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A problem which often arises while fitting implicit polynomials to 2D and 3D data sets
is the following: although the data set is simple, the fit exhibits undesired phenomena,
such as loops, holes, extraneous components etc. In addition to solving this problem,
it is often desired to have a “tight fit” for a data set, i.e., a polynomial with a zero set
which contains the data, but as little extra area (or volume) as possible. Such “tight fits”
are of special interest in robotics (for compactly describing obstacles), and in computer
graphics (for ray tracing and collision detection). Previous work tackled these problems
by optimizing heuristic cost functions, which penalize some of these topological problems
in the fit. This paper suggests a different approach — to design parameterized families
of polynomials whose zero sets are guaranteed to satisfy certain topological properties.
Namely, we construct families of polynomials with zero sets which are guaranteed to
contain a given convex polyhedral shape, and which are also “tight” around it. The
ability to parameterize these families depends heavily on the ability to parameterize
positive polynomials. To achieve this, we use some powerful recent results from real

algebraic geometry.

Keywords: Tmplicit Polynomials, Convex Polyhedra, Topological Integrity, Positive Poly-
nomials.

1. Introduction

Fitting analytic functions to sampled data is a common problem arising in many
data modeling applications. In its most general form, the fitting problem is: Given
a set of n data points S = {#* = (z%,..,2%) € R :i=1,.,n}, find an analytic
surface that passes "close” to S. Common representations of such a surface are
parametric surfaces defined on R%~! or zero sets of a function F' : R R. The
latter is the locus of all points Z such that F(z) = 0. Candidates for F are any
interpolant over R?, e.g. radial basis functions, super-quadrics, thin-plate splines,
or polynomials. In the latter, the number of degrees of freedom, i.e. polynomial
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coefficients, is m = ( £ '; - , where k is the degree of the polynomial.

The advantages of using an implicit polynomial are its simplicity, the possibility

to compute algebraic invariants [6, 5, 11, 8, 17] and the ease of containment compu-
tations (by computing the sign of the polynomial). Also, it is often desirable that

a function which describes a given shape will be differentiable; this is very helpful,

for instance, in obstacle avoidance algorithms which use variational principles and

therefore have to compute the derivative of the obstacle’s potential function [12].
The simplest way of fitting an implicit polynomial to the data set S is to solve
the following least-squares problem for the coefficient vector @ of the polynomial

Pﬁl
n
@ = arg mingerm Z P;(7)? (1)

i=1
This cost function minimized in (1) is simple, therefore the problem may be solved
easily by an eigenvector computation. However, the cost function does not necessar-
ily express the Euclidean distances of the data points to the zero-surface, therefore
the fit might be somewhat unintuitive, especially in regions of high surface cur-
vature, as has been shown in previous works [20, 9, 19]. A cost function that
approximates the sum of the'squares of the Euclidean distances is:

@ = arg Minger=~ ; (ﬁ;—m) : (2)

where VP(Z) = (0P/0z1,..,0P/8z4) is the vector gradient function. Unfortu-
nately, this cost function induces a non-linear least-squares problem, whose nu-
merical solution suffers from the usual non-linear optimization algorithmic pitfalls,
namely, slow iterative solution, and local minima. If computation time is not a fac-
tor, as is the case in some applications, a solution to (2) is usually superior to that
of (1). Because of its rational form, (2) may be solved iteratively as a sequence of
weighied linear least squares problems [9, 19, 16, 3], which is a numerical procedure
more efficient than general purpose optimization.

The disadvantages of using implicit polynomials as a modeling tool are the
quality of the results commonly obtained when applying the above procedures,
especially for high degrees. The zero sets may consist of multiple components, be
unbounded, or fit the data in very unnatural ways [9, 20, 19]. It is very difficult
to predict the outcome of the fitting procedure, a problem compounded by the
fact that the polynomial coefficients are geometrically meaningless. A typical data-
fitting session consists of running the optimization procedure (2) again and again,
obtaining local minima, and choosing that yielding the best solution. Many trials
may be required until a pleasing fit is found. In some cases, the procedure seems
to never end, in the sense that the pleasing local minima are so sparse, that it is
virtually impossible to stumble on them at random. An open question is how to
restrict the search space to a subset of “well-behaved” polynomials, thus reducing
the number of trials until success.
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The main question is how to compactly represent, i.e. parameterize, this family
of well behaved polynomials by imposing some restrictions on the polynomial coef-
ficients. In [9, 20], it is shown how to guarantee that the zero set is bounded. The
* effort to achieve pleasing fits was carried further in [18], where it was suggested to
use the geometric distance (as opposed to algebraic distance) in order to fit implicit
polynomials. This resulted in better fits without holes. Also, a method to eliminate
extraneous components was suggested. In [15], polynomials with a convex zero set
are fitted to convex polygons, so that their zero set contains the polygon; the de-
gree of the polynomial is equal to the number of vertices in the polygon. In [2],
polynomials whose zero set is guaranteed not to have folds within a certain region
are constructed, and many such “A-patches” are used to describe shapes. Here,
“nice” behavior of the zero set is globally enforced. In work reported recently in
[14], an attempt is made to force the zero-set to “stick” to the data, thus hopefully
minimizing the number of branches etc. in the zero-set.

However, the algorithms presented in [9, 20, 18] are heuristic in nature. They
try to force the resulting fits to have certain “good” geometric properties (such as
being “tight” around the data set), by minimizing a cost function that penalizes
fits which are “not good”. In this work, we suggest a different approach - find an
analytic parameterization of a (large as possible) sub-family of polynomials whose
zero sets always have these “good” properties, and restrict the search for a pleasing
fit to this sub-family. This guarantees that the fit will be “good”, and eliminates
the necessity of using a penalizing function.

A task of special importance is to force the zero set to contain the object, but to
also be as “tight” around it as possible. This is important in various applications,
such as the obstacle avoidance problem in robotics. If the description of the obstacles
is not tight, this may result in the system choosing an inefficient path — as it assumes
that the obstacles occupy a larger area/volume than they really do. The system
may even fail to find a path in that case, even if one does exist. One must also
guarantee that the bounding volume contain the obstacle, else the robot may collide
with it.

In the realm of computer graphics, ray tracing algorithms usually try to filter
out rays which do not intersect some bounding volume around the object. This can
be done by using bounding ellipsoids, which are really a special case of bounding
implicit polynomials, treated in this paper (quadratics) {1]. However, it should be
noted that the volume of the best bounding ellipsoid grows at a super-exponential
rate in the dimension of the space, relative to the convex set it bounds, if we take the
supremum of the volume ratio over all convex sets. Therefore, in high dimensions
bounding ellipsoids may not be appropriate to use as bounding volumes. Let us
note that even if the underlying problem is two or three dimensional, it is often
solved in a space of higher dimension (for instance, the configuration space of a
rigid robot in three dimensional space is six dimensional, and it can be higher for
more complicated robots). Therefore, it is important to find bounding volumes
which are tighter than the quadratics.
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In this paper we present a family of polynomials which give very tight bounds
to convex polyhedra, while guaranteed to contain them.

2. The General Method

We are interested in restricting our search to a subset of the polynomials with given

characteristics. The question becomes how to easily parameterize that subset. In
general we will not be able to parameterize precisely the subset we are interested in,
but only a smaller subset of it, since we are able to formulate only sufficient (but not
necessary) conditions for a polynomial to have the required characteristics. These
conditions lead to an unconstrained search on a parameter space, whose dimension
might be larger than the dimension of the original polynomial space, because our
techniques lead to an over-representation of the subset. This imposes some extra
numerical overhead. In most cases, the quality of the results justifies this additional
cost.

3. An Example: Starshaped Zero Sets

In this section, a method to enforce the zero set to be starshaped, introduced
in [10], will be described. Recall that a closed curve is starshaped if there is an
interior point S from which the whole curve is visible; that is, every ray emanating
from S intersects the curve exactly once. Such a point is called a kernel point.
For simplicity, we shall assume that this point is the origin; however, it is easy
to incorporate into the algorithm a step which will attempt to look for a different
kernel point, by simply allowing the fitted polynomial to translate.

As demonstrated in [9], some fits to starshaped objects may have pathologies
in them — holes, loops, “folds”, extraneous components. Such pathologies can be
avoided by forcing the fit to be starshaped.

We force the zero set to be starshaped by allowing every line through a given
point to intersect it only twice. We can achieve this in the following way, demon-
strated for a quartic polynomial in two variables z and y:

P(z,y) = agor? + 031-'83!! + axz’y® + a1azy’® + a04y4 + azoz® +
an1z’y + apazy® + aosy” + azz? + anzy + ao2y® + a10% + a1y + ago (1)

The value of P(z,y) on a line y = ez through the origin is

Pg(.'c) = (34[] +az + aggaz -+ 613&3 =+ an4a4):e4

+(aso + g1 + a120% + agae®)z® +

(az0 + an1a + fl{lzflif:?)x2 + (a10 + @012)z + aoo (2)
If a line through the origin intersects the zero set in more than two points, then

P,(z) will have more than two roots. By applying Roll’s theorem twice, it follows
2 . .
that 25 Po(z) should have at least one root. To prevent this, we require that
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f;gPa(a:) be positive for every z and a. This actually forces the restriction of
P(z,y) to every straight line through the origin to be convex (as a function of one
variable).

d2
E;Pa(:ﬂ) = 12(aq0 + az1 + asa? + a130® + agaa®)z® +
6(aso + az10 + a120? + agze®)z + 2(az0 + anc + apzc?) (3)

When written in general form (without the scalars resulting from taking derivatives
- 2 . 3 =
by z), all possible fz—gPo,(z) are a subset of the set of Sextic polynomials in z and

a of the following type:

2 3
(a40 + az1x + az20” + @130 + ﬂ04ﬂ'4)i€2 +

(aso + @210+ a120” + agae®)z + (a0 + ani + ag20”) 4

The challenge is, therefore, to find a parameterization which will cover as many
of these polynomials as possible; n particular, we want it to have 15 degrees of
freedom. We achieve this by parameterizing polynomials of this type which are
everywhere positive.

Denoting this class of polynomials by POS 3, we would like to parameterize some
subset of it. Obviously, we want this subset to be as large as possible, to allow us as
much flexibility as possible in the fitting process. The larger the subset, the larger
number of shapes which can be described by zero sets of polynomials in it.

We can generate polynomials that are everywhere positive by summing the
squares of other polynomials. Thus, a sum of squares of polynomials of the type

Lo’z + Laga? + Loz + Loaz? + Lige + Loiz + Loo ' (5)
is certainly an element of POS5.
The sum
YL@z + 1P + [faz + LHe? + IR+ LRz + LG (6)

allows to easily parameterize a subset of POS;. Then, it is straightforward to
parameterize polynomials with starshaped zero sets, simply by equating coefficients
_ lack of space does not allow to present the details.

Denote the polynomials of the type Lo’z + Lsga? + Lyyox + Loaz? + Liga +
Loz + Lgo as ROOT %. Some elements of ?05‘2’ are sums of squares of elements
of ROOTS. Note that POS4 is a subset of the Sextic polynomialsin « and z, and
ROOT4 is a subset of the cubic polynomials in & and z.

Finally, denote by SUMSQj the subset of the polynomials in POS; which are
sums of squares of polynomials in ROOT;.

Some questions immediately arise:

o Is every element of POS; a sum of squares of elements of ROOT5? Namely,
are the sets SUMSQ4 and POS; identical?
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o If not, does SUMSQ} have a “full dimension”? That is, what is its dimension
(or, equivalently, how many degrees of freedom does it have)? Naturally, we
hope that its dimension is 15, as this will guarantee that we are not losing
any degrees of freedom.

o What is the minimal number (if it exists at all) of elements of ROOT 3 which
must be squared and summed in order to obtain all elements of SU MSQ%?
This is important when implementing the fitting procedure, for we have to
know how SUMSQ} is to be parameterized. The optimal choice would be
to sum as many squares of elements of ROOT; which will guarantee that
we have covered all elements of SUMSQ;. If we sum too many, we are
complicating the fitting procedure without gaining anything. If we sum too
few, we are losing part of SUMS Q% and the results of the fitting process will
not be optimal.

Next, the answers to these questions — for SUMS Q; as well as for more general
families of polynomials — will be presented, together with some recent results about
positive polynomials.

4. Polynomials Represented as Sums of Squares

Most of the material in this section is a short summary of some notions and a few
recent powerful results in real algebraic geometry, summarized from [4]. We restrict
ourselves to definitions and results which are necessary for the sequel.

First, some terminology:

e Given a ring R, its Pythagoras number, P(R), is defined to be the lower
bound on the number of squares which must be summed in order to obtain
every element of R which is a sum of squares. That is, if any element of Ris a
sum of squares of elements of R, it can be expressed as a sum of no more than
P(R) squares, and P(R) is the minimal number with this property. There is
no general bound on P(R), and for some rings it equals infinity; fortunately,
that is not the case for the rings of polynomials which are relevant to the
fitting paradigm described here.

The Pythagoras number P(R) is very important for parameterizing the el-
ements of SUMSQ} (as well as polynomials which are sums of squares of
higher degree polynomials). This is because we know that the parameteri-
zation given in the previous section requires summing exactly P(R) squares
and no more. Naturally, the smaller P(R) is, the better; and, fortunately,
some powerful lower bounds for P(R) have been recently obtained for some
polynomials rings.

e A form is a homogeneous polynomial. The ring of forms of degree m in n
variables is denoted F, m, and its Pythagoras number is denoted P(n,m).
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o Suppose we are given a subset A of Fi m, and let p = am‘;‘zg”...zﬁp be a
monomial which appears in A (hence Zz’j = m). The exponent of y is the

j
vector (i1,%2...5,). Then the cage associated with A is the set of all exponents
of all the nonzero monomials of A.

For example, look at the polynomials we have discussed before

3
(as0 +az1¢+ ageo’ + ayze® + {104&4)32 +

(230 + ano + a120” + agze’)z + (@20 + @11 + ag20?) (1)

When homogenized, these polynomials assume the shape

2 2

z2w? + 0.130:3:8 w

+ap atz? + aagxw5 + aglm:w4 + algazxwa
4

(14{]3‘22204 + a31a22w3 + a9y

32 6 5 2
+agse®zw? + azow® + anjaw® + aga’w? (2)

And their cage, when viewed as a subset of F3g, is equal to
{(4,2,0),(3,2,1),(2,2,2),(1,2,3),(0,2, 4),(3,1,2),
(2,1,3),(1,1,4),(0,1,5),(2,0,4),(1,0,5),(0,0,6)}

o For a cage C, let us denote by I = I(C) the pumber of monomials in C, by
¢ = ¢(C) the number of even monomials in C (that is, the n-tuples all of
whose exponents are even), and by a = a(C) the number of distinct means of
even monomials.

For example, for the cage described above, [ = 12, e = 5, and @ = 12. This
is because every monomial in the cage can be expressed as an average of two
even monomials; for instance, (1,2,3) is the average of (4,2, 0) and (0,0,6),
both of which are even monomials in the cage.

Let us also denote by F1(C) the set of everywhere positive polynomials with
coefficients in C, and by F(C) those polynomials in F*(C) which are sums
of squares.

Lastly, let us define the Pythagoras number of a cage C, P(C), in exactly the
same fashion as the Pythagoras number of a ring R, that is, as the maximal
number of squares that we need to sum in order to obtain all the elements of
F(C).

Now, we are ready to present some results from [4}:
Lemma 1 The dimension of F+(C) isl, and the dimension of F(C) is a.
Theorem 1 For any cage C, the following inequelity holds:

2<a<P(C)<A<e
€

1f8a-1 __ 2etl—q/(2e4+1)?—8a
E;:-— and A = 5 :

where A =



118 C. Gotsman & D. Keren

Lemma 2 For any m, P(3,m) < 3 + 2 (this result was obtained by David Leep ).
Lemma 3 P(3,4) = 3 (this is a fainous theorem of David Hilbert [7]).
Lemma 4 For every n, P(2,n) = 2.
Lemma 5 In general, F+(C) # F(C), that is, there are polynomials which are
everywhere positive bui are not sums of squares.

Let us see how these results apply to the simplest case we have studied, quartics
in two variables:

o The dimension of SUMSQ} is 12 (Lemma 1). To this, we should add 3 degrees
of freedom (because the linear coefficients a9, @91, and the constant coefficient
agp are not constrained). Since this gives, altogether, 15 degrees of freedom,
we lose no degrees of freedom by using the aforementioned parameterization
for quartics in two variables, because they also have 15 degrees of freedom.

o POS; # SUMSQ; (Lemma 5). Hence, although we lose no degrees of free-
dom, there are everywhere positive polynomials which cannot be represented
as sums of squares.

e Since P(3,m) < 2 +2 (Lemma 2), and in our case m = 6, we need a sum of
5 squares of elements of ROOT; to guarantee that we have indeed covered
all of SUMSQ;.

The first and second observations carry over to higher-degree polynomials and
polynomials in three variables, the only change being the upper bound on the
Pythagoras number. Note that, because we have to homogenize the polynomials,
polynomials in two variables transform into forms in three variables, and polynomi-
als in three variables transform into forms in four variables. For the first, the bound
P(3,m) < 2 + 2 is sharper than the one given by Theorem 1. For the latter, we
use Theorem 1 to obtain a lower bound; for instance, the lower bound for quartics
in 3 variables turns out to be 11. This means that we have to sum 11 squares of
polynomials of the appropriate type to guarantee that we obtain all the polynomials
which are sums of squares.

4.1. Some Resulls

We have tested the algorithm for fitting starshaped zero sets on a variety of two
and three dimensional data sets [10]. To give a flavor of the method’s performance,
we present two quartic fits to the contour of a human eye (Figure 1). As one can see,
the unconstrained fit has spurious components, while the starshaped fit achieves a
nice fit. The number of degrees of freedom necessary to parameterize the type of
polynomials used was 30.

5. Tight Fits for Convex Planar Polygons

In some applications, such as ray-tracing in computer graphics, and obstacle avoid-
ance in robotics, it is desirable to use a tight fit around convex polyhedral shapes as
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Figure 1: (a) Unconstrained fit to an eye (b) Starshaped fit to an eye

a "bounding volume” . If the bounding volume is si gnificantly simpler (in functional
form) than the bounded object, it may be used to perform efficient ” quick rejects”,
so that the complex bounded object does not participate in the computation at
all. Since evaluating a 2D polynomial of relatively low degree is much simpler that
computing the intersection of a ray with a many-sided polygon, substantial com-
putation may be saved. All this, of course, is worthwhile if the bounding volume
fits tightly enough, otherwise many ”false alarms” result from the extra volume.
It is also desirable to restrict the search to a family of polynomials having some
“nice” properties. This will ensure that the resulting zero set cannot violate some
conditions of topological integrity — for instance, that it cannot have components
which are far away from the polygon.

5.1. A Naive Method

The naive way to fit implicit polynomials to convex polygons in the plane is to use
the paradigm described in the previous section to force the fit to be starshaped.
The major problem with this is that the zero set is not guaranteed to properly con-
tain the polygon — which is a necessary requirement in the applications mentioned
above. One can try to overcome this by expanding the polygon, and fitting to this
expansion. However, it is not clear by what factor to expand the polygon; moreover,
it is desirable to have a tight fit around the original polygon, without adding any
extra area/volume.

In Figure 2, an example of such a fit is given. As expected, it shows that the
family of polynomials described above does not solve the problem of tight fits to
convex objects.

In the next section, we introduce a new family of polynomials, which have been
quite successful for tight fitting, on the convex polygons we have tested.

5.2. A Better Method

In this section, methods to enforce the zero set to be tight around a convex planar
polygon will be described. Let us start with a simple example, where the polygon
is a square with vertices (—1,-1),(1,—1),(1,1),(-1,1).
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Figure 2: Sextic “starshaped fit” to a convex polygon

Since we are only interested in polynomials whose zero set contains the square,
one necessary condition the polynomial has to satisfy is that its sign inside the
square will be constant. Without loss of generality, assume that the polynomial has
to be negative inside the square. This will guarantee that the containment condition
is fulfilled.

However, we also want the fit to be tight. This means that we want the poly-
nomial’s sign to change immediately as we move out of the interior of the polygon.
For that to happen, we must construct polynomials with a structure that allows
them to be positive in any point which is not in the polygon. We describe a simple
mechanism to do this, for the case of the square — it generalizes to every convex
polyhedral shape in two or three dimensions.

Let pos;, pos, poss, poss be everywhere positive polynomials in the plane. We
have seen how to parameterize such polynomialsin Section 4. Consider the following
polynomial:

POLYs(z,y) = (-1 — z)posi(z,y) +(~1 — y)pos2(z,y) +
(z = 1)})083(:3,’9‘) T (y == 1)})034(:!7, y) (1)

It is easy to see that:

e Each of the four summands compromising POLYs is negative inside the
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square; hence, POLYs will also be negative inside it.

o At every point which is not inside the square, at least one of the summands
compromising POLYs is positive.

So, polynomials such as POLY; are suitable candidates for tight fits for a square.
One can proceed to directly fit the square’s boundary with a polynomial of type
POLYs, as in [9, 19, 16, 3]. However, this will not guarantee a “nice” fit; e.g. the
zero set may have other components near the square. We have used the following
method to overcome this problem, not only for the square but for other polygons.
Instead of fitting only the polygon itself, we fit the distance transform of the polygon.
The distance transform is simply the (signed) distance from the polygon ’s boundary
(negative inside the polygon and positive outside).

The major advantage of fitting the distance transform is that it has exactly
the properties we want the tight fit function to satisfy: it is zero on the boundary
and grows quickly as we move away from it (it is therefore not surprising that it 1s
used as a “potential function” in some obstacle avoidance algorithms [12]). If the
fitted polynomial inherits this behavior, it will grow rapidly as we move from the
polygon, precluding the possibility of having extraneous components of the zero set
away from the polygon.

However, forcing the polynomial to approximate the distance transform over a
large region of the plane is an overkill; the family of polynomials has only a limited
number of degrees of freedom, and the more constraints we force on it, the more
we will have to pay in terms of its tightness around the polygon. We have therefore
tried to fit to only a small number of “bands” around the polygon’s boundary
(by “band” we mean a set of points at roughly fixed distance from the polygon’s
boundary). This idea was recently applied to general fits [13].

Nonetheless it turns out that it is impossible to avoid extraneous components
of the zero set when using polynomials of the type of POLYs (Eq. (1)). If we
choose posy, posa, poss, poss to be of degree 4 (which we usually do), POLYs will
be of degree 5. In any case, its degree will be odd, because a sum of squares of
polynomials is always of even degree, and we are multiplying these sums by linear
terms. This is a serious liability, as the zero set of an odd-degree polynomial is
unbounded [9]; therefore, there will always be undesirable components of the zero
set away from the polygon.

In Figure 3, the zero set of a polynomial of type POLY5 is shown. It gives a
reasonably tight fit around the square. However, it has another unbounded compo-
nent.

We therefore use a slightly different method, which uses Sextic polynomials. Its
advantages are twofold:

o Even-degree polynomials can have zero sets which are bounded [9, 19], hence
are natural candidates for tight fitting.
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Figure 3: Quintic fit to a square with an extraneous component

o The suggested paradigm for fitting Sextic polynomials requires half the num-
ber of free parameters in the fitting than the Quintic method does. For in-
stance, for a square, we need only two positive polynomials to optimize over,
instead of four.

Let us now demonstrate how the paradigm works for a square. The idea is
essentially the same as for the Quintic fit, however the polynomial has the form

POLYs(z,y) = (v — 1)posi(z,y) + (v* — 1)posa(2,y) (2)

It is straightforward to see that such polynomials satisfy the necessary conditions
(they are negative inside the square and, at any point outside the square, at least
one summand is positive). As for the POLY5 shaped polynomials, they can easily
be extended to fit any convex polygon. For a square, the result is a very tight fit,
shown in Figure 4.

To numerically solve the optimization problem, we have used Lemma 3. It tells
us that we need to sum three squares of quadratic polynomials in order to obtain the
full range of positive quartics which are representable as sums of squares. Therefore,

pos; may be parameterized by

; (£1m2—|—Ig:r:y+13y2+!'4:c+lsy+ls)2+
(I7m2+ls:r:y+fgy2+1102?+111y+f12)2+
(hsz® + lazy+lhsy® +hez+ Ly + l1s)® (3)
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and posz by

(my 2% + ma 2y + ma y® + maz +ms Y+ me)” +
(m7 2 + mg 2y + mo y* + mio & + mu1 y + mi2)’ +
(mizz? + muazy+misy’ + miez + mury + mis)? (4)

Hence POLY; is dependent on 36 free parameters. In order to obtain the best fit,
we minimize the deviation from the distance transform, computed on three bands
around the square; it was good enough to take it to be -0.1 on the inner band, 0 on
the square itself, and 0.1 on the outer band (Figure 4(a)). A set of 100 points on
each band were sampled, evenly spread; denoting this aggregate of points (for the
three bands) as {(%:,%:)}i=3%0, POLYs was determined by minimizing

i=300 T
POLYE(:F;',yi) A . i ]
\’; [IIVPOL%(.@;, Tl e (5)

where distance(z;, i) is the distance transform at (zi,%). The same paradigm

“Stripes For_Distance Transform

45 L] 5

4% a5

Figure 4: (a) Bands used for distance transform (b) Tight Sextic fit to a square

was applied to fit a chopped square (Figure 5(a)) and 2 “random polygon” (Figure
5(b)). The latter is the same polygon depicted with its starshaped fit in Figure 2.
Note that this polygon has five edges; however, the method can still be applied, by

using a polynomial of the shape

Iy Iy posy + I3 ls posy + I5 poss (6)
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Where the I; are linear terms describing the lines which are the extensions of the
polygon’s edges, and pos; are everywhere positive polynomials as before. Note that
the degree of the polynomial is still six. The optimization problem is similar to that
of fitting the square, however there are more degrees of freedom (54) due to the
presence of posz. The resulting Sextic polynomial will always have 28 coefficients.
The running time was a few seconds on a Pentium 100 computer.

[T

= 3

Figure 5: (a) Tight Sextic fit to a (b) Tight Sextic fit to a “random” polygon
chopped square

6. Three-Dimensional Polyhedra

It is possible to apply exactly the same paradigm to create tight fits for some
convex polyhedrons in three dimensions. For instance, a fit for a cube with vertices
at
(_']-’ '—]-1 "_1)1 (__]-a 1; _1)1 (11 "_11 ""1)! (]—v 11 _1)1 (—1, '_ls 1)1 (_19 1: 1))
(1,-1,1),(1,1,1) may be constructed using a polynomial of the type

(2 — 1)posy + (37 — L)posz + (2 = 1)poss (1)

where pos; , posz, poss are everywhere positive polynomials in z,¥, 2. We have also
fitted with a Sextic polynomial a “house” shape, consisting of a square and a pyra-
mid on top of it; the results are shown in Figure 6. One can see that they are rather
accurate. Note, especially, the pointed vertex of the pyramid; such geometric sin-
gularities are a notorious source of problems for fitting implicit models, nonetheless
the method suggested here deals with it in a satisfactory manner.

The optimization was carried out as before. However, there are more degrees
of freedom — according to Theorem 1, the number of squares that are necessary
to represent a positive quartic in three variables is 8 (just substitute @ = 35 in
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the theorem, as a general quartic in three variables has 35 coefficients). Since we
need three positive polynomials, and since each of the quadratics which has to be
summed has six coefficients, the total number of degrees of freedom for the cube
fitting is 3-8 -6 = 144 degrees of freedom. For the “House” example, the number of
degrees of freedom was 240, and optimization took about 2 minutes on a Pentium
100 computer. One must remember, though, that the final result is always a Sextic
with 84 degrees of freedom; so, although the fitting may be elaborate, it yields a
compact result which can be used many times, for a variety of purposes.

Figure 6: (2) Tight Sextic Fit to a cube (b) Tight Sextic fit for “house”

7. Conclusion

A method for constructing very tight and simple bounding volumes for polyhedra in
two and three dimensions was presented. These bounding volumes can potentially
be of substantial importance in areas such as graphics and robotics. For starshaped
fits, the zero set is guaranteed to be topologically “nice”, that 1s, connected and
without folds. For tight fits, we have not been able to prove such properties, however
in all the examples we tested the zero set had these desirable properties. The fitted
polynomials can also be used to quickly compute an approximation of the Euclidean
distance from the bounded polygon, when it is known that we are near the polygon.
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