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1 Introduction

In this article we address some of the results on unit interval graphs. In short, a unit interval graph is
an interval graph in which all intervals have the same length. These graphs have many applications
in bioinformatics, databases, scheduling, measurement theory, etc. [KS96, BFMY83, PY79, Gol80].
We will study some of the problems that arises from such applications later in this article, after
addressing properties of this class and available recognition algorithms.

There are some other classes of graphs with different definitions which are in fact the same as
the class of unit interval graphs. We introduce them in Section 2 and mention theorems that prove
their equivalence. There are some efficient algorithms to check whether a graph is unit interval
graph. Some of these algorithms are addressed in Section 3. A method for constructing efficient
representations of unit interval graphs is given in Section 4. Finally, in Section 5 we investigate
some problems on unit interval graphs that have faster algorithms than the general case. We also
mention an interesting application of this class in bioinformatics in that section.

2 Definitions and Properties

We start this section by giving three different definitions of three graph classes and then mention
theorems showing that all these three classes are the same. When there are short proofs for the
claims, we will give details of them, but for long proofs we only give references. Throughout this
article we assume that the graphs are simple (with no loops or multiple edges) and connected with
at least two vertices. To show an edge between vertices v and w we use (v,w) whether G is directed
or undirected. So, when it is clear from the context that G is undirected, (v,w) and (w, v) are the
same edges.

Definition 2.1 An undirected graph G is an interval graph if there is a mapping f from vertices
of G to a set I of real intervals such that (v,w) ∈ E(G) if and only if f(v) ∩ f(w) 6= φ. Such a set
I is called an interval model for G.
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Figure 1: A proper or unit interval graph cannot contain a K1,3.

An interval graph is both chordal and co-comparability [Gol80]. On the other hand, if a graph is
both chordal and co-comparability, then it is an interval graph. Therefore a nice characterization
of the interval graphs is the following theorem:

Theorem 2.2 (Golumbic [Gol80]) A graph G is an interval graph if and only if G is chordal
and Ḡ is a comparability graph.

Definition 2.3 An interval graph G is a unit interval graph if there exists an interval model I

for G in which all intervals are of equal size. In this case, I is called a unit interval model for
G.

Definition 2.4 An interval graph G is a proper interval graph if there exists an interval model
I for G in which no interval properly contains another interval. In this case, I is called a proper
interval model for G.

It is not hard to show that the class of proper interval graphs is the same as the class of unit
interval graphs. First of all, we show that a graph in any of these classes could not contain a K1,3

as an induced subgraph.

Theorem 2.5 If G is a unit interval graph or a proper interval graph then G contains no K1,3 as
an induced subgraph.

Proof: The proof is given in Figure 1. In this figure, a K1,3 is shown on the left and an interval
model for it given on the right (Ii is the interval of vi). As it is shown, I3 should be a proper subset
of I0, so, K1,3 is not a proper interval graph. Moreover, it is clear that I0 and I3 cannot be of equal
size. Therefore, K1,3 is not a unit interval graph. 2

The following theorem shows that this condition is also sufficient and implies that the class of
unit interval graphs is the same as proper interval graphs. This theorem is from [BW99] but an
extended version of it, which will be addressed later, is in [Gol80, BLS99, Rob69].
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Theorem 2.6 For a simple graph G the following three statements are equivalent:

1. G is a unit interval graph.

2. G is an interval graph with no K1,3 as induced subgraph.

3. G is a proper interval graph.

Proof: The proof is by going from (2) to (3) and then from (3) to (1) (we know that (1) to (2)
holds). To show that (2)⇒(3), we choose an interval model I for G, in which every vertex v of G

is represented by an interval Iv of I. Starting from left to right, for any proper inclusion we move
the interval with start point at right, to right without violating any edge condition. Suppose that
there are two intervals Ix = [a, b] and Iy = [c, d] such that a < c ≤ d ≤ b (that is, Ix properly
contains Iy). Since there is no induced K1,3 in G, in at least one of intervals [a, c] and [d, b] there
is no endpoint of an interval Iz that does not intersect Iy. So, we can change the intervals Ix and
Iy, without violating any edge condition, so that there is no proper inclusion. A similar idea works
for going from (3) to (1). Here for each interval, we do some expansion and shrinking to make it
unit and continue with the interval on the right. 2

Now, we define a third class of graphs which comes from measurement theories (attributed in
[BW99] and [PD03] to [SS58]) and has close relations to unit and proper interval graphs. We have
already seen a close connection between comparability graphs and interval graphs. We will see a
closer relation between unit interval graphs and semiorders, which are a sub-class of partial orders.
The following definition of semiorders is from [Gol80].

Definition 2.7 A partial order S = (V, P ) with elements V and a binary order relation P (on V )
is semiorder, if there is a function f : V → R from V to real numbers s.t. (u, v) ∈ P if and only
if f(u) ≥ f(v) + 1.

In the above definition, there could be any δ > 0 instead of 1 in the condition f(u) ≥ f(v) + 1.
In Theorem 2.8, it is shown that all these definitions are equivalent. Historically, this is the root of
unit interval graphs and Theorem 2.8 was proved in [Rob69] many years before [BW99].

Theorem 2.8 (Roberts [Rob69]) Let G = (V,E) be an undirected graph, then the following
statements are equivalent:

1. There exists a function f : V → R s.t.

(u,w) ∈ E(G)⇔ |f(u)− f(w)| < 1.

2. There is a semiorder on S(V, P ) on the vertices of V such that

(u,w) ∈ P ⇔ (u,w) 6∈ E(G).

3. Ḡ is a comparability graph and every transitive orientation of Ḡ is a semiorder.

4. G is an interval graph with no induced K1,3.

5. G is a proper interval graph.
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Figure 2: A representation of Theorem 2.9

6. G is a unit interval graph.

In [Rob69] it is mentioned that the (4)⇒(2) part was first observed by Marley through a personal
communication with Roberts. Also, from historical point of view, the following theorem of Scott
and Suppes [SS58] on semiorders is interesting since it is exactly the condition of having no K1,3

or induced Ck (for k ≥ 4) in the undirected complement of the relation. This is from [Gol80] but
is attributed to [SS58].

Theorem 2.9 (Scott and Suppes [SS58]) A partial order relation S defined on V is a semiorder
if the following conditions hold:

1. S is irreflexive.

2. (x, y) ∈ S and (z,w) ∈ S imply (x,w) ∈ S or (z, y) ∈ S.

3. (x, y) ∈ S and (y, z) ∈ S imply (x,w) ∈ S or (w, z) ∈ S.

To see why these conditions are the same as the previous condition (interval graph with no
K1,3), it is easy to check that condition (2) is equivalent to the condition that there is no Ck (for
k ≥ 4) in Ḡ, where (u,w) is an edge in G = (V,E) if and only if neither (u,w) nor (w, u) is in S.
This is shown in part A of Figure 2. Notice that in this figure, if there is no other directed edges
(relation) between x, y,w and z, then in G there will be a C4 with no chord. On the other hand,
notice that any other relation (i.e. other than xSy and zSw) then because of transitivity one of
the white arrows should be present in S as well. So this is the necessary and sufficient condition
for G to be chordal. Since S is a partial order, Ḡ is both chordal and co-comparability, and hence
G is interval.

On the other hand, condition (3) is equivalent to the condition that there is no induced K1,3

in G (Figure 2 part B). Notice that since S is a partial order it is transitive so if xSy and ySz

then xSz and the precondition of (3) means that x, y, z forms a clique in Ḡ and the postcondition
is that any vertex w in V should be connected to at least one of them in Ḡ which means G does
not contain any induced K1,3.
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. . . any Ck for k ≥ 4

A.

B. C. D.

Figure 3: A graph G is unit interval iff it does not contain any of these graphs as an induced
subgraph.

Another interesting historical observation is that in his paper, Roberts [Rob69] directly classi-
fies proper interval graphs, rather than using conditions on chordal and co-comparability graphs.
Starting from a graph G, define two vertices v and w to be similar if all neighbors of v and w are
the same. It is clear that similarity is an equivalence relation. The graph G∗ is the same as G

with all similar vertices united in one vertex, i.e. each equivalence relation in similarity relation
has one representative. The first representation theorem of Roberts is the following (translated in
our context):

Theorem 2.10 (Roberts [Rob69]) A graph G is unit interval graph if and only if G does not
contain any of graphs in Figure 3 as induced sub-graph.

Notice that no chordal graph contains an induced sub-graph of type A in Figure 3; graph B is
K1,3 and graphs C and D are not co-comparability.

3 Recognition Algorithms

There are several linear-time algorithms for recognizing interval graphs. The first such algorithm
proposed by Booth and Lueker [BL76], employs a special data structure called PQ-tree to recognize
interval graphs. Later, Korte and Möhring [KM89] proposed a modified version of PQ-trees called
MPQ-trees, and present a simpler linear-time algorithm for interval graph recognition that works
in an incremental fashion. Corneil, Olariu and Stewart [COS98] presented another linear-time
recognition algorithm without using PQ-trees. Their algorithm recognizes interval graphs by five
iterations of lexBFS, where different rules for tie breaking are applied in each iteration.

For unit interval graph recognition, one can first check whether the given graph is an interval
graph, and then recognize it as a unit interval graph using special properties of unit interval
graphs. The linear-time recognition algorithm proposed by Looges and Olariu [LO92] (attributed
in [CKN+95]) is an example of this approach. However, the resulting algorithm is not so simple,
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because algorithms for interval graph recognition are not simple, especially those that involve PQ-
trees.

There are, on the other hand, some linear-time algorithms that directly recognize a unit interval
graph, without going through the interval graph recognition step. The first such algorithm (and in
fact the simpler one) is proposed by Corneil et al. [CKN+95]. Their algorithm is very simple and
can be implemented easily, without any special data structure. In the following subsection, we give
more details of this algorithm.

3.1 The algorithm of Corneil et al.

The algorithm of Corneil et al. simply uses two runs of Breath-First-Search to recognize a unit
interval graph. To describe the algorithm, we need to define some and notations terms here: The
open neighborhood of a vertex v, denoted by N(v), is the set of all vertices adjacent to v. The closed
neighborhood of v is defined as N [V ] = N(v) ∪ {v}. Two vertices v and u are indistinguishable if
N [v] = N [u]. For a BFS of G, we denote by Lk the set of all vertices at level k of the BFS tree.
For a vertex v ∈ Lk, we denote by d−(v) the number of neighbors of v at level k− 1, and by d+(v)
the number of neighbors of v at level k + 1.

Given an interval v, we denote by vL and vR the coordinates of the left and right endpoints of
v, respectively. Let I = {v1, v2, . . . , vn} be a unit interval model for G. The sequence v1, v2, . . . , vn

is a natural labeling for I, if viL ≤ v(i+1)L(1 ≤ i < n). A vertex v of G is called a left anchor, if it
can be labeled as v1 in a natural labeling for some unit interval model of G.

Note that if v1, v2, . . . , vn is a natural labeling for I, then vn can be considered as a left anchor,
too. This is because the mirror of model I (which can be obtained by replacing each interval [a, b]
by [−b,−a]) is a valid unit interval model that has vn as its first interval.

The following property helps us to find a left anchor of given unit interval graph G:

Theorem 3.1 (Corneil et al. [CKN+95]) Let I be a unit interval model and v1, v2, . . . , vn be a
natural labeling for I. Let t be the last nonempty level in the BFS starting from v1. Then vn ∈ Lt,
and among all intervals in Lt, vn has minimum degree. Furthermore, every vertex z in Lt such
that deg(z) = deg(vn) is indistinguishable form vn.

Using the above theorem and the fact that in a natural labeling, vn is also a left anchor, the
following procedure gives a left anchor for a given unit interval graph G:

Procedure Get-Left-Anchor(G)

1. perform a BFS on G, starting from an arbitrary vertex vs ∈ V (G).

2. let t be the last level of the BFS.

3. find a vertex z ∈ Lt with minimum degree among all vertices in Lt.

4. return z

Theorem 3.1 is not applicable directly to the BFS on G in the above algorithm (because it
starts from an arbitrary vertex vs), However, if I is a unit interval model for G with a natural
labeling v1, v2, . . . , vn, then vs is a left anchor for each of two sets I ′ = {v1, v2, . . . , vs} and I ′′ =
{vs, vs+1, . . . , vn}. By applying Theorem 3.1 on both I ′ and I ′′, Chan et al. showed that the output
of procedure Get-Left-Anchor, z, is indistinguishable form either v1 or vn, so, it is a left anchor
[CKN+95]. Finally, they gave the following algorithm for unit interval graph recognition:
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Algorithm Recognize (G)

1. z ← Get-Left-Anchor(G)

2. perform a BFS on G starting from z.

3. order vertices of G as v1, v2, . . . , vn based on

i) their level in the BFS, and

ii) among the vertices in the same level, on increasing order of d+(v)− d−(v).

4. for all v ∈ V do

5. let α(v) = min{i : vi ∈ N [v]} and γ(v) = max{i : vi ∈ N [v]}.

6. if γ(v) − α(v) 6= deg(v) then

7. return false

8. return v1, v2, . . . , vn

The algorithm is based on the following characterization of unit interval graphs:

Theorem 3.2 (Roberts [Rob71]) A graph G is a unit interval graph if and only if there is an
order on vertices such that for each vertex v, the closed neighborhood of v is a set of consecutive
vertices in that order.

The order defined in Theorem 3.2 is called a consecutive order of G. Chan et al. showed
that if G is a unit interval graph, then the order found in line 3 of algorithm Recognize must
be a consecutive order [CKN+95]. Theorem 3.2 expresses an important characterization of unit
interval graphs, which is the base of some other unit interval graph recognition algorithms, such as
[dFMdM95].

3.2 Other Recognition Algorithms

There are some other linear-time algorithms for unit interval graph recognition. In 1995, de
Figueiredo, Meidanis and de Mello [dFMdM95] gave another linear-time recognition algorithm
based on Theorem 3.2. Their algorithm finds a consecutive order of vertices (which is called indif-
ference order in their paper) using just one iteration of lexBFS. Although their algorithm is not
simpler than what presented in previous section, it constructs a compact structure for representing
all indifference orders of the given unit interval graph. This representation, in fact, provides a way
for solving the isomorphism problem on this class of graphs.

Another linear-time recognition algorithm is proposed by Deng, Hell and Huang [DHH96]. Their
algorithm is mainly proposed to recognize and represent proper circular-arc graphs, by character-
izing proper circular-arc graphs with local tournaments. However, since their algorithm needs to
recognize parts of input as proper interval graph, it also yields a recognition algorithm for proper
interval graphs. The resulting algorithm is linear and based on a new orientation characterization
of proper interval graphs.

Recently, Panda and Das [PD03] have proposed a linear-time recognition algorithm which is
based on finding a special ordering of vertices called bicompatible elimination ordering. A perfect
elimination ordering of graph G is called a bicompatible elimination ordering (BCO), if its reverse
is also a perfect elimination ordering. They use a characterization of unit interval graphs that says
a graph G is a unit interval graph, if and only of it has a BCO. To check whether graph G is a unit
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interval graph, their algorithm tries to find a BCO in G in linear time. Although their algorithm
is not simpler than Corneil et al.’s one, the BCO resulted from their algorithm provides a new way
to find a Hamiltonian cycle in the given unit interval graph. We will address this result in Section
5.3.

4 Representing Unit Interval Graphs

We know that an interval graph with n vertices can be represented by an interval model in which
all endpoints are distinct integers between 1 and 2n. We call this a standard interval model. Proper
interval graphs can be represented in standard interval model, however, such representation is not
possible, in general, for unit interval graphs. Suppose, for example, that in a unit interval model,
the leftmost interval v1 is starting at position 1 and the second interval v2 is starting at position
2. Now, if we have two nonadjacent intervals that are both adjacent to v2 but not to v1, there is
no integer position to start both of them, because at least one of them should be started exactly
between v1R and v2R. One solution to this problem is to add a new endpoint halfway between v1R

and v2R, and then scale the model in order to make all endpoints integer. Repeating this operation,
however, may lead to intervals with exponential lengths that do not obey the notion of efficient
representation, as specified in [Spi03].

The recognition algorithm of Corneil et al [CKN+95] provides an intelligent method for obtaining
a representation in which all endpoints are integers and the length of all intervals are at most n.
This is indeed an efficient representation, because intervals have polynomial (in this case O(n))
length. We now briefly explain the method.

Suppose that the ordering v1, v2, . . . , vn is produced by algorithm Recognize(G) by performing
a BFS starting from a left anchor z of G (see Section 3.1). We make a tree T from this ordering by
putting an edge between each vertex vi (excluding z) and the earliest neighbor of vi (i.e. vα(vi)).
Now, we perform a postorder traversal on T , breaking ties by choosing smaller numbered neighbor
first, that is, if vi is adjacent to two unvisited vertices vj and vk so that j < k, then we proceed
postorder traversal from vi to vj, before going from vi to vk; therefore, in this case, we have
postorder(vj)<postorder(vk).

Now we can construct the unit interval model as follows: for every vertex v in level k of BFS,
we create an interval with two endpoints vL = kn+ postorder(v) and vR = vL + n. It is obvious
that all intervals created in this way are of equal size and all endpoints of them are integers not
exceeding n2. Corneil et al. [CKN+95] showed that the model obtained from this method is a valid
unit interval model.

5 Problems on Unit Interval Graphs

In this section we briefly address some problems that are intractable for general graphs, but efficient
algorithms for them exist on unit interval graphs.

5.1 Clique, Coloring and Independent Set

We know that the class of interval graphs, and consequently the class on unit interval graphs, are
subclasses of the class of chordal graphs [Gol80]. Therefore, the algorithms available for chordal
graphs can be suitably used for unit interval graphs; especially those that are linear-time.
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To solve Clique, Coloring and Independent Set problems, therefore, it is sufficient to find a
perfect elimination order (PEO) in the given unit interval graph G using lexBFS or MCS (Maximum
Cardinality Search) in linear time [Gol80]. Coloring problem, then, can be solved in linear time
by applying the well-known greedy algorithm for vertex coloring on the PEO. This algorithm also
finds a cliques of size χ(G), simultaneously, and since G can not have any bigger clique, Clique
problem is also solved at the same time. Independent Set problem is solvable in linear time by
applying the greedy algorithm for independent sets on the reverse order of the PEO [Gol80].

5.2 Dominating Set

Let G = (V,E) be a graph and A be a subset of V . A is called a dominating set of G if N [A] = V ,
where N [A] = ∪v∈AN [v]. In other words, A is a dominating set of G, if every vertex in V − A

is adjacent to at least one vertex in A. The problem of finding a dominating set with minimum
number of vertices is NP-Complete [GJ79]. There are some other variations of Dominating Set
problem: Let A be a dominating set of G. A is called an independent dominating set, if G[A] is an
independent set; it is called a connected dominating set, if G[A] is connected; and it is called a total
dominating set, if G[A] has no isolated vertex. If the vertices of G are assigned a real weight, then
the weight of a set of vertices is the sum of the weights of all vertices in that set. The Weighted
Domination Set problem is then the problem of finding a dominating set of minimum weight in a
weighted graph. Weighted independent, connected and total dominating set problems are defined
similarly.

The problems of finding minimum-cardinality and minimum-weight dominating set are NP-
Complete for all variations of dominating set problem [GJ79]. The problem remains NP-Complete
even for chordal graphs and some sub-classes of chordal graphs, like split graphs [BCD98]. However,
linear-time algorithm exists for Dominating Set problem on interval graphs. Ramalingam and
Pandu Rangan [RR88] proposed linear-time algorithms for solving all dominating-like problems
on interval graphs in a unified approach. This approach is applicable for unit interval graphs, as
well. Later, Chang [Cha98] proposed a new unified approach that solves Weighted Dominating Set
problem as well as independent and connected versions of the problem in O(n) time, provided a
standard interval model of G is given (i.e. an interval model in which all endpoints are integers
between 1 to 2n). Notice that such a model is not available for unit interval graphs, as stated in
section 4. Therefore, to use the algorithms of Chang on a unit interval graph G, we should use a
proper interval model of G, instead.

5.3 Hamiltonian Path and Hamiltonian Cycle

The problem of deciding whether a graph has a Hamiltonian cycle is well known to be NP-Complete
[GJ79]. It remains NP-Complete for many classes of graphs, including chordal graphs [Mul96].
(In fact, [Mul96] showed that Hamiltonian Cycle problem is NP-Complete even for some more
restricted subclasses of chordal graphs, such as strongly chordal split graphs). The problem of
deciding whether a graph has a Hamiltonian path is also NP-Complete.

Surprisingly, Both Hamiltonian Cycle and Hamiltonian Path problems are polynomial solvable
for the class of interval graphs and unit interval graphs. Keil introduced a linear-time algorithm
for Hamiltonian Cycle problem in interval graphs [Kei85]. Solving Hamiltonian problems is much
easier for the class of unit interval graphs. Bertossi [Ber83] proved that a unit interval graph
has a Hamiltonian path if and only if it is connected. He also proved a condition under which a
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unit interval graphs has a Hamiltonian cycle. He then gave an O(n log n) algorithm for finding a
Hamiltonian cycle in a unit interval graph. Chen, Chang and Chang [CCC97] derived the following
more general condition for Hamiltonian problems on unit interval graphs:

Theorem 5.1 (Chen et al. [CCC97]) Let G = (V,E) be a unit interval graph of n ≥ 4 vertices,
then:

1. G has a Hamiltonian path, if and only if G is 1-connected;

2. G has a Hamiltonian cycle, if and only if G is 2-connected;

3. G is Hamiltonian-connected, if and only if G is 3-connected.

(Recall that a graph G is Hamiltonian-connected if there is a Hamiltonian path between any
two distinct vertices of G).

Since connectivity and biconnectivity properties of graphs can be tested in linear time using
some variations of Depth-First-Search [CLRS01], Theorem 5.1 immediately leads to linear-time
algorithms for testing whether a unit interval graph has a Hamiltonian path or cycle. Chen et al.
[CCC97] also provide simple methods for retrieving a Hamiltonian path and a Hamiltonian cycle
in a given unit interval graph G, provided a consecutive order of G is available. (such an order can
be obtained by linear-time algorithms of [CKN+95] and [dFMdM95]).

Alternative algorithms for finding Hamiltonian path and Hamiltonian cycle in unit interval
graphs has been recently proposed by Panda and Das [PD03]. As we mentioned in Section 3.2, the
algorithm of Panda and Das recognize a unit interval graph by finding a bicompatible elimination
ordering (or BCO) of it. The resulting BCO immediately provides a Hamiltonian path, according
to the following Theorem:

Theorem 5.2 (Panda and Das [PD03]) If v1, v2, . . . , vn is a BCO of a connected unit interval
graph G, then P = (v1, v2, . . . , vn) is a Hamiltonian path of G.

Moreover, if the input graph G is biconnected, the following theorem can be used to find a
Hamiltonian cycle in G:

Theorem 5.3 (Panda and Das [PD03]) Let G be a biconnected unit interval graph and let α =
(v1, v2, . . . , vn) be a BCO of G. Then degGi

(vi) ≥ 2 for all i (1 ≤ i ≤ n − 2), where Gi =
G[vi, vi+1, . . . , vn].

Using the above theorem, the following algorithm finds a Hamiltonian cycle C in the given
biconnected unit interval graph G:

Algorithm Hamiltonian-Cycle (G)

1. Let α = (v1, v2, . . . , vn) be a BCO of G

2. C ← {v1v2, v2v3, . . . , vn−1vn}

3. r ← 1

4. found← false

10



v v v v v v v

v1 v2 vt−1 vt vn

Figure 4: Illustrating the first iteration of Hamiltonian-Cycle algorithm.

5. while not found do

6. Let t be the largest index such that vrvt ∈ E(G)

7. if t 6= n then

8. C ← C\{vt−1vt} ∪ {vrvt}

9. r ← t− 1

10. else

11. C ← C ∪ {vrvn}

12. found← true

13. return C

Throughout the algorithm, C contains a Hamiltonian path in G, which starts from a vertex vr

(r stores the index of this starting vertex throughout the algorithm) and ends at the vertex vn. In
the beginning of the algorithm, we initialize C by a Hamiltonian path between v1 and vn (obtained
by Theorem 5.2), and set r = 1 . In the first iteration of the main loop, if v1vn exists (i.e. t = n

in line 6 of the algorithm), then we add v1vn to C and reach a Hamiltonian cycle, and exit the
loop. Otherwise (i.e. t < n), we modify C to be a new Hamiltonian path between vt−1 and vn, by
removing vt−1vt and adding vrvt to C (see Figure 4). Then, we set r = t−1 and iterate. According
to Theorem 5.3, for every vertex vr, there is always an adjacent vertex vt such that t − r ≥ 2. It
means that in each iteration of the algorithm, we move the start point of our Hamiltonian path, vr,
at least one point forward toward vn. Therefore, after at most n − 2 iterations, we reach a vertex
vr (r ≤ n− 2) that is adjacent to vn. Adding vrvn to C leads to a Hamiltonian cycle of the given
graph.

Remark: A linear-time algorithm is proposed by Brandstädt, Dragan and Köhler [BDK00] for
the Hamiltonian Path and Hamiltonian Cycle problems on the class of (claw-net)-free graphs, i.e.
the class of graphs that have neither an induced claw nor an induced net (in Figure 3, graphs B
and C illustrate a claw and a net, respectively). According to Theorem 2.10, every unit interval
graph is a (claw-net)-free graph. However, the class of (claw-net)-free graphs is more general and
contains a couple of other graph classes such as proper circular-arc graphs and claw-free AT-free
graphs.
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5.4 An Application in Molecular Biology

In this section we study the model of Kaplan and Shamir for solving some problems in molecular
biology [KS96]. First we notice that the following problem is NP-Complete [GJ79].

Problem 5.4 (Interval Graph Completion Problem) Given a graph G = (V,E) and a non-
negative integer k. The problem is to answer whether there is an interval super-graph G′ = (V,E′)
of G where |E′ − E| ≤ k.

Since there are efficient algorithms to check whether a given graph is interval, this problem is
solvable in polynomial time if k is a given constant. A similar problem can be defined for subgraphs
of a given graph (i.e. find the largest subgraph of G which is interval). These problems can be
defined for proper (or unit) interval graphs as well. According to [KS96] all these problems are
NP-complete when k is not constant. The reason that these problems are important in molecular
biology is the following application: To study a genome, usually several copies of that genome are
broken in shorter segments (these segments are called clone), for further study these clones are
preserved but all information about their position in the DNA sequence is lost. On the other hand
in physical mapping of DNA’s this order should be reconstructed and to do this, experimental data
on overlapping of these clones is used. Imagine the graph of all clones in which two clones are
adjacent if their overlap (we call this overlap graph). It is clear that this should be an interval
graph given that the outcome of experiments are accurate and complete, i.e. there is an overlap in
the original DNA between two clones if and only if in the experimental data this overlap has been
observed. The fact is that in real applications the experimental data are not absolutely precise. In
other words based on the type of the experiment there could be some false positive or false negative
in overlap determination (we call the outcome graph of experiments experiment graph). So the goal
is to find a subgraph or super-graph of the experiment graph which is interval. Notice if all clones
are of the same size then what we are looking for is a unit interval graph.

There are two other facts that could help constructing the real DNA. Firstly, clones from one
copy of the DNA can not overlap. So if we know which clone comes from which DNA then we can
impose a coloring on the vertices in which all clones from a particular copy have the same color.

On the other hand, the maximum clique of overlap graph compared to the number of vertices
(clones) is very small. The former is typically 5 to 15 while the latter is some thousands.

Based on this introduction Kaplan and Shamir define the following two problems in their paper
[KS96] and show that both are solvable in polynomial time when k is constant.

Problem 5.5 (Clique Bounded Proper Interval Super-graph) Given a graph G and a con-
stant k, is there any super-graph G′ of G which is a proper interval graph and ω(G) ≤ k.

Problem 5.6 (Colored Proper Interval Super-graph) Given a graph G and a proper k-coloring
c of G, is there any super-graph G′ of G which is a proper interval graph and respects c (is properly
colored by c).

An interesting fact discovered in [KS96] is the relationship between the first problem and the
bandwidth problem. The bandwidth of a graph is defined as follows:

Definition 5.7 Given a graph G = (V,E) where |V | = n, a linear layout of G is a mapping
L : V → {1, 2, . . . n}. The bandwidth of L is defined as bwL = max(u,v)∈E |L(v) − L(w)|. The
bandwidth of G is the minimum bandwidth bwL over all linear layouts.
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It is easy to show that if the clique bounded problem has a solution then the bandwidth of G

is less than k. It is shown that these two problems are in fact equivalent, i.e. the answer of the
first problem is positive if and only if the bandwidth of G is less than k. Using this fact some
intractability results are proven for this problem. It is also shown that the second problem is not
fixed parameter tractable or P = NP .
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