviewed. Observe that since we cannot compare secretaries of differ-
ent queues, it is not possible even after interviewing all secretaries to determine which
queue contained the best secretary. Hence, we might guess that this case is equivalent
to the previous one (here we must guess the right queue, whereas in the previous case



the input was a randomly chosen queue). However, this intuition is not correct, as we
prove in this section.5

ALGORITHM 2: Algorithm for k = 1, Q = d and D = n/d

1 for each queue independently do
2 Wait till time t = d−1/(d−1).
3 Let s be the first secretary after time t which is better than any previously seen

secretary.
4 if no secretary was hired before (by another queue) then
5 Hire s.
6 end
7 end

We suggest Algorithm 2 for the problem. Let s1 be the best secretary, and let q1 be
the queue it arrives to. We now define a set C as following. Given an input IP of the
random order model (such an input is simply a random permutation of the secretaries
of S), let IT be any input of the random arrival times model that might be produced
from IP using Algorithm 1. The pair (IP , IT ) is in C if all the following conditions hold:

D1 t(s1, IT ) > t.
D2 The best secretary of q1 in the range [0, t(s1, IT )) arrives before time t, or this range

is empty.
D3 In any queue other than q1, the best secretary in the range [0,min{1, t(s1, IT ) +

D−1/3}] arrives before time t, or this range is empty.

A random pair (IP , IT ) is a pair constructed as following. A random input IP for the
random order model is selected. Algorithm 1 is them used to produce from IP an input
IT for the random arrival times model.

OBSERVATION 3.2. The arrival time of every secretary in a random pair (IP , IT ) is
uniformly random and independent of the arrival times of the other secretaries.

PROOF. The same distribution of random pairs can also be constructed as following.
Construct IT by choosing a random partitioning of the secretaries to queues, and an
independent arrival time for each secretary. Next, the order induced by the arrival
times of the secretaries in each queue becomes their order in IP .

LEMMA 3.3. For a random pair (IP , IT ), Pr[(IP , IT ) ∈ C] ≥ d−d/(d−1) − o(1).

PROOF. Let Ax be the event that s1 arrives at time x. Given that Ax occurs for some
x > t, we know that:

— D1 is guaranteed to hold.
— Due to symmetry arguments, D2 holds with probability t/x.
— Due to similar symmetry arguments, D3 holds with probability [t/(min{x +

D−1/3, 1})]Q−1.
— D2 and D3 are independent.

5For off-line algorithms, which can interview all secretaries before making their decisions, this intuition
turns out to be correct. For such algorithms it can be easily shown that the best approximation ratio under
both cases is d−1.



Thus,

Pr[(IP , IT ) ∈ C|Ax] =
t

x
·
(

t

min{x+D−1/3, 1}

)Q−1

.

The probability that s1 arrives in an interval of size ℓ is ℓ. Hence, the probability
it arrives in an infinitesimal interval of size dx is dx. Therefore, by the law of total
probability, the probability Pr[(IP , IT ) ∈ C] is lower bounded by:∫ 1

t

t

x
·
(

t

min{1, x+D−1/3}

)Q−1

dx =

∫ 1

t

t

x
·
(
t

x

)Q−1

dx− o(1) =

∫ 1

t

(
t

x

)Q

dx− o(1)

= − tQ

(Q− 1)xQ−1

∣∣∣∣1
t

− o(1)

=
tQ

(Q− 1)tQ−1
− tQ

Q− 1
− o(1)

=
t(1− tQ−1)

Q− 1
− o(1) =

d−1/(d−1)(1− 1/d)

d− 1
− o(1)

= d−d/(d−1) − o(1) .

COROLLARY 3.4. For a random pair (IP , IT ), with probability at least d−d/(d−1) −
o(1), (IP , IT ) ∈ C and IT is well-representation of IP .

PROOF. Follows from Lemmata 2.1 and 3.3 and the union bound.

We say that Algorithm 2 got a pair (IP , IT ) if the original input for the random order
model was IP , and it was converted to the input IT of the random arrival times model
by Algorithm 1.

LEMMA 3.5. Assuming Algorithm 2 gets a pair (IP , IT ) ∈ C as input. Then, if IT is
a well-representation of IP , then Algorithm 2 hires s1.

PROOF. We say that a queue q attempts to hire a secretary s if s is a secretary
of queue q, and Algorithm 2 gets to Line 4 with this secretary. Since (IP , IT ) ∈ C,
we know that D1 and D2 hold. Thus, queue q1 attempts to hire s1. In order to prove
that Algorithm 2 hires s1, we are left to show that no other queue attempts to hire a
secretary s with i(s, IP ) ≤ i(s1, IP ).

Assume some queue q ̸= q1 attempts to hire a secretary s. Since D3 holds, the secre-
tary s that the queue attempts to hire must arrive after time tT (s1)+(k/n)1/3. However,
since IT is a well-representation of IP , this this implies i(s1, IP ) < i(s, IP ).

COROLLARY 3.6. Algorithm 2 is a (d−d/(d+1) − o(1))-competitive algorithm.

PROOF. Corollary 3.4 and Lemma 3.5 imply that with probability d−d/(d+1), Algo-
rithm 2 hires s1 when given a random pair.

Next, we use the method of [Buchbinder et al. 2010] to prove that Algorithm 2 is
optimal up to low order terms. Consider the following linear program.

(LP1) max 1
n ·

∑d
i=1

∑n/d
j=1 fi,j

s.t. fi,j +
∑d

h=1

∑j−1
ℓ=1

fh,ℓ

ℓ +
∑i−1

h=1
fh,j

j ≤ 1 ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ n/d

fi,j ≥ 0 ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ n/d

LEMMA 3.7. The optimal value of (LP1) is an upper bound on the competitive ratio
of any algorithm for the case k = 1, Q = d and D = n/d.



Finding the optimal assignment to (LP1) is difficult. Instead, we upper bound the
optimal value of (LP1) using its dual (LP2).

(LP2) min
∑d

i=1

∑n/d
j=1 yi,j

s.t. yi,j +
∑d

h=1

∑n/d
ℓ=j+1

yh,ℓ

j +
∑d

h=i+1
yh,j

j ≥ 1
n ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ n/d

yi,j ≥ 0 ∀ 1 ≤ i ≤ d, 1 ≤ j ≤ n/d

LEMMA 3.8. (LP2) has a solution of value at most d−d/(d−1) +O(n−0.5).

COROLLARY 3.9. No algorithm for the case k = 1, Q = d and D = n/d has a better
competitive ratio than d−d/(d−1) +O(n−n).

PROOF. Follows from Lemmata 3.7 and 3.8, and the observation that any solution
of (LP2) provides an upper bound on the optimal solution of (LP1).

4. TWO POSITIONS
In this section we consider the case of k = 2 and D = n/2, i.e., two positions need
to be manned and at most half the secretaries can be interviewed in each queue. We
devote a section for this case because on the one hand it is complex enough so that
new concepts such as “exclusive” positions can be presented, and on the other hand
it simple enough to produce many (almost) tight results. We consider the following
subcases. Due to space constraints some of the proofs of this section are omitted from
this extended abstract.

— One queue, i.e., Q = 1.
— Two queues with “exclusive” positions, i.e., Q = 2 and at most one secretary is hired

from each queue.
— Two queue with “shared” positions, i.e., Q = 2 and secretaries can be hired from both

queues as long as there is still an unmanned position.

Our objective in this section is to prove the following claim.

CLAIM 4.1. The above cases are in a strictly increasing competitive ratios order.

4.1. One Queue
In this section we consider the sub case where there is only one queue, i.e., Q = 1. No-
tice that under these settings, only the first half of the secretaries can be interviewed.
We begin our study by showing a hardness result for this case. Consider the following
linear program.

(LP3) max 1
2

[
1
n ·

∑n/2
i=1 fi +

1
n ·

∑n/2
i=1

(
n−i
n−1 · fi + i−1

n−1si

)]
s.t. f1

i + f2
i = fi ∀ 1 ≤ i ≤ n/2

s1i + s2i = si ∀ 1 ≤ i ≤ n/2

f1
i + f1

1 +
∑i−1

j=2

f1
j +s1j
j ≤ 1 ∀ 2 ≤ i ≤ n/2

s1i + f1
1 +

∑i−1
j=2

f1
j +s1j
j ≤ 1 ∀ 2 ≤ i ≤ n/2

f2
i − f1

1 +
∑i−1

j=2

f2
j +s2j−f1

j −s1j
j ≤ 0 ∀ 2 ≤ i ≤ n/2

s2i − f1
1 +

∑i−1
j=2

f2
j +s2j−f1

j −s1j
j ≤ 0 ∀ 2 ≤ i ≤ n/2

f2
1 = 0
f1
i , s

1
i , f

2
i , s

2
i ≥ 0 ∀ 1 ≤ i ≤ n/2

LEMMA 4.2. The optimal value of (LP3) is an upper bound on the competitive ratio
of any algorithm for the case k = 2, Q = 1 and D = n/2.



THEOREM 4.3. No algorithm is better than 0.266-competitive for the case k = 2,
Q = 1 and D = n/2.

PROOF. By numerically solving (LP3) for n = 1000, it can be shown that no algo-
rithm with competitive ratio better than 0.2652 exists for 1000 secretaries. Assume for
the sake of contradiction that there exists an algorithm ALG with a competitive ratio
α > 0.266 for n′ secretaries, where n′ > n. Let us use ALG to get an algorithm for n
secretaries with a competitive ratio better than 0.2652.

From the view point of ALG it gets a random permutation of a random set of n′/2
secretaries that can contain at most two secretaries that give a point to ALG when
hired. Let Ei be the expected number of points ALG gets when given a random per-
mutation of a set containing i secretaries that give a point when hired (note that this
expectation depends only on i). Our assumption that ALG is α competitive implies:

E1

2
· n′/2

n′ − 1
+

E2

2
· n

′/2− 1

n′ − 1
≥ α .

We now construct an algorithm for n secretaries using ALG. Our algorithm feeds
ALG with the input it gets plus additional (n′−n)/2 dummy secretaries that are worse
than any secretary of S. The positions of the dummy secretaries are chosen at random
from the n′/2 positions in the input of ALG. The competitive ratio of this algorithm is:

E1

2
· n/2

n− 1
+

E2

2
· n/2− 1

n− 1
≥ E1

2
· n′/2

n′ − 1
+

E2

2
·
[
n′/2− 1

n′ − 1
− n

2(n− 1)2

]
≥ α− n

2(n− 1)2
> 0.2652 .

Next, we give a positive result for the above case. This result is probably far from be-
ing tight, however, we prove it for completeness. Notice that this result is not required
for the proof of Claim 4.1.

ALGORITHM 3: Algorithm for k = 2, Q = 1 and D = n/2

1 Wait till time t = 1−
√

1/3.
2 Let st be the second best secretary before time t (if less than 2 secretaries arrive before time
t, let st be a dummy secretary worse than any other).

3 After time t: hire the first two secretaries better than st.

Let s1 and s2 be the best and second best secretaries, respectively.

LEMMA 4.4. Algorithm 3 hires s1 with probability at least t(t− 2)(t− 1)/2.

LEMMA 4.5. Algorithm 3 hires s2 with probability at least t(t− 2)(t− 1)/2.

PROOF. Let us pair inputs for Algorithm 3 as following. Given some input, its pair
is the same input with the rolls of s1 and s2 switched (i.e., if s1 arrives in the original
input at time t1, then s2 will now arrive at time t1, and vice versa). Notice that this is
a one-to-one pairing between the set of inputs for Algorithm 3 and itself.

Notice that st is never s1 or s2, unless both s1 and s2 arrive before time t, in which
case neither of them is hired. Hence, if s1 is hired in a given input I of Algorithm 3,
then s2 is hired in the input paired to I, and vice versa. Thus, s1 and s2 are hired with
the same probability by Algorithm 3. The lemma now follows from Lemma 4.4.

COROLLARY 4.6. Algorithm 3 is at least t(t− 2)(t− 1)/2 ≥ 0.192-competitive.

PROOF. Follows from the linearity of the expectation and Lemmata 4.4 and 4.5



4.2. Two Queue with Exclusive Positions
In this section we consider the sub case where there are two queues, i.e., Q = 2, and
each queue has a single “exclusive” position to man. We suggest Algorithm 4 for this
sub case.

ALGORITHM 4: Algorithm for k = 2, Q = 2 and D = n/2 with “exclusive” positions
1 for each queue independently do
2 Wait till time t1 = 0.35.
3 Let st1 be the best secretary before time t1 (if no secretaries arrive before time t1, let st1

be a dummy secretary worse than any other).
4 Between time t1 and time t2 = 0.8: hire the first secretary better than st1 .
5 if No secretary is hired till time t2 then
6 Let st2 be the second best secretary before time t2 (if less than 2 secretaries arrive

before time t2, let st2 be a dummy secretary worse than any real secretary).
7 After time t2: hire the first secretary better than st2 .
8 end
9 end

LEMMA 4.7. Algorithm 4 hires s1 with probability at least t1 ln t2−t1 ln t1+t1−t1t2.

LEMMA 4.8. Assuming s1 and s2 arrive at the same queue, then Algorithm 4 hires
s1 with probability at least t1 ln t2 − 2t1t2 − t1 ln t1 + t21 + t1.

LEMMA 4.9. Algorithm 4 hires s1 with probability at least t1 ln t2−1.5t1t2−t1 ln t1+
0.5t21 + t1.

PROOF. Let H be the event that s2 is hired, and let A be the event that s1 and
s2 arrive both to the same queue. Using a proof identical to the one of Lemma 4.7,
we get Pr[H|Ā] ≥ t1 ln t2 − t1 ln t1 + t1 − t1t2. On the other hand, Lemma 4.8 can be
formally written as: Pr[H|A] ≥ t1 ln t2 − 2t1t2 − t1 ln t1 + t21 + t1. Hence, by the law of
total expectation expectation, we can lower bound the probability that s2 is hired by:

Pr[H] ≥ Pr[A] · (t1 ln t2 − 2t1t2 − t1 ln t1 + t21 + t1) + Pr[Ā] · (t1 ln t2 − t1 ln t1 + t1 − t1t2)

= t1 ln t2 − t1 ln t1 + t1 − t1t2 − Pr[A] · t1 · (t2 − t1)

For large number of secretaries, it is clear that Pr[A] ≈ 1/2. However, we need some-
thing a bit stronger than that. Given that s1 arrives to some queue q, clearly, the prob-
ability that s2 also arrive to q somewhat decreases. Hence, we always have Pr[A] < 0.5.
Plugging this inequality into the previous one completes the proof of the lemma.

COROLLARY 4.10. The competitive ratio of Algorithm 4 is at least 0.319.

PROOF. From Lemmata 4.7 and 4.9, the competitive ratio of Algorithm 4 is at least:

0.5 [t1 ln t2 − t1 ln t1 + t1 − t1t2] + 0.5
[
t1 ln t2 − 1.5t1t2 − t1 ln t1 + 0.5t21 + t1

]
= t1 ln t2 − t1 ln t1 + t1 − 1.25t1t2 + 0.25t21 .

The corollary follows by plugging the values of t1 and t2 into the above expression.

Next, we give an almost matching hardness. Consider the following linear program.



(LP4) max 1
n ·

∑n/2
i=1 fi +

1
n ·

∑n/2
i=1

(
n−i
n−1 · fi + i−1

n−1si

)
s.t. fi + f1 +

∑i−1
j=2

fj+sj
j ≤ 1 ∀ 2 ≤ i ≤ n

si + f1 +
∑i−1

j=2
fj+sj

j ≤ 1 ∀ 2 ≤ i ≤ n

fi, si ≥ 0 ∀ 1 ≤ i ≤ n

LEMMA 4.11. The optimal value of (LP4) is an upper bound on the competitive ratio
of any algorithm for the case of “exclusive” positions with k = 2, Q = 2 and D = n/2.

The following theorem provides an upper bound on the best possible competitive
ratio for the case of “exclusive” positions with k = 2, Q = 2 and D = n/2. The proof
of the theorem is similar to that of Theorem 4.3, with Lemma 4.11 taking the role of
Lemma 4.2.

THEOREM 4.12. No algorithm is better than 0.321-competitive for the case of “exclu-
sive” positions with k = 2, Q = 2 and D = n/2.

4.3. Two Queue with Shared Positions
In this section we consider the sub case where there are two queues, i.e., Q = 2, and
the two available positions are “shared” between the queues (i.e., each queue can man
up to 2 positions). We suggest Algorithm 5 for this sub case.

ALGORITHM 5: Algorithm for k = 2, Q = 2 and D = n/2 with “shared” positions
1 for each queue independently do
2 Wait till time t1 = 0.348.
3 while no secretary was hired (from any of the queues), for every secretary s arriving do
4 if s is better than any previously seen secretary then
5 Hire s.
6 end
7 end
8 Wait till time time t2 = 0.563 (if we did not reach this time yet).
9 while one position is still unmanned, for every secretary s arriving do

10 if s is better than any previously seen secretary then
11 Hire s.
12 end
13 end
14 end

Let s1 (s2) be the (second) best secretary, and let q1 (q2) be the queue he arrives to. We
also denote by q̄1 (q̄2) the queue which is not q1 (q2). We now define two sets C1 and C2

as following. Given an input IP of the random order model (such an input is simply a
random permutation of the secretaries of S), let IT be any input of the random arrival
times model that might be produced from IP using Algorithm 1. The pair (IP , IT ) is in
C1 if one of the following conditions holds:

E1 t(s1, IT ) ∈ (t1, t2 −D−1/3) and the best secretary in the range [0, t(s1, IT )) arrives
before time t1.

E2 t(s1, IT ) > t2, the best secretary of the range [0, t(s1, IT ) + D−1/3] in q̄1 arrives
before time t1, and at least one of the two following happens:
— The best secretary in the range [0, t(s1, IT )) in q1 arrives before time t2.
— The second best secretary in the range [0, t(s1, IT )) in q1 arrives before time t1.



E3 t(s1, IT ) > t2, the best secretary of the range [0, tT (s1)) in q1 arrives before time t1,
and at least one of the following happens:
— The best secretary in the range [0, t(s1, IT ) +D−1/3] in q̄1 arrives during [t1, t2).
— The best secretary in the range [0, t(s1, IT ) + D−1/3] in q̄1 arrives after time t2,

and the second best secretary in the same range and queue arrives before t1.

Regardless the membership of (IP , IT ) in C1. The pair (IP , IT ) is in C2 if one of the
following conditions holds:

F1 The pair satisfies one of the conditions to be included in C1 with s1 replaced by s2
and q1 replaced by q2, and also one of the following holds.
— q1 ̸= q2
— s1 appears after s2 in one queue.

F2 t(s2, IT ) > t(s1, IT ) > t2, q1 = q2, the best secretary in the range [0, t(s2, IT )+D−1/3)
in q̄2 appears before time t1, and the best secretary in the range [0, t(s2, IT )) in q1
other than s1 and s2 also appears before time t1.

LEMMA 4.13. For a random pair (IP , IT ), Pr[(IP , IT ) ∈ C1] ≥ t1 ln(t2/t1) + t21t2 −
t21 − 2t1t2 + 2t1 − o(1) ≥ 0.4186.

LEMMA 4.14. For a random pair (IP , IT ), Pr[(IP , IT ) ∈ C2] ≥ t1 ln(t2/t1) +
t1t2 ln t2 + 0.5t21t2 − 2.5t1t2 + 2t1 − o(1) ≥ 0.2951.

COROLLARY 4.15. For a random pair (IP , IT ), with probability at least 0.418,
(IP , IT ) ∈ C1 and IT is well-representation of IP , and with probability at least 0.295,
(IP , IT ) ∈ C2 and IT is well-representation of IP .

PROOF. Follows from Lemmata 2.1, 4.13 and 4.14 and the union bound.

We say that Algorithm 5 got a pair (IP , IT ) if the original input for the random order
model was IP , and it was converted to the input IT of the random arrival times model
by Algorithm 1.

LEMMA 4.16. Assuming Algorithm 5 gets a pair (IP , IT ) in which IT is a well-
representation of IP . Then, if (IP , IT ) ∈ C1, Algorithm 5 hires s1, and if (IP , IT ) ∈ C2,
Algorithm 5 hires s2

PROOF. The proof of this lemma is technical and uses the same kind of arguments
as the proof of Lemma 3.5. Thus, we omit it.

COROLLARY 4.17. Algorithm 5 is a 0.356-competitive algorithm.

PROOF. Corollary 4.15 and Lemma 4.16 imply that when given a random pair: with
probability 0.418 Algorithm 2 hires s1, and with probability 0.295 Algorithm 2 hires s2.
Hence, by the linearity of the expectation, Algorithm 2 earns in expectation at least
0.713 points.

5. K POSITIONS AND HALF THE REQUIRED TIME
In this section we start the analysis of the case of k positions, where k is assumed
to be large. Here we assume that there is enough time to interview half of the secre-
taries (i.e., D = n/2), and therefore, the number of queues is either 1 or 2. This case is
interesting on its own right, and will also serve us as a warm up for the next section.

5.1. One Queue
Let us begin with the case of Q = 1.



THEOREM 5.1. There is a 1/2− o(1) competitive algorithm for the case of D = n/2,
Q = 1 and large k.

PROOF. We apply the algorithm of [Kleinberg 2005] for hiring k secretaries to the
n/2 secretaries that we interview. Let us analyze this algorithm.

The last algorithm has a competitive ratio of 1 − o(1). That means that if we fix the
set of secretaries that are interviewed, then our algorithm earns a value of [1−o(1)] ·N ,
where N is the number of top k secretaries that are interviewed. Clearly E[N ] = k/2,
and therefore, by the law of total expectation, the expected value that our algorithm
earns is at least: E[[1− o(1)] ·N ] = [1− o(1)] · E[N ] = [1/2− o(1)] · k.

THEOREM 5.2. No better than 1/2-competitive algorithm exists for the case D =
n/2, Q = 1.

PROOF. The expected number of top k secretaries that are interviewed is only k/2,
and clearly no algorithm can hire more top k secretaries than it interviews.

5.2. Two Queues
We now consider the case of Q = 2. Notice that in this case, it is possible to interview
all secretaries. Algorithm 6 is our algorithm for this case. Algorithm 6 was designed
for the “exclusive” positions model, however, it works also for “shared” positions.

ALGORITHM 6: Algorithm for Q = 2, D = n/2 and large k

1 for each queue independently do
2 Use the algorithm of [Kleinberg 2005] to hire k/2 secretaries from this queue.
3 end

Let Sk be the set of the top k secretaries. For every secretary s ∈ Sk, let us denote by
Xs an indicator for the event that s arrives to the first queue.

LEMMA 5.3. For every subset S ⊆ Sk, Pr[
∏

s∈S Xs = 1] ≤ 2−|S| =
∏

s∈S Pr[Xs = 1].

PROOF. If |S| > n/2, then clearly, Pr[
∏

s∈S Xs = 1] = 0 ≤ 2−|S|. If |S| ≤ n/2, then:

Pr

[∏
s∈S

Xs = 1

]
=

(
n−|S|

n/2−|S|
)(

n
n/2

) =
n∏

i=n−|S|+1

i− n/2

i
≤ 2−|S| .

Lemma 5.3 implies that we can apply the generalized Chernoff bound of [Panconesi
and Srinivasan 1997] to sums of the form

∑
s∈S Xs where S is a subset of Sk. We use

this observation in the proof of the following theorem.

THEOREM 5.4. Algorithm 6 is a 1 − o(1) competitive algorithm for the case Q = 2,
D = n/2 and large k.

PROOF. Lemma 5.3 implies that the generalized Chernoff bound of [Panconesi and
Srinivasan 1997] can be applied to sums of the form

∑
s∈S Xs where S is a subset of

Sk. Let S ′ be the set of top k − k2/3 secretaries. Then we get:

Pr

[∑
s∈S′

Xs ≥ k/2

]
≤ e

−2(k−k2/3)
(

k/2

k−k2/3
−0.5

)2

= e
−0.5· k4/3

k−k2/3 ≤ e−0.5·k1/3

= o(1) .

Hence, with probability 1−o(1), the first queue contains no more than k/2 secretaries
of S ′. Since the two queues are symmetric, we can use the union bound to show that



this property holds in both queues at the same time with probability 1 − o(1). Let us
denote this event by E.

Notice that the event E depends only the distribution of secretaries between the
queues. Fix some distribution P for which E holds. Given P , the queues get a random
permutation of two sets S1 and S2 of secretaries with the following property. The sets
S1 ∩ S ′ and S2 ∩ S ′ both contain at most k/2 secretaries. The competitive ratio of the
algorithm of [Kleinberg 2005] is 1 − o(1). Hence, given P , it must collect an expected
values of [1− o(1)] · |S1 ∩ S ′| and [1− o(1)] · |S2 ∩ S ′| from the two queues, respectively.
Combing the value from both queues, we get that Algorithm 6 collects a total value of:

[1− o(1)] · |S1 ∩ S ′|+ [1− o(1)] · |S2 ∩ S ′| = [1− o(1)] · |S ′| = [1− o(1)] · k . (1)

The above calculation was done assuming a fixed distribution P of the secretaries
among the queues which respects E. However, (1) is independent of the distribution,
and therefore, it is also the expected value of Algorithm 6 given just E. Hence, by the
law of total expectation, without any assumptions, the value Algorithm 6 collects is at
least: Pr[E] · [1− o(1)] · k ≥ [1− o(1)]2 · k = [1− o(1)] · k.

6. K POSITIONS AND 1/K OF THE REQUIRED TIME
In this section we continue the analysis of the case of k positions. Here we assume
that there is enough time to interview only 1/k of the secretaries (i.e., D = n/k). This
is the shortest time that still allows us to interview all secretaries under the “exclu-
sive” positions model (because we cannot have more queues than positions under this
model). We consider the two extreme cases in terms of the number of queues: Q = 1
and Q = k. Due to space limitations, some of the proofs of this section are omitted from
this extended abstract.

THEOREM 6.1. For the case Q = 1, there is a 1/k − o(1) competitive algorithm, and
no algorithm can be better than 1/k competitive for this case.

PROOF. Follows from a slight modification of the proofs of Theorems 5.1 and 5.2.

In the rest of this section we consider the case Q = k.

THEOREM 6.2. No better than 1−1/(2e)+o(1) ≈ 0.816-competitive algorithm exists
for the case Q = k, D = n/k for large k and “shared” positions.

Consider the following auxiliary problem. n secretaries arrive at random order to
a single queue. The algorithm for the problem can hire at most one secretary. The
algorithm gets a point if the secretary hired is a top i secretary.

LEMMA 6.3. If there exists an α-competitive algorithm for the auxiliary problem
with n secretary, then there is a α-competitive algorithm for the auxiliary problem with
n′ secretaries for every i ≤ n′ < n.

PROOF. Let ALG be the α-competitive algorithm for the auxiliary problem with
n secretaries. The algorithm we suggest for n′ secretaries feeds ALG with an input
constructed as following.

— Randomly select n−n′ positions for dummy secretaries worse than any real secretary.
— The real secretaries fill in the other positions in the same order that they arrive.

Since ALG is α competitive, it will hire a top i secretary with probability at least α.

Lemma 6.3 allows us to prove hardness results for the auxiliary problem (for a given
value of i) by numerically solving a LP defined in [Buchbinder et al. 2010]. The proof
of the following theorem shows how to convert these hardness results into a hardness
for the case Q = k, D = n/k for large k and “exclusive” positions.



THEOREM 6.4. No better than 0.301-competitive algorithm exists for the case Q = k,
D = n/k for large k and “exclusive” positions.

We now shift our attention to positive results. In the case of Q = k, D = n/k and
“exclusive” positions, at most one secretary is hired from each queue. The natural in-
tuition for this case is to use the classical secretary algorithm for every queue indepen-
dently, i.e., use Algorithm 7 with t = e−1. The next theorem analyzes this algorithm.
The theorem is given using the exponential integral function Ei(x), which is defined by
Ei(x) =

∫ x

−∞(et/t)dt.

ALGORITHM 7: Algorithm for Q = k and D = n/k

1 for each queue independently do
2 Wait till time t.
3 while no secretary was hired from the current queue, for every secretary s arriving do
4 if s is better than any previously seen secretary then
5 Hire s.
6 end
7 end
8 end

THEOREM 6.5. Algorithm 7 is a t ·
[
Ei(−1) + e−1 − 1− Ei(−t)− e−t

t + t−1
]

compet-
itive algorithm for the case Q = k and D = n/k. Hence, for t = 0.323, Algorithm 7 is a
0.276-competitive algorithm.

Numerically, it can be shown that the value of t maximizing the competitive ratio
given by Theorem 6.5 is about 0.323. Notice that for t = e−1 ≈ 0.368, this analysis
provides only an inferior competitive ratio of 0.274. We believe this analysis is tight,
i.e., the best value for t is not e−1.

Based on our results for the case Q = k = 2, D = n/2 and “exclusive” positions, we
suspect that an optimal algorithm for the case Q = k, D = n/k and “exclusive” positions
should use k different time threshold t1 < t2 < · · · < tk. A policy of such an algorithm
will hire a secretary s that arrives between time ti and ti+1 if no secretary was hired
from the queue of this policy before, and s is better than all previously seen secretaries
except i− 1. Unfortunately, analyzing such an algorithm seems to be too complicated.
Instead, we analyze Algorithm 8 which uses only two time thresholds. This gives some
idea about the improvement that can achieved by additional time thresholds.

THEOREM 6.6. For large k, Algorithm 8 is a 0.288-competitive algorithm for the
case Q = k and D = n/k.

ACKNOWLEDGMENT

The authors would like to thank Ron Lavi for many useful discussions.

REFERENCES
BABAIOFF, M., DINITZ, M., GUPTA, A., IMMORLICA, N., AND TALWAR, K. 2009. Secretary problems:

Weights and discounts. In Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithms
(SODA 09). SIAM, 1245–1254.

BABAIOFF, M., IMMORLICA, N., KEMPE, D., AND KLEINBERG, R. 2007a. A knapsack secretary problem with
applications. LNCS Series, vol. 4628. Springer, Heidelberg, 16–28.



ALGORITHM 8: Algorithm for Q = k and D = n/k with “exclusive” positions
1 for each queue independently do
2 Wait till time t1 = 0.34.
3 while time t2 = 0.748 was not reached yet, for every secretary s arriving do
4 if no secretary was hired before, and s is better than any previously seen secretary

then
5 Hire s.
6 end
7 end
8 Let s′ be the best secretary seen up to this point.
9 for every secretary s arriving do

10 if no secretary was hired before, and s is better than any previously seen secretary
other than s′ then

11 Hire s.
12 end
13 end
14 end

BABAIOFF, M., IMMORLICA, N., AND KLEINBERG, R. 2007b. Matroids, secretary problems, and online mech-
anisms. In Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA 07). SIAM,
434–443.

BATENI, M. H., HAJIAGHAYI, M. T., AND ZADIMOGHADDAM, M. 2010. Submodular secretary problem and
extensions. Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques 6302, 39–52.

BUCHBINDER, N., JAIN, K., AND SINGH, M. 2010. Secretary problems via linear programming. In Proceed-
ings of the the 14th Conference on Integer Programming and Combinatorial Optimization (IPCO 10).
Springer, 163–176.

DIMITROV, N. B. AND PLAXTON, C. G. 2008. Competitive weighted matching in transversal matroids. Au-
tomata, Languages and Programming 5125, 397–408.

DYNKIN, E. B. 1963. The optimum choice of the instant for stopping a markov process. Soviet Math. Dokl. 4,
627–629.

FELDMAN, M., NAOR, J. S., AND SCHWARTZ, R. 2011. Improved competitive ratios for submodular secre-
tary problems. In Proceedings of the 14th international workshop and 15th international conference on
Approximation, randomization, and combinatorial optimization: algorithms and techniques (APPROX
11). Springer, 218–229.

FERGUSON, T. S. 1989. Who solved the secretary problem? Statistical Science 4, 3, 282–289.
GEORGIOU, N., KUCHTA, M., MORAYNE, M., AND NIEMIEC, J. 2008. On a universal best choice algorithm

for partially ordered sets. Random Struct. Algorithms 32, 263–273.
GUPTA, A., ROTH, A., SCHOENEBECK, G., AND TALWAR, K. 2010. Constrainted non-monotone submodular

maximization: Online and secretary algorithms. Internet and Network Economics 6484, 246–257.
IM, S. AND WANG, Y. 2011. Secretary problems: Laminar matroid and interval scheduling. In Proceedings

of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA 11). SIAM, 1096–1116.
KLEINBERG, R. 2005. A multiple-choice secretary algorithm with applications to online auctions. In Pro-

ceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA 05). SIAM, 630–631.
KORULA, N. AND PÁL, M. 2009. Algorithms for secretary problems on graphs and hypergraphs. Automata,

Languages and Programming 5556, 508–520.
KUMAR, R., LATTANZI, S., VASSILVITSKII, S., AND VATTANI, A. 2011. Hiring a secretary from a poset. In

Proceedings of the 12th ACM conference on Electronic Commerce (EC 11). ACM, New York, NY, 39–48.
LIBDLEY, D. V. 1961. Dynamic programming and decision theory. Applied Statistics 10, 39–51.
PANCONESI, A. AND SRINIVASAN, A. 1997. Randomized distributed edge coloring via an extension of the

chernoff–hoeffding bounds. SIAM J. Comput. 26, 350–368.


