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What is a Transformer?

A Transformer is a sequence-to-sequence 
model, based on an encoder-decoder structure

https://jalammar.github.io/illustrated-transformer/



What is a Transformer?

Their original and most common use is Machine 
Translation. For example, translating a sentence 
in Portuguese to a sentence in English:

https://jalammar.github.io/illustrated-transformer/



What is a Transformer?

Transformers are deep neural networks, they 
replace CNNs and RNNs with a self-attention 
mechanism.



What is a Transformer?

Transformers are heavily used today in the 
domains of natural language processing (NLP) 
and computer vision (CV).



What is a Transformer?

Transformers were introduced in the paper 
“Attention is all you need” by Google Brain in 
2017.

The Attention mechanism is known from even 
earlier years. 



Goals of using a Transformer

Like RNNs, transformers are built to process 
sequential data, such as natural language.

Applications of transformers include language 
translation and text summarization.



Inputs and Outputs of a Transformer

from the “Attention is all you need” paper

Inputs: a sequence of 
elements such as a 

sentence. For example

“This apple is red”



Inputs and Outputs of a Transformer
Outputs: a different

sequence of elements 
such as a translated 

sentence. For example

“Dieser Apfel ist rot”

At each inference step, 
a single new word is 

predicted



Why use a Transformer?

Transformers are very good at modeling 
sequential data such as natural language.

Unlike recurrent neural networks (RNNs), 
Transformers can be parallelized. This makes 
them much more efficient on GPUs.

Also, unlike RNNs or CNNs, Transformers are 
able to capture long-range dependencies in 
the data.



Why use Transformers?
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The Transformer also analyzes the relations 
between all the input’s elements (tokens) to 
each other.



Self-Attention in the Transformer
Self-attention is an important component of 
Transformers. In high-level, it relates different 
positions of a single sequence, in order to 
compute a representation of that sequence:

https://jalammar.github.io/illustrated-transformer/



Components of a Transformer

• Embedder

• Positional Encoder

• Encoder:

Attention Layer

Feed-Forward Layer

Add & Norm Layer

• Decoder:

Attention Layer

Feed-Forward Layer

Add & Norm Layer

• Linear & Softmax 
Output Layer



Embeddings
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from www.tensorflow.org



What is an Embedding?
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An embedding is a low-dimensional 
representation which can be used to describe 
different objects or elements.

For example, if you have 5 words in your 
vocabulary, we can create an embedding for it in 
two steps:

“Green” -> [1,0,0,0,0] -> [0.3, 1.5].



What is an Embedding?
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“Green” -> [1,0,0,0,0] -> [0.3, 1.5].

The original 5-dimensional representation was 
used to distinguish each of the 5 words in the 
vocabulary in a simple way:

[1,0,0,0,0], [0,1,0,0,0], …, [0,0,0,0,1].

The vector [0.3, 1.5] is the Embedding of the first 
word, “Green”, and it is 2-dimensional and more 
compact. We can convert each of the 5 words 
into a different 2-dimensional vector.



Embedder
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An Embedder converts positive integers to 
dense vectors of fixed size:

Word strings -> tokenized to integers -> encoded 
to embeddings.

[“Green”, “Apple”] -> [4, 20] ->

[(0.25,0.35,0.12), (0.22,0.34,0.13)]



Why use Embeddings?
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An embedding can capture some of the 
semantics of the input, by placing semantically 
similar inputs close together in the embedding-
space.

An embedding can be learned and reused 
across models.



Why use Embeddings?
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Example of representing semantically-similar 
words, as ‘similar vectors’:

‘Apple’ -> [1.0, 2.0] , ‘Red’ -> [1.1, 2.3] ,

‘Table’ -> [-1.0, 1.2]

We use the dot-product to measure the 
similarity between numerical vectors.

The dot-product between the embeddings of 
‘Apple’ and ‘Red’ would be larger compared to 
the dot-product between ‘Apple’ and ‘Table’.



Why use Embeddings?
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Instead of specifying the weights of the 
embedder layer manually, they are trainable 
and learned by the model during training, in the 
same way a model learns weights for a dense 
layer.



Positional Encoding



What is Positional Encoding?

Positional encoding describes the location or 
position of an element in a sequence, such that 
each position is assigned a unique vector 
representation.

It is better than “using a single number to 
represent a position”, because even for large 
position indexes, the sine and cosine functions 
have values in a normalized range [-1, 1].

This keeps the values of the positional encoding 
in a limited range, which in general improves ML 
training (same as in Batch Normalization).



What is Positional Encoding?

Transformers use a smart positional encoding 
scheme, where each position/index is mapped to 
a different vector:

Sentence: [“Green”, “Apple”] ->

Positions Indexes: [1, 2] ->

Positional Encodings:  [(0.1, 0.2, 0.3, 0.2, 0.1),

(0.1, 0.4, 0.1, 0.4, 0.1)]



Why use Positional Encoding?

The attention layers used throughout the model 
see their input as a set of vectors, with no order.

the order is encoded inside the vector using a 
positional-encoding.

Since the model doesn't contain any recurrent or 
convolutional layers. It needs some way to identify 
word order, otherwise it would see the input 
sequence as a bag of words instance:

“how are you”, “how you are”, “you how are”, are 
indistinguishable.
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The Positional-Encoding has the same dimension 
as the input-embedding.

It is summed together with the embedding and 
passed to the next layer:

Why use Positional Encoding?



How Positional Encoding Works?
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• pos is the word’s position in the sentence.

• d-model is a constant representing the 
number of features in the embedding.

• i is the current feature id.

Note that the PE is a matrix.



How Positional Encoding Works?
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Examples of positional encodings for nearby words:

pos=1

pos=2

pos=3

i (feature id)

PE



How Positional Encoding Works?
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Examples of positional encodings for nearby words:

pos=9

pos=10

pos=11
i (feature id)

PE



How Positional Encoding Works?
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Examples of positional encodings for distant words:

pos=1

pos=5

pos=20
i (feature id)

PE



Base Attention Block
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Why use Base Attention?
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Unlike RNNs or CNNs, Transformers use Base 
Attention to capture distant or long-range 
dependencies in the data, between distant 
positions in the input sequences.

Thus, longer “connections” can be learned. In 
contrast, an RNN can more easily “forget”
distant elements:



What is Base Attention?
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“The Base Attention mechanism is similar to a 
dictionary lookup - A fuzzy, differentiable, 
vectorized dictionary lookup”.

To illustrate this, let’s look at a standard 
dictionary structure:

d = {'color': 'blue', 'age': 22, 'type': 'pickup'}

We’ll call the item that we search a “query”.\



What is Base Attention?
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d = {'color': ‘red', 'age': 27, 'type': ‘truck'}

When the query is the word: ‘type’, the dictionary 
will return d[‘type’] = ‘truck’

‘truck’ would be called value in this case, and 
‘type’ would also be its matching key.

\



What is Base Attention?
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d = {'color': ‘red', 'age': 27, 'type': ‘truck'}

d[‘type’] = ‘truck’

The important point is that here, the query either 
has a matching key or it doesn't.

However, a fuzzy dictionary is one where the 
keys don't have to match perfectly.



What is Base Attention?
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Example of a fuzzy dictionary:

d = {'color': ‘red', 'age': 27, 'type': ‘truck'}

d[‘species’] = ‘truck’

The word species is different than the word type, 
but for a fuzzy dictionary, their similarity is close 
enough, and it’ll return the matching value
(‘truck’).



What is Base Attention?
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A Base Attention Layer performs a fuzzy
lookup, but it's not just looking for the best
key, it combines the values based on how 
well the query matches each key.

For example:

d = {‘table': 1, ‘apple': 20, ‘grapes’: 22}

d[‘food’] =

(similarity(food, table) * 1 +

similarity(food, apple) * 20 +

similarity(food, grapes) * 22)



What is Base Attention?
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d = {‘table': 1, ‘apple': 20, ‘grapes’: 22}

d[‘food’] =

(similarity(food, table) * 1 +

similarity(food, apple) * 20 +

similarity(food, grapes) * 22)

= (0.05 * 1 + 0.45 * 20 + 0.45 * 22) = 

18.95

The above operation is called a weighted-sum.



What is Base Attention?
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d = {‘table': 1, ‘apple': 20, ‘grapes’: 22}

d[‘food’] = 18.95

We get that the value of d[‘food’] is 18.95, which 
is closer (more similar) to the values of ‘apple’ 
(20) and ‘grapes’ (22), than to the value of 
‘table’ (1).

This is how fuzzy lookup works, and how the 
Base Attention works.



Base Attention Block
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The Base Attention Block performs a similar 
operation to the dictionary we just described.

However here we replace with dictionary with 
the Keys and Values matrices (K and V).

The queries from before, would be replaced by 
the Queries matrix (Q).



Base Attention Block
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Each line in Q represents a separate query.

Each line in K represents a separate key.

Each line in v represents a separate value.

For to the key in row ‘i’ of K, we find the 
corresponding value in row ‘i’ of V.



What is Base Attention?
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The operations performed by the Attention 
function are:

1. Finding the correlation between each query and 
all the keys in K using dot-products.

2. Creating a new representation for the query, 
based on a weighted-sum of the values.

(the weighted-sum is calculated using the matrix 
multiplication and will be shown in next slides)



Details of Base Attention 
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The similarity-scores s(i,j) in the third line, 
are calculated using vector multiplication 
between Q’s rows and V’s columns:



Details of Base Attention 
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I’ve marked the similarity between query-i 
and key-j as s(i,j):



Details of Base Attention 
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I’ll use an example to clarify:

We see that every row of the Attention’s output, is 
a weighted-mean of all the values. The weighting 
is done using the similarity scores from S.



Details of Base Attention 
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I’ll use an example to clarify:

Every row of the Attention’s output represents “a 
combination of values, based on the similarity of 
the values’ keys to the query”.



Details of Base Attention 
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I’ll use an example to clarify:

The first line in S refers to the first query in Q. 
We see that the key which is the “most similar”

to this query is the second key.



Details of Base Attention 
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I’ll use an example to clarify:

Thus, we expect that the first line in the output 
should be very similar to the second value!



Details of Base Attention 
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Occurrences of Attention in a Transformer: 

Attention is repeated many times in the 
Transformer inside different components. The main 
difference in every instance of this structure is the 
Queries/Keys/Values which are passed to it.



Details of Base Attention 
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Occurrences of Attention in a Transformer: 

For example, in the Encoder layer

Q=K=V=(input sequence).

However, in the decoder, Q can be different than K 
and V.



Multi-Head Attention

50

A multi-head attention combines multiple Base 
Attention Blocks:



Multi-Head Attention

Instead of performing a single attention 
operation, the paper’s authors found it beneficial 
to linearly project the queries, keys and values 
‘h’ times, with different, learned linear 
projections:



Multi-Head Attention

52

Meaning, they created multiple ‘heads’, each 
head performs an Attention operation, called a 
"scaled dot product attention“.

Each head has different/separate trainable 
weights, with different, learned linear 
projections.



Multi-Head Attention
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On each of these projected versions of (Q,K,V), 
they perform the Attention function in parallel, 
yielding the output values.

This creates multiple representations of the 
embeddings.
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Multi-Head Attention



Global Attention Layer
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This layer is responsible for processing the context 
sequence, and propagating information along its 
length. 



Global Attention Layer
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Since the context sequence is known while the 
translation is being generated, information is allowe
to flow in both directions of this sequence.
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The input to this layer are the initial 
representations/embeddings of all words in the 
original sentence.

Then, using self-attention it aggregates 
information from all of the other words, 
generating a new representation-per-word, 
informed by the entire context.

Global Attention Layer
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This layer lets every sequence element directly 
access every other sequence element, with only a 
few operations:

Global Attention Layer
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This layer has weights matrices

which are updated by the training process.

The more we train, the better our representations 
will be :

Global Attention Layer



Causal Attention Layer
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Transformers are an "autoregressive" model -
They generate the text one token at a time and 
feed that output back to the input.



Causal Attention Layer
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To make this efficient, this layer ensures that the 
output for each sequence element only depends 
on the previous sequence elements, i.e the 
models are causal.
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The inputs to this layer is the translated sentence 
(in our example, English), passed to Q,K,V.

Causal Attention Layer



63

To build a causal self attention layer, you need 
to use an appropriate mask:

Causal Attention Layer
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This layer’s weights matrices                   are 
updated by the training procedure, so that they’ll 
transform the English sequence encoded in Q,K,V 
into a better representation of itself:

Causal Attention Layer



Cross Attention Layer
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This layer connects the encoder and decoder. 
This layer is the most straight-forward use of 
attention in this model.



Cross Attention Layer
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The output of the Causal Attention layer below, 
is  passed as the Queries to this layer.



Cross Attention Layer
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The output of the encoder layer to the left, is 
passed as the Keys and Values to this layer.
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Each query can see all the key/value pairs in the 
context.

Cross Attention Layer



The                   matrices in this layer are 
trained to transform the Portuguese context 
sentence (encoded in K and V), into a 
representation which is more useful to the 
queries in Q.

Cross Attention Layer



Holistic View

The flow of word 
embeddings from the 
original sentence in 
Portuguese, is 
combined with the 
word-embeddings of 
the translated 
sentence in English.



Holistic View

The Portuguese 
embeddings provide the 
context to the English 
words translated so far, 
and allow them to “see 
the future” by looking at 
the entire sentence’s 
context.



Holistic View

Now we have enough 
“data” to predict the 
next English word in 
the sentence.



In the next stage, the 
Feed Forward layer and 
the Linear layer, 
transform and extract 
from the output of the 
Decoder, the next word 
predicted in English.

Holistic View



The Encoder Layer

Each Encoder-Layer 
contains a Global Self 
Attention and Feed 
Forward layer.



The Encoder

The encoder consists of 
a Positional-Embedding 
layer at the input and A 
stack of Encoder-Layers.



The Encoder

The Encoder contains multiple Encoder-Layers:



The Decoder Layer
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The Decoder-Layer has 
more components, it 
contains a Causal Self 
Attention, a Cross 
Attention, and a Feed 
Forward layer.



The Decoder
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The Decoder contains a 
Positional-Embedding 
and a stack of Decoder-
Layers.



The Transformer
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The Transformer contains 
an Encoder, Decoder and 
add a final linear dense 
layer which converts the 
Decoder’s output into 
English token-probabilities



The Transformer
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Example for using a “token 
probabilities” vector: 

T=[0.01,0.01,0.01,0.96,0.01] ->

Argmax(T) = 4 ->

(Meaning the 4th word in 
our English vocabulary is 
the next predicted word)



The Transformer
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The output of the entire 
Transformer is the part 
of the English sentence 
which was translated so 
far.

Only the last word in the 
sentence is new and was 
added in the last step.



The Transformer
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Each word in a sentence 
is represented by a 
vector of probabilities of 
all possible words in the 
English vocabulary.



The Transformer
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The total output tensor’s 
shape is thus:

[Length (tokens number) 
of the English sentence,

Number of words in the 
English vocabulary]



The Loss
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In the basic Transformer implementation, they 
used the cross-entropy loss function:

The cross-entropy loss between ‘y’ and ‘y-hat’ is:



The Feed-Forward Layer

The network contains two linear dense 
layers with a ReLU activation in-between, 
as well as a dropout layer.



The Add & Norm Layer

The Add & Norm Layers are included to improve 
the training’s efficiency. The residual connection 
provides a direct path for the gradient. It also 
ensures that vectors are updated by the 
attention layers, instead of replaced.



The Add & Norm Layer

The normalization maintains a reasonable size 
and scale for the outputs of each layer.



Hyperparameters

The base model described in the original 
Transformer paper used:

In the code I’ve used, most hyperparameters were 
reduced to increase the speed:



Training

It took me 65 minutes to train this Transformer 
model using 1 GPU, over a dataset of 53,000 
sentences in Portuguese and English:



Training



Disadvantages of Transformers

For a dataset of time-series sequences, the 
output for each step is calculated from the entire 
history, although it could be much more efficient 
to use the use a sliding window together with the 
hidden-state. 



Results

After training, the attention-weights of the Cross 
Attention layer were plotted:

www.tensorflow.org



Results
Attention-weights of multiple ‘heads’ from the 
Multi-Head Attention:

www.tensorflow.org



Dataset

In the code I’ve used, the dataset was 
derived from a set of TED talks transcripts, 
for comparing similar language-pairs.

Under the Open Translation project these 
TED talks transcripts are available for 
more than 2400 talks in 109 languages.

This dataset has 53K examples of 
sentences in multiple languages.



Dataset

In the original paper they trained with the 
standard “WMT 2014 English-German”

dataset, consisting of about 4.5 million 
sentence pairs.

Sentences were encoded into a 
vocabulary of about 37000 tokens.



Applications in Computer Vision

A major application of Transformers in Computer 
Vision is ViT - Vision Transformer:

https://paperswithcode.com/method/vision-transformer



What is a Vision Transformer?

The ViT (Vision Transformer) is a model for 
image classification, that is based on a 
Transformer-like architecture, but using patches 
of the image instead of words.

It is targeted at various other vision-processing 
tasks such as Object Detection and Image 
Segmentation.



What is a Vision Transformer?

ViT represents an input image as a sequence of 
image patches, similar to the sequence of word 
used in a Transformer:



What is a Vision Transformer?

The patches are being flattened from a 2D matrix 
to a 1D vector, similar to the embeddings shown 
in the original Transformer:



What is a Vision Transformer?

Then, these 1D vectors (the flattened patches) are 
being fed to a Transformer’s Encoder:



What is a Vision Transformer?

The Encoder “processes” these flattened patches 
using its Attention mechanism, and extracts 
“interesting correlations” between the patches:



What is a Vision Transformer?

Finally, the Encoder outputs a new representation 
of the image, which is passed to a standard fully-
connected layer (MLP head) and outputted as a 
“class probabilities” vector:



Why use a Vision Transformer?

ViT demonstrates excellent performance when 
trained on enough data. It outperforms a state-
of-the-art CNN of the same size, with four times 
fewer computational resources. 

ViT was found to be more efficient than CNNs in 
terms of utilizing any number of GPU resources.

However, ViT appears to only outperform CNNs 
in terms of accuracy, when the dataset is huge 
(>100M images).



Thank You


