Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Network

2017

Presented by: Waseem Wishahi – Nov 2021

Previously...

We learned about Image to Image translation

Get paired images from different domains

Use Conditional GAN to learn the mapping between the two

Previously...

We learned about Image to Image translation

Get paired images from different domains

Use Conditional GAN to learn the mapping between the two

Paired Image to Image

However, for many tasks, paired training data will not be available!

Landscape photos ↔ Van Gogh Paintings

How can we even obtain such data?!

Unpaired Image to Image Translation

Constraints

Van Gogh Domain

We want to preserve the distribution:

 $\hat{y} = G(x)$ indistinguishable from $y \in Y$

 $\boldsymbol{\chi}$

G(x)

If we only force distribution, we could get something like this:

Summer ↔ Winter

Constraints

Cycle Consistency

Constraints

Cycle Consistency

Need to minimize the difference

Network architecture (1/2)

Network architecture

High level view of Generators

High level view of Discriminator

Results

facade \rightarrow label

Different approaches

CoGAN:

Y (domain)

Different approaches

pix2pix: C-GAN, trained on paired dataset, acts as an upper bound

Evaluation

	$\mathbf{Map} ightarrow \mathbf{Photo}$	$\mathbf{Photo} \to \mathbf{Map}$
Loss	% Turkers labeled real	% Turkers labeled real
CoGAN [32]	$0.6\%\pm0.5\%$	$0.9\%\pm0.5\%$
BiGAN/ALI [9, 7]	$2.1\%\pm1.0\%$	$1.9\%\pm0.9\%$
SimGAN [46]	$0.7\%\pm0.5\%$	$2.6\%\pm1.1\%$
Feature loss + GAN	$1.2\%\pm0.6\%$	$0.3\%\pm0.2\%$
CycleGAN (ours)	$\textbf{26.8\%} \pm \textbf{2.8\%}$	$\textbf{23.2\%} \pm \textbf{3.4\%}$

AMT "real vs fake" test on maps-aerial photos at 256 × 256 resolution.

Results compared to different approaches

FCN scores on result vs ground truth

Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [32]	0.40	0.10	0.06
BiGAN/ALI [9, 7]	0.19	0.06	0.02
SimGAN [46]	0.20	0.10	0.04
Feature loss + GAN	0.06	0.04	0.01
CycleGAN (ours)	0.52	0.17	0.11
pix2pix [22]	0.71	0.25	0.18

labels \rightarrow *photo*

Loss	Per-pixel acc.	Per-class acc.	Class IOU
CoGAN [32]	0.45	0.11	0.08
BiGAN/ALI [9, 7]	0.41	0.13	0.07
SimGAN [46]	0.47	0.11	0.07
Feature loss + GAN	0.50	0.10	0.06
CycleGAN (ours)	0.58	0.22	0.16
pix2pix [22]	0.85	0.40	0.32

 $photo \rightarrow labels$

CycleGAN loss:

 $\mathfrak{L}_{GAN}(G, D_y, X, Y) + \mathfrak{L}_{GAN}(G, D_X, Y, X) + \lambda \mathfrak{L}_{cyc}(G, F)$

GAN alone:

 $\mathfrak{L}_{GAN}(G,D_y,X,Y) + \mathfrak{L}_{GAN}(G,D_X,Y,X)$

Cycle alone:

GAN+forward:

$$\mathfrak{L}_{GAN}\big(G,D_y,X,Y\big) + \mathfrak{L}_{GAN}(G,D_X,Y,X) + \lambda \mathfrak{L}_{cyc}'(G,F)$$

 $\mathfrak{L}'_{cyc}(G,F) = \mathbb{E}_{x \sim p_{data}(x)} \big[||F(G(x)) - x||_1 \big]$

GAN+backward:

 $\mathfrak{L}_{GAN}(G, D_y, X, Y) + \mathfrak{L}_{GAN}(G, D_X, Y, X) + \lambda \mathfrak{L}_{cyc}^{\prime\prime}(G, F)$

$$\mathfrak{L}_{cyc}^{\prime\prime}(G,F) = \mathbb{E}_{y \sim p_{data}(y)} \left[\left| \left| G(F(y)) - y \right| \right|_1 \right]$$

forward cycle: $F(G(x)) \approx x$

backward cycle: $G(F(y)) \approx y$

$labels \rightarrow photo$

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Cycle alone	0.22	0.07	0.02
GAN alone	0.51	0.11	0.08
GAN + forward cycle	0.55	0.18	0.12
GAN + backward cycle	0.39	0.14	0.06
CycleGAN (ours)	0.52	0.17	0.11

$photo \rightarrow labels$

Loss	Per-pixel acc.	Per-class acc.	Class IOU
Cycle alone	0.10	0.05	0.02
GAN alone	0.53	0.11	0.07
GAN + forward cycle	0.49	0.11	0.07
GAN + backward cycle	0.01	0.06	0.01
CycleGAN (ours)	0.58	0.22	0.16

Nøtable applications

Monet to photographs

Photographs to different artists' styles

Object Transfiguration

More at

junyanz.github.io/CycleGAN

Limitations

 $dog \rightarrow cat$

$cat \rightarrow dog$

Limitations

Geometric changes

 $dog \rightarrow cat$

$cat \rightarrow dog$

Inputs different from training data

results. In particular, for a GAN loss $\mathcal{L}_{\text{GAN}}(G, D, X, Y)$, we train the G to minimize $\mathbb{E}_{x \sim p_{\text{data}}(x)}[(D(G(x)) - 1)^2]$ and train the D to minimize $\mathbb{E}_{y \sim p_{\text{data}}(y)}[(D(y) - 1)^2] + \mathbb{E}_{x \sim p_{\text{data}}(x)}[D(G(x))^2].$

nators using a history of generated images rather than the ones produced by the latest generators. We keep an image buffer that stores the 50 previously created images.

For all the experiments, we set $\lambda = 10$ in Equation 3. We use the Adam solver [26] with a batch size of 1. All networks were trained from scratch with a learning rate of 0.0002. We keep the same learning rate for the first 100 epochs and linearly decay the rate to zero over the next 100 epochs. Please see the appendix (Section 7) for more details about the datasets, architectures, and training procedures.