Reprinted ffom JOURNAL oF COMPUTER AND SYSTEM SCIENCES Vol. 18, No. 3, June 1979
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Complexity Classes of Provable Recursive Functions*

Dan Gorpont

Departments of Mathematics and Computer Science, Purdue University,
West Lafayette, Indiana 47907

Received July 6, 1977

Complexity measures and provable recursive functions (p-functions) are combined
to define a p-measure as a measure for which Blum’s axioms can be proved in a given
axiomatic system. For p-measures, it is shown that the complexity class of a p-function
contains only p-functions and that all p-functions form a single complexity class. Various
other classes and a variation of a complexity measure, all suggested by the notion of
provability, are also investigated. Classical results in complexity theory remain true when
relativized to p-functions.

1. INTRODUCTION

The theory of provable recursive functions was studied by Patrick Fischer in [5].
Given a formal system S containing second order arithmetic, a recursive function is
called provable (in S) if there exists an algorithm which computes it and which can be
proved (in S) to be total. Such functions are usually called p-functions.

The class of p-functions is interesting because these are the functions we usually work
with in practice. For example, part of the literature on numerical methods for (partial)
differential equations consists of proofs that certain finite difference schemes converge,
and this means that a computer program based on such methods is a p-function. Besides
that, all well-written computer programs have built-in checks to make sure that they
terminate, making them p-functions.

Another reason for studying p-functions is the not-unjustified claim that the class of
all partial recursive functions is far too large to be of real practical interest. This claim
has led to the consideration of various smaller classes of functions among which p-
functions have a natural place. Furthermore, the notion of provability has been of interest
in recent years with the study of correctness and equivalence of programs.

We consider the class of p-functions from the aspect of abstract computational com-
plexity. Typical questions which arise are the following: Do classical results in computa-
tional complexity remain true when relativized to p-functions ? What can be said about
the complexity class of a p-function ? What about classes of functions defined by provable
conditions ?

* This is a revised version of [4] which was written while the author was a graduate student at
the Technion, Israel Institute of Technology. The author is indebted to Azaria Paz and Eliahu
Shamir for their advice and to Michael Rabin for suggesting this research.

t Present address: Department of Mathematical Sciences, University of Cincinnati, Cincinnati,

Ohio 45221.

294
0022-0000/79/030294-10$02.00/0

Copyright © 1979 by Academic Press, Inc.
All rights of reproduction in any form reserved.

COMPLEXITY OF PROVABLE FUNCTIONS 295

When trying to answer these questions it becomes clear that if a meaningful connection
is to be made between “provability”” and complexity, then Blum’s axioms for the com-
plexity measure should be provable in S. We call such a measure a p-measure. Requiring
our measure to be provable can be justified by the fact that we are dealing only with
p-functions and that in practice complexity measures are provable. Note however that
from S, we can construct a measure for which Blum’s axioms are not provable in .S; and,
given such a measure, we can add a suitable formalization of “the measure obeys Blum’s
axioms’ (see Def. 2.2) as an axiom and obtain a new system in which the measure is
provable. P-measures were also considered by P. Young independently in [8].

The main results for complexity classes of p-functions are Theorems 1 and 2 below.

THEOREM 1. If the complexity measure is provable then the complexity class of a p-
Junction contains only p-functions. -

"This means that if the complexity of an algorithm is smaller (almost everywhere) than
a p-function, then the function computed by that algorithm is a p-function. Note that this
does not imply that the given algorithm is itself provably total but rather that the same
function can be computed by some (possibly different) provably total algorithm. A case
in point is an example by Hartmanis and Stearns [7] of a non-provably total algorithm
with run time of #2. This run time is a p-function and so by Theorem 1 the function
computed by that algorithm is a p-function.

From Theorem 1 and the Union Theorem [6, p. 467] we get:

THEOREM 2. AIl p-functions form a single complexity class.

Theorems 1 and 2 are proved in section 3. In section 4 we explain why classical results
in complexity theory can be relativized to p-functions and bring a few examples.

Section 5 deals with various classes of functions which can be defined by provable
conditions. In section 6 we turn to a slight variation of the notion of a complexity measure,
suggested by the fact that although some computations do not halt, it may be possible
to prove this and stop the computation.

2. DEFINITIONS

Following Fischer [5], let S be a formal axiomatic system containing second order
arithmetic and at least the following symbols:

connectors : A, v, —», ~
quantifiers : 3, V
predicate symbols : ¢, =
function symbols : +, -, s (successor function) and a function symbol for
exponentiation.
individual constant : 0
individual variables : «x, y, z,...

296 DAN GORDON

Denote s(0) by 1,..., s(n — 1) by n for every z.

Let ¢y, é1 , bo ... be an acceptable Godel enumeration of all partial recursive functions.
We denote the ¢'th machine by M, . We say that 7 is an index for f(n) if ¢, = f.

As in [5], let M(x, y, 2, w) be a formula in S which expresses in S the primitive
recursive relation of 4, §, &, [iff the #'th algorithm applied to input j gives output & in not
more than / steps.

DeriniTION 2.1. M, is provable (in S) if
H Yy 32 3wl (i, v, 2,)

We write p-algorithm for provable algorithm. A function f(z) is called provable (a
p-function) if it can be computed by a p-algorithm.

Note that when we say “‘¢; is a p-function’” we do not mean that M, is a p-algorithm,
but rather that ¢, can be computed by some p-algorithm. By recursive function we always
mean total recursive.

We further assume that S is sound for elementary number theory, i.e., no formula
which is false in the standard model of arithmetic can be proved in S.

We recall that @,(n) is a complexity measure [2] if:

(1) The function

1 if Pm)=m

b, n, m) = 0 otherwise

is recursive. ‘
(2) Domain @; = Domain ¢, .
DEerINITION 2.2. A complexity measure @ is called a provélble complexity measure
(p-measure) if there exists an index 7, such that
(1) M,,is a p-algorithm,
(2) for all 4, n, m, $y (2F - 37 - 5™) = 6,3, n, m),
(3) +5 Va Vy[Fz JwM(n,, 2% - 37 - 5%, 1, w) <> Iz JwM(x, y, 2, w)].
(1) and (2) imply that 6 is a p-function. (3) implies that “Domain ¢; = Domain ¢’
is a theorem of S. :

Unless stated otherwise, we shall assume from now on that @ is a fixed provable com-
plexity measure, and that ny is a fixed index for 0, as above.

DrrINITION 2.3. (a) We say that a condition on 7 (natural number) is true almost
everywhere (a.e.) if it is true for all but finitely many values of z.
(b) A condition on # is true infinitely often (i.0.) if it is true for infinitely many
values of 7.

COMPLEXITY OF PROVABLE FUNCTIONS 297
DerFiNtTION 2.4. The complexity class of a function f is the set

C; = {¢; | $; is total and @y(n) < f(n) a.e.}

3. ComprLexrry Crasses oF P-FuNcCTIONS

In this section we prove that the complexity of a p-algorithm is a p-function, and then
prove Theorems 1 and 2.

Treorem 3.1. If M; is a p-algorithm then D (n) is a p-function. Furthermore, a p-
algorithm for @(n) can be effectively constructed from M; .

Proof. Let n, be an index for 04 as in Definition 2.2. Define algorithm M which
operates as follows for every input »: using M, , M starts computing the séquence

0(i, 1, 0), Boli, 7, 1),ees, O(i, 1, B),ene

until the value 1 is obtained. If % is the first number such that 84(z, n, k) = 1‘, M gives k
as output and stops. Obviously, M computes @;. We shall prove that M is a -
p-algorithm:

(1) M, is provable, therefore it is provable that for every m, the computation of
95"0(2" - 37 - 5™) terminates, i.e. the computation of every element of the sequence
terminates.

(2) M; is a p-algorithm.
(3) “Domain ¢; = Domain @, is a theorem of S.

(2) and (3) imply (in S) that for every = there exists & such that 8,4(7, 7, £) = 1. There-
fore M is a p-algorithm. ‘
The above is obviously an effective procedure for constructing M from M;. |

Tueorem 1. If fis a p-function and g € C; then g is a p-function.

Proof. Let M; be a p-algorithm which computes f. Since g € C;, it follows that g is
total and that there exists an index 7 for g such that @,(n) << f(n) a.e. Therefore there
exists 2 number N such that if n > N then @y(n) < f(n).

We shall now construct a provable algorithm M for g which operates as follows for
any given input #:

(1) Forn < N, M has the values of g(n) in a table look-up, M prints g(n) and halts.
(2) If » > N, M simulates M; on 7 until it obtains the value m = f(n).

(3) Using M,, (the p-algorithm for 5), M computes

04(i, n, 0),..., 04(1, n, m).

298 DAN GORDON

(4) If in stage 3 all values for 6, are different from 1, print 0 and halt. (This won’t
happen in our case, but 4 is necessary for M to be properly defined and provable.)

(5) If04(i, m, k) = 1 for some 0 < & < m, M simulates M; on #. If and when M;
halts on n, M prints the result, g(z), and halts.

For n << N, M obviously computes ¢,(n). For n > N, @(n) < f(n). Therefore for
k = D (n), we get 0 << k < m and 04(z, #, k) = 1, and so the computation will proceed
to stage 5. Therefore M computes ¢, = g.

We prove that M is a p-algorithm by going through the stages of a computation:

(1) A table look-up is obviously a process which can be proved (in S) to terminate.
(2) M; is a p-algorithm and so stage 2 can be proved in .S to terminate.

(3) M, is a p-algorithm and so the computation of a finite sequence, using M, ,
can be proved to terminate.

(4) Immediate.
(5) Recall condition 3 of Definition 2.2 (“Domain ®; = Domain ¢,”’ is provable
in S). Condition 3 implies (in S) that if 04(7, n, &) == 1 then M halts on #.

Therefore M is a p-algorithm. [

CoroLLArY 3.2. If ¢; is total and D (n) < D,(n) a.e., where M; is a p-algorithm, then
&; is a p-function.

Proof. ¢;€ Cy, and by Theorem 3.1 @;(n) is a p-function. Therefore by Theorem 1,
é; is a p-function. [

Theorem 1 means that a function whose complexity is bounded by a p-function is also
a p-function. In contrast, restricting the value of a function by a p-function does not make
it a p-function, as shown by the following example:

Exampre 3.3. The theorems of S can be recursively enumerated, and so the
p-functions can be recursively enumerated. Let py, p;,... be such an enumeration.
" Define ‘

0.W.

Jf(n) is recursive, {0, 1}-valued and different from every p-function.
For the proof of Theorem 2, we bring the Union Theorem as stated in [6].

UnioN THEOREM. Let {f;|i =0, 1,..} be a r.e. set of recursive functions such that
for all i, n, fi(n) < fi(n). Then there exists a recursive t such that C, = i, G, -

THEOREM 2. There exists a recursive function t such that C, is the set of all p-functions.

Proof. As mentioned in Example 3.3, the theorems of S can be recursively enumerated.

COMPLEXITY OF PROVABLE FUNCTIONS 299

Let r(n) be a recursive enumeration of all p-algorithms, so {brn | £ =0, 1,...} is the set
of all p-functions.
We define a r.e. set of functions as follows:

Jo(n) = Dy ((n)
Jia(m) = fi(m) + D, 4(n).

{f:17 =0, 1,...} is a set of functions as required in the Union Theorem. By Theorem
3.1, D,; is a p-function and so every f; is a p-function. Therefore by Theorem 1, every
complexity class C; contains only p-functions.

On the other hand, if &(n) is a p-function then for some 7, g = ¢,(; . Now D n(n) <
Ji{n) and therefore ge C;, . Therefore Uio Cy, is the set of all p-functions, and the con-
clusion follows from the Union Theorem. [

4. RELATIVIZATION OF COMPLEXITY THEOREMS TO P-FUNCTIONS

In this section we look at some of the classical results in complexity theory and explain
why they can be relativized to p-functions. By relativization of a theorem we mean the
statement obtained from the theorem by replacing the words “complexity measure”’
and “‘total function” by the words “p-measure’’ and p-function” respectively.

The reason why relativized versions are usually true is that when the original theorems
are of a “constructive’ type, and the measure is provable and the given functions are
provably total, then the proofs that the constructed functions are total can be given in S.
Therefore the constructed functions are p-functions. Furthermore, if (some of) the
assumptions of the original theorems are provable in S then (some of) the consequences
and properties of the constructed functions are also provable in S.

There is nothing unexpected in these observations and they are only brought in answer
to probable questions concerning relativization.

Only a few examples of such relativized theorems are brought, and the reader should
then have no difficulty in checking other results. The following is the relativized version
of the existence of arbitrarily complex (a.e.) functions: '

TuEOREM 4.1. Let f be any p-function. There exists a p-function g such that if i is any
index for g (M; not necessarily provable) then

D,(n) > f(n) ae.

Any of the proofs in [2] or [6] can be used to construct g and to prove (in S) that g
is total. The following is the relativized version of the speed-up theorem as stated in [6].
However, for an extensive treatment of speed-up for p-functions and for provably
equivalent programs, see [8].

TueoreM 4.2. (speed-up for p-functions). If @ is a p-measure such that Jor every i

300 DAN GORDON

and n, D(n) > n, r(n) a recursive function bounded by a p-function, then there exists a
p-function g with the following property: If ¢, = g (M, not necessarily a p-algorithm) then .
there exists an index j such that ¢; = g, M; is a p-algorithm and @n) = r(P,(n)) a.e.

The proof, given in [4], follows the lines of [6] and consists of checking that all parts.
of the proof can be carried out in S. The theorem is first proved for the measure L(n)
of number of tape cells used by M, on input n. Since Blum’s axioms for L,(n) can be
proved in second order arithmetic which is contained in S, L,(n) is a p-measure. The result
is then extended to any p-measure by use of the relativized version of the fact that any
two measures are recursively related [6, Theorem 4].

Note that if in Theorem 4.2 we replace the requirement “¢; = g’’ by “¢, is provably
equivalent to g’’, then the proof that ¢; = g can be carried out in S, and so ¢; is also
provably equivalent to g. Therefore g has a speed-up among its provably equivalent algo-
rithms as well as among all p-functions. The next theorem shows that the boundedness
of r is (almost) necessary:

TuEOREM 4.3. If r is monotonic increasing and not bounded by any p-function, ‘then no
p-function has a speed-up by factor r.

Proof. Assume to the contrary that g is a p-function which has a speed-up. Let A;
be any p-algorithm for g and j another index for g such that ®y(n) = r(Py(n)) a.e. If
we assume, as in Theorem 4.2, that ®;(n) > n we get ®,(n) > r(n) a.e. By Theorem 3.1,
®,(n) is a p-function and so 7 is bounded a.e. by a p-function, which contradicts our
assumption. (The “a.e.”” can be dropped because a total function equal a.e. to a p-function
is also a p-function.) |

Is speed-up by factor r always effective ? As shown by Blum [3], speed-up by factor r
is not effective when 7 is sufficiently large, and the bound given in [3] is certainly low
enough to include p-functions.

The following is a relativization of the Gap Theorem as stated in [6]:

TueoreM 4.4. If r(n) is a p-function such that r(n) > n then there exists a p-function t,
monotonically increasing such that C, = C,,, . Furthermore, the monotonicity of t can also
be proved in S.

5. Crassgs oF FuncrioNs DerFINED BY PROVABLE CONDITIONS

In this section we consider various possible classes of functions, all suggested by the
notion of provability.

DrerniTioN 5.1, Let, be any total function. We define conditions (a), (b) and (1)—(4)
on j and 1 as follows:

(a) M, is a p-algorithm. (1) &; < &; a.e.

COMPLEXITY OF PROVABLE FUNCTIONS 301

(b) &;is a p-function. 2) ¢ieCy,.
®) =& <diac)
4) iy (i€ Cos,.)-

Denote by P2, Pib, & = 1,..., 4, the set of all functions ¢; for which conditions (a),
(b) respectively and %, hold. Obviously these are dependent on ¢; .

When we write —(®; < ¢, a.e.) we mean that a suitable formalization of the following
statement is provable: “The complexity of machine M, (as given by M, , see Definition
2.2) is less than or equal to, a.e., the function computed by machine M & - ¢; € Cy, means
(P, = ¢; A Py, < s ae), and by ¢, = ¢; we mean that the functions computed by
machines M, and M, are equal.

THEOREM 5.2. (1) PP =P} = P,
(2) PeCPeCPg.
(3) P@CPpCPICP.
(4) PCPeCPRCPe,

Proof. The following is obvious: for all 1 <k <4, P, C P2 and P*C Py,
Py C P, P» C Py®, Py® C P)® where x = a or x = b. (1) We have P,2 C P,>D P Let
d;e Pt = ¢; is a p-function and ¢, e Co, = by =17 P, < yae) > is a
p-function and @, < ; a.e. Therefore ¢; = ‘/’z € P,b. Therefore P> = Py,

Since ¢; is a p-function, there exists an index % such that M, is a p-algorithm and

¢r = ¢; . Therefore ¢, € P,9, i.e., ¢; € Pyo. Therefore Py = Py,
(2)~(4) follow from (1) and the above-mentioned inclusion properties. ||

We turn now to the question of whether the inclusion relations are proper. The next
theorem gives some partial answers. We write P,%(S), P,2(S) to express the dependence
of these sets on S.

TaroreM 5.3. (1) P, and P,® are r.e.

(2) If ¢; is a p-function then P,® = Cs, » and if, further, Cy, is r.e., there exists an
extension S’ of S, also sound for elementary number theory such that

Py(S’) = PH(S") = PX(S") = PyA(S).
(3) There exists a p-measure O and a p-function ¢; such that P,® is not r.e. (and
therefore Py C P,%).
(4) There exists a p-function ¢; such that P,® C Py°.

Proof. (1) The theorems of S form an r.e. set and therefore P, and P,% are r.e.

(2) If ¢, is a p-function then C,, contains only p-functions, therefore Cy, = Py’ =
P, Therefore, any extension S’ of S will leave P,¢ unchanged.

302 DAN GORDON

Assume now that C’d, is r.e., and let / be an index s.t. Cy = {$y | £ =0, 1, 2,....}
For every &k =0, 1,..., define A4, to be the followmg sentence “M,,, () 1is total and
b, € Cs,’. This sentence can be formalized in S. Since ¢; is a recursive function,
{4p\ k= 0 1,...} is a recursive axiom-scheme. Let S” be the theory obtained from .S by
adjoining this axiom-scheme. S is also sound for elementary number theory because every
Ay is true. We show now that P,2 C P,%(S’). Let ¢, € P,? = Cs, - Therefore there exists &
such that ¢; = b, - But ¢4) € Py%(S") and so ¢; € P(S’). Therefore Py C P4(S").
Together with part 4 of Theorem 5. 2, this gives the required result.

(3) The existence of @ and recursive ¢ s.t. C; is not r.e. is shown in [6, Theorem 11].
t is in fact 0, and is therefore a p-function. The proof that @ is a complexity measure
can be given in S, and therefore @ is a p-measure. According to (2), C, = P,%, therefore
P,% is not r.e.

(4) In[7, p. 21] an example is given of an algorithm whose run time is %2, but for
which there is no proof that it runs in time <<2". The construction is such that the algo-
rithm halts in exactly #? steps or exactly 2" steps, so it is a p-algorithm. So for ¢ () = n2,
the function computed by that algorithm is in P;* but not in Pg%.

6. A MobpiriEp COMPLEXITY IMEASURE

We now turn to a slight modification of the notion of complexity, suggested by the
idea that the theorems of .S can be recursively enumerated. Let M be a machine which
has as input two integers 7, n. M searches through the theorems of S until it finds a
theorem which states that machine M; does not halt on input zn. To calculate ¢,(n),
set machine M, to work on input # and machine M to work (in parallel) on the pair (3, n).
The computation stops if (and only if) either M halts on z, or M has discovered a proof
that M, will not halt on input n. Define the complexity ®,(n) to be the number of steps
(or any other measure) required by M, to compute ¢,(n) or the number of steps required
by M to find the proof that M; will not halt on input z. If M; does not halt on input =
and no such proof can be found, then @,(n) is undefined.

If @,(n) is defined, we can distinguish between the two cases (1) ¢,(n) defined, and (2)
¢,(n) undefined and “¢,(n) undefined”’ is a theorem of S. Such a measure & would
therefore obey the following axioms:

(1) Domain ¢; € Domain @; .

(2) The function
if @,(n) =m
otherwise.

. 1
9<1>(1’ n, m) = 30

is recursive. .
(3) 'There is'a partial recursive function 7z,) such that if @,(n) is defined then
n4(7,) is defined and
N if ¢y(n) is defined
Nl 1) = ,0 otherwise.

COMPLEXITY OF PROVABLE FUNCTIONS 303

These are exactly the axioms for what G. Ausiello [1] called a “weak complexity

measure.”” Basic properties of this type of measure can be found in [1]. The above
example probably lends further justification to the study of weak complexity measures.

For related work see J. Hartmanis, Relations between diagonalization, proof systems,

and complexity gaps, Theor. Comput. Sci. 8 (1979), 239-253.

2.

REFERENCES

G. AusieLLo, Abstract computational complexity and cycling computations, J. Comput. System
Sei 5 (1971), 118-128.

M. Brum, A machine-independent theory of the complexity of recursive functions, J. Assoc.
Comput. Mach. 14 (1967), 322-336.

. M. BrumM, On effective procedures for speeding-up algorithms, J. Assoc. Comput. Mach. 18

(1971), 290-305.

. D. Gorpon, On the computational complexity of provable recursive functions, Preprint series

No. MT-164, Technion, Israel Institute of Technology, August 1973.

. P. C. Fiscugr, Theory of provable recursive functions, Trans. Amer. Math. Soc. 117 (1965),

494-520.

. J. Hartmants anp J. E. HoPcrROFT, An overview of the theory of computational complexity,

J. Assoc. Comput. Mach. 18 (1971), 445-475.

. J. Hart™anis anD J. E. HorcrorT, Independence results in computer science, ACM SIGACT

News 8 (Oct.—Dec. 1976), 13-24.

. P.R. YounNg, Optimization among provably equivalent programs, J. Assoc. Comput. Mach.

24 (1977), 693-700.

Printed by the St. Catherine Press Litd., Tempelhof 37, Bruges, Belgium

