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Whatis a Transformer?

A Transformer is a sequence-to-sequence
model, based on an encoder-decoder structure
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https://jalammar.github.io/illustrated-transformer/




Whatis a Transformer?

Their original and most common use is Machine
Translation. For example, translating a sentence
in Portuguese to a sentence in English:

TRANSFORMER

https://jalammar.github.io/illustrated-transformer/




Whatis a Transformer?

Transformers are deep neural networks, they

replace CNNs and RNNs with a self-attention
mechanism.




Whatis a Transformer?

Transformers are heavily used today in the
domains of natural language processing (NLP)
and computer vision (CV).




Whatis a Transformer?

Transformers were introduced in the paper

“Attention is all you need” by Google Brain in
2017.

The Attention mechanism is known from even
earlier years.




Goals of using a Transformer

Like RNNs, transformers are built o process
sequential data, such as natural language.

Applications of transformers include language
translation and text summarization.




Inputs and Outputs of a Transformer
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Inputs and Outputs of a Transformer
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Why use a Transtormer?

Transformers are very good at modeling
sequential data such as natural language.

Unlike recurrent neural networks (RNNSs),
Transformers can be parallelized. This makes
them much more efficient on GPUs.

Also, unlike RNNs or CNNs, Transformers are
able to capture long-range dependencies in
the data.




Why use Transformers?

The Transformer also analyzes the relations

between all the input's elements (tokens) to
each other.
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Self-Attention in the Transformer
Self-attention is an important component of
Transformers. In high-level, it relates different
positions of a single sequence, in order to

compute a representation of that sequence:
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Components of a Transformer
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What is an Embedding?

An embedding is a low-dimensional
representation which can be used to describe
different objects or elements.

For example, if you have 5 words in your
vocabulary, we can create an embedding for it in
two steps:

“Green” ->[1,0,0,0,0] -> [0.3, 1.5].
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What is an Embedding?
“Green” ->[1,0,0,0,0] -> [0.3, 1.5].

The original 5-dimensional representation was
used to distinguish each of the 5 words in the
vocabulary in a simple wau:

11.0,0,0,0], [0.1.0,0,0], ..., [0,0,0,0.1].

The vector [0.3,1.5] is the Embedding of the first
word, “Green”, and it is 2-dimensional and more
compact. We can convert each of the 5 words
into a different 2-dimensional vector.
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Embedder

An Embedder converts positive integers to
dense vectors of fixed size:

Word strings -> tokenized to integers -> encoded
to embeddings.

“Green”, “Apple”] -> [4, 20] ->
(0.25,0.35,0.12), (0.22,0.34,013) ]
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Why use Embeddings?

An embedding can capture some of the
semantics of the input, by placing semantically
similarinputs close together in the embedding-
space.

An embedding can be learned and reused
Qacross models.
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Why use Embeddings?

Example of representing semantically-similar
words, as ‘similar vectors’.

‘Apple’ ->
‘Table’ ->

1.0, 2.0], ‘Red’ -> [11, 2.3],

71.0,1.2]

We use the dot-product to measure the
similarity between numerical vectors.

The dot-product between the embeddings of
‘Apple’ and ‘Red” would be larger compared to
the dot-product between ‘Apple’ and ‘Table’.
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Why use Embeddings?

Instead of specifying the weights of the
embedder layer manually, they are trainable
and learned by the model during training, in the
same way a model learns weights for a dense
layer.
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What is Positional Encoding?

Positional encoding describes the location or
position of an element in a sequence, such that
each position is assigned a unigue vector
representation.

't is better than “using a single number to
represent a position”, because even for large
position indexes, the sine and cosine functions
have values in a normalized range [-1, 1].

This keeps the values of the positional encoding
in a limited range, which in general improves ML
training (same as in Batch Normalization).




What is Positional Encoding?

Transformers use a smart positional encoding

scheme, where each position/index is mapped to
a different vector:

Sentence: [“Green”, “Apple”] ->

Positions Indexes: [1, 2] ->

Positional Encodings: [(0.1, 0.2, 0.3, 0.2, 0.1),
(01,0.4,01, 04, 0.1D]




Why use Positional Encoding?

The attention layers used throughout the model
see their input as a set of vectors, with no order.

the order is encoded inside the vector using a
positional-encoding.

Since the model doesn't contain any recurrent or
convolutional layers. It needs some way to identify
word order, otherwise it would see the input
sequence as a bag of words instance:

“how are you”, “how you are”, “you how are”, are
indistinguishable.




Why use Positional Encoding?

The Positional-Encoding has the same dimension
as the input-embedding.

't is summed together with the embedding and
passed to the next layer:

Add & Norm

Masked
Multi-Head
Attention

Positional
() £
Encoding

Input Output
Embedding Embedding

Inputs Outputs
(shifted right)

25




How Positional Encoding Works?

PE (s 5i) = sin(pos/10000%/ et

PE052i+1) = cos(pos/ 100002/ dmode )

*  pos is the word’s position in the sentence.

*  d-mode/ is a constant representing the
number of features in the embedding.

* /is the current feature id.

Note that the PE is a matrix. 26




How Positional Encoding Works?

PE(pOS,zi) = Sin(pos/100002i/dmodel )

PE(p05,2z+1) — COS(p08/1000027'/dmod(l )

Examples of positional encodings for nearby words:
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i (feature id)




How Positional Encoding Works?

PE(pos,2z) — Sin(pos/100002i/dmodel )

PE(p05,2z+1) — COS(p08/1000027'/dmod(l )

Examples of positional encodings for nearby words:

28




How Positional Encoding Works?

PE(pos,2z) — Sin(pos/100002i/dmodel )

PE(p05,2z+1) — COS(p08/1000027'/dmod(l )

Examples of positional encodings for distant words:
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Base Attention Block
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Why use Base Attention?

Unlike RNNs or CNNs, Transformers use Base
Attention to capture diistant or long-range
dependencies in the data, between distant
positions in the input sequences.

Thus, longer “connections” can be learned. In
contrast, an RNN can more easily “forget”
distant elements:
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What is Base Attention?

“The Base Attention mechanism is similar to @
dictionary lookup - A fuzzy, differentiable,
vectorized dictionary lookup”.

To illustrate this, let’s look at a standard
dictionary structure:

d = {'color”. 'blue’, 'age’”. 22, 'type". 'pickup'}

we’'ll call the item that we search a “query”.
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What is Base Attention?

d = {'color”. ‘red’, 'age". 27/, 'type". ‘truck’}

When the query is the word: ‘type’, the dictionary
will return d[‘type’] = ‘truck’

‘truck’ would be called value in this case, and
type’ would also be its matching key.
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What is Base Attention?

d = {'color”. ‘red’, 'age". 27/, 'type". ‘truck’}
d[‘type’] = ‘truck’

The important point is that here, the query either
has a matching key or it doesn't.

However, a fuzzy dictionary is one where the
keys don’t have to match perfectly.
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What is Base Attention?

Example of a fuzzy dictionary:

d = {'color”: ‘red’, 'age". 27/, 'type". ‘truck’}
d[‘species’]| = ‘truck’

The word species is different than the word fype,
but for a fuzzy dictionary, their similarity is close
enough, and it’ll return the matching value
(‘truck)).
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What is Base Attention?

A Base Attention Layer performs a fuzzy
lookup, but it's not just looking for the best
key, it combines the values based on how

well the query matches each key.

For example:

d = {table" 1, ‘apple’. 20, ‘grapes’ 22}
d["food’] =

(similarity(food, table) *1 +
similarity(food, apple) * 20 +
similarity(food, grapes) * 22)

36




What is Base Attention?

d = {table" 1, ‘apple’. 20, ‘grapes’ 22}

d['food’] =

(similarity(food, table) * 1 +
similarity(food, apple) * 20 +
similarity(food, grapes) * 22)
=(0.05*1+045*20+045*22) =
18.95

The above operation is called a weighted-sum.
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What is Base Attention?

d = {table" 1, ‘apple’. 20, ‘grapes’ 22}
d['food™] =18.95

We get that the value of d[food’] is 18.95, which
is closer (more similar) to the values of ‘apple’

(20) and ‘grapes’ (22), than to the value of
‘table’ (1).

This is how fuzzy lookup works, and how the
Base Attention works.
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Base Attention Block

The Base Attention Block performs a similar
operation to the dictionary we just described.

However here we replace with dictionary with
the Keys and Values matrices (K and V).

The queries from before, would be replaced by
the Queries matrix (Q).

QKT

Attention(Q), K, V') = softmax( )\

Vi
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Base Attention Block

Each line in Q represents a separate query.
Each line in K represents a separate key.
Each line in v represents a separate value.

For to the key in row 7" of K, we find the
corresponding value in row 7 of V.

QKT

Attention(Q), K, V') = softmax( )\

Vi
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What is Base Attention?

The operations performed by the Attention
function are:

1. Finding the correlation between each query and
all the keys in K using dot-proaducts.

2. Creating a new representation for the query,
based on a weighted-sum of the valuves.

(the weighted-sum is calculated using the matrix
multiplication and will be shown in next slides)

QKT

Attention(Q), K, V') = softmax( )V

Vv dp
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The similarity-scores s(i,j)) in the third line,
are calculated using vector multiplication
between Q’s rows and V’s columns:

Attention(Q, K, V) = softmax
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've marked the similarity between query-i
and key-j as s(i,j):

Attention(Q, K, V) = softmax

1
sqrt(dy)

softmax

\
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’ll use an example to clarify:

511 51,m
Assume for example: | :

Sn,l e Sn,m
then :

Attention(Q, K, V) =

We see that every row of the Attention’s output, is
a weighted-mean of all the values. The weighting
is done using the similarity scores from S.




’ll use an example to clarify:

511 51,m
Assume for example: | :

Sn,l e Sn,m
then :

Attention(Q, K, V) =

Every row of the Attention’s output represents “o
combination of values, based on the similarity of
the values’ keys to the query”.




’ll use an example to clarify:

511 51,m
Assume for example: | :

Sn1 """ Sum

then :

Attention(Q, K, V) = [

The first line in S refers to the first query in Q.
We see that the key which is the “most similar”
to this query is the second keu.




’ll use an example to clarify:

511 51,m
Assume for example: | :

Sn1 """ Sum

then :

Attention(Q, K, V) = [

Thus, we expect that the first line in the output
should be very similar to the second value!




Details of Base Attention

Occurrences of Attention in a Transformer:

Attention is repeated many times in the
Transformer inside different cormponents. The main
difference in every instance of this structure is the

Queries/Keys/Values which are passed to it.
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Details of Base Attention

Occurrences of Attention in a Transformer:

For example, in the Encoder layer

Q=K=V=(input sequence).

However, in the decoder, Q can be different than K
and V.
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Multi-Head Attention

A multi-head attention combines multiple Base
Attention Blocks:
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Multi-Head Attention

Instead of performing a single attention
operation, the paper’s authors found it beneficial

to linearly project the queries, keys and values
‘N’ times, with different, learned linear

projections:
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Multi-Head Attention

Meaning, they created multiple ‘heads’, each
nead performs an Attention operation, called o
"scaled dot product attention®.

Each head has different/separate trainable
weights, with different, learned linear
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Multi-Head Attention

On each of these projected versions of (Q,K,V),
they perform the Attention function in parallel,

yielding the output values.

This creates multiple representations of the
embeddings.

Scaled Dot-Product Attention Multi-Head Attention

Scaled Dot-Product |
Attention 4
y- | k .
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Multi-Head Attention

MultiHead(Q, K, V') = Concat(heady, ..., heady, )W
where head; = Attonti()n(QU}Q. I\'TT',iK. \\-"TT}'V)

Where the projections are parameter matrices U;-Q € Rnoserxdr T K ¢ RidmosaXd 7V ¢ RemoserXdo
and WO g RhdvXdmoda
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Global Attention Layer

This layer is responsible for processing the context
sequence, and propagating information along its
length.
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Global Attention Layer

Since the context sequence is known while the
translation is being generated, information is allow
to flow in both directions of this sequence.
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Global Attention Layer

The input to this layer are the initial
representations/embeddings of all words in the
original sentence.

Then, using self-attention it aggregates
information from all of the other words,
generating a new representation-per-word,
informed by the entire context.
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Global Attention Layer

This layer lets every sequence element directly
access every other sequence element, with only o

few operations:
HERERN
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Attention
weights
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Global Attention Layer
This layer has weights matrices w2, wk wY

which are updated by the training process.

The more we train, the better our representations
will be

MultiHead(Q, K, V) = Concat(head;. ..., head, )W ¢

where head; = Attonticm(QU}Q. KU;K . ‘-"’rﬂ;v)
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Causal Attention Layer

Transformers are an "autoregressive” model -
They generate the text one token at a time and
feed that output back to the input.
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Causal Attention Layer

To make this efficient, this layer ensures that the
output for each sequence element only depends
on the previous sequence elements, i.e the
models are causal
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Feed
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Causal Attention Layer

The inputs to this layer is the translated sentence
(in our example, English), passed to Q,K,V.
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Causal Attention Layer

To build a causal self attention layer, you need
to use an appropriate mask:
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Causal Attention Layer

This layer’s weights matrices w*, wX, wY are
updated by the training procedure, so that they'll

transform the English sequence encoded in Q,K,V
into a better representation of itselr:

MultiHead(Q, K, V) = Concat(head;, ..., heady, )W

where head; = Attollti(_nl((ﬂn@. I\r”T,iK. X-v---’IITiV)
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Cross Attention Layer

This layer connects the encoder and decoder.
This layer is the most straight-forward use of
attention in this model.
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Cross Attention Layer

The output of the Causal Attention layer below,
IS passed as the Queries to this layer.
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Cross Attention Layer

The output of the encoder layer to the left, is
passed as the Keys and Values to this layer.
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Cross Attention Layer

Each query can see all the key/value pairs in the
context.

Attention
weights
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Cross Attention Layer

The w2 wX w) matrices in this layer are
trained to transform the Portuguese context
sentence (encoded in K and V), into @
representation which is more usefu/to the
queries in Q.
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Holistic View

The flow of word
embeddings from the
original sentence in

, IS
combined with the
word-embeddings of
the translated ,
sentence in English. (e | [k

Attgnhtion
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Holistic View

The Portuguese
embeddings provide the
context to the English
words translated so far,
and allow them to “see
the future” by looking at
the entire sentence’s ,
context. (e | ([

Attgnhtion
It




Holistic View

Now we have enough
“data” to predict the
next English word in
the sentence.
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Holistic View

In the next stage, the
Feed Forward layer and
the Linear layer,
transform and extract
from the output of the
Decoder, the next word
oredicted in English.
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he Encoder Layer

Each Encoder-Layer
contains a Global Self
Attention and Feed
Forward layer.
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The Encoder

The encoder consists of Outpu

Probabilities

a Positional-Embedding
layer at the input and A
stack of Encoder-Layers.
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The Encoder
The Encoder contains multiple Encoder-Layers:
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The Decoder Layer

The Decoder-Layer has
more components, it
contains a Causal Self
Attention, a Cross
Attention, and a Feed
Forward layer.
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The Decoder

The Decoder contains o ouput
Positional-Embedding

and a stack of Decoder-
Layers.
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The Transformer

The Transformer contains
an Encoder, Decoder and
add a final linear dense
layer which converts the
Decoder’s output into
English token-probabilities
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The Transformer

Example for using a “token

Probabilities

probabilities” vector:

T=[0.01,0.01,0.01,0.96,0.01] ->
Argmax(T) =4 ->
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The Transformer

The output of the entire
Transformer is the part

of the English sentence

which was translated so
far.

Only the last word in the
sentence is new and was
added in the last step.
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The Transformer

Each word in a sentence
IS represented by a
vector of probabilities of
all possible words in the
English vocabulary.
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The Transformer

Output

The total output tensor’s
ShOpe IS thUS: Pr(;:::::(q
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The LosS

In the basic Transformer implementation, they
used the cross-entropy loss function:

y true [ihy 220
y pred = [[0.1, ©.9, 0], [©.05, 0.8, ©.15]]

loss tf.keras.losses.SparseCategoricalCrossentropy()
loss(y _true,y pred)

The cross-entropy loss between ‘y” and ‘y-hat’ is:
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he Feed-Forward Layer

The network contains two linear dense
layers with a ReLU activation in-between,
as well as a dropout layer.
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The Add & Norm Layer

The Add & Norm Layers are included to improve
the training’s efficiency. The residual connection
orovides a direct path for the gradient. It also
ensures that vectors are updated by the
attention layers, instead of rep/aced.
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The Add & Norm Layer

The normalization maintains a reasonable size
and scale for the outputs of each layer.
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Hyperparameters

The base model described in the original
Transformer paper used:

num_layers=6, d,,,401=512, d¢=2048, num_heads=8.

In the code I've used, most hyperparameters were
reduced to increase the speed:

num_layers=4, d,401=128, df=512, num_heads=8.




Training

't took me 65 minutes to train this Transformer
model using 1 GPU, over a dataset of
in Portuguese and English:
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Disadvantages of Transformers

For a dataset of time-series sequences, the
output for each step is calculated from the entire
history, although it could be much more efficient
to use the use a sliding window together with the
hidden-state.




Results

After training, the attention-weights of the Cross
Attention layer were plotted:
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Results
Attention-weights of multiple ‘heads’ from the

Multi-Head Attention:
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Dataset

In the code I've used, the dataset was
derived from a set of TED talks transcripts,
for comparing similar language-pairs.

Under the Open Translation project these
TED talks transcripts are available for
more than 2400 talks in 109 languages.

This dataset has 53K examples of
sentences in multiple languages.




Dataset

In the original paper they trained with the
standard “WMT 2014 English-German”
dataset, consisting of about 4.5 million

sentence pdairs.

Sentences were encoded into a
vocabulary of about 37000 tokens.




Applications in Computer Vision

A major application of Transformers in Computer
Vision is ViT - Vision Transformer:

Vision Transformer (ViT)

Patch + Position
Embedding

* Extra learnable
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What is a Vision Transformer?

The ViT (Vision Transformer) is a model for
image classification, that is based on ©
Transformer-like architecture, but using patches
of the image instead of words.

't is targeted at various other vision-processing
tasks such as Object Detection and Image
Segmentation.




What is a Vision Transformer?

ViT represents an input image as a sequence of
image patches, similar to the sequence of word
used in a Transformer:
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What is a Vision Transformer?

The patches are being flattened from a 2D matrix
to a 1D vector, similar to the embeddings shown
in the original Transformer:
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What is a Vision Transformer?

Then, these 1D vectors (the flattened patches) are
being fed to a 7ransformer’s Encoder.

Transformer Encoder
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What is a Vision Transformer?

The Encoder “processes” these flattened patches
using its Attention mechanism, and extracts
“interesting correlations” between the patches:

Transformer Encoder
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What is a Vision Transformer?

Finally, the Encoder outputs a new representation
of the image, which is passed to a standard fully-
connected layer (MLP head) and outputted as o
“class probabilities” vector:

Transformer Encoder




Why use a Vision Transtformer?

ViT demonstrates excellent performance when
trained on enough data. It outperforms a state-
of-the-art CNN of the same size, with four times
fewer computational resources.

ViT was found to be more efficient than CNNs in
terms of utilizing any number of GPU resources.

However, ViT appears to only outperform CNNSs

in terms of accuracy, when the dataset is huge
(>100M images).




Thank You




