
Transformers

Chen Shapira

What is a Transformer?

A Transformer is a sequence-to-sequence
model, based on an encoder-decoder structure

https://jalammar.github.io/illustrated-transformer/

What is a Transformer?

Their original and most common use is Machine
Translation. For example, translating a sentence
in Portuguese to a sentence in English:

https://jalammar.github.io/illustrated-transformer/

What is a Transformer?

Transformers are deep neural networks, they
replace CNNs and RNNs with a self-attention
mechanism.

What is a Transformer?

Transformers are heavily used today in the
domains of natural language processing (NLP)
and computer vision (CV).

What is a Transformer?

Transformers were introduced in the paper
“Attention is all you need” by Google Brain in
2017.

The Attention mechanism is known from even
earlier years.

Goals of using a Transformer

Like RNNs, transformers are built to process
sequential data, such as natural language.

Applications of transformers include language
translation and text summarization.

Inputs and Outputs of a Transformer

from the “Attention is all you need” paper

Inputs: a sequence of
elements such as a

sentence. For example

“This apple is red”

Inputs and Outputs of a Transformer
Outputs: a different

sequence of elements
such as a translated

sentence. For example

“Dieser Apfel ist rot”

At each inference step,
a single new word is

predicted

Why use a Transformer?

Transformers are very good at modeling
sequential data such as natural language.

Unlike recurrent neural networks (RNNs),
Transformers can be parallelized. This makes
them much more efficient on GPUs.

Also, unlike RNNs or CNNs, Transformers are
able to capture long-range dependencies in
the data.

Why use Transformers?

11

The Transformer also analyzes the relations
between all the input’s elements (tokens) to
each other.

Self-Attention in the Transformer
Self-attention is an important component of
Transformers. In high-level, it relates different
positions of a single sequence, in order to
compute a representation of that sequence:

https://jalammar.github.io/illustrated-transformer/

Components of a Transformer

• Embedder

• Positional Encoder

• Encoder:

Attention Layer

Feed-Forward Layer

Add & Norm Layer

• Decoder:

Attention Layer

Feed-Forward Layer

Add & Norm Layer

• Linear & Softmax
Output Layer

Embeddings

14

from www.tensorflow.org

What is an Embedding?

15

An embedding is a low-dimensional
representation which can be used to describe
different objects or elements.

For example, if you have 5 words in your
vocabulary, we can create an embedding for it in
two steps:

“Green” -> [1,0,0,0,0] -> [0.3, 1.5].

What is an Embedding?

16

“Green” -> [1,0,0,0,0] -> [0.3, 1.5].

The original 5-dimensional representation was
used to distinguish each of the 5 words in the
vocabulary in a simple way:

[1,0,0,0,0], [0,1,0,0,0], …, [0,0,0,0,1].

The vector [0.3, 1.5] is the Embedding of the first
word, “Green”, and it is 2-dimensional and more
compact. We can convert each of the 5 words
into a different 2-dimensional vector.

Embedder

17

An Embedder converts positive integers to
dense vectors of fixed size:

Word strings -> tokenized to integers -> encoded
to embeddings.

[“Green”, “Apple”] -> [4, 20] ->

[(0.25,0.35,0.12), (0.22,0.34,0.13)]

Why use Embeddings?

18

An embedding can capture some of the
semantics of the input, by placing semantically
similar inputs close together in the embedding-
space.

An embedding can be learned and reused
across models.

Why use Embeddings?

19

Example of representing semantically-similar
words, as ‘similar vectors’:

‘Apple’ -> [1.0, 2.0] , ‘Red’ -> [1.1, 2.3] ,

‘Table’ -> [-1.0, 1.2]

We use the dot-product to measure the
similarity between numerical vectors.

The dot-product between the embeddings of
‘Apple’ and ‘Red’ would be larger compared to
the dot-product between ‘Apple’ and ‘Table’.

Why use Embeddings?

20

Instead of specifying the weights of the
embedder layer manually, they are trainable
and learned by the model during training, in the
same way a model learns weights for a dense
layer.

Positional Encoding

What is Positional Encoding?

Positional encoding describes the location or
position of an element in a sequence, such that
each position is assigned a unique vector
representation.

It is better than “using a single number to
represent a position”, because even for large
position indexes, the sine and cosine functions
have values in a normalized range [-1, 1].

This keeps the values of the positional encoding
in a limited range, which in general improves ML
training (same as in Batch Normalization).

What is Positional Encoding?

Transformers use a smart positional encoding
scheme, where each position/index is mapped to
a different vector:

Sentence: [“Green”, “Apple”] ->

Positions Indexes: [1, 2] ->

Positional Encodings: [(0.1, 0.2, 0.3, 0.2, 0.1),

(0.1, 0.4, 0.1, 0.4, 0.1)]

Why use Positional Encoding?

The attention layers used throughout the model
see their input as a set of vectors, with no order.

the order is encoded inside the vector using a
positional-encoding.

Since the model doesn't contain any recurrent or
convolutional layers. It needs some way to identify
word order, otherwise it would see the input
sequence as a bag of words instance:

“how are you”, “how you are”, “you how are”, are
indistinguishable.

25

The Positional-Encoding has the same dimension
as the input-embedding.

It is summed together with the embedding and
passed to the next layer:

Why use Positional Encoding?

How Positional Encoding Works?

26

• pos is the word’s position in the sentence.

• d-model is a constant representing the
number of features in the embedding.

• i is the current feature id.

Note that the PE is a matrix.

How Positional Encoding Works?

27

Examples of positional encodings for nearby words:

pos=1

pos=2

pos=3

i (feature id)

PE

How Positional Encoding Works?

28

Examples of positional encodings for nearby words:

pos=9

pos=10

pos=11
i (feature id)

PE

How Positional Encoding Works?

29

Examples of positional encodings for distant words:

pos=1

pos=5

pos=20
i (feature id)

PE

Base Attention Block

30

Why use Base Attention?

31

Unlike RNNs or CNNs, Transformers use Base
Attention to capture distant or long-range
dependencies in the data, between distant
positions in the input sequences.

Thus, longer “connections” can be learned. In
contrast, an RNN can more easily “forget”
distant elements:

What is Base Attention?

32

“The Base Attention mechanism is similar to a
dictionary lookup - A fuzzy, differentiable,
vectorized dictionary lookup”.

To illustrate this, let’s look at a standard
dictionary structure:

d = {'color': 'blue', 'age': 22, 'type': 'pickup'}

We’ll call the item that we search a “query”.\

What is Base Attention?

33

d = {'color': ‘red', 'age': 27, 'type': ‘truck'}

When the query is the word: ‘type’, the dictionary
will return d[‘type’] = ‘truck’

‘truck’ would be called value in this case, and
‘type’ would also be its matching key.

\

What is Base Attention?

34

d = {'color': ‘red', 'age': 27, 'type': ‘truck'}

d[‘type’] = ‘truck’

The important point is that here, the query either
has a matching key or it doesn't.

However, a fuzzy dictionary is one where the
keys don't have to match perfectly.

What is Base Attention?

35

Example of a fuzzy dictionary:

d = {'color': ‘red', 'age': 27, 'type': ‘truck'}

d[‘species’] = ‘truck’

The word species is different than the word type,
but for a fuzzy dictionary, their similarity is close
enough, and it’ll return the matching value
(‘truck’).

What is Base Attention?

36

A Base Attention Layer performs a fuzzy
lookup, but it's not just looking for the best
key, it combines the values based on how
well the query matches each key.

For example:

d = {‘table': 1, ‘apple': 20, ‘grapes’: 22}

d[‘food’] =

(similarity(food, table) * 1 +

similarity(food, apple) * 20 +

similarity(food, grapes) * 22)

What is Base Attention?

37

d = {‘table': 1, ‘apple': 20, ‘grapes’: 22}

d[‘food’] =

(similarity(food, table) * 1 +

similarity(food, apple) * 20 +

similarity(food, grapes) * 22)

= (0.05 * 1 + 0.45 * 20 + 0.45 * 22) =

18.95

The above operation is called a weighted-sum.

What is Base Attention?

38

d = {‘table': 1, ‘apple': 20, ‘grapes’: 22}

d[‘food’] = 18.95

We get that the value of d[‘food’] is 18.95, which
is closer (more similar) to the values of ‘apple’
(20) and ‘grapes’ (22), than to the value of
‘table’ (1).

This is how fuzzy lookup works, and how the
Base Attention works.

Base Attention Block

39

The Base Attention Block performs a similar
operation to the dictionary we just described.

However here we replace with dictionary with
the Keys and Values matrices (K and V).

The queries from before, would be replaced by
the Queries matrix (Q).

Base Attention Block

40

Each line in Q represents a separate query.

Each line in K represents a separate key.

Each line in v represents a separate value.

For to the key in row ‘i’ of K, we find the
corresponding value in row ‘i’ of V.

What is Base Attention?

41

The operations performed by the Attention
function are:

1. Finding the correlation between each query and
all the keys in K using dot-products.

2. Creating a new representation for the query,
based on a weighted-sum of the values.

(the weighted-sum is calculated using the matrix
multiplication and will be shown in next slides)

Details of Base Attention

42

The similarity-scores s(i,j) in the third line,
are calculated using vector multiplication
between Q’s rows and V’s columns:

Details of Base Attention

43

I’ve marked the similarity between query-i
and key-j as s(i,j):

Details of Base Attention

44

I’ll use an example to clarify:

We see that every row of the Attention’s output, is
a weighted-mean of all the values. The weighting
is done using the similarity scores from S.

Details of Base Attention

45

I’ll use an example to clarify:

Every row of the Attention’s output represents “a
combination of values, based on the similarity of
the values’ keys to the query”.

Details of Base Attention

46

I’ll use an example to clarify:

The first line in S refers to the first query in Q.
We see that the key which is the “most similar”

to this query is the second key.

Details of Base Attention

47

I’ll use an example to clarify:

Thus, we expect that the first line in the output
should be very similar to the second value!

Details of Base Attention

48

Occurrences of Attention in a Transformer:

Attention is repeated many times in the
Transformer inside different components. The main
difference in every instance of this structure is the
Queries/Keys/Values which are passed to it.

Details of Base Attention

49

Occurrences of Attention in a Transformer:

For example, in the Encoder layer

Q=K=V=(input sequence).

However, in the decoder, Q can be different than K
and V.

Multi-Head Attention

50

A multi-head attention combines multiple Base
Attention Blocks:

Multi-Head Attention

Instead of performing a single attention
operation, the paper’s authors found it beneficial
to linearly project the queries, keys and values
‘h’ times, with different, learned linear
projections:

Multi-Head Attention

52

Meaning, they created multiple ‘heads’, each
head performs an Attention operation, called a
"scaled dot product attention“.

Each head has different/separate trainable
weights, with different, learned linear
projections.

Multi-Head Attention

53

On each of these projected versions of (Q,K,V),
they perform the Attention function in parallel,
yielding the output values.

This creates multiple representations of the
embeddings.

54

Multi-Head Attention

Global Attention Layer

55

This layer is responsible for processing the context
sequence, and propagating information along its
length.

Global Attention Layer

56

Since the context sequence is known while the
translation is being generated, information is allowe
to flow in both directions of this sequence.

57

The input to this layer are the initial
representations/embeddings of all words in the
original sentence.

Then, using self-attention it aggregates
information from all of the other words,
generating a new representation-per-word,
informed by the entire context.

Global Attention Layer

58

This layer lets every sequence element directly
access every other sequence element, with only a
few operations:

Global Attention Layer

59

This layer has weights matrices

which are updated by the training process.

The more we train, the better our representations
will be :

Global Attention Layer

Causal Attention Layer

60

Transformers are an "autoregressive" model -
They generate the text one token at a time and
feed that output back to the input.

Causal Attention Layer

61

To make this efficient, this layer ensures that the
output for each sequence element only depends
on the previous sequence elements, i.e the
models are causal.

62

The inputs to this layer is the translated sentence
(in our example, English), passed to Q,K,V.

Causal Attention Layer

63

To build a causal self attention layer, you need
to use an appropriate mask:

Causal Attention Layer

64

This layer’s weights matrices are
updated by the training procedure, so that they’ll
transform the English sequence encoded in Q,K,V
into a better representation of itself:

Causal Attention Layer

Cross Attention Layer

65

This layer connects the encoder and decoder.
This layer is the most straight-forward use of
attention in this model.

Cross Attention Layer

66

The output of the Causal Attention layer below,
is passed as the Queries to this layer.

Cross Attention Layer

67

The output of the encoder layer to the left, is
passed as the Keys and Values to this layer.

68

Each query can see all the key/value pairs in the
context.

Cross Attention Layer

The matrices in this layer are
trained to transform the Portuguese context
sentence (encoded in K and V), into a
representation which is more useful to the
queries in Q.

Cross Attention Layer

Holistic View

The flow of word
embeddings from the
original sentence in
Portuguese, is
combined with the
word-embeddings of
the translated
sentence in English.

Holistic View

The Portuguese
embeddings provide the
context to the English
words translated so far,
and allow them to “see
the future” by looking at
the entire sentence’s
context.

Holistic View

Now we have enough
“data” to predict the
next English word in
the sentence.

In the next stage, the
Feed Forward layer and
the Linear layer,
transform and extract
from the output of the
Decoder, the next word
predicted in English.

Holistic View

The Encoder Layer

Each Encoder-Layer
contains a Global Self
Attention and Feed
Forward layer.

The Encoder

The encoder consists of
a Positional-Embedding
layer at the input and A
stack of Encoder-Layers.

The Encoder

The Encoder contains multiple Encoder-Layers:

The Decoder Layer

77

The Decoder-Layer has
more components, it
contains a Causal Self
Attention, a Cross
Attention, and a Feed
Forward layer.

The Decoder

78

The Decoder contains a
Positional-Embedding
and a stack of Decoder-
Layers.

The Transformer

79

The Transformer contains
an Encoder, Decoder and
add a final linear dense
layer which converts the
Decoder’s output into
English token-probabilities

The Transformer

80

Example for using a “token
probabilities” vector:

T=[0.01,0.01,0.01,0.96,0.01] ->

Argmax(T) = 4 ->

(Meaning the 4th word in
our English vocabulary is
the next predicted word)

The Transformer

81

The output of the entire
Transformer is the part
of the English sentence
which was translated so
far.

Only the last word in the
sentence is new and was
added in the last step.

The Transformer

82

Each word in a sentence
is represented by a
vector of probabilities of
all possible words in the
English vocabulary.

The Transformer

83

The total output tensor’s
shape is thus:

[Length (tokens number)
of the English sentence,

Number of words in the
English vocabulary]

The Loss

84

In the basic Transformer implementation, they
used the cross-entropy loss function:

The cross-entropy loss between ‘y’ and ‘y-hat’ is:

The Feed-Forward Layer

The network contains two linear dense
layers with a ReLU activation in-between,
as well as a dropout layer.

The Add & Norm Layer

The Add & Norm Layers are included to improve
the training’s efficiency. The residual connection
provides a direct path for the gradient. It also
ensures that vectors are updated by the
attention layers, instead of replaced.

The Add & Norm Layer

The normalization maintains a reasonable size
and scale for the outputs of each layer.

Hyperparameters

The base model described in the original
Transformer paper used:

In the code I’ve used, most hyperparameters were
reduced to increase the speed:

Training

It took me 65 minutes to train this Transformer
model using 1 GPU, over a dataset of 53,000
sentences in Portuguese and English:

Training

Disadvantages of Transformers

For a dataset of time-series sequences, the
output for each step is calculated from the entire
history, although it could be much more efficient
to use the use a sliding window together with the
hidden-state.

Results

After training, the attention-weights of the Cross
Attention layer were plotted:

www.tensorflow.org

Results
Attention-weights of multiple ‘heads’ from the
Multi-Head Attention:

www.tensorflow.org

Dataset

In the code I’ve used, the dataset was
derived from a set of TED talks transcripts,
for comparing similar language-pairs.

Under the Open Translation project these
TED talks transcripts are available for
more than 2400 talks in 109 languages.

This dataset has 53K examples of
sentences in multiple languages.

Dataset

In the original paper they trained with the
standard “WMT 2014 English-German”

dataset, consisting of about 4.5 million
sentence pairs.

Sentences were encoded into a
vocabulary of about 37000 tokens.

Applications in Computer Vision

A major application of Transformers in Computer
Vision is ViT - Vision Transformer:

https://paperswithcode.com/method/vision-transformer

What is a Vision Transformer?

The ViT (Vision Transformer) is a model for
image classification, that is based on a
Transformer-like architecture, but using patches
of the image instead of words.

It is targeted at various other vision-processing
tasks such as Object Detection and Image
Segmentation.

What is a Vision Transformer?

ViT represents an input image as a sequence of
image patches, similar to the sequence of word
used in a Transformer:

What is a Vision Transformer?

The patches are being flattened from a 2D matrix
to a 1D vector, similar to the embeddings shown
in the original Transformer:

What is a Vision Transformer?

Then, these 1D vectors (the flattened patches) are
being fed to a Transformer’s Encoder:

What is a Vision Transformer?

The Encoder “processes” these flattened patches
using its Attention mechanism, and extracts
“interesting correlations” between the patches:

What is a Vision Transformer?

Finally, the Encoder outputs a new representation
of the image, which is passed to a standard fully-
connected layer (MLP head) and outputted as a
“class probabilities” vector:

Why use a Vision Transformer?

ViT demonstrates excellent performance when
trained on enough data. It outperforms a state-
of-the-art CNN of the same size, with four times
fewer computational resources.

ViT was found to be more efficient than CNNs in
terms of utilizing any number of GPU resources.

However, ViT appears to only outperform CNNs
in terms of accuracy, when the dataset is huge
(>100M images).

Thank You

