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Abstract 
 
To the casual observer, transient stress results in a variety of physiological changes that can be seen in 
the face.  Although the conditions can be seen visibly, the conditions affect the emissivity and 
absorption properties of the skin, which imaging spectrometers, commonly referred to as Hyperspectral 
(HS) cameras, can quantify at every image pixel.  The study reported on in this paper, using 
Hyperspectral cameras, provides a basis for continued study of HS imaging to eventually quantify 
biometric stress.  This study was limited to the visible to near infrared (VNIR) spectral range.  Signal 
processing tools and algorithms have been developed and are described for using HS face data from 
human subjects.  The subjects were placed in psychologically stressful situations and the camera data 
were analyzed to detect stress through changes in dermal reflectance and emissivity.  Results indicate 
that hyperspectral imaging may potentially serve as a non-invasive tool to measure changes in skin 
emissivity indicative of a stressful incident.  Particular narrow spectral bands in the near-infrared 
region of the electromagnetic spectrum seem especially important.  Further studies need to be 
performed to determine the optimal spectral bands and to generalize the conclusions. The enormous 
information available in hyperspectral imaging needs further analysis and more spectral regions need 
to be exploited.  Non-invasive stress detection is a prominent area of research with countless 
applications for both military and commercial use including border patrol, stand-off interrogation, 
access control, surveillance, and non-invasive and un-attended patient monitoring.   
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1. INTRODUCTION 
 
Conventional color cameras acquire the color intensity from three broad spectral visible bands, i.e., red, green and blue. 
Hyperspectral (HS) cameras measure the color intensity over a hundred or more narrow spectral bands.  HS cameras 
depend on the same focal plane array (FPA) sensors and the same type of lenses as ordinary non-HS cameras use.  FPA’s 
are tuned to particular broad spectral regions, such as visible (VIS or V), near infrared (NIR), short wave infrared 
(SWIR), mid-wave infrared (MWIR), and long wave infrared (LWIR).  Likewise, the optics in any one camera are 
limited by chromatic aberration and transmission properties to similar spectral regions.  The cameras used for this study 
were Hyperspectral cameras limited to the spectral range from visible to near infrared (VNIR), which is approximately 
the wavelength region from 400 nanometer to 900 nanometers.  The data sets acquired from the HS-VNIR cameras are 
the measured intensity, Ix,y,λ of the narrow spectral band, λ, at the spatial location, x and y, in the image space and is 
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referred to as a data cube (see Figure 1).  Because each element (pixel) in the FPA differs in its response to light (i.e. 
gain) and to the presence of no light (i.e. dark current) the raw data is “non-uniform,” and Non-Uniform Corrections 
(NUC) were applied to the raw data prior to the data being recorded.  The light source spectral content for this study was 
kept constant for all patients.  The analysis performed is based on the difference in the recorded spectral intensity from 
the same face from the same local regions prior to, during, and after the situation occurred which may cause stress in a 
normal subject.   
 
It should be noted that different objects and surfaces that appear to be the same to the naked eye can have uniquely 
different Hyperspectral signatures1.  Hyperspectral VNIR imaging has proven useful in finding differences that were not 
obvious to human observer in other applications.  With that in mind, this study was initiated to determine the value of 
Hyperspectral imaging to aid in assessing whether a person is in stress. 

 

 
 

Figure 1 – Hyperspectral Data Cube Structure 
 

1.1 Physiological Assessment of Psychological Stress 
 

Physiological signs of stress have been traditionally measured on the body with contact sensors that measure human vital 
signs such as pulse and respiration, as seen in Figure 2. These techniques include galvanic skin response, which 
measures the changes in electrical properties (resistance and conductivity) of the skin in response to stress or anxiety, the 
electrocardiogram signal (ECG), which is a recording of the electric current of the cardiac cycle used to determine the 
pattern of a patient’s heartbeat, and pulse oximetry, a noninvasive and painless way to measure oxygen saturation of 
arterial blood, an indicator of breathing. More recently, much emphasis in detecting stress has shifted from 
measurements taken from vital signs on the body to regional surface signs using contact-free sensing. This has allowed 
the shift toward enabling remote sensing of physiological changes by ascertaining physiological measurements that can 
be observed in the face, a body region that is usually exposed and might therefore facilitate remote sensing.    

 

 
Figure 2 – Conventional Methods of Measuring Stress- (a) Galvanic Skin Response (b) Electrocardiogram (ECG) (c) Pulse Oximetry 

 
Currently, there are many publications on the modeling and interpretation of human behavior based on spatio-temporal 
characteristics of human motion2. One of the approaches implemented utilizes the kinematics of distinctive points on the 
human body, such as the knees, elbows, and shoulders, to develop 3-D models of human silhouettes in stacked sequential 
video frames. Video databases containing human movements, such as gait, jumping, and other motions, were used to 
identify activities of interest. Stochastic approaches of human motion have also been explored using Markov and 
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Bayesian models2. In these studies, it would be necessary to capture the person’s of interests entire body to accurately 
identify motion, a stipulation that would restrict remote identification of human behavior in an unconstrained 
environment with uncooperative individuals. In addition to visually observing an individual, the information gathered 
through facial expressions could possibly be utilized to provide insight into an individual’s emotional state and perhaps 
even infer something about the person’s intent by means of behavioral cues. Identifying even subtle conscious or 
unconscious changes in facial expressions, in addition to suspicious changes in gaze and pose, might provide crucial 
information regarding a person’s emotional and motivational state3. 
 
The signature of a “fight or flight” response can be thermally imaged due to redistribution of arterial blood flow that 
changes the temperature within the superficial depth of facial tissue (see Figure 3). Thermal imagery provides a 
broadband signature, which is dependent on a heat source and can therefore be used to observe an adjustment in blood 
flow in an individual’s face during particularly stressful or emotionally exhausting events. In addition to local 
physiological changes, vital signs can be measured through thermal imaging of the face4. Heart rate can be measured 
thermally via the carotid artery and heat patterns associated with breathing can also be thermally observed in the nasal 
area through temperature oscillations5. Performing physiological measurements on the face using thermal imaging is 
challenging due to the fact that these are non-contact measurements on an uncooperative subject - a virtual probe has to 
be applied on the right tissue location and remain there during motion, causing an image segmentation problem 
(automatically finding the right area) and an image tracking problem (staying on the region of interest despite facial 
motion).  
  
Transient stress results in a variety of physiological transformations including redirection of blood, increase in heart rate 
and blood pressure, increase in respiration, and the release of hormones such as adrenaline and cortisol. Many of these 
subtle changes manifest themselves visibly. Physiological indicators, such as changes in skin coloration due to 
subdermal vascular adjustments, emergence of abnormal perspiration, and changes in body temperature, are parameters 
that may lend themselves to remote spectral analysis to detect the stress-related changes. Oxygenated hemoglobin flow 
increases subdermally in response to and in proportion to the level of transient stress and thus alters the emissivity and 
absorption properties of the skin6. In addition, perspiration contains water, sodium chloride, potassium, magnesium, and 
other chemicals that affect the penetration of ambient light on the epidermis and how it is reflected on this top layer of 
skin, causing an attenuation of certain wavelengths in the electromagnetic spectrum. Monitoring these changes in the 
spectral domain has the potential to allow for innovations in the noninvasive assessment of the correlation between stress 
and its manifestation6.  
 

 
 

Figure 3 – Facial thermal images relate muscular actions to thermo-physiological changes (Computational Physiology Lab- 
University of Houston4 

 
1.2 Biometric Applications for Hyperspectral Imaging 
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A majority of current biometric authentication systems such as face-recognition systems, are configured to function for 
cooperative user applications and not necessarily for surveillance purposes. These systems analyze images obtained from 
the visible light portion of the electromagnetic spectrum and are therefore very sensitive to uncontrolled changes in 
ambient illumination. Studies have indicated that changes in environmental lighting, such as the angle and intensity of 
illumination, may considerably hinder the ability of a facial recognition system to positively identify a target7. More 
recently, mid- and long-wavelength infrared imaging has been utilized for facial recognition purposes, both in 
indentifying individuals under uncontrolled illumination situations and even when the face is disguised. Results can be 
significantly more precise when images from the visible spectrum are compared with those from the infrared spectrum8. 
However, the use of thermal imagery poses many challenges to accurate facial recognition, including interference from 
varied external environmental and temperature conditions, temperature variability associated with the health of the user, 
and poor ability to identify eye location. Using imaging in the near infrared (NIR) region provides an alternative 
measurement for facial recognition. NIR-based facial feature detection uses numerous spectral bands over the 
wavelength range from 700 to 1000 nm, allowing for multiband spectral measurements of the surface and subsurface of 
facial skin sampled at various points in a specified region of interest12. These useful signatures, which have shown to be 
exclusive to an individual based upon horizontal and vertical projections of invariant features and are insensitive to 
ambient light in uncontrolled illumination situations. Although hyperspectral imaging is emerging as a technology used 
for face detection and identification, the use of hyperspectral data to determine the mental state of an individual based on 
physiological indicators has not been adequately researched. 
 
In 2005, a patent was published to unobtrusively detect physiological stress in an individual by means of hyperspectral 
imaging using parameters such as sub-dermal blood flow and dermal hydration in an automated and potentially portable 
system10. The patent identifies the wavelengths that would be particularly important in understanding human stress and 
presents the various hurdles in implementing such a system, including the necessity to have a controlled environment 
with known illumination conditions and an in-depth understanding of how skin emissivity is influenced by factors such 
as age, sex, ethnicity, and health condition. Hyperspectral imaging of different regions of the spectrum corresponding to 
various physiological phenomena may provide subtle clues on the psycho-physiological state of an individual that is not 
observable in imaging systems currently being used11. For example, the 500 - 600 nm range corresponds to the intense 
absorption of light by hemoglobin in the blood (the phenomenon known as “blushing”), 1400 - 1700 nm indicates water 
absorption (perspiration), and the 9000 - 12000 nm range and has shown the ability to characterize body temperature10.  
The volume of information available in hyperspectral imaging yields information beyond that possible from broad 
spectral regions, such as changes in blood and/or perspiration 13. 
 
For this study, we leveraged a pre-existing experiment (see Section 2.1) of the US Army ARDEC’s Target Behavioral 
Response Laboratory in which subjects were placed in an ostensibly stress-inducing situation and monitored for 
physiological changes. We focused on the visible to near-infrared range of the spectrum (around 400 - 900 nm) as this is 
the region in which ambient light is reflected from skin. The near-infrared region of the spectrum has indicated relevance 
in facial detection as it provides the ability to discern information unseen to the eye through its unique signature derived 
from spectral properties. This signature may prove to vary based on the emissivity properties of the skin in response to 
external stimuli, in this case the stress inducing event. The visible range of the spectrum has not been explored in the 
hyperspectral domain for applications in stress detection; we therefore hope to understanding whether this region 
provides useful data for non-invasive stress detection as well as developed event-related characterization algorithms for 
the near-infrared region. Signal processing techniques were used to measure changes in skin reflectance that we hope 
would prove to be in some way related to the event that was designed to evoke possible stress response. Hyperspectral 
imaging may eventually provide a noninvasive tool to measure stress changes if we can select and focus on wavelength 
bands that vary reliably with stress changes. The additional information available in hyperspectral imaging yields 
supplementary information that could potentially be exploited for identification of psychologically-induced stress (e.g. 
changes in blood flow and/or perspiration may become more evident in certain wavelength ranges) 13.  The capability to 
collect data over a range of wavelengths represents an advance in biometric technology. 
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2. DATA COLLECTION 
 
2.1 Experimental Design 
 
All biometric data collection and field testing were performed at the U.S. Army’s Target Behavioral Response 
Laboratory (TBRL). The TBRL conducts research on human behavior and physiology in response to stressful or aversive 
stimuli, and conducts its studies in operationally-relevant situations. The TBRL, working in collaboration with the New 
Jersey Medical School’s Stress and Motivated Behavior Institute, have years of research experience in conducting such 
studies from construct development, devising human-subject research protocols, recruitment and running of subjects, 
collection and analysis of biological and behavioral data, and remote-sensing biometric data. The TBRL receives 
Institutional Review Board approval for all studies to ensure compliance with all federal regulations on the ethical use of 
human subjects in research.  
 
For this study, we collected hyperspectral images during an experiment designed and conducted by the TBRL in which 
subjects were placed in a situation that was designed to elicit a robust stress response. The TBRL’s experimental purpose 
involved relating two characteristics of painful blunt impact, the impact’s velocity and body location, to a subject’s 
willingness or hesitation to self-deliver a second blunt impact after deciding to deliver the first.  The TBRL also 
measured pain and self-reported stress responses from each subject at several time points during the study. Numerous 
physiological measures were also taken prior to, during, and following exposure to the blunt impact stressor including 
heart rate, respiration rate, and pulse oximetry data collection. Due to the difference in intention and anticipated 
conclusions derived from our studies, it should be made known that the goals of the TBRL and this study are 
independent. The primary purpose of the study conducted by the TBRL was to assess indicators of escape and hesitation 
as a function of location and impact velocity of a painful force (administered as a shot from a paintball gun). Subjects (42 
males age 18 - 55) were recruited from advertisements placed in local newspapers and posted at Picatinny Arsenal and at 
local institutions (public libraries, grocery stores, etc.). All subjects went through an informed consent process approved 
by the U.S. Army Armament Research, Development and Engineering Center (ARDEC) Institutional Review Board 
(IRB). Subjects were given the opportunity to activate paintball guns, aimed at the center of either their abdomen or 
thorax, up to two times (this paper will only consider the initial shot for analysis) at velocities of 200 ft/sec and 300 
ft/sec. It should be noted that for our study, velocities and the impact location of the shots were not taken into thought 
and both impact velocities at either site were considered to deliver/induce analogous levels of pain/stress. The subject’s 
task in this experiment was to depress a button which would in turn fire a single paintball shot from a paintball marker at 
the predetermined velocity and location on his body. Hyperspectral data were collected from two cameras before, during, 
and after the subject was placed in the position to self-administer paintball hits. In addition to hyperspectral images, 
conventional physiological stress measurements were also collected (ECG, pulse oximetry, temperature, and respiration) 
to correlate changes in the hyperspectral images with induced stress.  
 
The present report describes results from analyzing a subset of the hyperspectral data that were collected. Hyperspectral 
measurements were acquired from 20 of the 42 subjects tested by the TBRL. This report involves analysis of 
hyperspectral data from six subjects immediately before and immediately after the first paintball hit. Data from the time 
between paintball hits and from the times during and after the second paintball hit have not yet been analyzed and are not 
reported here.   
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Figure 4 – Experimental Setup for Static Blunt/Stress Study (ARDEC Target Behavioral Response Laboratory)  
 

2.2 Hyperspectral Camera Technologies 
 
The camera that was primarily used for hyperspectral image collection was an acousto-optic tunable filter- (AOTF-) 
technology-based camera developed by Brimrose Corporation. The AOTF is based on the acoustic diffraction of light in 
an anisotropic medium and has several advantages over traditional spectrometers. Traditional spectrometers, which are 
typically based on a filter wheel or a grating, require careful handling and frequent calibration. They also suffer from 
lower scan speeds and lower reliability. An AOTF is a solid-state tunable filter with no moving parts and is therefore 
immune to orientation changes or even severe mechanical shock and vibrations. Moreover, the AOTF is a high 
throughput and high-speed programmable device capable of accessing wavelengths at rates of 100 kHz, making it an 
excellent tool for in-situ spectroscopy. Other advantages of AOTF technology are a broad tuning range (0.4 – 5 μm), a 
large field of view, and the fact that it is electronically programmable. Using commercial off-the-shelf (COTS) 
electronics, it is possible for image capture to reach real-time acquisition (30 frames per second or much faster, 
depending on signal levels).  
 
A secondary 16-color visible-to-near infrared HS camera that uses custom optics and COTS focal plane arrays was also 
used for this study. The camera was developed jointly by the Acoustics & Networked Sensors Division (U.S. Army-
ARDEC) and Surface Optics Corp. It is a portable and lightweight staring system (i.e. acquires a full hyperspectral data 
cube instantaneously) with no moving parts and can detect objects at up to 400 meters depending on ambient lighting 
conditions. The camera collects over 30 images per second with real-time target detection and tracking handled by an 
onboard computer. Although data were collected using this camera, the resolution of the AOTF camera was better suited 
for this particular application. We therefore performed analysis on only the images collected by the AOTF camera. 
Cameras were situated to collect data in optimal lighting, field-of-view, and position. 
 
Placement of the equipment is seen in Figure 4. A high-intensity halogen lamp with a light-diffusing shade was placed 5 
feet directly to the left of the subject to provide uniform illumination. The AOTF camera was placed 10 feet to the front 
and left of the subject and the SOC 16-color camera was placed 6 feet to the front and right of the subject to capture 
sufficient facial data to accommodate the specifications of the lenses being used. An optical standard with known 
emissivity and reflectance characteristics was also used to calibrate the data with the light source. 
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3. DATA ANALYSIS 
 
3.1 Histogram Analysis 
 
Hyperspectral imaging provides a host of information within the spectral bands that can be used for classification of 
responses to events. Classification can be done through the analysis of intensities within the spectral bands. A one-
dimensional histogram provides a graphical interpretation of the distribution of data within a single spectral band. This 
allows for the clustering of the number of pixels that have a particular intensity level. However, rather than identifying 
only the number of pixels that correspond to a particular intensity level, it may be more beneficial to identify the regions 
within an image that correspond to that specified intensity level. When observing a histogram constructed from two 
separate bands obtained from the same pixel, significant differences in the histograms indicate different (and perhaps 
valuable) information. Each peak (absolute maximum occurrence of a particular intensity) within the histogram is 
separated from neighboring peaks by valleys called the “modes” (absolute minimum occurrence of a particular intensity) 
of the histogram. These modes often represent a specific feature within the pixel and the occurrence of numerous modes 
indicates that various features corresponding to a particular phenomenon have been imaged. Classifying the number of 
pixels in each mode allows for the understanding of the relative size of areas within the image with similar spectral 
characteristics. The “spectral signature” of a pixel is a mixture of its intensity levels in the two bands and may be plotted 
in a two-dimensional histogram.  The bars within the 2-D histogram are sometimes called “vectors” and represent the 
frequency of occurrence of that particular set of intensity levels found in the original image and the entire plot is the 
spectral signature.  
 
In this study, it would be necessary to classify without prior knowledge, requiring the ability to identify areas with 
similar spectral properties within an image without knowing the spectral changes resulting from a particular incident. 
This method, known as ‘unsupervised classification’ involves no prior knowledge or training of spectral features of 
interest. In this technique, classes are created based upon statistical measurements spanning across the image. This 
eliminates the necessity to train using a sample, which may not be representative of the entire image to be mapped due to 
variability. Numerous mathematical algorithms exist in which the objective is to identify and separate statistically related 
groups within the feature space caused by some significant trend. A majority of these algorithms are based on locating 
regions within the feature space with high pixel density separated by regions with low density14.  In this study, histogram 
analysis was used to identify groups of pixels with similar intensity within spectral bands and observe their changes 
relative to the subject being shot during the experiment which induced stress and identify bands that exhibited 
dependence in response to the condition imposed.  
 
3.2 Principal Component Analysis 
 
Principal Component Analysis (PCA) is a mathematical procedure that alters potentially correlated variables into a sub-
set of uncorrelated variables called principal components. The first and major component within a dataset corresponds to 
a significant amount of variability within the dataset and identifies any underlying trend within that dataset. PCA is a 
major tool used for exploratory data analysis and is used in predictive modeling. PCA represents an orthogonal linear 
transformation, transforming data to an alternate coordinate system in which there is a maximal variance by any 
projection of the data onto any of its components. PCA can be defined as the optimal least squares transformation for a 
given data set. 
 
Below the mathematical representation of a linear combination is given in Equation 115: 

 
ଵݕ  ൌ  ∑ ௞ݔ௞ଵݓ ൌ ଵ்ݓ    ௡௞ୀଵ    (1)       ݔ

 
In which ݔଵ, … , ,ଵݓ ௡ are the elements of the vector x. Theݔ … , ଵ்ݓ ଵ, and theݓ ௡ଵ are the scalar coefficients or weights, elements of an ݊-dimensional vectorݓ   term is the transpose of vector ݓଵ.  
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The term ݕଵ is the principal component of ݔ if the variance of ݕଵ is maximally large. Due to the fact that the variance is 
dependent on the orientation and norm of the weight vector ݓଵ and grows proportionally to the growth of the norm, it is 
necessary to enforce a constraint that the norm of ݓଵ is constant with a value of 1. It then allows for the identification of 
a weight vector ݓଵthat maximizes the criterion for PCA 
 
ଵሻݓଵ௉஼஺ሺܬ   ൌ ଵଶሽݕሼܧ  ൌ ଵ்ݓሼሺܧ ሻଶሽݔ ൌ ଵ்ݓ ଵݓሽ்ݔݔሼܧ ൌ ଵ்ݓ  ଵ  (2)ݓ௫ܥ
 

for the constraint ԡݓଵԡ = 1 
 
Here,  ܧሼ. ሽ is the expectation over the unknown density of the input vector ݔ, and the norm of ݓଵ (given in Equation 
3d and defined as the Euclidian norm) is: 
 ԡݓଵԡ ൌ ሺݓଵ் ଵሻభమݓ ൌ ሾ∑ ௞ଵ  ଶ௡௞ୀଵݓ ሿଵ/ଶ (3) 

 
The matrix ܥ௫ shown in Equation (1) is the ݊ ݔ ݊ covariance matrix of ݔ for the zero-mean vector ݔ by the correlation 
matrix 
 
௫ܥ  ൌ  ሽ  (4)்ݔݔሼܧ
 
The solution that therefore maximizes Equation (1) is thus 
 
ଵݓ  ൌ ݁ଵ  (5) 
And the first principal component of x is  
ଵݕ  ൌ ݁ଵ்  (6) 
 
3.3 Moment Statistics  
 
Statistical parameters including mean, mode, median, and variance were calculated for the histogram for each band 
within the hyperspectral datasets to identify indicators of stress and regions of interest along the facial surface.  Kurtosis 
measurements were also calculated to describe how outlier-prone the distribution of data was in addition to quantifying 
the degree of statistical “peakedness” within the data. Skewness of the dataset was also calculated to define the degree of 
asymmetry. The kurtosis function is provided below in Equation (7)  

 

 ݇ ൌ ாሺ௫ି௫ҧሻమఙర   (7) 
 

and the skewness function is provided in Equation (8): 
 
 

ଵߛ     ൌ ாሾሺ௑ି௫ҧሻయሿாሾሺ௑ି௫ҧሻమሿయ మൗ   (8) 

 

4. RESULTS 
 
Based on our observations from all the various spectral bands from which data was acquired (technology dependant from 
the visible to near-infrared region)  as seen through the histogram analysis, we were able to observe the most regular 
variability amongst subjects in spectral band 13 which corresponded to a wavelength in the near-infrared region of the 
electromagnetic spectrum. A measurable change in density (calculated using a density parameter) within the histogram 

Proc. of SPIE Vol. 7674  76740K-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/03/2015 Terms of Use: http://spiedl.org/terms



 

 

distribution was identifiable within all cubes for this specified wavelength when comparing hyperspectral images at 
varying points  in time 1 second pre and post shot relative to the self-administration of the paintball shot. As mentioned 
beforehand, only the first shot applied to the subject was considered for this analysis.  Due to the instantaneous nature of 
the shot being administered and the limitations of the hyperspectral hardware, it was difficult to collect data simultaneous 
to the blunt-impact hitting the subject. The 1-sec time frame for comparison was chosen to allow a standard comparison 
between subjects relative to the event that was expected to change subjects’ stress and pain levels.  While we ultimately 
hope to relate hyperspectral data to the degree of stress experienced by the subject, further analysis of the present data 
and perhaps additional data collection will be required before we can comment on that relationship. The data described 
here represent varied facial responses at two times during a period that is expected to reflect changes in a subject’s stress 
and pain experience, before and after a self-administered paintball hit, and may possibly represent the stress change that 
we seek to quantify with hyperspectral measurement. Hyperspectral data was collected for twenty subjects in this study 
and analysis was performed on a subset of six subjects. These subjects were selected due to the uniformity amongst their 
datasets in reference to the timeframe in which they were collected (closest to the 1-second pre and post-shot reference 
point previously mentioned), providing for a more robust inter-subject comparison.  
 
The histogram of the pixel intensity distribution for spectral band 13 in the forehead region-of-interest for three sample 
subjects randomly selected from the six subject datasets studied is provided in Figure 5.   
 

 
Figure 5 – Histogram Density Plots for spectral band 13 for three subjects in a hyperspectral snap shot image 1-second pre- and post-

shot 
 

As seen in Figure 5, there is a noticeable histogram intensity difference when comparing the time intervals before and 
after the subject was shot. This is represented in the histograms as the density of the clustered pixel intensities increasing 
markedly following the shot. This apparent trend was observable in all of the six subjects studied in band 13 within the 
given region-of interest (shown in Figure 6) and although these alterations in histogram density cannot be attributed to 
any specific psychological or physiological change, the timing of the change relative to the paintball hit suggests that it 
may be associated with the stress changes or other psychological states associated with the painful event and their 
physiological manifestations in the subject.  A density parameter was calculated to quantify the changes in histogram 
density pre and post- shot. The density parameter was measured across the entire run length (x-axis which is the relative 
intensity for a given wavelength) of the histogram and quantified based on the absolute minimum occurrences along the 
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length for the histogram bins and can be visualized as the average number of data bars per group. Essentially, the number 
of bars per subgroup within histograms clusters (observed from the number of bars per subgroup in the histogram) were 
calculated and averaged for the histogram. The mean histogram density parameter for the six subjects observed before 
the shot was 3.13 (± 0.13 SEM) and after shot was 5.92 (± 0.28 SEM). 

         
 

Figure 6 – Left-Hyperspectral image with highlighted region-of-interest (shown in red on the forehead); Right-Spectral Signature 
attained from subject from region-of-interest 1 second before and after shot 1 

 
Principal Component Analysis (PCA) allowed us to develop a set of mutually orthogonal basis vectors upon which to 
project data, such that the axes correspond to the directions of maximum variance in the data.  In this way, trends within 
the target data were distinguished to show which variables within the data vary mutually. Generated below are various 
graphs of the principal components and the first component variances for each band of interest (Figure 7 shows band 6, 
corresponding to a band in the red region of the visible color spectrum, as an example) for one subject.   
 

 
 
Figure 7 – Principal Component Analysis performed on hyperspectral data for spectral band 6: (a) Variance in principal components 
for band 6, (b) Data projection plot for primary and secondary principal components, (c) 3-dimensional plot of first two principal 
components 
 
The 2 and 3 dimensional PCA plots (plotted in Figure 7) should show distinguishable directions of data for a particular 
band.   
If the same data trend were to be observed in observed spectral bands from stressed and unstressed individuals, then one 
may be able to correlate a particular data pattern associated with the event and thus provide insight on features that 
present themselves based on the stressed vs. unstressed conditions.   (Note that there was no unstressed condition 
associated with the present study, so such a comparison cannot be made within this report even if large variations were to 
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be observed.) Figure 7a shows the variation in the first 10 components.  Typically the first 4 components are expected to 
accentuate the most variance in data. No distinguishable features were observed in the various spectral bands when 
performing PCA. This inability to identify any patterns may be due to the large volume of data within the hypercubes, 
and features of principal components may be more evident once data reduction processing is performed.   

5. CONCLUSION 
 
The preliminary results reported for this study described in this paper is part of a multi-level study to develop robust 
algorithms for stand-off biometric sensing using hyperspectral-imaging. Preliminary analysis shows some consistent 
variation across several subjects at constant time points around a painful and stressful event. This variation suggests the 
potential for extracting changes in physiological stress information through its emergence on human skin. A framework 
has been developed for algorithmic techniques to characterize spectral changes in skin; however these and other 
techniques need to be further explored and optimized. Histogram analysis, in conjunction with alternate processing 
techniques, implies the possibility to separate datasets corresponding to subtle event-related statistical variations in 
hyperspectral data. It will however, require significant analysis to determine whether these changes are stress-induced 
responses or whether they represent other underlying phenomena such as muscle activation, emotional responses to 
painful events, or other emotional responses. Results indicate a good reason to further explore the near-infrared region 
for the application of hyperspectral imaging for identification of stress-related changes, however further investigation is 
needed to validate whether hyperspectral imaging in the visible regions will provide useful information on event-related 
spectral changes.  Other analysis that could be valuable would involve the comparison of images acquired during 
alternate intervals of time during the blunt-impact study described in this paper. Comparing pre-1st-shot readings with 
post-2nd-shot readings, especially several seconds post-shot, could indicate a time of relief, the opposite of the stress that 
is believed to be evident at all time points prior. Furthermore, comparing post-1st-shot readings with immediately-pre-
2nd-shot readings could take into account expected decreases in the emotional response to pain within the observed 
hyperspectral changes. If the prominent changes observed thus far were due to a pain reaction, we would expect the pain 
response to dissipate quickly, reflected through a histogram density that would be lessened just before the second shot. 
This would allow for a disentangling of these two confounded variables that coexist in the data set that has been analyzed 
so far. In addition, it could be highly enlightening to see whether the few subjects for which there are clear hyperspectral 
data all came from the low-velocity impact group or the high-velocity group, or whether there was a split that is reflected 
by the degree of pixel-intensity change observed. That might provide the strongest evidence of all toward a stress or pain 
related hypotheses. 
 
Due to the complexity of human physiology it will be necessary to correlate the findings presented in this paper to the 
conventional physiological measurements collected during this study (pulse oximetry, respiratory ECG) to compare 
trends within the spectral data to biological events. As well as identifying this correlation, it will be necessary to 
understand how this relationship is influenced by additional factors, such as skin color, ethnicity, age, gender, and health 
condition, providing novel insight into the ability to robustly quantify psycho-physiological changes. To properly assess 
the ability of hyperspectral imaging to detect stress, it will be necessary to investigate the variability in human 
physiologies and normalize biological differences to accurately perform inter-subject analysis. Furthermore, additional 
variables should also be researched, such as the ability to discriminate between psychologically induced stress and 
thermal and blood-flow changes that are stimulated aerobically, as well as context conditions, such as ambient humidity 
and temperature on the physiological processes involved in the measurements. It would also be necessary to identify 
other possible parameters that may allow for a valid and reliable indication of the presence of stress. Later we anticipate 
the extension of this study into Hyperspectral SWIR, MWIR and LWIR spectral domains. Further application of these 
techniques must be performed on more extensive sets of data to derive strong conclusions on whether the use of 
hyperspectral imaging is a practical sensor for stress detection.  
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