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The scanline principle is a general technique
for efficiently converting any display algo-
rithm that is based on polygon scan con-
version into scanline mode, i.e., the image
is produced in scanline order with required
memory proportional to one scanline. Based
on critical-points scan conversion, the tech-
nique reduces the Z-buffer or its variants to
one scanline. Current scanline depth buffers
are inefficient in both time and space. The
scanline principle can also transform list-
priority methods, such as BSP trees, into
scanline mode. The scanline mode enables
efficient supersampling and averaging, and
low latency in image generation, compres-
sion and transmission.
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Hidden surface removal is one of the oldest problems
in computer graphics, and the literature abounds with
many solutions (Foley et al. 1990). In choosing an
algorithm for this problem, there are many consid-
erations and probably no “best” method; one usu-
ally chooses the optimal method for a given appli-
cation. Some of the more obvious points to consider
are: time and space efficiency, robustness (ability
to handle numerical inaccuracies after transforma-
tions), object intersections, types of objects that can
be displayed, image quality, transparent objects, and
available hardware.
One useful method for many applications is image
generation usingscanline mode, where the final im-
age is produced one scanline at a time in consecutive
scanline order. Implicit in this definition is the as-
sumption that the space requirement for the image
is proportional to one scanline and not to the en-
tire screen. Scanline mode has many useful applica-
tions such as generating a supersampled image with
a low memory overhead, transmitting the image to
a remote screen in scanline order while it is being
generated, and functioning as input to many image-
compression methods. The last two properties make
scanline mode particularly useful for web-based ap-
plications, since they provide a low latency method
for generating, compressing, and transmitting im-
ages over limited bandwidth channels.
In this paper we present an efficient general tech-
nique for convertingany display algorithm based
on the separate scan conversion of every polygon
into an algorithm that operates in scanline mode.
We call this general method thescanline principle.
When applied to the Z-buffer algorithm, this tech-
nique produces an algorithm with a depth buffer
of just one scanline, which we call theS-buffer.
Scanline depth buffers have been used before, but
their implementations for non-convex polygons, us-
ing the standard scan conversion algorithm (Foley
et al. 1990; Sect. 3.6), are very inefficient in both
time and space. The principle can also be applied to
any of the Z-buffer’s variants such as the A-buffer
(Carpenter 1984), or the handling of transparent ob-
jects. The S-buffer is also useful in a client-server
environment, has some virtual reality applications,
and is easily parallelizable (see Sect. 5.6).
Another application of the scanline principle is
the transformation of list-priority algorithms (Fo-
ley et al. 1990; Sect. 15.5) into scanline mode. Two
well-known examples are thedepth sortalgorithm
(Newell et al. 1992) and the display of BSP trees
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(Fuchs et al. 1980). BSP trees encode the geomet-
ric order of the polygons in a given scene, and they
are widely used in applications, such as virtual walk-
throughs, where the viewpoint changes frequently
but the objects in the environment are fixed relative
to each other. The scanline principle can be applied
to list-priority algorithms to produce the display in
either the standard back-to-front order, or the more
efficient “output-sensitive” front-to-back order (Gor-
don and Chen 1991).
For some applications, the scanline mode has one
disadvantage: it requires all the objects to be in mem-
ory while they are being displayed, so it is incompat-
ible with image generation in online mode. Byonline
modewe mean that an object is displayed as soon
as it becomes available and no further memory is re-
quired for it. This is not a real problem for interactive
applications where the objects are usually available
in memory all the time in order to enable object ma-
nipulation or a change of viewpoint.
The Z-buffer is probably the simplest hidden surface
algorithm and its hardware implementation is now
commonplace. It is naturally robust because objects
may intersect, and it also operates in online mode.
The Z-buffer’s main disadvantages are its size and
the fact that the image is not produced in scanline
order. The size of a simple Z-buffer is not a large
problem, because memory is relatively cheap; but
for supersampling or for some of the variants of the
Z-buffer the large memory is a drawback. It is also
a problem if the image is viewed on a remote client
and the server has to handle many clients viewing
unrelated scenes. In contrast, the S-buffer works in
scanline mode and has the robustness of the Z-buffer
without the large memory.
Our technique for the efficient conversion of any
algorithm (based on polygon scan conversion) into
scanline mode relies on the “critical-points” scan
conversion technique (Gordon 1983a; Gordon et al.
1994). This method, called CP for short, is based
on the preliminary identification and sorting of all
vertices of a polygon which are local minima with re-
spect toy (the “critical points”). The critical points
and the original polygon data are used in place of
the edge table in the usual method (Foley et al. 1990;
Sect. 3.6) which contains an entry for every edge.
At the sweep stage, insertions and deletions into the
active edge table (AET) are done only at local ex-
trema, as opposed to the standard method which in-
serts and eventually deletes every edge. By using
CP, we can efficiently “dovetail” the scan conver-

sion of many polygons so that the image is obtained
in scanline order. For polygons with many vertices
and few critical points, the S-buffer performed better
than the standard software and hardware on medium-
powered workstations.
The paper is organized into seven sections. Section 2
provides some background on scanline algorithms
and depth buffers, and places our work in relation
to previous work. Section 3 presents CP in a form
suitable for use by the scanline principle. Section 4
describes the scanline principle and its application
to the Z-buffer and BSP trees, and Sect. 5 discusses
several further extensions and applications. The last
two sections conclude with qualitative and quantita-
tive comparisons.

2 Relation to previous work

2.1 Scanline algorithms

Scanline algorithms use scanline coherence to
achieve hidden surface removal. (See (Foley et al.
1990; Sect. 15.6), who also write about the history
of the method and some enhancements. Another
important work is by Śequin and Wensley (Śequin
and Wensley 1985), who improve on Hamlin and
Gear’s “Cross” algorithm (Hamlin and Gear 1977),
to obtain a scanline object-space algorithm.) These
scanline algorithms share three common features:

1. All the active edges of all the polygons are held in
one single list (the AET).

2. In passing from one scanline to the next, the pro-
jections of the edges on the screen may intersect.
This requires reordering the AET at every scan-
line, and for dense scenes, a lot of work is wasted
on sorting the edges of hidden polygons.

3. Intersection of the objects in 3D is not allowed.
In principle, intersections can be handled, but at
a great increase in the computation time.

The third restriction is a limitation even when ob-
jects are not supposed to intersect, because trans-
lations and rotations can produce inaccuracies that
cause an actual intersection. Séquin and Wensley
(Séquin and Wensley 1985), in describing the Berke-
ley UNIGRAFIX system, remark that their sys-
tem needs prefiltering programs which remove face
intersections and give their system the necessary
robustness.
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One of the earliest scanline algorithms is due to
Watkins (see Watkins 1970 or its description in
(Newman and Sproull 1973; Sect. 14.4 and Ap-
pendix VII)). It can handle intersecting objects and
is designed so that it can also be implemented in
hardware. It is based on subdividing a scanline into
“simple” parts, and also uses scanline coherence for
greater efficiency.
To demonstrate the scanline principle, we will con-
sider two methods based on polygon scan conver-
sion: the Z-buffer and BSP trees (other list-priority
algorithms are also suitable). Both methods are ro-
bust and they handle each polygon separately; so
there is no need to reorder edges provided care
is taken in inserting the edges into the AET (see
Sect. 3). By applying our technique to the Z-buffer
or BSP tree algorithms, we obtain the following
advantages:

1. Scanline mode
2. Robustness – there is no limitation on object

intersections
3. Very small memory (compared to the Z-buffer)
4. Arbitrary polygons
5. Reordering of edges is not required
6. Simplicity

2.2 Scanline depth buffers

Scanline depth buffers are not new. Myers (My-
ers 1975) uses a scanline Z-buffer fortriangles,1
and G. Elber (personal communication 1994) notes
that using a scanline Z-buffer forconvex poly-
gons is a known practice. Crocker (Crocker 1984)
uses a scanline depth buffer in conjunction with
a standard scanline algorithm in order to achieve “in-
visibility coherence” – a concept useful for speeding
up the scanline algorithm. However, Crocker’s scan-
line depth buffer is not directly used for the actual
hidden surface removal.
Rogers (Rogers 1985) extends Myers’ method, but
his method is inefficient since it is based on the reg-
ular scan conversion method and some details of
implementation are unclear when the method is ap-
plied to convoluted polygons. Hill (Hill 1995) con-
siders the Z-buffer algorithm from a functional pro-
gramming perspective. Using the concept of “lazy
evaluation”, he obtains an algorithm that uses only

1 Foley et al. (Foley et al. 1990, p. 684) mention Myers’ result,
but do not write that it applies only to triangles.

a scanline depth buffer; however, he notes that his
method is inefficient since it does not use coherence
relations in the evaluations.
Newman and Sproull (Newman and Sproull 1979,
Sect. 24.4) describe a scanline depth buffer method
which is a straightforward application of the regu-
lar scan conversion. The obvious drawback of this
method is the necessity of using an edge table for
every polygon. For the sake of completeness, we de-
scribe below an adaptation which uses a single edge
table for all the polygons. Compared to using CP,
this is still inefficient in both time and space due to
the extra data for all the edges on the edge table as
well as the insertion or deletion of every edge into its
polygon’s AET. The precise differences are detailed
in Sect. 2.3.
For a scanline depth buffer using regular scan con-
version the edges of all the polygons are first inserted
into a single edge table (ET), with each edge inserted
at the beginning of its list. This is done one poly-
gon at a time, resulting in an ET where the entries
of each polygon are grouped together for every scan-
line. Next, for each scanline, the entries are sorted
among themselves using a list-sorting algorithm.
At the sweep stage, every polygon will have its own
separate AET and a list of the currently active poly-
gons is maintained. The following is done for every
scanline:

1. Old edges are removed from the AET’s of the ac-
tive polygons.

2. New edges are added from the ET. Since entries
in the ET are grouped by polygons and sorted by
x, every polygon’s AET is simply merged with
its entries in the ET (the control of this opera-
tion is driven by the ET). New polygons may now
become active. If a polygon’s AET is empty at
this stage, it is removed from the list of active
polygons.

3. The scanline depth buffer is initialized to−∞.
4. For every active polygon, pixels are filled in be-

tween alternate AET elements and a check made
against the current depth value for every pixel.

2.3 Previous work using critical points

Scan conversion using critical points first appeared
in (Gordon 1983a), and was used in (Gordon et al.
1994) for medical visualization. The technique can
be used instead of the standard method (Foley et al.
1990, Sect. 3.6.3) for any application, including
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scanline hidden surface removal with one AET for
all the polygons, as in (Foley et al. 1990, Sect. 15.6).
Local minima were also used by Sechrest and Green-
berg (Sechrest and Greenberg 1982), independently
of (Gordon 1983a), to obtain visible surfaces at ob-
ject resolution. However, their technique is not a scan
conversion algorithm, and it requires rather complex
data structures. Local minima were also used in com-
putational geometry (Fournier and Montuno 1984;
Hertel and Mehlhorn 1985), with results similar to
(Hertel and Mehlhorn 1985) obtained independently
in (Gordon 1983b).
If n denotes the total number of vertices,c the num-
ber of critical points,h the number of scanlines,
andni the number of edges starting from scanlinei ,
the precise differences between CP and the standard
scan conversion are (Gordon et al. 1994):

1. In addition to the original input, the standard al-
gorithm requiresO(n+h) extra space, while CP
requires onlyO(c).

2. The time required by CP is only O(c2) (not count-
ing the time to fill pixels, which is common to
both methods), while the time for the regular
method isO(hc+∑h

i=1 (ni logni )). Thec2 can
be reduced toc logc, but this requires a more
complex data structure for the AET, and the over-
head is unjustified for most applications.

3 CP: Critical points scan conversion

The following description of CP is detailed because
we aimed at self-containment, and because seem-
ingly minor changes in the code are problematic.
It also differs somewhat from (Gordon et al. 1994)
due to the required dovetail process. Assume that
a polygonP with n vertices in 2D is given by an
array of the coordinates of its vertices in cyclic or-
der – (X[0],Y[0]), . . . ,(X[n−1], Y[n−1]) (a bi-
directional cyclic linked list can also be used). In the
following, all index calculations are carried out mod-
ulo n, i.e., n = 0(mod n). The polygon edge con-
necting(X[i ],Y[i ]) with (X[i ±1], Y[i ±1]) is de-
noted as EDGE[i, i ±1].

3.1 Outline of CP

CP first determines the set CR of critical points,
sorted by increasing values ofy. From every crit-
ical point, moving along the list of vertices in

either direction can only lead upwards. CR, to-
gether with the arraysX andY, is used instead of
the standard edge table in the sweep stage. Logi-
cally, P’s boundary is made up of monotonicsec-
tions; two sections start at every critical point, and
two sections terminate at a local maximum. Note
that this step is carried out in object space, so it
can be done as a device-independent preprocessing
step.
At the sweep stage, the AET is started from the low-
est critical point and advances one scanline at ev-
ery stage. Every element of the AET describes the
intersection of the current scanline withP’s edges,
and the AET is ordered by increasing values ofx.
The key idea behind CP is that the elements of the
AET are used for entire monotonic sections along
P’s boundary; i.e., they remain active for as long as
the section they describe continues to rise. (In the
standard approach, all edges are inserted and eventu-
ally deleted from the AET.) At every new scanline,
the following occurs:

1. From every element on the AET, the monotonic
section is followed upwards until it either meets
the new scanline or turns down before reaching
it. In the first case, the information in the element
is updated (it may now describe a different edge
along the same section), in the second case, the
element is deleted from the AET.

2. If the polygon is not simple, i.e., edges may inter-
sect, then the AET is reordered. For simple poly-
gons, this step is not necessary.

3. If there are new critical points between the old
scanline and the new, the monotonic sections
starting from them are followed up until they
intersect the new scanline, and new elements
are added to the AET. (It is possible, though,
that a new monotonic section turns down before
reaching the new scanline; in that case, the sec-
tion is abandoned.)

4. Screen pixels are filled in between alternate pairs
of the AET’s elements in the usual manner.

The algorithm terminates when the AET is empty.
Figure 1 shows a polygon, its critical points, and the
structure of the AET at consecutive scanlines.

3.2 Determining the critical points

The procedure DETCR determines the set CR of crit-
ical points. Care is needed here because two or more
consecutive vertices may have the samey value.
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Fig. 1. A polygon with its critical points, showing the AET at consecutive scanlines

A secondary comparison onx does not help because
horizontal edges may overlap (either due to unusual
input or because a planar polygon is viewed hori-
zontally). Our solution is to loop around the polygon
with a boolean flag, which is setTrue whenevery
properly decreases. Wheny properly increases (and
the flag isTrue), we have a critical point. It may even
be necessary to loop almost twice around the poly-
gon (in case the the flag isTruewhen we come back
around to the first vertex). Pseudocode for DETCR
appears in Appendix A.
We henceforth assume that CR is an array of the
indices of the critical points, sorted byy, and that
c is the number of critical points. This means that
the critical points, in order of increasingy, are
the vertices(X[CR[1]], Y[CR[1]]), . . . , (X[CR[c]],
Y[CR[c]]). If c= 0, then the polygon is degenerate
and there is nothing to scan convert.

3.3 The AET: Its structure and update

Throughout the following, we assume thaty= H is
the current scanline, and thatH is a globally known
variable. Each elementK of the AET has the follow-
ing fields:
K.IND - Index of the highest vertex on the

section whose y-value is <= H,
i.e., Y[K.IND] <= H and
Y[K.IND + K.DIR] > H.

K.DIR - Direction of advance along the arrays X
and Y leading upwards along the
monotonic section; K.DIR = +1 or
K.DIR = -1. This means that
Y[K.IND + K.DIR] > Y[K.IND].

K.XC - x-coordinate of the intersection of
the scanline y = H with the current edge
EDGE[K.IND, K.IND + K.DIR]. This field
must be in floating point.

K.SLP - The inverse of the slope of the current
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edge: (X[K.IND + K.DIR] - X[K.IND]) /
(Y[K.IND + K.DIR] - Y[K.IND])
This is also a floating point field.

K.NXT - Pointer to the next element of the AET.

For reasons of efficiency, we assume AET itself is
also a structure of the same type as above. This
simplifies the coding and makes deletions possi-
ble in O(1) time without the necessity of a doubly
linked list for the AET (the DELETE procedure gets
a pointer to the predecessor of the element to be
deleted).
The purpose of the procedure MOVEUP is to ascend
upwards along a monotonic section from a given ver-
tex until the section meets a given scanline. If the
section turns down before reaching the scanline, an
indication is given. Pseudocode for MOVEUP can be
found in Appendix A.

3.4 The complete program CP

The complete program CP for a single polygon is
presented below. We assume the existence of the fol-
lowing procedures:

1. INSERT(J, DI, XX, SL): Creates a new element
K with K.IND = J, K.DIR = DI, K.XC = XX,
and K.SLP = SL; the procedure inserts
K into the AET so that the AET remains
sorted by XC. In case of equality,
a secondary comparison is done on the
field SL. This eliminates the need
for sorting if there are no edge
intersections.

2. DELETE(K): Deletes an element K from the AET.
This can be done in O(1) time provided
the actual parameter is a pointer to
K’s predecessor.

3. FILL: Procedure to fill in between
alternate pairs of AET elements. In
keeping with standard practice, if K1
and K2 are consecutive AET elements
which delineate a span of pixels to
fill, then FILL paints in all
pixels(I,H) such that
K1.XC < = I < K2.XC, where y = H is the
current scanline. The pixels are
painted in provided they are
inside the viewport

The following is the complete critical points pro-
gram. The main work is done by the procedure PO-
LINE, which updates the AET towards a new scan-
line and renders a single scanline of the polygon.
POLINE is detailed in Appendix A.

Program CP (Critical Points)
/***************************
P is the polygon to be scan-converted, X and Y
are its coordinate arays, CR is the array of the
indices of P’s critical points, and c is the
number of critical points.
*/
{ DETCR; i f ( c = 0 ) return;

/* if no crit. pt. then polygon is degenerate
and ignored */
AET = empty; /* initialize AET to empty */
LS = y-value of lowest scanline in viewport;
HS = y-value of highest scanline in viewport;
H = max( LS, ceiling(Y[CR[1]]) );
/* first relevant scanline */
ic = 1; /* index (in array CR) of
current crit. pt. */
do { POLINE; H = H + 1; }
until ( AET is empty o r H > HS )

} /* end of CP */

Several extensions of CP are possible (see Gordon
et al. 1994):

1. Self-intersecting polygons: since edges may in-
tersect, sorting should be added to POLINE (see
comment in POLINE in Appendix A)

2. Polygons with holes: the holes should also be in
cyclic order

3. Scan converting several polygons simultane-
ously: the AET holds all the edges, and sorting is
necessary since edges may intersect

4. Hatching in vector graphics:H advances by∆H
6= 1 and a minor change is needed in MOVEUP

5. Special requirements, such as might be required
by medical applications (Gordon et al. 1994).

4 Converting algorithms to scanline
order

In this section we describe the general scanline prin-
ciple and give two important examples of its applica-
tion: a single scanline depth buffer, and the scanline
display of BSP trees (which can also work for any
list-priority algorithm (Foley et al., Sect. 15.5).

4.1 The general scanline principle

We now assume that we have a set of polygons PSET.
For each polygonP in PSET, we denote byP.∗
its associated data and procedures, e.g.,P.X, P.n,
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P.DETCR, etc.P’s procedures now operate exclu-
sively on P’s data.P also has any other data rele-
vant to the application, such as 3D data and light-
ing information. In addition,P.FILL is modified ac-
cording to the particular algorithm that is being pro-
cessed. The general algorithm is specified below.
The scanline generation of the image is obtained by
an outer loop on the scanlines and an inner loop on
the polygons which calls onP.POLINE for every
polygonP. P.POL INE renders a single scanline of
polygon P and the algorithm uses it in a dovetail
fashion on all the polygons. Details of implemen-
tation will vary with the particular algorithm being
modified.

Outline of the General Scanline Algorithm
/************************************/
{ Determine order in which to display polygons

/* if relevant to algorithm */
for (every polygon P) /* initialize P */

{ P.DETCR; P.AET = empty; P.ic = 1; }
for (every scanline H)
/* outer loop on scanlines */

{ initialize the scanline;
/* this depends on the algorithm */

for (every P intersected by H,
in the order required by the algorithm)

P.POLINE;
/* inner loop on polygons */

}
}

4.2 The S-buffer: a scanline depth buffer

The application of the principle to the Z-buffer pro-
duces an algorithm which requires a depth buffer of
one scanline. We use a 1D arraySwhose size is equal
to the number of pixels in a scanline. Initialializing
a scanline simply means setting all values ofSto in-
finity. P.FILL is modified so that a pixel is set only
if its depth value is less than the corresponding value
in S (in which caseS is also updated). No particu-
lar order between the polygons is required here, but
a rough front-to-back order could be more efficient
since fewer pixels would have to be set.
If the scene contains many small polygons, we can
improve the algorithm’s efficiency by only working
at each scanline with the polygons intersected by the
scanline. We create a polygon table (PT), with a list
for every scanline. Every polygonP is added to the
list at line ceiling(P.Y[P.CR[1]]) – this is the first
scanline at which the polygon becomes active (the
list is not ordered, and each polygon is added to just

one list). Also, we maintain an active polygon table
(APT), which is a list of all the polygons intersected
by the current scanline. A polygonP is added to the
APT when the current scanline reaches its position in
PT, and deleted from the APT whenP.AET becomes
empty. The detailed S-buffer algorithm is presented
in Appendix A.

4.3 Displaying BSP trees in scanline order

Back-to-front display of BSP trees is simple. Once
the viewpoint is determined, we create a list of the
polygons in back-to-front order relative to the view-
point – this is the first step in the general algorithm.
This step uses the standard method of traversing
a BSP tree: starting from the root, recursively tra-
verse the far subtree of the node, then the node itself,
and then the near subtree. LetP1, . . . , Pn denote
the sequence of polygons in the back-to-front order.
P.FILL is unmodified, i.e., pixels are filled between
alternate pairs of elements onP.AET. In this applica-
tion, the inner loop of the general scanline algorithm
follows the order of the polygons according to the
back-to-front list.
As in the S-buffer, when there are many small poly-
gons, it is more efficient to maintain and use an
auxiliary data structure of the active polygons (or
APT) at every scanline. Initially, a PT is set up as in
the S-buffer. At every scanline, the polygons start-
ing at that scanline are inserted into the APT, and
when the scanline passes beyond an active poly-
gon, it is removed from the APT. At every scanline,
the APT is traversed in back-to-front order, and one
scanline of each active polygon is displayed. Thus,
it should be possible to traverse the APT in back-
to-front order, i.e., in the same order asP1, . . . , Pn.
Note that the additional data structures take up
O(n) space.
We present two choices for the APT. One option is
to maintain it as a balanced binary search tree, or-
dered by the polygons’indexin the above-mentioned
back-to-front order:P1, . . . , Pn. Inorder traversal of
the tree provides the required back-to-front order,
and each insertion or deletion takes timeO(logm),
where m is the number of elements in the APT.
Alternately, the active polygons can be maintained
as a doubly linked list, in the same order as the
large list. When a new polygonPi has to be in-
serted into the APT, the (large) back-to-front list
is followed from Pi ’s position until another active
polygon Pj is met. Pi is then inserted into the APT
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before Pj . If there is no active polygon afterPi ,
then Pi is added at the end of the APT. Other de-
tails of implementation are straightforward. The
time to search for a new element’s position in the
APT takesO(n/m) time on average, wheren is the
number of polygons andm is the average size of
the APT.
As mentioned, the display of BSP trees can be sped
up considerably by processing them infront-to-back
order relative to the viewpoint. However, this re-
quires a data structure that maintains a linked list for
every scanline which is a run-length encoding of the
pixels that have not been set (see Gordon and Chen
1991 for details). By applying the scanline princi-
ple to this algorithm we obtain scanline order and
save considerable space since only one list is held
in memory at any given time (instead of all the lists
for all the scanlines). The following details should be
added to the general technique:

• Create a list of the polygons in front-to-back
order.
• Initializing a scanline requires the setting of the

unset pixel list to empty (only one list is required
for the current scanline).
• P.FILL is modified to operate as in the original

front-to-back algorithm: a merge-type operation
is performed betweenP.AET and the list of un-
set pixels; this operation fills the visible parts ofP
and updates the list.
• An APT, as described above, can also be used.

5 Extensions and applications

This section describes some applications of the scan-
line mode in general, as well as various extensions of
the S-buffer.

5.1 Applications of the scanline mode

1. Antialiasing by supersampling and averaging.By
generating a few (2−3) lines of a supersampled
image, we can do an averaging operation to
a obtain an antialiased image one scanline at
a time. The memory required by a scanline al-
gorithm is proportional to one scanline of the
supersampled image. Clearly, at any given time,
only a few lines of the supersampled image need
to be kept in memory. Note that in order to get su-
persampling with an ordinary Z-buffer, we either

need a much larger buffer than even the regular
one, or we need to use an accumulation buffer
which adds several subpixel translations of the
viewing matrix together.

2. Transmission of an image.The scanline mode
enables the transmission of the final image one
scanline at a time over any kind of channel with-
out the need to maintain a full image in memory.

3. Image compression.Most image compression al-
gorithms require only a few scanlines at a time in
memory, for example, run-length encoding, GIF
(based on Lempel-Ziv compression), and JPEG
(requires eight scanlines at a time). Generating
the image in scanline mode is therefore ideal for
this purpose.

4. Web-based applications.The scanline mode is
ideal for graphics over the internet. Besides the
small memory requirement, it provides a low-
latency input into an image-compression algo-
rithm, from which the compressed image can then
be transmitted efficiently over narrow bandwidth
channels.

5. Large plotters. These may have as many as
104×104 pixels.

5.2 Scanline A-buffer and transparency

The A-buffer (Carpenter 1984) is an antialiasing
technique that extends the Z-buffer by adding a bit-
mask to every pixel. The S-buffer can be extended
in the same way, but in this case the bit-masks are
added only to the pixels of one scanline. Other than
that, the scanline A-buffer would work in the same
way as the original full-size A-buffer. Note that the
bit-masks are initialized to zero at each new scanline.
In (Carpenter 1984), Carpenter also proposed hand-
ling transparent objects by using a sorted list of
semi-transparent surface fragments for each pixel.
However, the memory requirements for this could
be extensive. Fournier and Fussell (Fournier and
Fussell 1988) show how a two-pass frame buffer
can render total transparencies. (See also (Foley
et al. 1990, Sect. 16.5).) However, these meth-
ods do not operate in scanline mode, and some of
them require the polygons to be given in a certain
order.
Transparency is solved easily by extending the S-
buffer in a manner similar to Carpenter’s sugges-
tion (Carpenter 1984), but carried out in scanline
mode. For every pixel in the current scanline, we
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keep a linked list of all the polygons that are transpar-
ent and not blocked by an opaque polygon. The last
element in the list is the closest opaque polygon. The
list is ordered by increasingz-values. Updating the
list is done in an obvious manner and we omit details.
The S-buffer is initialized by putting a “background”
element on the list with the properties “opaque” and
z-value∞.

5.3 Shadow polygons

Clearly, the S-buffer can be used to generate light
buffers which are used for rendering shadows (Foley
et al. 1990, Sect. 16.4). Another approach to han-
dling shadows (Appel 1968; Bouknight and Kelly
1970) is to create shadow polygons. For every poly-
gon P, we create a list of all its shadow polygons
– these are polygons in the same plane asP, ob-
tained as shadows of other polygons in the scene
(provided they are likely to intersectP). These
shadow polygons can be processed together with
the regular polygons in scanline order. The S-buffer
can be extended to handle the shadow polygons by
considering all the shadow polygons of a polygon
P together with P so that P.AET now includes
edges of P’s shadow polygons. When rendering
P, we know for every pixel exactly which shadow
polygons cover the pixel (by maintaining the usual
in/out bit vector for every polygon). With this in-
formation, the pixel can be rendered correctly. Note
that sorting is now necessary in POLINE since
some ofP’s shadow polygons may intersectP or
each other.

5.4 Server environment

Assume that the user is visualizing a scene on
a remote screen that obtains its image from a server.
In such a situation, one would want to minimize the
memory requirements from the server, so a software
Z-buffer is undesirable. A hardware Z-buffer, if
available on the server, could be used, but there could
be competing demands for it from other clients, as-
suming they are all viewing unrelated scenes. As
mentioned above, the scanline mode is another desir-
able property, so the S-buffer is particularly suitable
for this situation. Recent practice with graphics over
the internet calls for more reliance on software tech-
niques (e.g., by using Java applets) and less use of
hardware-based features.

A related situation occurs when several users wish
to view the same scene, but they may have screens
of different resolutions. A simple solution is for
the server to generate the scene at the highest re-
quired resolution and do a separate averaging oper-
ation for each of the different resolutions (similarly
to antialiasing). Alternatively, if a user has a device
with some processing power, the averaging operation
can be done locally. Resampling at different resolu-
tions is a common technique, but the scanline prin-
ciple allows us to do it in scanline mode with a low
overhead.

5.5 Virtual reality

The S-buffer can be very useful in a multi-user in-
teractive virtual reality environment. Assume that
several users wish to share the same virtual envi-
ronment, observe it from different viewpoints, and
interact with the environment and each other. This
situation is best handled by a single server which
maintains the modifiable database and the virtual po-
sitions of the users in the environment. The S-buffer
algorithm is suitable for this situation. All the poly-
gons’ vertices are common data for all the users,
and for each separate user the server needs to hold
the sorted lists of critical points (which may depend
on the viewpoint), and maintain one S-buffer and
AET’s for the observable polygons. Each user will
have a different view matrix, but there is no need to
maintain for him the transformed coordinates of the
scene’s vertices; instead, the user’s matrix can be ap-
plied to each vertex of the common data whenever
required.
For certain applications, it may be possible to pre-
compute the critical points of some of the poly-
gons and use them for all users. Consider a virtual
museum in which the user is restricted so that he
cannot tilt his head. Then for some of the vertical
polygons, the critical points will always belong to
some restricted set. For example, for walls and pic-
ture frames, the critical points will always be along
the bottom edge. Due to changing perspectives, the
choice of which points to use from the restricted set
is view-dependent, so it has to be determined at run
time.
We should note also that BSP trees are widely used
for certain virtual reality applications. The scanline
rendering of BSP trees enables the servers to gen-
erate, compress, and transmit images with a low
overhead.
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5.6 Parallel rendering

The S-buffer is suitable for an image-driven paral-
lel processing environment, where each processor is
responsible for a span of consecutive scanlines. De-
termining the critical points of all the polygons is
clearly parallelizable, since each polygon is handled
separately. At the sweep stage, each processor han-
dles only those polygons that intersect its span of
scanlines. The processor sets the variablesLS and
HS (see Appendix A) to the limits of its span, and
then executes the S-buffer algorithm.

6 Evaluation of the S-buffer

There are various ways to compare different algo-
rithms. Qualitative comparisons are concerned with
the different properties (e.g., scanline mode). Quan-
titative comparisons are concerned with time and
space comparisons – both theoretical and actual run-
times. We compare the following three methods:
regular Z-buffer, scanline S-buffer, and the stan-
dard scanline coherence algorithm (Foley et al.,
Sect. 15.6), which we refer to as Scan. We also
made run-time comparisons between the S-buffer
and state-of-the-art tools on typical workstations.

6.1 Qualitative comparisons

Table 1 summarizes the qualitative differences be-
tween the Z-buffer, the S-buffer, and Scan. Positive
entries in the table are emphasized by italics. The en-

Table 1. Qualitative differences between the Z-buffer, S-buffer,
and Scan

Property Z-buffer S-buffer Scan

Depth buffer Large Small None

Scanline mode No Yes Yes

Intersecting objectsYes Yes Prohibitive

No edge sorting Yes Yes No

Supersampling ProhibitiveYes Yes

Transparency ProhibitiveYes Yes

Online mode Yes No No

Hardware
implementation Yes Possible No

Object types All Polygons Polygons and
(extensions?) extensions

try “prohibitive” indicates that while the possibility
exists, it is only at a great expense in terms of space
or time (see Sects. 2.1, 5.1, and 5.2). Note that with
regard to object types, the standard scanline method
has been extended to quadrics by Pavlidis (Pavlidis
1985). The S-buffer can probably be extended in
a similar manner, though we have not pursued this
possibility. With regard to hardware implementation,
Scan is not the hardware-oriented Watkins algorithm
mentioned in Sect. 2.1.

6.2 Time and space comparisons

In this Section we present the results of time and
space comparisons between the various algorithms.
The analysis is straightforward, and the analysis of
CP can be found in (Gordon et al. 1994). For the
Z-buffer, we assume that CP is used for scan conver-
sion. We use the following notations:

Pi = polygoni
p = number of polygons
ni = number of vertices of polygoni
n =∑p

i=1 ni = total number of vertices
ci = number of critical points ofPi

c =∑p
i=1 ci = total number of critical points

Ai = area (number of pixels) covered byPi
A = area covered by all polygons (every pixel

counted just once)
r = horizontal (and vertical) resolution (number of

pixels in scanline)
S = total time to sort all edges in Scan

Table 2 summarizes the time and space require-
ments of the three algorithms. As can be seen, the
time differences between the depth methods and
the Scan algorithm depend on many factors, and
there are situations where depth methods are faster
and some where Scan is faster. For a detailed study
of the actual differences in run-time between the
Z-buffer and Scan, see (Slater et al. 1992). Note,
however, that their implementation of the scanline al-
gorithm uses the standard scan conversion, whereas

Table 2. Time and space requirements of the Z-buffer, S-buffer,
and Scan

Z-buffer S-buffer Scan

Space requirement θ(n+ r 2) θ(n+ r) θ(n)

Time requirement θ(n+∑p
i=1(c

2
i + Ai )) θ(n+c2+ A+S)

258



the time of θ(n+ c2+ A+ S) assumes the use of
CP. As noted earlier, all occurrences ofc2 could be
replaced byc logc, but this would be impractical
for most applications, since the inherent overhead
of the more complex data structures (particularly
for small c) would increase the actual execution
times.

6.3 Implementation and run-time results

From a user’s point of view, if the qualitative differ-
ences between the various algorithms are not impor-
tant, it makes sense to compare the S-buffer (or any
other algorithm) with the standard tools available on
his workstation. With this in mind, we implemented
the S-buffer on Silicon Graphics workstations and
compared it with the OpenGL routines for hidden
surface removal, using the GLU library tools for the
non-convex polygons. The methods were compared

Table 3.S-buffer and SGI run-times (in seconds) for 1000 polygons (Indy)

No. of Convex Non-convex Non-convex
vertices polygons withc= 1–5 withc= n/2

S-buffer SGI S-buffer SGI S-buffer SGI

100 16.55 16.34 17.37 15.17 73.98 40.75
200 17.03 27.47 18.17 26.61 133.77 68.15
300 17.90 36.17 18.11 37.54 182.91 84.74
400 18.43 45.90 18.68 48.35 266.24 109.17
500 18.77 52.76 19.37 57.71 339.97 126.29
600 18.01 59.05 19.46 69.57 414.95 156.72
700 18.43 66.23 19.24 77.83 549.43 176.41
800 19.06 73.83 20.18 89.24 655.13 208.86
900 18.77 81.16 19.68 94.01 785.77 224.91

1000 20.58 89.03 20.34 108.21 914.32 243.29

Table 4.S-buffer and SGI run-times (in seconds) for 1000 polygons (Indigo2)

No. of Convex Non-convex Non-convex
vertices polygons withc= 1–5 withc= n/2

S-buffer SGI S-buffer SGI S-buffer SGI

100 4.62 0.58 5.06 5.92 25.25 7.95
200 5.10 0.99 5.70 11.71 50.97 17.89
300 5.38 1.36 5.71 18.72 75.93 29.99
400 6.03 1.77 5.97 23.85 117.47 44.55
500 5.95 2.15 6.29 29.82 155.55 82.89
600 5.65 2.48 6.24 36.70 190.49 78.60
700 5.87 2.87 6.40 42.19 239.24 105.15
800 6.29 3.25 6.64 48.29 284.88 129.87
900 6.04 3.64 6.58 54.45 322.89 150.27

1000 6.46 4.04 6.59 61.18 363.02 196.81

on two different machines: a low-end Indy work-
station with32 MB memory and 4600PC processor
running at100 Mhz(without a hardware Z-buffer),
and an Indigo2 High-Impact with64 MB memory,
hardware Z-buffer, and R4400 processor running
at250 Mhz.
Experiments were run on three different types of
polygons: convex, non-convex with few (1−5) criti-
cal points, and non-convex with many critical points
(c= n/2 – the worst possible case for CP). Each
data set contained 1000 polygons, with the number
of vertices (n) varying from 100 to 1000. Such a large
number of vertices appear in applications where the
polygons are approximations to smooth contours,
obtained, for example, by CAD outputs of curved
contours or by freehand drawings.
We refer to the OpenGL implementation on Silicon
Graphics workstations as SGI. The run-times of the
two methods are presented in Table 3 and Table 4
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Table 5.Run-time ratios of the S-buffer over SGI standard methods (S/SGI) forn= 100–1000

Convex Non-convex Non-convex
polygons withc= 1–5 withc= n/2

Indy 1.01−0.23 1.14−0.18 1.81−3.75
Indigo2 8.10−1.59 0.85−0.10 3.17−1.84

for the Indy and the Indigo2, respectively. The re-
sults are summarized in Table 5, which shows the
ratios of the S-buffer run-times over the SGI run-
times (denoted S/SGI). The left value in each col-
umn is S/SGI for n = 100, and the right value is
for n = 1000. As expected, in some cases the S-
buffer did worse than SGI and in some cases it
did better, even on the Indigo2 with the hardware
Z-buffer.
Since c= n/2 is the worst case for CP, the third
column provides an upper limit on the performance
of the S-buffer relative to SGI. For convex poly-
gons, the S-buffer fares better than SGI on the Indy,
but worse than SGI on the Indigo2. This is due
to the hardware Z-buffer of the Indigo2. For non-
convex polygons, however, the SGI methods first
triangulate the polygons using the auxiliary library
routines of the GLU. This computational step, for
non-convex polygons with few critical points, re-
sults in a better performance of the S-buffer over
the SGI. As can be seen from Table 3 and Table 4,
there is only a negligble difference between the S-
buffer’s performance on convex and on non-convex
polygons with few critical points. However, the
SGI methods perform better in the S-buffer’s worst
case (c= n/2).
Generally, the results indicate that the S-buffer per-
forms best whenn is large, and can even beat the
expensive hardware. Large values forn are typically
obtained when the polygon is an approximation to
a smooth contour:n increases with the accuracy of
the approximation, but the number of critical points
remains fixed, since they depend only on the smooth
contour. It can also be seen from Table 3 and Ta-
ble 4 that the run-times of the S-buffer increase very
slowly with n when the number of critical points is
small.
In practice, the scanline principle has proved to be
simple and robust. The S-buffer was implemented in
an undergraduate first course on graphics, and the
scanline display of BSP trees was used for supersam-
pling and antialiasing in undergraduate projects.

7 Conclusions

We have presented a simple method for the effi-
cient conversion of any hidden surface algorithm
into scanline mode, provided the algorithm is based
on polygon scan conversion. Scanline mode is
a property with many useful applications, such
as supersampling and averaging with a low over-
head and remote visualization over the web, since
it enables the efficient generation, compression,
and transmission of rendered images. The scanline
principle is based on the “critical points” method
of polygon scan conversion, and therefore pro-
duces more efficient scanline algorithms than those
that would be obtained by using the standard scan
conversion.
When applied to the Z-buffer algorithm, the scan-
line principle converts it into the S-buffer, which has
the robustness of the Z-buffer but not its memory
requirement. This property makes it extremely at-
tractive in situations where space is at a premium.
Extensions of the S-buffer include efficient render-
ing of transparent objects, and using the A-buffer in
a scanline mode. Furthermore, since the algorithm is
based on critical-points scan conversion, it performs
particularly well on polygons with many vertices
(but without too many critical points), even outdo-
ing expensive hardware. Such an application occurs
when the polygons are approximations to smooth
contours. Other extensions include parallel render-
ing – a useful property as multi-processor worksta-
tions become commonplace. The S-buffer is also
suitable for interactive multiple-user virtual reality
environments due to the low memory overhead per
user.
Another important application of the scanline princi-
ple is the conversion of list-priority algorithms, such
as the display of BSP trees, into scanline mode, in
either the usual back-to-front order, or the more ef-
ficient front-to-back order. This application is useful
when BSP trees are used for scene representation, as
in virtual walkthroughs and similar setups.
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Procedure DETCR
/**************
CAND is a boolean flag that indicates whether the current vertex
is a candidate for a critical point. CAND is set True whenever y
decreases but is unchanged when the y-values are equal. Whenever
y increases and CAND is True, we have a critical point.
*/
{ CAND = False; set CR to empty;

for ( i = 0 to n-1 )
{ if ( Y[i] > Y[i+1] ) CAND = True; /* i+1 is a candidate */

else if ( Y[i] < Y[i+1] and CAND ) /* i is a critical pt. */
{ add i to CR; CAND = False; }

}
if (CAND = True) /* vertex with index 0 is a candidate */

for ( i = 0 to n-2 )
if ( Y[i] > Y[i+1] ) break; /* no crit. pt. - exit from loop */
else if ( Y[i] < Y[i+1] ) /* i is a crit. pt. */

{ add i to CR; break; }
Sort CR by increasing values of y;

} /* end of DETCR */

Procedure MOVEUP(J, DI, XX, SL)
/******************************
J is the current index from which to start the search. J will (possibly)
change to become the index of the highest vertex with y <= H . y = H is
assumed to be the globally known current scanline. If the polygon section
turns down before reaching H, J is set to -1. DI = +1 or -1 and indicates
the direction of advance on the polygon arrays X and Y. XX and SL are re-
spectively the x-coordinate of the intersection with y = H and the inverse
slope of EDGE[J, J+DI]. SL is used to compute the intersection efficiently
by adding SL to XX, but if the edge changes, or if this is the first call to
MOVEUP with a new monotonic section (in which case SL is initially set to 0),
then XX and SL are computed in the usual manner. MOVEUP assumes Y[J] <= H.
*/
{ JOLD = J; /* save original index */

J1 = J + DI /* index of next vertex in direction DI */
while ( Y[J1] <= H )

{ if ( Y[J1] < Y[J] ) /* polygon section turns down */
{ J = -1; return; }

else { J = J1; J1 = J + DI; } /* moveup */
/* note that MOVEUP continues along horizontal edges until the polygon

section either rises and meets y=H, or turns down. Any changes in
the inequalities in the code will produce unexpected results.

*/
} /* end of while reached - intersection found; compute new

intersection and (possibly) new slope */
if ( SL = 0 or J != JOLD ) /* new vertex */

{ SL = (X[J+DI] - X[J]) / (Y[J+DI] - Y[J]); /* new slope */
XX = X[J] + SL*(H - Y[J]); /* new intersection */

}
else XX = XX + SL; /* same edge - calculate XX more efficiently */
return;

} /* end of MOVEUP */
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Procedure POLINE
/***************
y = H is the globally-known current scanline. POLINE updates the AET
to "meet" the current scanline and calls FILL to fill the pixels.
Variable ic is initialized in the main program and updated in POLINE.
*/
{ /* update or delete current elements on the AET: */

for(each element K on the AET)
{ MOVEUP(K.IND, K.DIR, K.XC, K.SLP);

if (K.IND = -1) DELETE(K);
}

/* if there are intersecting edges, sort AET here */
/* add new elements to AET from the critical points: */
while ( ic <= c and Y[CR[ic]] <= H )

{ /* follow both directions from the crit. pt.: */
for(DI = -1 to DI = +1 step 2)

{ J = CR[ic]; SL = 0.0;
MOVEUP(J, DI, XX, SL);
if ( J > -1 ) INSERT(J, DI, XX, SL);

}
ic = ic + 1; /* advance to next crit. pt. */

}
FILL; /* fill in pixels between alternate pairs of AET elements

} /* end of POLINE */

Procedure S-buffer
/*****************
PT is an array of lists (of polygons) whose size is equal
to the number of scanlines. APT is a list of polygons.
*/
{ /* initialization stage: */

LS = y-value of lowest scanline in viewport;
HS = y-value of highest scanline in viewport;
/* initialize PT: */
for ( line = LS to HS ) initialize PT[line] to empty;
for(every polygon P in PSET)

{ P.DETCR; /* determine P’s crit. pts. */
if ( P.c = 0 ) continue;
/* if P is degenerate, eliminate it from further consideration */
line = ceiling( P.Y[P.CR[1]] );
if ( line > HS ) continue; /* P is above viewport, ignore it */
if ( line < LS )

if ( P is completely below LS ) continue;
/* P is below viewport, ignore it */

else line = LS;
add P to PT[line];
P.AET = empty;
P.ic = 1; /* index of P’s first crit. pt. */

}
/* if the polygons are expected to occupy just a restricted

number of scanlines, LS and HS can be modified according
to the lowest and highest y-values of the polygons.

*/
/* sweep stage: */
for( H = LS to HS )

{ /* outer loop on the scanlines */
initialize S (the scanline S-buffer) to infinity;
set all pixels in scanline to background color;
add PT[H] to APT; /* add new active polygons */
for(every P in APT)

{ /* inner loop on the polygons */
P.POLINE;
if ( P.AET is empty ) remove P from APT;

} /* end of polygon loop */
} /* end of scanline loop */

} /* end of S-buffer */
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Appendix A.
detailed algorithms

Note that all index calculations are carried out mod-
ulo n, where n is the number of vertices of the
polygon.
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