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Introduction: Image Segmentation

Identify groups of pixels that “go together”



Approaches and usesApproaches and usesApproaches and usesApproaches and uses



Solutions: Intuition

• Turn the image into a ‘weighted graph’

• Divide the ‘graph’ into pieces under some 
constraint

• Cuts constitute borders between regions



Normalized Cuts and Image Normalized Cuts and Image Normalized Cuts and Image Normalized Cuts and Image 
SegmentationSegmentationSegmentationSegmentation

• Graphs, weighted edges.

• Graph Cut, Min Cut, Association, Normalized 
Cut.

• Graph as matrix.

• Images as matrix.

• Nodes as pixels, edges as…

• Graph and Segmentation.



GraphGraphGraphGraph

• � = �, �
• � set of nodes
• ��, ��, �� ∈ �
• E  set of edges
• ��, ��, �� ∈ � �

�



GraphGraphGraphGraph with weightswith weightswith weightswith weights

• ��, ��, �� ∈ �
• � �� = ��
• ��, ��, �� ∈ �
• �� ∈ � �� �

�



Graph CutGraph CutGraph CutGraph Cut

•Graph Cut = Graph Cut = Graph Cut = Graph Cut = edges edges edges edges whose whose whose whose removal partitions removal partitions removal partitions removal partitions a graph a graph a graph a graph in in in in twotwotwotwo

•Formally: Formally: Formally: Formally: �, � | � ∪ � � �, � ∩ � � ∅ 
•Cost Cost Cost Cost of of of of a cuta cuta cuta cut

Sum Sum Sum Sum of of of of weights weights weights weights of cutof cutof cutof cut edges:edges:edges:edges:
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What is minimum cut?

Min CutMin CutMin CutMin Cut

min-cut( A, B) 

012 # �$,%
$∈&,%∈'

What is thethethethe minimum cut here?



MinimumMinimumMinimumMinimum CutCutCutCut
• We can do We can do We can do We can do segmentation by finding segmentation by finding segmentation by finding segmentation by finding the the the the minimum cut minimum cut minimum cut minimum cut in in in in aaaa graphgraphgraphgraph

 MinMinMinMin----cut can partition a graph into different objects in the image. cut can partition a graph into different objects in the image. cut can partition a graph into different objects in the image. cut can partition a graph into different objects in the image. 

 Efficient algorithms exist for Efficient algorithms exist for Efficient algorithms exist for Efficient algorithms exist for finding minfinding minfinding minfinding min----cut.cut.cut.cut.

IdealIdealIdealIdeal CutCutCutCut

Cuts with  lesserCuts with  lesserCuts with  lesserCuts with  lesser weight  than the  idealweight  than the  idealweight  than the  idealweight  than the  ideal cutcutcutcut

• Drawback:Drawback:Drawback:Drawback:

 Weight Weight Weight Weight of cut is of cut is of cut is of cut is proportional proportional proportional proportional to to to to number number number number of of of of edges in edges in edges in edges in thethethethe cut.cut.cut.cut.

 Minimum Minimum Minimum Minimum cut cut cut cut tends to tends to tends to tends to cut cut cut cut off very off very off very off very small, small, small, small, isolatedisolatedisolatedisolated components.components.components.components.



Set associationSet associationSet associationSet association

A
a44�5 �, � = # �$,%

$∈&
%∈'

= 21







BvAu

vuwBACut
,

).,(),(

 


VtAu
tuwVAassoc

,
),(),(

).,(),(),( BACutAAassocVAassoc 

 


Auu
uuwAAassoc

21 , 21 ),(),(
2u

1u

Vertex set associationVertex set associationVertex set associationVertex set association



Normalized Cut DefinitionNormalized Cut DefinitionNormalized Cut DefinitionNormalized Cut Definition

• Cut costs are proportional to number of edges in cut

• Traditional graph cuts bias towards cutting small parts of the graph

• We can fix this by normalizing by 844�5

�59: �, � = ;9: �, �
844�5 �, � + ;9: �, �

844�5 �, �



Normalized CutNormalized CutNormalized CutNormalized Cut and Assocand Assocand Assocand Assoc



Relationship between Ncut and Nassoc



Normalized CutNormalized CutNormalized CutNormalized Cut (NCut)(NCut)(NCut)(NCut)



Normalized CutNormalized CutNormalized CutNormalized Cut ((((NCut)NCut)NCut)NCut)

What is the Min-Cut here?
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Normalized CutNormalized CutNormalized CutNormalized Cut example example example example 1111
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Normalized CutNormalized CutNormalized CutNormalized Cut example example example example 2222



Recursive Recursive Recursive Recursive NCutNCutNCutNCut
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• More partitions can be 

done by subdividing the 

segmented parts.

• Basically, finding new NCuts 

in the new parts A and B.

A_1

A_2



Recursive Two-Way Ncut example



Graph as a matrix



Image as a matrixImage as a matrixImage as a matrixImage as a matrix



Images as graphs

• Node for every pixel

• Link between every pair of pixels, p,q

• Affinity weight wpq for each link (edge)

• wpq measures similarity

• Similarity is inversely proportional to differences (in color and position…)

q

p

wpq

w
Fully-connected graph



G(1) spatial location of node 1J(1) intensity function

The weight functionThe weight functionThe weight functionThe weight function

• A function that translate image feature into weights on edges

• For example: brightness (Intensity). 

� is spatial distance



Graph and Graph and Graph and Graph and 
SegmentationSegmentationSegmentationSegmentation

• A graph with weights can 
represent an image. 

• We can address image processing 
tasks with graph processing tools.

• For example… segmentation.



Segmentation by Normalized Cut

• Delete links that cross between segments

• Easiest to break links that have low affinity

• similar pixels should be in the same segments

• dissimilar pixels should be in different segments

A B C

ijw

i

j

Break Graph into Segments



Intensity and DOOG based graph cut 



Normalized Cuts and Image Normalized Cuts and Image Normalized Cuts and Image Normalized Cuts and Image 
SegmentationSegmentationSegmentationSegmentation

• Minimizing NCut is NP-complete.

• Approximate discrete solution can be 
found efficiently in the real value 
domain.

• How? Eigenvectors!

• Some definitions first…



Normalized Cuts and Image Normalized Cuts and Image Normalized Cuts and Image Normalized Cuts and Image 
SegmentationSegmentationSegmentationSegmentation

• Adjacency, Diagonal and Laplacian matrix.

• Rayleigh Quotient.

• Segment ′L′ as Indicator vector

• Normalized cut algorithm.



Adjacency matrix

ijw
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cdwcdw ,7),( 

W is the Adjacency matrix of the graph, where every       is the weight of 

edge � 1, M where 1, M ∈ �.



Diagonal matrix

ddd DDddD  ,32),(

D is the Diagonal matrix of the graph with diagonal entries

( N 1 = the sum of all edge with one end in 1 ∈ � )    
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Laplacian matrix 

L is the Laplacian matrix L : )( WDL 

L




0 32 4 3

32 0 34 22

4 34 0

3 22 0

7

7

 
 
 
 
 
 

39 0 0 0

0 88 0 0

0 0 41 0

0 0 0 32

 
 
 
 
 
 

D W
L

39 32 4 3

32 88 34 22

4 34 41 7

3 22 7 32

   
    
   
 
  −



Laplacian matrix properties

n  K3210
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• L is real symmetric and positive semi-definite    

• The smallest eigenvalue is always 0 with eigenvector    .1

Eigenvectors are perpendicular and Eigenvalues are all non-negative.

)( WDL 

0Lxx
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Indicator vector
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For a graph partition into two groups A and B, an indicator vector yyyy is an n=|V| dimensional 

binary vector such that            for every          and               for           .1iy Ai 1iy Bi
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Normalized cut

• W is the adjacency matrix of the graph

• D is the diagonal matrix of graph

• y is the indicator vector 

• Then the normalized cut cost can be written as
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Eigensystem min - intuition



• J. Shi and J. Malik proved (2000) using the Laplacian matrix 
properties, that:

minO �59: L = minO
LP N − � L

LPNL

• Where L� ∈ 1, −Q with some constant Q:

Q = ∑ S��OTUV
∑ S��OTWV

Rayleigh QuotientRayleigh QuotientRayleigh QuotientRayleigh Quotient

L = D-W



Relaxing y and allowing real values we can solve 

by using the generalized eigenvalue problem: 

where     are the eigenvectors and the eigenvalues 
represent the cut cost.

X = minO
LP(N − �)L

LPNL

Normalized cut

DyyWD  )(

Dyy

yWDy
y

T

T

y

)(
minarg




iy

DyyWD  )(



Normalized cut

The smallest eigenvector is always 0 , because we can have a partition of � = � and � = ∅ 
(Y = Z) thus �59: �, � = 0

Second smallest eigenvector is the real-valued y that minimizes Ncut and is the solution for

Use a threshold to differentiate between the two segments. 

DyyWD  )(

011 L
T



The eigenvector y will hopefully have similar values for nodes with high similarity - high �(1, M)
Thus, a threshold T on the eigenvector entries creates a binary classification of nodes.

Returning to discrete world.

Normalized cut
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The eigenvector y will hopefully have similar values for nodes with high similarity - high �(1, M)
Thus, a threshold T on the eigenvector entries creates a binary classification of nodes.

Returning to discrete world.

Normalized cut
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Eigenvectors corresponding to eigenvalues consecutively  



Approximate discrete solutionApproximate discrete solutionApproximate discrete solutionApproximate discrete solution

• Rayleigh quotient: minimize 
[\&[
[\[ where � is symmetric

• Let ]� … ]_ be eigenvectors of � with X� ≤ ⋯ ≤ X_

• Under the constraint ] ⊥ ]� … ]cd� the minimizing solution is ]c

• Since we are constraining L ⊥ Z, and Z is ]�, the solution to our 
problem is ]�



Normalized cut algorithm

1. Represent the image as a weighted graph 

G = (V,E), compute the weight of each edge, and 

summarize the information in D and W

2. Solve N −  � L = XNL for the eigenvector with 

the second smallest eigenvalue

3. Use the entries of the eigenvector to bipartition the 

graph



Image Image Image Image ssssegmentationegmentationegmentationegmentation by colorby colorby colorby color withwithwithwith NCutsNCutsNCutsNCuts





Fast approximate energy minimization via graph cuts

• What does this have to do with our problem?

• Energy should encode how “bad” the solution is

• The weight of a cut can be thought of as the energy of a solution

• We will see a rigorous proof of this connection

• …But what exactly is a solution?



Labelings and Partitions

• A solution e: g → ℒ is a function which gives each pixel in the picture 
some label from the set ℒ

• Labels could be Q85jk��92S, e���k��92S , 6,7,8,9 and so on

• Any labeling of pixels in a photo defines a partition of the photo into 
different parts, and vice versa



Energy functions

• In general, the “badness” of a solution can be split into two parts:

• How bad is it that this red pixel is a cat?

• How bad is it that these two very different pixels are both a cat?

� e = �mnoopq e + �rsps e

� e = # �
$,% ∈t

e$, e% < # N$ e$
$∈g

unlikely



Energy Functions – Cont’

• Our energy functions will be constrained by � being metric:

� u, v = 0 ⟺ u = v
� u, v = � v, u ≥ 0

� u, v ≤ � u, y + � v, y
• This will come in handy later when we consider paths on graphs

• For example: � u, v = 15 ⋅ min 3, e$ − e%



Local minima and “movesets”

• Since we are in a discrete setting, local minima can be defined 
discretely:

• A labeling e is a local minima if any small change increases its energy

� e ≤ � e{  e�� 82L e{ 2�8� :� e

• A close labeling is one which we can arrive at with only one move



Movesets - examples

• ℒ � u, v, y

• Each of the 3 rightmost figures shows a move achievable by some 
moveset



Movesets - examples

• Example of labelings which are local minima w.r.t different movesets

• Fig (d) looks better because it’s labeling “competes” with more 
possibilities



Pseudocode and terminology

• Each execution of 3.1 A 3.2 is called an iteration

• Each execution of 2 A 4 is called a cycle

• A similar algorithm exists for minimization w.r.t u-expansion, but we 
will not focus on it



Finding the optimal swap move

• We would like to show an efficient way to compute e} as defined in 
3.1

• To do this, we will use graph cuts

• Example graph:



Graph Cuts - Revisited

• We say that a set of edges ; ⊆ � is a cut of � if it the two terminals 
are separated from each other in the induced graph �, � A ;

• We will also require that no proper subset of ; separates the two 
terminals, for reasons you will see later

• The cost of a cut ; will be defined as the sum of the edge weights of 
the cut



Building the graph

• Vertices of the graph are all pixels labeled u or v, plus the two terminals:

��� = g� ∪ g� ∪ u, v
• Each pixel is connected to its neighbors in the picture and the terminals

• Edges between pixels are 2-links

• Edges between pixels and terminals are :-links:

��� = � �, �
$,% ∈t

$,%∈���

� �, u , �, v
$∈g�∪g�



Example graph again:

��� = ⟨���, ���⟩



Defining the weights

� ∈ g��
N$ u < # � u, e%

%∈t�
%∉g��

:$�

� ∈ g��
N$ u < # � u, e%

%∈t�
%∉g��

:$
�

�, � ∈ t
�, � ∈ g��

� u, v� $,%



Big scary table – Cont’

• The weight of a :-link u, � is the cost of assigning u to �
• The weight of an 2-link is the cost of having a boundary in the 

partition between the two pixels



Graph weights - explanation

• An 2-link appears in the cut only if its two endpoints are assigned 
different labels:



What labeling does a cut define?

• Let e$� denote the label given to pixel � by cut ;

• If � ∉ g��, then e$� = e$
• If :$� ∈ ; then e$� = u
• If :$

� ∈ ; then e$� = v

• since ; is a cut, no vertex is reachable from both terminals, and no 
vertex is isolated from both either



Main theorem

; = � e� − �
• For any u-v cut on ���
• Specifically, the minimum cut is the minimal energy labeling one u-v

swap away from the initial e
• Why?



Main theorem - Proof

; ∩ : − �12j4 = # N$ e$� + # � e$� , e%�
%∈t�

%∉g��
$∈g��

• Since the weight of a :-link is defined accordingly:



Main theorem - Proof

; ∩ 2 − �12j4 = # � e$� , e%�
$,% ∈t

$,%∈g��

• Note that since � is metric, then if e$� = e%�, there is no boundary, the 

edge is not in the cut, and � e$� , e%� � 0



Main theorem - Proof

• Finally, putting it all together:

; = # N$ e$� + # � e$� , e%�
%∈t�

%∉g��

+ # � e$� , e%�
$,% ∈t

$,%∈g��
$∈g��

; = # N$ e$� + # � e$� , e%�
$,% ∈t

$ o� %∈g��
$∈g��



Proof – Cont’

; = # N$ e$� + # � e$� , e%�
$,% ∈t

$ o� %∈g��
$∈g��

; = � e� − # N$ e$� − # � e$� , e%�
$,% ∈t

$,%∉g��
$∉g��

; = � e� − �



Main proof - Corollary

• The minimal weight labeling one u-v swap away from e is defined by 

e� where ; is the minimal weight cut on ���

• To implement the algorithm, we can repeatedly apply minimum cut 
operations until the labeling stops changing, something which we 
know how to do efficiently

• Enough math, let’s see some results!



Results - Stereo
Left Image Ground truth

Normalized

Correlation

Swap 

algorithm

Expansion

algorithm
Simulated 

annealing



• � e$, e% � � e$ � e% ⋅ 80

• N$ e$ … Its complicated 

Results – Flower garden sequence

Stereo pair Horizontal movement



Results – Moving cat

• � e$, e% � 40 ⋅ min 8, e$q A e%q � < e$� A e%� �

• e$q and e$� are horizontal and vertical components of e$

Moving cat Horizontal
movement

Vertical
movement



Interactive Graph Cuts Interactive Graph Cuts Interactive Graph Cuts Interactive Graph Cuts …



Interactive Graph CutsInteractive Graph CutsInteractive Graph CutsInteractive Graph Cuts

• We would like the ability to impose hard constraints.

• The user marks certain pixels as “object” or “background” 
to provide hard constraints for segmentation.



We can use the same system as earlierWe can use the same system as earlierWe can use the same system as earlierWe can use the same system as earlier

• To impose hard constraints, we can force very heavy :-links

:-links



Heavy Heavy Heavy Heavy �----links force choice of labellinks force choice of labellinks force choice of labellinks force choice of label

• Remember from the last part – this time we have only one 
possible u-v swap.

• If we add a very heavy weight to �, u , it will not be in the cut

• If �, u ∉ ;, then e$� = v



Summary

• Large intersection between vision and graph theory

• Today we saw several of the algorithms for segmentation

• Normalized graph cuts

• Graph cuts minimizing large moves

• We also saw a solution for some adjacent problems like

• Motion segmentation



References

Boykov, Yuri, Olga Veksler, and Ramin Zabih. "Fast approximate energy minimization 
via graph cuts." IEEE Transactions on pattern analysis and machine 

intelligence 23.11 (2001): 1222-1239.

Shi, Jianbo, and Jitendra Malik. "Normalized cuts and image 
segmentation." IEEE Transactions on pattern analysis and machine 
intelligence 22.8 (2000): 888-905.

Boykov, Yuri Y., and M-P. Jolly. "Interactive graph cuts for optimal boundary 
& region segmentation of objects in ND images." Proceedings eighth IEEE 
international conference on computer vision. ICCV 2001. Vol. 1. IEEE, 2001.



Summary

• Large intersection between vision and graph theory

• Today we saw several of the algorithms for segmentation

• Normalized graph cuts

• Graph cuts minimizing large moves

• We also saw a solution for some adjacent problems like

• Motion segmentation



Thanks for listening!


