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Abstract A new approach to detecting forgery in digital
photographs is suggested. The method does not necessitate
adding data to the image (such as a Digital Watermark) nor
require other images for comparison or training. The fun-
damental assumption in the presented approach is the no-
tion that image features arising from the image acquisition
process itself or due to the physical structure and character-
istics of digital cameras, are inherent proof of authenticity
and they are sensitive to image manipulation as well as being
difficult to forge synthetically. Typically, such features do
not affect image content nor quality and are often invisible to
the inexperienced eye. The approach presented in this work
is based on the effects introduced in the acquired image by
the optical and sensing systems of the camera. Specifically,
it exploits image artifacts that are due to chromatic aberra-
tions as indicators for evaluating image authenticity.

Keywords Image forgery - Camera based forgery
detection - Chromatic aberration - Lens artifacts - Purple
blooming - Lateral chromatic aberration

1 Introduction

Digital photography produces images that can be easily
edited using simple and widely accessible software. Along
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with images acquired by digital cameras, the field of Com-
puter Graphics enables the generation of highly realistic im-
ages. This progress allows not only the enhancement of pho-
tographs or generation of realistic animations, but unfortu-
nately also the creation of forged images. This has reduced
the reliability of digital images and escalated copyrights
issues—leading to the necessity of image authentication.
Digital Watermarks (Wolfgang and Delp 1996) enable
verification of authenticity of an image. However, it re-
quires special processing at the time of acquisition as well
as when image authenticity is tested. This work suggests a
new method of testing whether an image has been forged or
tampered. The method does not necessitate adding data to
the image (such as a Digital Watermark) nor require other
images for comparison. The fundamental assumption in the
presented approach is the notion that image features arising
from the image acquisition process itself or due to the phys-
ical structure and characteristics of digital cameras, are in-
herent indicators of authenticity and they are sensitive to im-
age manipulation as well as being difficult to forge synthet-
ically. Typically, such features do not affect image content
nor quality and are often invisible to the inexperienced eye.
The approach presented in this work is based on the effects
introduced in the acquired image by the optical and sensing
systems of the camera. Specifically, it exploits image arti-
facts that are due to chromatic aberrations, as indicators for
evaluating image authenticity. Chromatic aberrations in dig-
ital images arise from physical and optical sources during
the image acquisition process. A plethora of aberrations in-
termix to produce chromatic (and spatial) artifacts that are
barely perceived and often disregarded by the naive observer
(see Sect. 3). Yet these effects may serve as authenticity in-
dicators as they are subtle, difficult to reproduce artificially
and abundantly common in digital images ranging from sim-
ple every-day cameras to high-end cameras and professional
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lenses. The interactions and intermixing of the aberration ef-
fects within the digital image undermine the use of any one
model to describe the aberration effects within the image.
On the other hand the aberration effects are characterized by
a widely dispersed distribution of local effects throughout
the image and are supported by easily detected and measur-
able chromatic features that can be evaluated locally in the
image. The approach suggested in this paper, attempts to ro-
bustly combine the numerous cues of chromatic aberration
detected throughout an image in order to evaluate authentic-
ity of an image.

2 Previous Work

The field of image authenticity has evolved in four different
directions, each relying on different assumptions and tech-
niques.

2.1 Embedding Additional Data

One of the most common techniques to ensure the authen-
ticity of images is Watermarking. This method assimilates
an invisible structure (the watermark) into a digital image.
The structure and its contents assure, with high probability,
that image content has not been affected since the watermark
was added, allowing to detect forged images and to assure
copyrights are not violated. Digital watermarking involves
explicitly adding the invisible structure when the image is
to be sealed, and applying a decryption algorithm when the
authenticity of the image is tested. Such a method is clearly
distinct from the algorithm suggested here, and so will not
be elaborated on beyond this point. Further details on work
following this course of progress can be found in Wolfgang
and Delp (1996) and many others.

2.2 Physical Constraints Based Methods

Simple forgery detection, based on naive physical con-
straints on the scene, may involve detection of incon-
sistencies of lighting direction (shadows) (Johnson and
Farid 2005), color balancing, intelligent reasoning etc. (e.g.
Fig. 1). These inconsistencies, however, are easily avoided
even by a novice forger while usually hard to detect auto-
matically using software. Computer Vision based algorithms
that detect lighting inconsistencies, for example, must intro-
duce strong assumptions on the scene (e.g. that all surfaces
of interest are Lambertian). Intelligent reasoning typically
requires segmenting most of the image into meaningful ob-
jects and classifying them correctly as a prior to any further
analysis. Such a task is highly complex and demanding and
is currently feasible only for a limited set of objects (e.g.
faces, cars, airplanes etc. .. ) (Schroff et al. 2008).

@ Springer

Fig. 1 Intelligent reasoning can discover the forgery (image generated
by funadium, at: http://www.flickr.com/photos/funadium/1331284420
and distributed under the Creative Commons license: http://
creativecommons.org/licenses/by-nc-sa/2.0/deed.en)

2.3 Statistics Based Methods

Statistics based methods are a common way to detect forged
images (Wolfgang and Delp 1996; Keren 2002; Cutzu et
al. 2003; Szummer and Picard 1998; Lyu and Farid 2005;
Lyu et al. 2004). Several algorithms have been specifically
developed to address the authenticity problem (Wolfgang
and Delp 1996; Lyu and Farid 2005; Lyu et al. 2004), oth-
ers are classifiers that aid in pointing out images that are
not what they claim to be (e.g. an indoor image with out-
door characteristics Szummer and Picard 1998). The statis-
tics based methods rely on special characteristics that ap-
pear in most natural images acquired by a camera. The ba-
sic approach in these studies is to extract feature vectors
from the image, then, use either simple measures (such as
the Euclidean distance) or more advanced machine learning
techniques such as Support Vector Machines (SVM) (Vap-
nik 1995), to distinguish between genuine and forged im-
ages. In the case of machine learning, a training database
of authentic and forged images is assumed. These methods
enable, for example, the discrimination between authentic
images acquired by a camera and computer graphics gen-
erated images. This is based on the fact that the latter is
usually smoother in large patches of the image and on the
other hand sharper at the edges, introducing a stronger mag-
nitude of high spatial frequency in those regions (Lyu and
Farid 2005). The distinguishing feature vectors use first and
second order statistics such as mean, variance, skew and kur-
tosis which are calculated for every sub-band of the wavelet
decomposition of the image. The value and characteristics of
these features are expected to capture the uniqueness of each
class of images. Other statistics based studies attempt to dis-
tinguish between images taken indoors and outdoors (Szum-
mer and Picard 1998), paintings and photographs (Cutzu et
al. 2003) and even classify paintings according to the artist
(Keren 2002).
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Obviously, the main drawback of any statistics based
method is that it is heavily dependant upon the training set
used, the features extracted and the classifying algorithm.
These techniques are often limited in that they perform well
only on test images that are very similar to the training set or,
if tuned differently, have many false positives. Furthermore,
a well trained and knowledgeable forger may directly incor-
porate these statistically expected characteristics of images
into the forgery process (e.g. smoothing edges of forged re-
gions).

2.4 Detection Without Additional Data

The most challenging of the forgery detection approaches
is that which relies on a single image where the source is
unknown. Although this would be the most common case in
which forgery detection is required, it is the most difficult, as
it can not rely on watermarks, nor on statistical priors from
a training set. The study presented in this work falls in this
category of forgery detection. A frequent form of forgery
involves replacing parts of an image with a copy of another
part of the same image. This is performed in an attempt to
occlude un-wanted regions or to intensify a phenomenon.
Figure 2 presents an example.

The forgery detection method presented by Fridrich et al.
(2003) deals specifically with this kind of forgery. In their
method, the entire image is segmented into small, non-
overlapping regions, each reshaped into a row vector that
is then treated as a number. The regions are ordered accord-
ing to their numbers using any known sorting algorithm. The
method then searches for consecutive regions that have the
same (or very similar) values. If such exist it indicates, with
high probability, that one region was copied from the other.
The method, however, generates false alarms for large uni-
form areas such as sky regions. Moreover, it does not distin-
guish between the original and copied region. The method
presented in this work addresses, among others, this type of

forgery and is capable of distinguishing the original from the
copied regions as will be further detailed in Sect. 4.

In the study presented in this paper, it is asserted that in
order to truly detect forgery, including those created by ex-
perienced forgers, one must rely on inherent characteristics
of an image that originate in the image acquisition process
itself. In the case of this study the effects of the digital ac-
quisition process, along with analog optical effects are taken
into account (as will be elaborated in Sect. 4). Very few stud-
ies have taken this approach.

One such method is based on the fact that almost all digi-
tal sensors used in contemporary cameras use a Color Filter
Array (CFA) (Wolfgang and Delp 1996). Thus, during ac-
quisition, every pixel receives only a single color-channel
value (red, green or blue). To produce the final image, the
raw data undergoes an interpolation process. There are sev-
eral methods to perform the interpolation, and the forgery
detection algorithm suggested by Popescu and Farid (2005)
attempts to detect which method was used, based on data
from the entire image. Assuming that only a relatively small
part of the image was distorted, this algorithm can find the
values in each of the color channels that do not agree with
the general interpolation scheme and mark those regions as
suspected forgery.

A different method is based on the most common im-
age compression technique—/PEG (Wang and Farid 2006).
The JPEG image format involves loss of information as a re-
sult of, among others, quantization of the frequency domain
(DCT) coefficients. When the image is decompressed, the
quantified frequency coefficients are restored. If the decom-
pressed image is now edited and re-compressed in JPEG for-
mat, using different quantization steps (e.g. a different JPEG
compressor was used, or the image was edited or cropped),
a specific repetitive spatial pattern may emerge. This in turn
can indicate a forged image.

In another study, more directly related to the approach
suggested in this paper, Johnson and Farid (2006) consider
chromatic aberration effects due to the optical system of the

Fig. 2 Forged image published by Reuters. Smoke from the orig-
inal (left) image was duplicated to create a more dramatic view
(right). Reuters had to publicly apologize for the forgery (image
was taken from the Jerusalem Post newspaper published on Au-

gust 7th, 2006. Additional review can be found at the National
Press Photographers Association (NPPA) site http://www.nppa.org/
news_and_events/news/2006/08/reuters.html)
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camera. However their approach is restricted to a specific
form of aberration—Lateral Chromatic Aberration (LCA).
This allows the authors to model the chromatic aberration
effects in the image as a spatial scaling of the blue (short
wavelength) channel of the image with respect to the green
(middle wavelength) channel (see explanation in Sect. 3).
A similar model is assumed for the red (long wavelength)
channel. A brute force algorithm is thus used to find the cen-
ter and magnitude of scaling between the 2 image channels
by maximizing the correlation between the green channel
and scaled blue channel as a function of the center location
and magnitude of the scaling evaluated over the entire im-
age. In the second stage of the process the image is seg-
mented into non-overlapping regions, and the channel scal-
ing parameters (locus and magnitude) are determined inde-
pendently in each region. Regions whose parameters dif-
fer significantly from those found in the global search are
marked as suspected forgery. Thus, this method allows de-
tecting forgeries, based on significant spatial displacements
between color channels within image regions. However, in
practice, the Lateral Chromatic Aberration is typically con-
founded with a plethora of additional aberrations such as Ax-
ial Chromatic Aberration, Purple Blooming Aberration and
others (see Sect. 3) that affect the image chromatically. Thus
the assumptions on which the authors rely on often do not
hold in images resulting in incorrect behavior (see Fig. 6).

3 Lens Chromatic Aberration

Optical systems, even in contemporary cameras, suffer from
imperfections, causing a variety of aberrations in the fi-
nal image including chromatic aberrations, spatial blurring
and geometric distortions. Most artifacts are un-noticeable
to the human eye but nevertheless can still be detected by
computers. In this study, we focus on chromatic aberra-
tions, though it has been observed (Smith 2007) that spa-
tial and geometric aberrations such as Spherical aberration,
Coma aberration and Astigmatism aberration (Ray 2002;
Jenkins and White 1976; Pedrotti et al. 2006) have a sec-
ondary affect on chromatic aberrations.

A plethora of chromatic aberrations intermix to produce
the chromatic artifacts found in digital images (an excellent
review can be found in van Walree 2009, see also Smith
2007; Ray 2002; Pedrotti et al. 2006). Both lens and cam-
era sensors are considered as the source of these aberra-
tions. Aberrations due to the camera optics (lens) are traced
back to Snell’s law that explains the refraction of light on
the boundary between two media: n * sin(9) =n s * sin(6 )
where 0 is the angle of incidence, 0 the angle of refrac-
tion and n and n ¢ are the refractive indices of the two me-
dia. Glass has a different refractive index for every spec-
tral wavelength, causing a single polychromatic ray of light

@ Springer

(a)
AAAAAAAAAAAAAAAAA »
D I
(b) ‘—4:_,_.-_1:__,_
" -
© —|

Green wavelength
— -~ Blue wavelength
---- Red wavelength

Fig. 3 Due to differences in refraction indices, light of different wave-
lengths passing through a lens, do not converge on the image plane.
(a) Axial Aberration occurs when different wavelengths converge at
different depths from the lens. (b) Lateral Aberration occurs when dif-
ferent wavelengths converge at different points on the image plane.
(¢) Achromatic Doublet—a negative focal length lens can be added to
focus the blue and red wavelengths, however residual aberration re-
mains

that enters a camera lens to focus at different points on the
acquisition plane (depending on wavelength) as shown in
Fig. 3. Axial Chromatic Aberration (also known as Lon-
gitudinal Aberration) occurs when light impinging on the
lens parallel to the optic axis, refracts so that different wave-
lengths focus at different focal planes as shown in Fig. 3a.
This has an effect of differentiating blur between the wave-
length channels often referred to as a difference in the size of
the circle of confusion between the different wavelength im-
ages. Lateral Chromatic Aberration (LCA) (also known as
Transverse Aberration) is caused by the fact that long (red),
middle (green) and short (blue) wavelengths are not focused
by the lens at the same point in the image plane when the
source light is off the optical axis as shown in Fig. 3b. The
visual effect of this aberration in an image is shown in Fig. 4.
The LCA can be viewed as having an enlarging effect on the
blue (short) and red (long) wavelength images compared to
the green (middle) wavelength image.

Technically, LCA can be viewed as an expansion-contr-
action effect of the 3 image channels (R, G, B) about the im-
age center. High end lenses attempt to reduce the magnitude
of the chromatic aberration effect by combining positive and
negative focal length lenses to produce an Achromatic Dou-
blet (see Fig. 3c) which unites two wavelengths at a common
focus point. However other wavelengths are still out of focus
producing a residual aberration called Secondary Spectrum.
Thus, even expensive lenses still suffer from chromatic aber-
rations. There is a discussion as to which of the chromatic
aberrations is the more dominant (see van Walree 2009 and
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Fig. 4 (Color online) Enlargement of the top left section of an im-
age acquired with a Sony 707 using a Sakar wide-angle converter. The
LCA effect can be seen as the bright blue stripes along the edges of
the building, marked by arrows (contrast was added to amplify the
aberration) (image is courtesy of Tom Niemann from ePaperPress.com:
http://www.epaperpress.com/ptlens)

citations within) however it is accepted that they coexist and
interact in their effects in the image.

In addition to the chromatic aberrations due to imper-
fections of the lens, the camera’s Charge Coupled Device
(CCD) sensors interact with the lens and produce additional
aberrations including the Purple Fringing Aberration (PFA),
(Fig. 5) which appears in the form of a blue-purple halo near
the edges of objects in the image. The source of PFA is con-
troversial (see Parr 2006) though it is typically attributed to
the following:

1. PFA is characterized by blurriness at high contrast edges.
This may be due to CCD sensors, which tend to suffer
from electron overflow to adjacent photodiode cells when
an extremely high rate of photons per second hits the sen-
sor (Ochi et al. 1997). Thus, bright areas in the scene may
result in a blur near the edges.

2. In addition to visible light, CCD sensors are often sen-
sitive to infrared wavelength as well. To overcome this
problem, the sensor is coated with an appropriate filter
which, however, does not completely block these wave-
lengths. Thus some energy may reach the sensor and
cause edge-blur similar to that produced due to LCA.
In fact, the Secondary Spectrum aberration mentioned
above is most significant in the ultra-violet and infrared
wavelengths, which (similar to LCA) focus slightly be-
yond the focal plane (Rudolf 1992).

3. Each CCD sensor cell consists of a photon sensitive sur-
face and an electronic circuit. To increase light absorp-
tion, each cell is covered with a micro lens (Daly 2001).
Light impinging on the edges of the sensor cell may re-
fract on the micro lens and affect neighboring cells.

Fig. 5 (Color online) An enlarged part of an image acquired by a
Canon Power-Shot A520 camera. Purple Blooming is noticeable at the
edges marked by the arrows

PFA expresses several unique characteristics that can not
be explained by any one aberration, specifically the PFA en-
compasses LCA yet differs from it. The most significant dif-
ference is that while both types of aberrations frequently
appear near edges in the image, PFA does not exhibit an
expansion-contraction transformation as does the LCA. In
the latter, the blue color channel of the image is magnified
about the center, with respect to the green channel. In PFA,
the blue-purple halo appears on the distal side of bright ob-
jects (or on the proximal side of dark objects) relative to the
image center, while the opposite side remains almost un-
changed (see Fig. 6). It should be noted that the purple-blue
halo is more prominent than the blue halo of the LCA due
to the additional factors described above, which intensify the
aberration. Figure 7 shows a schematic example of LCA ver-
sus PFA.

Referring to the possible sources for PFA (mentioned
above) one can observe that as the contrast between objects
increases, the PFA increases as well. This can be explained
by the increase in overflow to neighboring cells (bullets 1,
3 above) due to the large amount of light that reaches the
sensor. Since this aberration causes the values of neighbor-
ing pixels to change, it is more visible across edges where
pixels have a large difference in values. The LCA (which
affects the PFA as well) is also more noticeable at high con-
trast edges, since the expanded long/short wavelengths im-
ages (blue and red) are displaced and visually affect neigh-
boring pixels, across the edge. When edge contrast is low
this effect is less visible.

Furthermore, the PFA effect is more prominent at im-
age periphery, specifically in wide angle shots (Born and
Wolf 1999). This is due to increased diffraction at the lens
edge and a shallower angle of contact of the light rays with
the lens or micro lens as well as increased imperfection at
the lens with deviation from the center of focus (see also
Fig. 19).
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Fig. 6 (Color online) An image of bright regions on a dark back-
ground acquired using a Canon S330 digital CCD camera (left) (DpRe-
view website, http://www.dpreview.com/reviews/canondigitalixus330/
pagell.asp). Enlargement (right) of the top left corner clearly shows

4 Forgery Detection Based on Local Indicators of
Chromatic Aberration (PFA)

As described above, one of the most important characteris-
tics of the PFA is that the purple-blue halo is directional,
namely it appears on the distal side of bright objects (or on
the proximal side of dark objects) relative to the image cen-
ter (see Fig. 6). In the suggested approach this characteristic
is exploited to locate the image center. Furthermore, regions
of the image in which PFA does not point to the common
image center can be marked as suspected forged areas. In
Fig. 8 the arrows indicate the “direction” of the purple halo.
The approach is detailed in the next two sections.

Two additional characteristics of the PFA aberration are
exploited in the proposed approach:

1. PFA increases in strength with distance from the image
center. Figure 9 (top) shows an image with edges having
the same intensity contrast. As the distance from the im-
age center (located to the right of the region in the figure)
increases, so does the intensity of the aberration (corre-
sponding to size of the diamond head).

2. Due to the factors affecting PFA, it becomes more acute
in regions of higher intensity change over a short dis-

Actual Scene

LCA effect PFA effect

Fig. 7 (Color online) Schematic diagram that depicts the difference
between LCA and PFA (image center is depicted by ‘+’). While LCA
is a pure expansion-contraction effect of the Blue vs Green channels,
PFA is characterized by a blue-purple halo on the distal side of bright
objects (sometimes also accompanied by a minor yellow tint on the
opposite side, due to the LCA effect)
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the blue-purple halo on the outer side of the bright region. The green
star depicts the incorrectly calculated image center according to the
FD algorithm presented in Johnson and Farid (2006)

tance. This implies a stronger effect of purple blooming
along edges with increased difference in intensity (con-
trast), for example white object on a black background.
Figure 9 (bottom) shows three patches, equally distant
from the image center, with varying degrees of contrast
relative to the background. As the contrast increases, the
aberration becomes stronger.

Taking both characteristics into account, a reliability
measure for every PFA event can be introduced. The pre-
sented approach attempts to detect all PFA events in the
image and determine their directions together with such a
measure of reliability. The combined information from all
detected PFA directions is used to determine the image cen-
ter. If a region contains inconsistent PFA directions, it can
be concluded that either local image noise has affected the
results, or that the region is forged. The measure of relia-
bility assists in overcoming such noise, allowing the algo-

Fig. 8 Image from Fig. 6, with arrows indicating the “direction” of
the PFA. The image center can then be found (depicted by the star)
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Fig. 9 Top: Aberration strength increases with distance from image
center. An enlarged region of an image is shown (image center is lo-
cated to the right of the region). Three edges with equal color contrast
were tested for PFA using the suggested algorithm and marked with a
diamond headed arrow whose size corresponds to the strength of aber-
ration. The arrows point in the direction of the image center. The edge
most distant from the center was calculated to have more than 4 times
the aberration of the most central edge. Botfom: Aberration strength in-
creases with contrast. An enlarged region of an image is shown (image
center is above the region) with three patches equally distant from the
image center. The diamond-headed arrows point in the direction of the
image center. The size of the diamond corresponds to the strength of
aberration

rithm to perform well even on JPEG compressed images (see
Sect. 6).

5 Algorithm

Using the PFA properties mentioned above, one can locate
the presumed image center. Regions that do not point to the
geometric center of the image suggest that they are not orig-
inal and have been tampered or completely implanted there
after the actual scene was acquired by the camera. Figure 10
shows an example of an authentic digitally acquired image,
with image center correctly detected according to the PFA.

To conclude whether a given image is authentic or forged,
the following algorithm is implemented:

1. Identify edges with PFA.

2. Determine PFA direction for each detected PFA event.

3. Assign a reliability measure according to aberration
strength, edge contrast and distance from the geometric
center of the image.

Fig. 10 An authentic image acquired by a Canon A520 digital camera.
Yellow diamond headed arrows indicate a selection of PFA events de-
tected by the proposed method. Diamond size corresponds to strength
of aberration. The star depicts the detected image center

4. From the collection of PFA directions robustly determine
the center of the image (xg, o).

5. Re-evaluate the PFA directions to determine regions in
which these directions are inconsistent with the evalu-
ated image center. These regions are marked as suspected
tampered regions in the image.

Details of these steps follow.
5.1 Identifying PFA Events

PFA can be found along edges, especially where high con-
trast exists. To identify the aberration indicators, all signif-
icant edges in the image are first detected. This stage can
be performed using any known algorithm (e.g. Canny edge
detector, Gonzalez and Woods 2002). Every edge pixel is
evaluated to determine if it is a viable PFA event. For each
edge pixel, the transition of color across the edge is analyzed
in the xyY color space (Wyszecki and Styles 1982) (Fig. 11).

It is assumed that in natural images the change in color
across the boundary between different color regions is linear
in chromaticity. Thus, a pixel sequence across a boundary
should contain a linearly varying mixture of the two bor-
dering colors, (perhaps with a change of luminosity). In the
xyY color space, this assumption translates to a linear transi-
tion between the two color points in the chromaticity (x—y)
plane (see Fig. 12), and perhaps a change in the luminance
(Y) parameter. In the case of PFA this assumption is vi-
olated, since a blue-purple hue affects the edge. This will
cause the transition in the chromaticity plane to behave non-
linearly with a bias towards the blue-purple region of the
plane.! Figure 12 shows an example of the transition in chro-

Note that the non-linearity in color values introduced by the Gamma-
factor of the camera is insignificant compared to the PFA effect.
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maticity plane across a non-aberrated edge (Fig. 12 left) and
across an edge with PFA (Fig. 12 right). Pixel values along a
segment perpendicular to the edge were uniformly sampled
(their chromaticity marked as * in the plots). The chromatic-
ity of the two bordering color regions is marked with a red
square and a black dot in the chromaticity plane, correspond-
ing to the start and end points of the sampled pixel sequence,
respectively. The non aberrated edge (left) displays a linear
chromaticity transition, while the PFA edge (right) displays
a deviation towards the blue-purple region.

A PFA event is determined at an edge pixel if the chro-
maticity values across the edge pixel deviate significantly
towards the blue-purple chroma. This is evaluated by esti-
mating the PFA strength as described below. It should be
noted that due to the presence of LCA aberration together
with PFA (see Sect. 4), some images also display the com-
plement of a blue-purple halo, namely yellow tinted edges.
These effects will appear at objects’ edges on the side op-
posing the purple halo (i.e. on the proximal side of bright
objects). For these edges a similar non-linear transition will
be observed in the chromaticity plane with deviation towards
the yellow region. However, this deviation is usually much
weaker than the blue-purple deviation due to PFA, which is
intensified by CCD associated aberrations (see Sect. 3).

5.2 Determining PFA Direction

As explained in Sect. 4, the PFA effect is displayed as a
blue-purple halo on the distal side of bright objects and on
the proximal side of dark objects. Thus, the intensity gradi-
ent across the edge implies the direction towards the image
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Fig. 11 (Color online) Chromaticity plane of the xyY color space.
The purple-blue region is located at 450 nm. Image from Wikipedia,
the free encyclopedia, http://en.wikipedia.org/wiki/Xyz_color_space
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center. We define the PFA direction as a unit vector N per-
pendicular to the edge in the direction corresponding to in-
creasing intensity across the edge. In case of aberrations that
produce yellow artifacts at the edge (corresponding to devia-
tion towards yellow tones in the chromaticity plane) the PFA
direction will be reversed.

5.3 Determining PFA Strength

The strength of a PFA event is dependant on the magnitude
and direction of the chromatic deviation in the chromatic-
ity plane (Fig. 12). To determine PFA strength at an edge,
the following is specified: given the sequence of pixel chro-
maticities across an edge {c, = c1,¢2,...,¢, = Cp} In XYy
coordinates, the expected linear transition between endpoint
colors ¢, cp 1s represented as a segment in the chromaticity
plane (gray segments in Fig. 12). In an ideal world, where
no blur is introduced in the optical system, we may ex-
pect the chromaticity of the sequence to be clustered tightly
around ¢, and cp, however, in reality this does not occur in
acquired images. Furthermore, the transition rate between
chromaticity values of the two endpoints can not be as-
sumed (and is often not uniform). Since no prior informa-
tion about the expected location of the analyzed points can
be assumed, except for the fact that they should appear along
the expected linear transition segment, a point-to-segment
distance is calculated for each pixel chromaticity value and
the point with maximum distance is determined (yellow di-
amond in Fig. 12).

The vector in the chromaticity plane between the ex-
pected transition segment (gray segment) and the most dis-
tant point of the sequence is projected onto the blue-purple
direction, determined as the unit vector from mid segment
to the blue-purple wavelength. This wavelength is set to be
450 nm (x = 0.2, y = 0.1 in the chromaticity plane, see
Fig. 11). The magnitudes of the projections along the blue-
purple direction are normalized to the [0..1] range:

5:< § — Smin ) (1
Smax — Smin

where s is the projected value, Smax (Smin) 1S the maximum
(minimum) value found in the image. The normalized pro-
jection value, §, is defined as the PFA strength. If aberration

is present at the edge then the PFA strength is expected to be
large.

5.4 Assigning a Reliability Measure

The reliability measure quantifies the consistency of the cal-
culated PFA strength with the expected values. As described
above, the PFA is expected to increase in strength with dis-
tance from image center as well as with increase in edge
contrast. These characteristics are used to define a measure
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Fig. 12 (Color online) PFA analysis in the xy-chromaticity plane.
The chromaticities of image pixel colors across an edge boundary are
shown for a non-aberrated edge (left) and for an edge with Purple
Blooming (right). The start and end points of the pixel sequence are
marked with a red square and a black dot. The gray line is the ex-

of reliability for each detected PFA region. If, for example,
a strong aberration was detected along an edge with a small
contrast difference, it may be suspected that image noise has
affected the calculations; accordingly the reliability should
be low and it should significantly reduce the effect of the
aberration on the center calculation process (see (3)). Edge
contrast ¢ associated with a PFA event is defined as the ab-
solute difference in intensity across the edge and the dis-
tance d of the PFA event is the linear distance to the image
center. The reliability of a PFA region is then defined as:

p:< ! — Imin >*< d_dmin ) (2)
'max — !min dmax - dmin

where fmax (fmin) 1S the maximum (minimum) edge contrast
found in the image and dmax (dmin) is the maximal (minimal)
distance to the image center.

5.5 Calculating the Location of the Image Center

Using the collection of PFA events, the location of the image
center can now be estimated. The values for each PFA event,
required for this task are: the direction (1\7 ), the strength ()
and the reliability (p) of the PFA event as described above.
The aberration, and accordingly PFA direction, is always
perpendicular to the analyzed edge. Thus it does not neces-
sarily indicating the direction towards the image center. This
problem, called the “Aperture Problem”, is well known in
Computer Vision, where local movement of objects can be
obtained only in the direction perpendicular to their bound-
ary edge, creating a “normal flow” map (Jahne 2005). In
Computer Vision the “scene flow” (the actual movement of
the objects), rather than “normal flow” is often required. To
obtain a good estimate, an “optical flow” map is generated,
which assigns a movement direction to every pixel in the
image (Horn and Schunck 1981), resulting in a smooth field
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pected linear transition between the two end points. The left plot shows
an almost linear transition between colors on both sides of the edge.
The right plot shows a deviation towards the blue-purple values (blue
arrow direction) of the chromaticity plane. The yellow diamond depicts
the furthest point from the expected segment

consistent with the normal flow data. This process is usually
computationally demanding and requires dense data in the
“normal flow” map to produce an accurate result. In the con-
text of this work, generating an “optical flow” map can be
useful in the process of locating the image center, however
it is computationally difficult and overkill since in practice
only the location of the image center is sought, and interpo-
lated flow information calculated per pixel is not required.
Thus, a different method was chosen, which is based on
Focus Of Expansion (FOE) detection (Negahdaripour and
Horn 1989). This method assumes that the underlying flow
field displays a centralized flow (reflecting a backwards mo-
tion of the camera within the scene). The method attempts
to locate the FOE point based on the PFA directions associ-
ated with the PFA events, thus, determining a central image
point which is consistent with the centralized flow. Similar
to the “optical flow” approach, the chosen technique relies
on the fact that the “normal flow” map is relatively uniform
across the image. The main differences between “optical
flow” detection and FOE calculation is that the former as-
signs an evaluated pointing direction to every pixel in the
image (usually based on a smoothness assumption), while
the latter algorithm does not. In addition, the FOE method
uses a strong assumption regarding the type of movement in
the image (expansion relative to a single center), while an
“optical flow” process has no prior assumptions, causing it
to perform more calculations and perhaps even generate a
false movement model. Thus, we can benefit from a faster
algorithm while obtaining accurate results. The method sug-
gested in Negahdaripour and Horn (1989) for FOE detection
is adopted here.

Determining the FOE based on the PFA “flow field” takes
into account both the strength and the reliability of the de-
tected PFA events. Let X; = (x;, y;) be the edge pixel coor-
dinates of the i-th detected PFA event and let X¢ = (xo, yo)
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Fig. 13 Finding the point X (marked by star) which minimizes the
squared perpendicular distance to the lines associated with PFA events
(marked by ellipsoids with associated arrows). See (3)

be the image center to be determined. The point X; is as-
sociated with a line passing through the point in the direc-
tion N. The line is of the form: aix + by + ¢; = 0 with
(a, b) normalized to unit vector. The process finds the point
X which minimizes the squared perpendicular distance to
all the lines, normalized by the PFA strength and the relia-
bility factor (see Fig. 13):

Xo = (x0, yo)

. (aix +biy+ Ci)2
- STV L R, 3
e —~ (1-38ipi +¢)? ) ©

where §; is the PFA strength, p; its reliability as described
above and (¢ — 0) is used to avoid singularity. R;(x, y) is
a penalty factor associated with the i-th PFA event that is
assigned to location (x, y) if it is inconsistent with the i-th
PFA direction (i.e. (x, y) is “behind” the i-th edge relative
to the PFA direction):

aKi;, Nie(X—Xp) <0
0, otherwise

R =] @
where e denotes inner product, K; is the normalized point-
to-segment distance between the i-th edge and the tested
center and « is a scale factor. The penalty is added, and not
multiplied by the remaining parameters, to avoid a scenario
in which the algorithm converges to an image center located
“behind” any PFA edge and thus is inconsistent with the
PFA effect. In all experiments o was set to 5 x 107, A multi
resolution descent search is used to minimize the function
and determine the coordinates of the image center.

The above method produces good results, based on the
normal flow map. However, there are two concerns that must
be taken into account. First, the map may contain outliers
due to noise in the image (e.g. due to JPEG compression). To
overcome this, a robust-regression method, the Median Out-
lier Filter (Rousseeuw and Leroy 2003), is used. The data
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Fig. 14 (Color online) Calculating image center. The yellow dots show
convergence of centers calculated before outlier removal. The green
dots depict centers after outliers have been removed. Magenta colored
dot (at top right cornel of the image) depicts the final calculated center.
Original image from www.worth1000.com

points proximal to the median (70% of the points) are con-
sidered valid, while the rest are marked as outliers. In the
process of center detection, the weighted distances of the
normal-flow vectors relative to the calculated center (based
on aberration strength, reliability and penalty), are the input
to the filter. The process is run iteratively; outliers are re-
moved at each iteration, until the calculated center location
stabilizes.

The second concern is that the reliability measure as-
signed to every PFA event (2) depends on the distance to the
image center. However the image center is unknown and is
computed iteratively using (3) and using the outlier removal
process discussed above. This issue is specifically signifi-
cant in cases of cropped images when the actual image cen-
ter may differ significantly from the geometric center of the
image (see below). To overcome this concern, the reliability
measure is initially computed based on the geometric cen-
ter of the image. At each iteration, the reliability measure is
updated based on the image center found during the previ-
ous iteration. The process iterates until the calculated center
location stabilizes. An example is shown in Fig. 14, where
the calculated centers are shown initiating from the geomet-
ric center and converging to the found image center (ma-
genta). Yellow dots depict the location of the center before
outliers have been removed. At the next stage, outliers are


http://www.worth1000.com

Int J Comput Vis

x 10°
1200 : ® e
% 15
800
1
400 (=D -
0.5
-] @
(b) 400 800 1200 1600

Fig. 15 (a) Is a forged version of Fig. 6. (b) Is a map of the weighted-distances of PFA events. Note that the map clearly indicates the forged

region

excluded (as described above) and the process is performed
once again (depicted in green dots). The final center location
was found at the right side of the image due to strong PFA
pointing rightwards.

5.6 Detecting Traces of Forgery

Since the PFA appears in many edges, the PFA direction
map forms a “normal flow” map which is usually sufficiently
detailed to include data in both original and forged regions,
if such exist. Analysis of the PFA direction map as well as
the calculated center, allows the detection of image regions
that have been tampered since their acquisition by the cam-
era.

PFA regions are analyzed to determine inconsistencies
between their direction and the calculated center. These re-
gions, when removed, will maintain a consistent flow. To
identify these regions, the weighted distance from the cal-
culated center of the image (as described in (3)) is calcu-
lated independently for each PFA event. The penalty fac-
tor (as described in (4)) assures that PFA events pointing to
an illegal direction have a much higher weighted distance
than others. This implies that such PFA events can be distin-
guished from others (using a threshold), even if the latter do
not point directly to the calculated center due to the aperture
problem. A map of these values is formed, from which re-
gions highly suspicious of forgery are detected. An example
of such a map is shown in Fig. 15. Note that in the case of
forgery involving duplicated image regions, (as described in
Sect. 2), only the duplicated region will be marked as sus-
picious, since it alone will be inconsistent with the geomet-
rical center, allowing the system to distinguish the source
region from its copies (see Fig. 17). This type of forgery
was described and handled by Fridrich et al. (2003). How-
ever, the proposed algorithm is advantageous in that it al-
lows distinguishing the source of the forgery from its copies.
Additionally, it is able to detect copy-move forgeries even

Fig. 16 A genuine image acquired by a Canon 400d. Star depicts the
calculated center

when the copy is magnified or reduced in size, as can be
seen in Fig. 17.

Another scenario is where an image center is detected at a
distance from the geometrical center and yet is accompanied
by a consistent PFA direction map. This is a unique con-
stellation that may indicate that the image has been cropped
from its original size. According to the evaluated image cen-
ter, an estimate of the original image size can be deduced
by the algorithm (see Fig. 20). This capability, although un-
able to restore the missing data, allows the user to obtain a
sense of the original size of the image and what portion was
cropped.

Finally, if the calculated image center was found to be
located near the geometric center with strong supporting
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Fig. 17 Example of copy-paste
forgery detection using the
proposed algorithm. The man in
the original image (left) was
duplicated to create a forged
image (right). Shaded box
marks the suspicious region
detected by the proposed
algorithm

5

a
1

PFA events, and there is no significant region in which PFA
events are inconsistent with the globally evaluated image
center, then the algorithm assumes that there is no forgery.

Additional discussion on the abilities and drawbacks of
the algorithm can be found in Sect. 7.

6 Test Results

In this section the performance of the presented algorithm
is tested on various types of images, all compressed using
standard JPEG format. Images were collected from copy-
right free online sources and from personal collection. No
camera calibration is assumed nor is any knowledge on the
camera parameters used to acquire the images. Images in-
cluded indoor and outdoor images, portraits, scenic views,
urban scenery and more. Images were of size ranging be-
tween 1536 x 2048 and 640 x 480. Primary camera models
were Samsung S630, Canon SD200 and Canon Power-Shot
A520.

6.1 Examples

Specific examples are shown to demonstrate the capabilities
of the proposed algorithm. Figure 16 shows the results of
applying the proposed algorithm on a genuine image. The
image center was calculated up to 4% deviation of the true
center. Another such example is shown in Fig. 10, where
the deviation from the true image center was 5%. Figure 17
(left) shows an example of a genuine image, acquired by a
Nikon E4600 camera. The image was edited to include a
copy of the original person (Fig. 17 right). The algorithm
was able to detect the suspicious section, while correctly
discriminating between the original and its copy. Figure 18
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(as well as Fig. 31) show additional forged images taken
from www.worth1000.com with the forged region detected.
In Fig. 18, the typewriter and the screen were pasted from
2 different images. The center of the original typewriter im-
age was located at the top-center of the typewriter. Since the
screen has very strong PFA events pointing rightwards, the
image center was shifted to that direction, causing the type-
writer’s PFA events to display inconsistencies. Note that no
suspicious regions are found around the outer edges of the
typewriter, since it was very carefully cropped from its origi-
nal image, thus removing the traces of PFA. However, inside
the typewriter itself, detectable PFA traces are found.
Figure 19 shows the effect of distance from center of the
forged region. The figure displays a sequence of 9 images.
The images on the diagonal contain one object each, these
are the originals. The off diagonal images have been edited
so that the objects are placed systematically at different ec-
centricities in the image. The images are overlaid with mark-
ings representing the forged regions and colored according
to the strength of deviation from the predicted. As expected,
the eccentric regions of the image have the strongest affect.
Figure 20 displays the capabilities of the approach on
cropped images. Figure 20 (left) shows an image where 33%
of the right part was removed. The location of the calculated
center (green star) was accurately determined. The fact that
most PFA vectors are consistent with the center, which is
not aligned with the geometric center, suggests that the im-
age was cropped. Dashed lines mark the estimated full im-
age frame according to the calculated center. The proposed
algorithm was able to restore both size and shape of the un-
cropped image with a success rate of 93% (see (6)). Fig-
ure 20 (right) shows a similar example with image cropped
by 53%. The proposed algorithm was able to determine the
center of the un-cropped image (located beyond the bound
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Fig. 18 Left: A forged image
published in
www.worth1000.com. Portions
of the typewriter were detected
as forged (marked in a
red-shaded box), as they did not
agree with the calculated center,
affected by the pasted screen.
Right: Center detection for each
part of the image separately
(marked by a green star). The
detected center indicates the
location of each part in its
original image

Fig. 19 (Color online) Effect of
eccentricity on forgery
detection. Images on the
diagonal are authentic, while
others are synthetically forged.
Forgery traces found are marked
by colored boxes—yellow for
weak forgery traces, darker red
for strong traces. As objects are

further displaced from original
location, PFA inconsistency
with the calculated center
increases, thus intensifying
forgery traces

of the image) and was able to restore both size and shape
of the un-cropped image with a success rate of 85%. Ad-
ditional results can be found in Sect. 6.2. In the following
subsections more rigorous experiments are described, that
systematically evaluate the algorithm.

6.2 Comparison Testing

The study of Johnson and Farid (2006) is closely related to
the method proposed in this paper. In their work, forgery

is detected based on LCA and relies on the expansion-

contraction characteristics associated with this type of chro-
matic aberration (see Sect. 3). In this section we display
comparison results that follow the experiments described
above. Each test was run, with the same images as input,
using both the suggested algorithm as well as the FD al-
gorithm presented in Johnson and Farid (2006). The same
outlier removal method used in the proposed algorithm was
applied to the FD algorithm to assure a fair comparison.
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Fig. 20 Detecting cropped
images. Left: Test image with
33% removed from the right
side (shown as de-saturated).
The proposed algorithm was
able to restore the original size
and shape with a 93% success
rate, marked with a dashed line
(see (6)). The yellow dot marks
the genuine image center and
the green star the calculated
center using the proposed
algorithm. Right: 53% of the
image was cropped, including
the center. The algorithm was
able to restore original size and
shape with accuracy of 85%

Fig. 21 Three samples of
authentic images from the test
set

Authenticity Testing A set of 45 JPEG compressed im-
ages were used to test the basic capability of the algorithms,
namely, to correctly identify the geometric center in images
for which no editing was performed following acquisition.
Examples from the set are shown in Fig. 21. To quantify the
level of accuracy of the center detection, an Angular-Error
measure was used, as defined in Johnson and Farid (2006)
so as to be consistent with Johnson and Farid (2006) and
allow more effective comparison. The angular error for a
given pixel is defined as the angle between the directional
vector from the pixel to the geometric center of the image
and the direction from the pixel to the center calculated by
the algorithm as follows:

Let Xo = (x0, yo) define the coordinates of the center cal-
culated by the algorithm, and let X, = (xg, y,) be coordi-
nates of the geometric center. The angular error, 6 (x, y), for
pixel X = (x, y) is defined as:

&)

0(x y)=cos—1< (Xg = X) o (Xo — X) >

[(Xg =X - [[(Xo = X)l

The Average Angular Error, 9, for an image is defined as the
average over all pixel angular errors.

Figure 22 presents comparison results between FD and
the proposed algorithm for the authenticity experiment. The
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results show a significant improvement when using the lat-
ter: 51% of the images were analyzed with an average
angular-error of up to 15 degrees using the proposed algo-
rithm, while only 9% of the images reached this accuracy
using the FD algorithm. When considering a larger, but still
acceptable, value of 25 degrees one can notice that 87% of
the images were classified within this limit using the pro-
posed algorithm, while only 33% using the FD algorithm.
Possible explanations for this difference are discussed be-
low.

Cropped Images In the following experiment the ability
of the algorithm to detect cropped images was tested. This
type of forgery arises when a region of the original image
contained unwanted data that was removed following acqui-
sition. In this test 120 cropped images were analyzed by the
proposed and FD algorithms, in order to test their ability to
detect cropping and to restore the original image size. The
images were produced automatically based on a set of 30
authentic JPEG compressed images from various cameras.
Each authentic image had 33% eliminated (from the top,
bottom, right or left portions of the image), producing 4 dif-
ferent cropped images. For each image the algorithms cal-
culated the presumed image center and determined the size
and shape of the un-cropped image (see Fig. 20). The size-
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restoration success rate was evaluated using the average-
precision measure (Muller et al. 2001):

(area(Imyyg) N area(Imeqc))

Q)

Coverage =
(area(lmorg) U area(Imeqc))

Figure 23 summarizes the results of both algorithms
on cropped images. The proposed algorithm shows size-
restoration success rate between 70% and 95% for over 89%
of the images, with a total average of 80% success rate. The
FD algorithm shows poorer results with average success rate
of 53%.

Forged Images In another experiment, copy-paste forgery
was tested (see Fig. 17). This forgery involves replacing a
part of the original image by another part taken from the
same or different image. A set of 45 forged images was cre-
ated by replacing 4 patches in each image with patches ex-
tracted from a different image. Each patch size was 4% of
the total image size. This test sets a major challenge to the
algorithm due to the small size of the forged region.

Forgery detection was applied on the images and regions
suspected as forged were marked. For the presented algo-
rithm forged regions were marked using the following set-
tings:

1. PFA events for which the PFA direction formed more
than 90° angle with the calculated center were marked
as suspected forgery.

. Smoothing was applied to the map of weighted distances
from the PFA events to the calculated center of the image
to remove remaining noise.

. Filtered PFA events with a weighted distance greater than
a predefined threshold were marked as suspected forged
regions. This threshold was set to be 0.0014% of the max-
imum penalty factor.

The image was segmented into regions the same size as
the forged patches. An authentic region marked as forged is
considered a false positive while a forged patch marked as
such was considered a true positive. An example is shown in
Fig. 24. An original image with 4 pasted regions is shown,
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Fig.24 Anexample of a synthetically forged image, with 4 patches in-
serted from a different image. The proposed algorithm result is shown:
3 true-positives are marked in green; the false-positive is marked in red
(dashed)

with the regions detected as suspected forgery marked. Note
that a false positive window was detected in the bottom-right
corner due to image noise.

Testing for copy-paste forgery was performed for the FD
and the proposed algorithm. Similar to the proposed algo-
rithm, the FD algorithm evaluated every image region for
forgery. A region was considered forged if the calculated
center was not within 4% of the image center. Results for
the proposed method showed a very low false-positive rate
(6%), accompanied by close to 70% true-positive rate, FD
suffers from over-detecting regions in the image as sus-
pected forgery. Consequently it has a false-positive rate of
89%, with true-positive rate of 96%.

The advantage shown by the proposed algorithm over FD
algorithm may be attributed to two facts: First, the FD algo-

Fig. 25 (Color online) Center
Detection of authentic images.
The yellow dot depicts the

rithm assumes a specific chromatic aberration (LCA) and
attempts to fit a model to the data. However, as discussed
above, most images show aberration effects that arise from
a mixture of sources and a variety of aberrations. The pro-
posed algorithm has the ability to cope with these effects
based on numerous clues collected from the entire image.
Second, the proposed algorithm analyzes the image prior to
the global estimation of the image center, allowing it to base
its calculations only on valid and relevant data (i.e. edges
with significant PFA events). The FD algorithm, on the other
hand, uses the entire image data to calculate the center while
unable to discard the irrelevant sections, leading to reduced
accuracy.

6.3 Additional Examples

This section presents additional images, which demonstrate
the different capabilities of the proposed algorithm.

Authentic Images Figure 25 displays examples of center
detection in authentic images. The calculated center lies near
the geometric image center. The accuracy is evaluated as av-
erage angular error as described in (5). The yellow dot de-
picts the geometric image center and the green star depicts
the calculated image center.

Cropped Images Figure 26 displays examples of crop de-
tection. In each image, the de-saturated region was cropped
from the original image. The yellow dot depicts the original
image center and the green star depicts the calculated im-
age center based solely on the cropped image. The dashed
lines depict the presumed image size and shape, based on
the calculated center. As described in the paper, the accuracy
measure is depicted by the size restoration rate (see (6)).

geometric image center and the
green star depicts the calculated
image center. Average angular
errors are: 5.71 degrees (fop)
and 8.9 degrees (bottom)
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Fig. 26 (Color online) Crop
detection. The yellow dot
depicts the original image center
and the green star depicts the
calculated image center. Size
restoration rates are: 95% (top)
and 91% (bottom)

Fig. 27 (Color online) Forgery
Detection. Left: Original image.
Right: Image was forged by
changing the fop right corner.
The suspected region correctly
detected by the algorithm is
marked in green

Forgery Detection Figure 27 shows an additional exam-
ple of forgery detection. To identify forged regions, the
weighted distance from the calculated center of the image
(as described in (3)) is calculated independently for each
PFA vector. Regions with a large weighted distance are in-
dicated as suspected to be forged and are marked in green.

7 Discussion

Some of the results of the above tests share a common char-
acteristic that indicates the general strengths and weaknesses
of the algorithm. Across all tests, it can be seen that images
with stronger contrast generate better results (see Fig. 30).
This can be seen in Fig. 28 (top) which shows the distrib-
ution of angular error as a function of image contrast mea-
sured as sum of squared gradients in the image. This is not
surprising, as PFA appears more strongly over edges with
greater contrast as described in Sect. 4 (see Fig. 28 bottom).
In addition, as the sharpness of the image decreases, there
are fewer distinct boundaries between objects in the image.
Since this is the grounds on which the PFA is sought (see

Sect. 5), the possible number of PFA events decreases as
well as their reliability, and the analysis may become de-
graded.

Furthermore, the number of PFA events detected in an
image and their distribution within the image affect the re-
sults of the algorithm. The location of PFA events is highly
dependent on image content. In our tests, PFA events ranged
in number between 500 and 12,000. Distribution of PFA
events was found to be uneven. Figure 29 shows 2 exam-
ples of histograms representing the percent of PFA events
found in the given image per angle about the image center
and per eccentricity from the center. Note that PFA distribu-
tion per eccentricity is confounded with PFA strength which
increases with eccentricity and is thus more easily detected.

The weaknesses of the algorithm beyond the statistics
of PFA events in the image, involves the specifics of the
forgery. First, the method is not sensitive to symmetric crop-
ping about the image center as shown in Fig. 31 (left). Ad-
ditionally, insertion of a region extracted from a source im-
age into the same relative location in another image, results
in a forged image that is difficult to detect by the proposed
method. An example is shown in Fig. 31 (right) where sev-
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Fig. 28 Top: Distribution of
angular error as a function of
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eral ducks have been pasted into the image. Most of them,
however were pasted in the same relative locations as in the
source image, and thus were not detected by the algorithm.
However one of the ducks was pasted in a different rela-
tive location in the image and thus produced inconsistencies
in the PFA direction which were detected by the algorithm.
These drawbacks arise from the fact that PFA is based on
local indicators each of which are evaluated relative to the
image center.

8 Conclusions and Further Research
The ease in which digital images are forged today has sig-

nificantly undermined their reliability. This affects not only
the level of trust people are willing to give to images they

@ Springer

Image contrast

come across, but also undermines the usage of photos as le-
gal evidence in the court of law. Two main approaches ex-
ist when attempting to authenticate an image, differentiated
mainly by the requirement to add data to the image. While
methods which add data (e.g. watermarking) give relatively
good results, their main drawback is the need to process the
image upon acquisition, requiring special hardware or soft-
ware in the camera. In this work a new approach was pre-
sented which is able to verify authenticity of images and de-
tect forged regions without additional data. Furthermore, it
uses no additional information, including statistical assump-
tions or camera specifications. The algorithm is based on
features, inherent to the camera acquisition process, namely,
chromatic aberrations due to camera lens and CCD sensors,
which allow detection of forgery given no prior data. The ap-
proach does not assume a specific aberration (such as LCA
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Fig. 29 Distribution of PFA
events. Middle row: Percent of
PFA events found in the images
above, per angle about the
image center. Bottom Row:
Percent of PFA events found in
the images above, as a function
of eccentricity from image
center (percentage relative to
maximum possible distance
from image center)
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in Johnson and Farid 2006) nor does it attempt to model
the complex intermixing of various aberrations in the image.
Rather it relies on the fact that aberration cues have specific
local characteristics that can be easily detected and that these
cues are abundant in the image. Thus, the proposed method
enables coping with a wider variety of aberrations and image
noise.

The algorithm was tested on three groups of images and
was shown to be capable of: (a) testing an image for authen-
ticity, (b) identifying cropped images and restoring the size

O Right image

M Left image

40% 50% 60% 70%
% of distance from center

80% 90% 100%

and shape of the original and (c) handling images that have
been forged by means of copy-paste.

The copy-paste forgery tests (see Sect. 6), have shown
that in addition to detecting and marking suspicious regions
in the image, the process also correctly distinguishes be-
tween the source of the forgery and its copy, if it resides
in the same image.

Further advances in this course of research may include
integration of the algorithm with other methods of its class.
For example, use the proposed algorithm in conjunction

@ Springer
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Fig. 30 Contrast effects. Left:
Image with high contrast and
clear boundaries generated a
good result (average angular
error of 8.47 degrees). Right:
Blurred image with a relatively
small number of objects. The
algorithm performed moderately
well with almost 20 degrees of
average angular error

Fig. 31 (Color online) Left: A cropped image about its center. De-
saturated section was removed, but the algorithm failed to detect the
forgery, since PFA events agreed on the detected center, depicted by
green star. Right: A forged image from www.worth1000.com. Several
ducks were pasted onto the original image in the same relative loca-

with the JPEG related algorithm described in Wang and
Farid (2006). While the proposed method is not dependant
upon specific models, it does suffer from sensitivity to very
low contrast. The second algorithm, while having the disad-
vantage of relying upon models which may not be generic
enough, can better handle images with increased blur.

References

Born, M., & Wolf, E. (1999). Principles of optics, electromagnetic
theory of propagation, interference and diffraction of light. Cam-
bridge: Cambridge University Press.

Cutzu, F,, Hammoud, R., & Leykin, A. (2003). Estimating the photo-
realism of images: distinguishing paintings from photographs. In
Proc. IEEE conference on computer vision and pattern recogni-
tion.

Daly, D. (2001). Microlens arrays. Boca Raton: CRC Press.

Fridrich, J., Soukal, D., & Lukas, J. (2003). Detection of copy-move
forgery in digital images. In Proc. digital forensic research work-
shop, Cleveland, OH.

Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing.
New York: Prentice Hall.

Horn, B. K. P,, & Schunck, B. G. (1981). Determining optical flow.
Artificial Intelligence, 17, 185-203.

Jahne, B. (2005). Digital image processing. Berlin: Springer.

Jenkins, F. A., & White, H. E. (1976). Fundamentals of optics (4th ed.).
New York: Mcgraw-Hill.

@ Springer

tions as in the source image and thus not detected by the algorithm.
However, suspected regions (marked in red) were detected on one of
the ducks since it was reflected prior to pasting into the image and thus
produced inconsistencies in the PFA directions

Johnson, M. K., & Farid, H. (2005). Exposing digital forgeries by de-
tecting inconsistencies in lighting. In Proc. ACM multimedia and
security workshop, New York (pp. 1-9).

Johnson, M. K., & Farid, H. (2006). Exposing digital forgeries through
chromatic aberration. In Proc. ACM multimedia and security
workshop, Geneva, Switzerland.

Keren, D. (2002). Painter identification using local features and naive
Bayes. In Proc. international conference on pattern recognition
(ICPR) (Vol. 11, pp. 474—477). Berlin: Springer.

Lyu, S., & Farid, H. (2005). How realistic is photorealistic? IEEE
Transactions on Signal Processing, 53(2), 845-850.

Lyu, S., Rockmore, D., & Farid, H. (2004). A digital technique for art
authentication. In Proc. National Academy of Sciences.

Muller, H., Muller, W., Squire, D. M., et al. (2001). Performance eval-
uation in content-based image retrieval: overview and proposals.
Pattern Recognition Letters, 22, 593—-601.

Negahdaripour, S., & Horn, B. K. P. (1989). A direct method for locat-
ing the focus of expansion. Computer Vision Graphics and Image
Processing, 46, 303-326.

Ochi, S., Lizuka, T., Sato, Y., Hamasaki, M., Abe, H., Narabu, T.,
Kato, K., & Kagawa, Y. (1997). Charge-coupled device technol-
ogy. Boca Raton: CRC Press.

Parr, R. (2006). Digital photography FAQ. http://www.cs.duke.edu/~
parr/photography/faq.html.

Pedrotti, F. L., Pedrotti, L. M., & Pedrotti, L. S. (2006). Introduction to
optics. Reading: Addison-Wesley.

Popescu, A. C., & Farid, H. (2005). Exposing digital forgeries in
color filter array interpolated images. IEEE Transactions on Sig-
nal Processing, 53(10), 3948-3959.


http://www.cs.duke.edu/~parr/photography/faq.html
http://www.cs.duke.edu/~parr/photography/faq.html

Int J Comput Vis

Ray, S. F. (2002). Applied photographic optics (3rd ed.). Boston: Focal
Press.

Rousseeuw, P. J., & Leroy, A. M. (2003). Robust regression and outlier
detection. New York: Wiley.

Rudolf, K. (1992). Optics in photography. Bellingham: SPIE.

Schroff, F., Criminisi, A., & Zisserman, A. (2008). Object class seg-
mentation using random forests. In Proc. British machine vision
conference.

Smith, W. J. (2007). Modern optical engineering (4th ed.). New York:
McGraw-Hill.

Szummer, M., & Picard, W. (1998). Indoor-outdoor image classifica-
tion. In Proc. IEEE intl workshop on content based access of im-
age and video databases.

van Walree, P. (2009). Photographic optics collection. http://
toothwalker.org/optics.html.

Vapnik, V. N. (1995). The nature of statistical learning theory. Berlin:
Springer.

Wang, W., & Farid, H. (2006). Exposing digital forgeries in video by
detecting double MPEG compression. In Proc. ACM multimedia
and security workshop, Geneva, Switzerland.

Wolfgang, R. B., & Delp, E. J. (1996). A watermark for digital images.
In Proc. IEEE intl conference on image processing.

Wyszecki, G., & Styles, W. S. (1982). Color science: concepts and
methods, quantitative data and formulae (2nd ed.). New York:
Wiley.

@ Springer


http://toothwalker.org/optics.html
http://toothwalker.org/optics.html

	Digital Image Forgery Detection Based on Lens and Sensor Aberration
	Abstract
	Introduction
	Previous Work
	Embedding Additional Data
	Physical Constraints Based Methods
	Statistics Based Methods
	Detection Without Additional Data

	Lens Chromatic Aberration
	Forgery Detection Based on Local Indicators of Chromatic Aberration (PFA)
	Algorithm
	Identifying PFA Events
	Determining PFA Direction
	Determining PFA Strength
	Assigning a Reliability Measure
	Calculating the Location of the Image Center
	Detecting Traces of Forgery

	Test Results
	Examples
	Comparison Testing
	Authenticity Testing
	Cropped Images
	Forged Images

	Additional Examples
	Authentic Images
	Cropped Images
	Forgery Detection


	Discussion
	Conclusions and Further Research
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


