
1 Discrete Math - University of Haifa - H. Hel-Or

Methods of Proof
Lesson 5:

• Mathematical Reasoning
• Methods of Proofs

– Direct / Indirect Proofs
– Vacuous / Trivial Proofs
– Proof by Contradiction
– Proof by Cases

• The Halting Problem

Chapter 1.5
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Mathematical Reasoning
• The basis of all mathematical reasoning is the 

Argument (ארג ומנט) or Proof ( הוכ חה).
• Used to validate mathematical hypothesis and  
assumptions.

• Used in CS :
Validate Programs
Ensure security of Operating Systems
Inference and learning in AI

We shall learn:
Principles of correct proofs. When is a proof in/correct.

Mathematical Reasoning
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Mathematical Reasoning
Definitions:
Theorem - (משפט) a statement that can be shown to be true.
Proof or Argument (הוכח ה) - (ארגומנט) a series of statements

that demonstrate that a theorem is true.
This series includes:
- Axioms - (א קסיומות ) assumptions on the world
- Hypotheses of the theorem to be proved
- previously proven theorems.

Rules of inference ( הסק  חוקי ) - laws that allow deduction of new
conclusions from previous arguments.

Lemma - (למה) a (simple) theorem used in the proof of a
more complex theorem.

Corollary - (מסקנה ) statement or proposition that is deduced
directly from a theorem.
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Proofs

We want to prove statements of the following form:

“If p then q”.

That is we want to prove p →q  or that p →q ⇔ T

Remember: that p →q is always true except when p is
true and q is false 

Note: it is enough to prove that under the assumption
of p is true, we have that q is true.
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Direct Proof ( הוכחה ישיר ה)

Direct Proof (הוכ חה  ישירה )
Prove p→q directly by assuming p and proving
q using axioms, inference and previously proven
theorems.
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Direct Proof ( הוכחה ישיר ה)
Example:

Theorem: If n is even then n2 is even.

Proof: Assume n is even (assume p ⇔T), 
then there exists an integer   k ∈ Z such that n=2*k.
Then n2 = (2*k)2 = 4*k2 = 2*(2*k2).
Since k ∈ Z then 2*k2 ∈ Z

Thus n2 equals 2 times an integer and by definition is even.
We have proven the conclusion is true (q ⇔ T).

Definition: n is even iff there exists an integer k ∈Z such
that n = 2*k.

p q
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Indirect Proof ( הוכחה בש לי ל ה)

Indirect Proof (הוכ חה  בשלילה  )
Since p → q ⇔ ¬q → ¬p    (contrapositive),
prove p → q by proving ¬q → ¬p : 
assume ¬q and prove ¬p  using axioms, inference
and previously proven theorems.
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Indirect Proof ( הוכחה בש לי ל ה)
Example:

Theorem: If 3*n+2 is odd then n is odd.

Proof: Assume the conclusion is false (¬q ⇔ F) 
i.e. assume that n is even.
Then there exists an integer  k ∈ Z such that n=2*k.
However, then 3*n+2 = (3*(2*k)+2) = 6*k+2 = 2*(3*k+1).
Since k ∈ Z then 3*k+1 ∈ Z
Thus 3*n+2 equals 2 times an integer and by definition
is even. We have proven that the premise is False (¬p ⇔ F)
and ¬q → ¬p ⇔ p → q ⇔ T.

p q
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Vacuous Proof (  הוכחה ריקה)

Vacuous Proof (הוכ חה  ריקה )
If  p ⇔ F then p → q ⇔ T (regardless of value of q).
Prove p → q by proving p ⇔ F always. 

Example:

Theorem: For natural numbers if n<0 then 2*n is even.

Proof: For all natural numbers  n<0 ⇔ F
Thus premise is always False regardless of the 
conclusion and theorem is proven.
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Trivial Proof (   הוכחה טריב יאלי ת)

Trivial Proof ( ( הוכ ח ה טריביאלית
If  q ⇔ T then p → q ⇔ T (regardless of value of p).
Prove p → q by proving p ⇔ F always. 

Example:

Theorem: For integers, if n is prime then 2*n is even.

Proof: For all integers 2*n is even by definition. 
Thus conclusion is always True regardless of the 
premise value and theorem is proven.
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Proof Strategy
Example:

Theorem: For integers, if n2 is odd then n is odd.

Proof: 1) Try Direct Proof:
If n2 is odd then there exists k ∈ Z such that n2 = 2*k +1.
Then n = √ 2*k +1  ......

2) Try Indirect Proof:
Assume n is even, then n = 2*k.
Then n2 = (2*k)2 = 4*k2 = 2*(2*k2).
If k ∈ Z then 2*k2 ∈ Z and n2 is even.
Thus theorem is proven.
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Proof by Contradiction ( י  ס תי רה"הוכחה ע  )

We want to prove general statements p
(possibly p ⇔ (s→t) but not necessarily)

Find a Contradiction q (q ⇔ F) and prove ¬p → q.
i.e. ¬p → F.  However this implies ¬p ⇔ F and p ⇔ T.

We assume ¬p and prove a contradiction, indicating that 
the initial assumption is not true and that p ⇔ T.
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Example:

Proof: Assume by contradiction that no 3 are the same
day of the week. Thus at most 2 days are the same
day of the week. The week has 7 days thus at most
2*7 = 14 days were randomly chosen.
Contradiction to the fact that 15 days were chosen.
Due to contradiction we deduce that at least 3 days
are the same day of the week.

Proof by Contradiction ( י  ס תי רה"הוכחה ע  )

Theorem: out of 15 randomly chosen days, at least 3 are
the same day of the week.
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Example:

Proof: Assume by contradiction that √2 is rational.
1. √2 is rational
2. √2 = a/b a,b ∈ Z with no common factors

(definition of rational)
3. 2 = a2/b2 (arithmetic)
4.  2*b2 = a2             (arithmetic)
5. a2 is even        (definition of even)

Proof by Contradiction ( י  ס תי רה"הוכחה ע  )

Definition: n is Rational if there exist (מספר רציונלי)
integers a,b with b ≠ 0 such that n = a/b.
If n is not rational it is Irrational ( רציונלי-אי ).

Theorem: √2 is irrational.
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Proof cont.: 
5. a2 is even        (definition of even)
6. a is even         (Theorem: if n2 is even then n is even) 
7. a = 2*k  k∈ Z (definition of even)
8. a2 = 4* k2 (arithmetic) 
9. 2*b2 = 4* k2 (from 4. and 8.) 
10. b2 = 2*k2 (arithmetic)
11. b2 is even       (definition of even)
12. b is even        (Theorem: if n2 is even then n is even) 
13. 2|a and 2|b     (from 6. and 12.) Contradicts 2.
14. 2. and 13. ⇔ F

Thus we showed ”√2 is rational” → F so ”√2 is rational” ⇔ F
and we have ”√2 is irrational” . 

Proof by Contradiction ( י סתירה"הוכחה ע )
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Indirect Proof vs Proof by Contradiction
( ( והוכ ח ה בסתירה והוכחה בשלילה 

For theorems of the form p → q, Indirect Proof and Proof by
Contradiction is the same.

Indirect proof

assume ¬q
prove    ¬p
deduce  ¬q → ¬p
equal to p → q

Proof by Contradiction

assume ¬(p → q)
i.e. assume  p

assume ¬q
prove  ¬p
deduce ¬p ∧ p  ⇔ F
deduce ¬(p → q) → F
deduce (p → q) ⇔ T
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Generalizing Proofs

Theorem of the form p ∧ q, prove p and q separately.

Example:

Proof:     6|n  → (2|n ∧ 3|n)  ⇔
(6|n  → 2|n) ∧ (6|n → 3|n)    (distributive)

prove (6|n  → 2|n)
prove (6|n  → 3|n)

Theorem: if n is divisible by 6 (6|n) then n is divisible
by 2 (2|n) and n is divisible by 3 (3|n).

6|n  → (2|n ∧ 3|n)
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Generalizing Proofs

Theorem of the form (p1 ∨ p2 ∨ ... ∨ pn) → q
⇔ (p1 → q) ∧ (p2 → q) ∧ ... ∧ (pn → q)
Prove every (pi → q) separately

Example:

Proof:    prove (6|n  → 2|n)
prove (8|n  → 2|n)

Theorem: if n is divisible by 6 (6|n) or  n is divisible
by 8 (8|n) then n is divisible by 2 (2|n).

(6|n ∨ 8|n)  → 2|n
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Proof  By Cases (הוכחה בחלקים)

To prove a theorem of the form p→q , replace it with 
(p1 ∨ p2 ∨ ... ∨ pn) →q where p ⇔ (p1 ∨ p2 ∨ ... ∨ pn)
and prove each pi → q separately.

Example:

Proof:    p ⇔ p1 ∨ p2

Theorem: if n∈Z is not divisible by 3 then  n2 ≡ 1 (mod 3).

p q

where p1 = “n ≡ 1 (mod 3)”

p2 = “n ≡ 2 (mod 3)”
Case 1:  prove p1 →q
Case 2:  prove p2 →q
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Proof  By Cases (הוכחה בחלקים)

Proof cont.:

(Direct Proof) assume “n ≡ 1 (mod 3)”
n = 3*k +1     k∈Z (definition of mod)
n2 = (3*k+1)2 = 

=  9k2 +6k + 1
= 3*(3k2 +2k) +1

n2 ≡ 1 (mod 3)” (definition of mod)

∈Z

(math)

Case 1:  prove  p1 → q (“n ≡ 1 (mod 3)” → “n2 ≡ 1 (mod 3)”)
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Proof  By Cases (הוכחה בחלקים)

Proof cont.:

(Direct Proof) assume “n ≡ 2 (mod 3)”
n = 3*k +2     k∈Z (definition of mod)
n2 = (3*k+2)2 = 

=  9k2 +12k + 4
= 3*(3k2 +4k +1) +1

n2 ≡ 1 (mod 3)” (definition of mod)

∈Z

(math)

Case 2:  prove  p2 → q (“n ≡ 2 (mod 3)” → “n2 ≡ 1 (mod 3)”)
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Generalizing Proofs
Theorem of the form p↔ q

⇔ (p → q) ∧ (q → p) 
Prove every (p → q) and (q → p) separately.

Example:

Proof:    1. prove (n is odd  → n2 is odd)
2. prove (n2 is odd  → n is odd)

Theorem:  n is odd iff n2 is odd.

1. (Direct proof) assume n is odd
n = 2*k + 1                    (definition of odd)
n2 = 4*k2 + 4*k +1 

= 2*(2k2 +2k) + 1
n2 is odd                       (definition of odd)

(math)
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Generalizing Proofs

Proof cont.:

2. 
(Indirect proof)   assume  ¬(n is odd)   i.e.  n is even
n = 2*k                       (definition of even)
n2 = 4*k2

= 2*(2k2)
n2 is even                  (definition of even)

(math)

prove (n2 is odd  → n is odd)

From 1. and 2. we have  (n is odd  ↔ n2 is odd)
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Generalizing Proofs
Theorem of the form show that p1, p2, ... , pn are equivalent

use tautology: 
(p1↔p2 ↔ ... ↔pn) ⇔ (p1→p2)∧(p2→p3) ∧ ... ∧(pn→p1) 

and prove every (pi → pi+1) separately.

Example:

Proof:    1. prove (n is even  → n+1 is odd)
2. prove (n+1 is odd  → n2 is even)
3. prove (n2 is even  → n is even)

Theorem:  Show that the following statements are equivalent:
p1 = “n is an even integer”
p2 = “n+1 is an odd integer”
p3 = “n2 is an even integer”
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Proofs of Theorems with Quantifiers

Prove theorems of the form ∃x P(x) or ∀x P(x)

Existence Proofs

• Constructive
• Non-constructive
• Uniqueness 

Counterexamples
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Existence Proofs (הוכחת קיום)

Prove theorems of the form ∃x P(x) .

Method 1: Constructive Proofs ( י בניה "הוכ חת קיום ע )
Find a singled example a of assignment to x for
which P(a) is True.

Example:
Theorem:  There exists a prime number greater than 10.
                ∃x P(x) = ∃x (x>10 ∧ “x is prime”)

Proof:    We show that P(11) = T.
11>10 and 11 is prime: 2 | 11 ... 10 | 11
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Existence Proofs (הוכחת קיום)
Example:
Theorem:  For every number n there exists a number greater

than n with the same parity.

Proof:    We show that the specific case of n+2 has the            
same parity as n.
Case 1: n is even 

n = 2*k                       (definition of even)
n+2 = 2*k + 2 = 2 * (k+1)        (math)                 
n +2  is even             (definition of even)   

Case 2: n is odd 
n = 2*k +1                 (definition of odd)
n+2 = 2*k + 3 = 2 * (k+1) +1       (math)             
n +2  is odd               (definition of odd)
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Existence Proofs (הוכחת קיום)

Prove theorems of the form ∃x P(x) .

Method 2: Nonconstructive Proofs ( י בניה "ה וכחת קיום שלא ע )
Without finding a specific, prove that there must be 
such a case P(x). e.g. directly or prove by contradiction.

Lemma: Every natural number has at least 1 prime factor.
Proof: n is a natural number then either n can be factored 
into prime factors, or it is prime and then n | n and n is its 
own prime factor.

Example: The example requires the following Lemma.
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Existence Proofs (הוכחת קיום)

Example:
Theorem:  For every natural n there exists a prime greater 

than n.

Proof:    Assume n is natural.  Consider (n! + 1).
n!+1 = (1*2*...*n) + 1    by the Lemma it has a prime factor.
However for all    m<=n   m |  (n!+1)   since m |  n!  and
1 ≡ n!+1(mod m).
Thus the prime factor of (n!+1) must be greater than n.
And so there exists a prime greater than n.
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Uniqueness Proofs (הוכחת קיום יחיד)
Prove theorems of the form:

“ there exists a unique x such that P(x)” .

Prove existence and then prove uniqueness;
             ∃x P(x) ∧ ∀y(y≠x → ¬P(y))

Example:
Theorem:  Every integer has a unique additive inverse.

Proof:    x is an integer. we prove ∃y x+y = 0.
(by construction) Set y = -x and then x + y = 0.
Uniqueness: Assume by contradiction that there exists 
integer z ≠ y s.t.  x+z = 0.
Then x+z = x+y and subtracting x from both sides we get
z=y contradiction.
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Counterexample Proofs ( י  דוגמא נגדית"ש ליל ה ע )

Proving theorems of the form ∀x P(x) may be difficult.
Proving the falsity of ∀x P(x) is easier:
provide counter example a such that ¬P(a)⇔F
                           ∀x P(x) = ∃x¬P(x)

Example:

Theorem:  Every prime number is odd.

Proof:    2 is prime and yet 2 | 2 so that it is even.
2 is a counter example.
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Counterexample Proofs ( י  דוגמא נגדית"ש ליל ה ע )

Proving theorems of the form ∀x P(x) may be difficult.
It is not enough to test a few/many cases. All
cases must be tested.

Example:

Is n2 - n + 41 prime for every positive integer n?

Answer:    True for n = 0,1,2 ...

What about n = 41?
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Computer Proofs?

Goldbach’s Conjecture - (השארת גולד באך)
Every even integer greater than 2 is the sum of 2 primes.

Shown to be true:
Up to millions by hand (4 = 2+2, 6 = 3+ 3,...)
With computers proven to be true for all positive integers
up to 4*1014 !!

Christian Goldbach (1690-1764)

Not proven till this day!
p. 220-223
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Fermat’s Conjecture

Fermat’s Conjecture ( - ( המשפט האחר ון של פרמה\השארת פרמה
There are no positive integers x,y,z such that 

xn + yn = zn

for n > 2.

Pierre de Fermat (1601-1665)
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Fermat’s Theorem - Milestones

1630 - Fermat’s Theorem presented the theorem

1630 - Fermat - proven for n =4

1700 - Euler  prooved for n=3

1825 - Germain, Dirichlet & Legendre proved for n=5

1832 - Dirichlet proved for n=14  (failed atempt at n=7)

1839 - Lamé proved for n=7

1847 - Lamé, Louville & Kummer proved for all primes n up to 37

1847 - Lamé, Louville & Kummer proved for al prime up to 100 except 37, 59, 67

1908 - 1912 - over 1000 false proofs published!!
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Fermat’s Theorem - Milestones
1937 - The calculating machines and computers come into play:

1937 - Using computers proven up to n = 617  

1955 - Using computers proven up to n = 4001 

1976 - Using computers proven up to n = 125,000 

1993 - Using computers & based on Kummer’s theory proven up to n=4,000,000

1955 - Taniyama et.al. Develop Theory of Elliptic Curves

1986 - Frey connected between Eliptic Curves & Fermat's Theorem

1993 - Andrew Wiles concluded a talk with a corollary: “...and this proves

xn + yn = zn and here I’ll stop!”

1993 - Wiles withdraws his proof due to an error found.

1994 - Wiles corrects the proof and completes the proof of Fermat’s Theorem.

1995 - Paper with proof published =  a book of hundreds of pages.

Beginning of the end:
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The Halting Problem

The Halting Problem - (בעית העצירה)
Is there a procedure/program that receives as input: 
1) a computer program 2) input to the computer program
and determines whether the computer program will 
eventually stop when run with the input ?

This is not trivial: one can not simply run the program
since if it does not stop in a given time is not proved that
wont stop in the future.
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Alan Mathison Turing (1912 - 1954)

The Halting Problem

1936 - Alan Turing proved that such a program does not exist.

Turing Machine

Turing Test

Turing Prize

The Enigma Code
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The Halting Problem - Proof
Proof of Non-existence: (proof by contradiction)

Assume that there exists a program H that receives as input:
1) a program P 2) input I

and returns “halt” if P stops when given I 
and returns “does not halt” if P does not stop on input I.

P I

H

“halt”
(if p stops on I)

“does not halt”
(if p does not stops on I)

H(P,I)
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Since P is a program ( = a series of letters = a series of bits)
it can also serve as an input.
Thus running  H(P,P) is valid:

P P

H H(P,P)

The Halting Problem - Proof
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Build a program/procedure K as follows:
K receives as input the program P and runs H(P,P).
If H(P,P) returns “halt” then K(P) goes into infinite loop.
If H(P,P) returns “does not halt” then K(P) returns “yes”.

P P

H K(P)

The Halting Problem - Proof

*  K does the opposite of H

P

“doesnt halt”“halt”

K

“Yes”
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The Halting Problem - Proof

K K

H K(K)

K

“doesnt halt”“halt”

K

“Yes”

Since K is a program ( = a series of letters = a series of bits)
it can also serve as an input.
Thus running  K(K) is valid:
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The Halting Problem - Proof

K K

H
K(K)

K

“doesnt halt”“halt”

K

“Yes”

1) If H(K,K) outputs “halt” then K(K) goes into infinite loop
and does not stop  BUT  H(K,K)  outputs that K(K) does 
stop - contradiction!

2) If H(K,K) outputs “does not halt” then K(K) stops and 
outputs “yes” BUT  H(K,K)  outputs that K(K) does not
stop - contradiction!

Thus the assumption that procedure H exists is incorrect. 
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"Drawing Hands" - 1948
MC Escher 


