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Introduction: Image Segmentation
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Identify groups of pixels that “go together”



Approaches and uses




Solutions: Intuition

e Turn the image into a ‘weighted graph’

Jl S LS
y.
« Divide the ‘graph’ into pieces under some /.~ /
constraint Original image

 Cuts constitute borders between regions




Normalized Cuts and Image
Segmentation

Graphs, weighted edges.

Graph Cut, Min Cut, Association, Normalized
Cut.

Graph as matrix.

Images as matrix.

Nodes as pixels, edges as...

Graph and Segmentation.




Graph

e G =(V,E)
 V setofnodes
* V1,V V3 EV
 F setofedges
* eq,6y,63 EE

L




Graph with weights V
* eq,67,63 ELE ;

+ Wie) =w;

* Wi, Wy, W3 EW W// \4
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e Graph Cut = edges whose removal partitions a graph in two
e Formally: A, B|AUB =V, ANB =0

e Cost of a cut
Sum of weights of cut edges:

cut(A, B) = z Wp.q

PEA
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Min Cut

What is minimum cut?

min-cut( A, B) =

a3

PEA,QEB

What is the minimum cut here?
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Minimum Cut

e \We can do segmentation by finding the minimum cut in a graph

® Min-cut can partition a graph into different objects in the image.
= Efficient algorithms exist for finding min-cut.

e Drawback:

" Weight of cut is proportional to number of edges in the cut.
" Minimum cut tends to cut off very small, isolated components.
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Set association

assoc(4,V) = z Wpq = 21
PEA
qEB




Vertex set association

A Y - B

Cut(A,B) = Z w(u,v).

uceA,veB

ClSSOC(Aa A) — Zu U, EA W(ul, MZ) C.e

assoc(A,V)=assoc(A,A)+ Cut(A, B).
assoc(A,V) = Z Ay w(u,t)
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e Cut costs are proportional to number of edges in cut

Normalized Cut Definition

e Traditional graph cuts bias towards cutting small parts of the graph

* We can fix this by normalizing by assoc

Neut(a ) = CULAB) | Cut(4,B)
Ut ~assoc(4,V)  assoc(B,V)

- |




Normalized Cut and Assoc l/

cut(A,B)  cut(A, B)

Neut(4, B) = assoc(A,V)  assoc(B,V)

assoc(A, A) assoc(B, B)
assoc(A, V) assoc(B,V)
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Normalized Cut (NCut) l/ W

cut(A,B) = cut(A, B)
assoc(A,V) = assoc(B,V)

Ncut(A, B) =

_assoc(A,V) —assoc(A,A) | assoc(B,V) — assoc(B, B)
B assoc(A,V) | assoc(B, V)

o assoc(A, A)  assoc(B, B)
B assoc(A,V) ' assoc(B,V)

- |

) = 2 — Nassoc(A, B)




Normalized Cut (NCut) V

What is the Min-Cut here? C\ 1
AJ \D

20 15
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S—

assoc(A, A) N assoc(B, B

Nassoc(A, B) =
assoc(A, B) assoc(A,V)  assoc(B,V

™

Ncut(A, B) = 2 — Nassoc(A, B)

0 38
NCut(A,B) =2 — (I-I_@) =~ 1.025




Normalized Cut example ZV W

assoc(A, A) N assoc(B, B)

assoc(A,V)  assoc(B, V) 1
OV

20 15

Nassoc(A, B) =

NCut(A,B) 2 (20 + 16) 0.288
u = —_ | — 4 —] =~
) 2 1 .
0.288 < 1.025
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Recursive NCut

B
 More partitions can be \ 1 5
done by subdividing the
20
:3 |
B

segmented parts.
15

A_1l

—

e Basically, finding new NCuts

in the new parts A and B. )

A_2



Recursive Two-Way Ncut example l/




Graph as a matrix
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0 15 0
15 0 13
2 0 9
0 13 0




Image as a matrix
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Images as graphs

Fully-connected graph

* Node for every pixel
* Link between every pair of pixels, p,q
* Affinity weight w, for each link (edge)
* W,, measures similarity

 Similarity is inversely proportional to differences (in color and position...)

- |




The weight function l/ =

* A function that translate image feature into weights on edges

* For example: brightness (Intensity). _
X (i) spatial location of node i

F (i) intensity function / 4

F6)-FG)|2 X0 -XGlly | |
wij =e 1 xg € X if | X(2) =Xl <7

0 otherwise,

r is spatial distance

- |



[90, 0, 53]

Graph and
Segmentation

* A graph with weights can
represent an image.

* We can address image processing
tasks with graph processing tools.

* For example... segmentation.




Segmentation by Normalized Cut l/

Break Graph into Segments 3 C

* Delete links that cross between segments
 Easiest to break links that have low affinity
e similar pixels should be in the same segments

 dissimilar pixels should be in different segments




Intensity and DOOG based graph cut
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Normalized Cuts and Image
Segmentation

* Minimizing NCut is NP-complete.

* Approximate discrete solution can be
found efficiently in the real value
domain.

 How? Eigenvectors!

 Some definitions first...



Normalized Cuts and Image
Segmentation

* Adjacency, Diagonal and Laplacian matrix.
e Rayleigh Quotient.
« Segment 'y’ as Indicator vector

* Normalized cut algorithm.




Adjacency matrix l/

W is the Adjacency matrix of the graph, where every w; is the weight of
edge e(i,j) where i,j € V.

a b ¢ d
(0 32 4 3)

4 2w .32 0 34 22
— |4 34 0 7

i3 22 .7 0,
W(d,C):7:Wd,C/ r




Diagonal matrix l/ W

D is the Diagonal matrix of the graph with diagonal entries
D(i,i) =) w(i, )
J

( D(i) = the sum of all edge with oneendini € V)
b C d

(39 0 0 0

0 8 0 0
v, — |0 0 41 0
L0 0 0 32,

D(d,d)=32=

>




Laplacian matrix

Lis the Laplacian matrixL: L=(D—-W)

(39 0 0 0)
0 8 0 0
0 0 41 0

L0 0 0 32,
D

(0 32 4 3)
2 0 34 2
4 34 0 7

3 2 7 0,
W

L~ W

(39 -32 —4

h

— | 4 34 41

-3 22 -7
L

-32 88 34 22

3

7
32

—




Laplacian matrix properties %z (D-W) '

e Lisreal symmetric and positive semi-definite

x'Lx>0

Eigenvectors are perpendicular and Eigenvalues are all non-negative.

 The smallest eigenvalue is always 0 with eigenvector 1. 1

n

\1/
A I

0=A4 <A <A <..<A -1




Indicator vector l/ '

For a graph partition into two groups A and B, an indicator vector y is an n=|V| dimensional
binary vector such that y, =1 for everyie Aand y, —=—] forieB.

I
=
-+~ MO QO 0 T o




Normalized cut l/

e W is the adjacency matrix of the graph

e D is the diagonal matrix of graph

e v is the indicator vector

e Then the normalized cut cost can be written as

y (D-W)y _ LZ W,-j(y,- ~ yj)z
y' Dy 2= D

12/

Goal is to minimize this constrained to y; € {1, —b}

—



Figensystem min - intuitiorl/ A4

Cut (A,B)= > w,
ieA,jeB

A @-@ 1
assoc (AV) = 2, v yTDYM

Cut (A,B) = assoc (A,V)—assoc (A,A) T (D —W)y r
NCut (A,B) = Cut (A,B)/assoc (A, V) = yTDy



W
Rayleigh Quotient V

e J. Shi and J. Malik proved (2000) using the Laplacian matrix
properties, that:
y'(D — W)y

min Ncut(y) = min
y

7P \
* Where y; € {1, —b} with some constant b: L = D-W
- 2y;>0 dii
Zyi<0 dll

P |




Normalized cut l/

Relaxing y and allowing real values we can solve

y (D-W)y

T
y' Dy
by using the generalized eigenvalue problem:

y=argmin

(D-W)y=ADy

where y, are the eigenvectors and the eigenvalues
represent the cut cost.




Normalized cut l/

The smallest eigenvector is always 0, because we can have a partitionof A=V and B = @
(y = 1) thus Ncut(4,B) =0

T
1" L1=20
Second smallest eigenvector is the real-valued y that minimizes Ncut and is the solution for

(D —-W )y = ADy

Use a threshold to differentiate between the two segments.

- |




Normalized cut l/ .

Returning to discrete world.
The eigenvector y will hopefully have similar values for nodes with high similarity - high w(i, j)

Thus, a threshold T on the eigenvector entries creates a binary classification of nodes.

2 -
b -0.9 b ]
—
C 0.9 C -b
d 2 d -b

- |




Normalized cut V W

Returning to discrete world.
The eigenvector y will hopefully have similar values for nodes with high similarity - high w(i, j)

Thus, a threshold T on the eigenvector entries creates a binary classification of nodes.




H -

Eigenvectors corresponding to eigenvalues consecutively -'
V

\

(d) (e) (f)




Approximate discrete solution

xTAx
xTx

e Rayleigh quotient: minimize where A is symmetric

* Let x; ... x,, be eigenvectors of A withA; < -+ < A,
* Under the constraint x L x; ... xj_1 the minimizing solution is x;

* Since we are constraining y L 1, and 1 is x¢, the solution to our

problem is x5




Normalized cut algorithm l/

1. Represent the image as a weighted graph
G = (V,E), compute the weight of each edge, and
summarize the information in D and W

2. Solve (D — W)y = ADy for the eigenvector with
the second smallest eigenvalue

3. Use the entries of the eigenvector to bipartition the

graph
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Image segmentation by color with NCuts







Fast approximate energy minimization via graph cuts

* What does this have to do with our problem?

Energy should encode how “bad” the solution is

The weight of a cut can be thought of as the energy of a solution

We will see a rigorous proof of this connection

...But what exactly is a solution?



L~ W

* A solution f:P — L is a function which gives each pixel in the picture
some label from the set £

Labelings and Partitions

* Labels could be {background, foreground}, {6,7,8,9} and so on

* Any labeling of pixels in a photo defines a partition of the photo into

different parts, and vice versa




L~ W

* In general, the “badness” of a solution can be split into two parts:
 How bad is it that this red pixel is a cat?
 How bad is it that these two very different pixels are both a cat?

E(f) = Esmooth(f) + Edata(f)

E(f) = z V(fp'fq)+sz(fp)

{D.q}eN pEP

Energy functions




Energy Functions — Cont’ V

e Our energy functions will be constrained by V being metric:
Vie,B) =0 = a=p

Via,B) =V(B,a) =0
Via,B) < V(a,y) +V(B,y)

* This will come in handy later when we consider paths on graphs

* For example: V(a,B) = 15 - min{3, |fp — fq|}

- |




Local minima and “movesets” l/

 Since we are in a discrete setting, local minima can be defined
discretely:

* Alabeling f is a local minima if any small change increases its energy

E(f) <E(f') forany f' nearto f

* A close labeling is one which we can arrive at with only one move

- |




Movesets - examples V

) initial labeling ) standard move a-(3-swap ) a-expansion

'L—{a,ﬁ,y}

e Each of the 3 rightmost figures shows a move achievable by some

moveset r




Movesets - examples

(a) original image  (b) observed image (c) local min w.r.t.  (d) local min w.r.t.

standard moves  a-expansion moves

* Example of labelings which are local minima w.r.t different movesets

* Fig (d) looks better because it’s labeling “competes” with more

possibilities




Pseudocode and terminology

—

Start with an arbitrary labeling f
2. Set success := 0

3. For each pair of labels {a,(3} C L

3.1. Find fzargminE(f’) among f’ within one a-(3 swap of f

3.2. If E(f)<E(f), set f := f and success := 1

4. If success = 1 goto 2
5. Return f

e Each execution of 3.1 — 3.2 is called an iteration
* Each execution of 2 — 4 is called a cycle

* A similar algorithm exists for minimization w.r.t a-expansion, but we

will not focus on it




Finding the optimal swap%

« We would like to show an efficient way to compute f as defined in
3.1

* To do this, we will use graph cuts

e Example graph:

—
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Graph Cuts - Revisited e

v

* We say that a set of edges C € E is a cut of G if it the two terminals
are separated from each other in the induced graph (V,E — C)

* We will also require that no proper subset of C separates the two
terminals, for reasons you will see later

* The cost of a cut C will be defined as the sum of the edge weights of

the cut
A I
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* Vertices of the graph are all pixels labeled a or (3, plus the two terminals:
V(x,B == Pa U :PB U {a,,B}

e Each pixel is connected to its neighbors in the picture and the terminals

Building the graph

* Edges between pixels are n-links
* Edges between pixels and terminals are t-links:

Enp = U {{p, 43} U {{p, a3, {p, B}}

{r.q}eN PEPUPg

p,qevaﬁ r
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Example graph again:

Gaﬁ — (Vaﬁi Ea,B)
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Defining the weights

edge weight for
D,(a) + Z V(a,f)
ty p q EP
p qENy P ap
q¢€Pap
D,(a) + Z V(a,f)
B p q € P
tp iH, p af
q€Pap
€(p,q} V(a,B) pagenNn

D,q € Pup I
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* The weight of a t-link {a, p} is the cost of assigning a to p

Big scary table — Cont’

* The weight of an n-link is the cost of having a boundary in the
partition between the two pixels

edge weight for
t? Dp(a) + 2 f;eé\fp V(Od, fq) pE Paﬁ
9¢Pnp
tg Dp(ﬁ) =2 ‘{;;Vp V(,@, fq) JURS Paﬁ
q af3
{p,q}eN
€{p.a} V(a,B) ep. 5 I



Graph weights - explanation

* An n-link appears in the cut only if its two endpoints are assigned
different labels:




L e
What labeling does a cut define? o .

* Let pr denote the label given to pixel p by cut C

*If p & Pyp, then fy = f,
*Iftf € Cthenfy =«

°Ift5€(]thenfp =

* since C is a cut, no vertex is reachable from both terminals, and no

vertex is isolated from both either I_
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ICl=E(f°) =K

Main theorem

* Forany a-f cuton Ggp

e Specifically, the minimum cut is the minimal energy labeling one a-f
swap away from the initial f

e Why?

:#‘ |
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|IC Nt — links| = z Dp(fpc) + Z V(fpc;ch)

q€Pap

Main theorem - Proof

 Since the weight of a t-link is defined accordingly:

edge weight for
tg DP(OZ) -+ Z 267./)\/}) V(O(, fq) p € Paﬁ
q af3

tzﬁ) Dp(/B) + ZQC;’%\[Z V(ﬁ, fq) p € Pag
- A I




Main theorem - Proof

|IC Nn — links| =

L~

vty fi)

{p.q}eN
pP.q E?aﬁ

* Note that since V is metric, then if f” = fi, there is no boundary, the
edge is not in the cut, and V(fpc,chs

=0

€{p.q}

V(a, B)

{p.a}eN
P,9€Pas

—
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Main theorem - Proof

 Finally, putting it all together:

cl= D> [D,(5)+ D VU \+ DL VL)

PEP B qEND {p.q}eN
q€Pap P.9€Pqp

IC| = z Dp(fy) + Z V(s fi)

p or q€Pqp r
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IC| = z Dp(fy) + z V(s fi)

Proof — Cont’

PEPqp {.q}eEN
P Oor q€Pqp
ICl =E(f¢) — z Dp(fy) — z V(fy f)
pe?aﬁ {prq}EN
p;CIﬁ'PaB
ICl =E(f*) —K

- |
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* The minimal weight labeling one a-f3 swap away from f is defined by
f¢ where C is the minimal weight cut on G,

Main proof - Corollary

* To implement the algorithm, we can repeatedly apply minimum cut
operations until the labeling stops changing, something which we
know how to do efficiently

* Enough math, let’s see some results!

- |
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Results - Stereo —
ormalized

Left Image Ground truth Correlation

Swap Expansion | .Silr'ﬁ-ulaed.
algorithm algorithm . annealing I



Results — Flower garden sequence

e —

Stereo pair Horizontal movement

*V(for fa) =T(fp # fy) - 80

. Dp(fp)... Its complicated &= I_




Horizontal Vertical
movement movement

+V(fprfg) = 40 - min {8’ (Fr ="+ (fy - fqv)z}

. fph and fp” are horizontal and vertical components of f, I_




Interactive Graph Cuts ...




Interactive Graph Cuts

* We would like the ability to impose hard constraints.

* The user marks certain pixels as “object” or “background”
to provide hard constraints for segmentation.

o red is object

Blue is background




We can use the same system as earlier

* To impose hard constraints, we can force very heavy t-links

cut

t-links



Heavy t-links force choice of label

e Remember from the last part — this time we have only one
possible a-f swap.

* If we add a very heavy weight to {p, a}, it will not be in the cut

*If{p,a} & C,then ff = p3



Summary

 Large intersection between vision and graph theory

* Today we saw several of the algorithms for segmentation
 Normalized graph cuts
e Graph cuts minimizing large moves

* We also saw a solution for some adjacent problems like
* Motion segmentation



L~ W

Boykov, Yuri, Olga Veksler, and Ramin Zabih. "Fast approximate energy minimization
via graph cuts." IEEE Transactions on pattern analysis and machine
intelligence 23.11 (2001): 1222-1239.

References

Shi, Jianbo, and Jitendra Malik. "Normalized cuts and image
segmentation." IEEE Transactions on pattern analysis and machine
intelligence 22.8 (2000): 888-905.

Boykov, Yuri Y., and M-P. Jolly. "Interactive graph cuts for optimal boundary
& region segmentation of objects in ND images." Proceedings eighth IEEE
international conference on computer vision. ICCV 2001. Vol. 1. I[EEE, 2001. wmmmm




L~

 Large intersection between vision and graph theory

summary

* Today we saw several of the algorithms for segmentation
 Normalized graph cuts
e Graph cuts minimizing large moves

* We also saw a solution for some adjacent problems like
* Motion segmentation







