
1 Discrete Math - University of Haifa - H. Hel-Or

Mathematical Induction
&

Recursion

Lesson 7:

• Recursive Definitions
• Mathematical Induction
• Variations on Induction
• Strong Induction
• Recursive Functions
• Recursive Sets

Chapter 3.3-3.4

2 Discrete Math - University of Haifa - H. Hel-Or

f : N→ N
f(n) = 2n

Recursive Definitions of Functions

Can also be defined in terms of f:

f(n) = 2 * f(n-1)

Note: Needs stopping criteria: f(0) = 1

g(n) = n!

g(n) = n * g(n-1)

3 Discrete Math - University of Haifa - H. Hel-Or

Mathematical Induction

then f(n) = 2n

Prove that if f(n) = 2 * f(n-1), f(0)=1

then g(n) = n!

Prove that if g(n) = n * g(n-1), g(0)=1

Prove that the sum of the first n odd positive integers is n2.

Prove that n < 2n for all positive integers n.

4 Discrete Math - University of Haifa - H. Hel-Or

Mathematical Induction (אינדוקציה מתימטית)

An important proof technique for problems of this sort.

Used in wide variety of areas:
• Complexity of algorithms
• Program run-times
• Correctness of programs
• Theorems about graphs and trees

Main issue: equivalence exists only needs proof.

5 Discrete Math - University of Haifa - H. Hel-Or

Well-Ordering Property (ס דור היטב)

Axiom:
The Well-Ordering Property ('סדור היטב'תכונת)
of Natural Numbers (or positive Integers) :
Every nonempty subset of N has a least member.

Intuitively means that the set N can be linearly ordered.

Examples: {x | 0 < x < 10} x ∈ N
Has a least member: 1

{x | 0 < x < 10} x ∈ R
Does NOT have a least member.
R is not Well-Ordered.

6 Discrete Math - University of Haifa - H. Hel-Or

Mathematical Induction (אינדוקציה מתימטית)

Principle of Induction:

Statement is thus proved for all elements in the set.

To prove a statement on a well-ordered set:
• order the set linearly
• prove specifically for first element
• prove for all elements: if statement is true for an
element then is true for following one.

7 Discrete Math - University of Haifa - H. Hel-Or

Mathematical Induction (אינדוקציה מתימטית)

Induction is used to prove Theorems of the form:

Proving ∀n P(n) by induction:

∀n P(n) n ∈ Z+

Step 1: Basis Step (בסיס האינדוק ציה)

prove P(1) ⇔ T
Step 2: Inductive Step (צע ד אינדוקטיבי)

prove ∀k P(k) → P(k+1) k ∈ Z+

P(n) is called the Induction Hypothesis (ה נחת ה אינדוק ציה)

[P(1) ∧ ∀n (P(n) → P(n+1))] → ∀n P(n) n ∈ Z+

8 Discrete Math - University of Haifa - H. Hel-Or

Mathematical Induction (אינדוקציה מתימטית)
∀n P(n) n ∈ Z+ is proven because:

P(1) = T Proven in Induction Basis

P(2) = T because P(1) = T and
P(1)→P(2) = T by Induction Step.

P(3) = T because P(2) = T and
P(2)→P(3) = T by Induction Step.

For all k ∈ Z+

P(k) = T because P(k-1) = T and
P(k-1)→P(k) = T by Induction Step.

9 Discrete Math - University of Haifa - H. Hel-Or

Mathematical Induction (אינדוקציה מתימטית)

The First Theorem proven by induction :

Francesco Maurolico (1494-1575)

Theorem:
The sum of the first n odd positive integers is n2.

1 = 1 1 + 3 = 4 1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 8 = 25

10 Discrete Math - University of Haifa - H. Hel-Or

Mathematical Induction (אינדוקציה מתימטית)

Proof: By induction:

P(n) = “The sum of the first n odd integers equals n2”.

1) Basis step: P(1) = T because 1 = 12.

2) Inductive Step: prove that for all k P(k) → P(k+1)

Assume P(k) = T and prove P(k+1) = T

1+ 3 + 5 + 7 + ... + (2k-1) = k2 (Induction Hypothesis)

1+ 3 + 5 + 7 + ... + (2k-1) + (2k+1) = k2 + (2k + 1)

= k2 + 2k + 1 = (k+1)2 (math)

Thus P(k+1) = T.

Thus ∀n P(n) = T for n ∈ Z+

11 Discrete Math - University of Haifa - H. Hel-Or

Induction Proof for Inequality.

Theorem: n < 2n for all n ∈ Z+ .

Proof: By induction:
P(n) = “n < 2n ”.
1) Basis step: P(1) = T because 1 < 21 = 2.
2) Inductive Step: prove that for all k P(k) → P(k+1)

Assume P(k) = T and prove P(k+1) = T
k < 2k (Induction Hypothesis)
k + 1 < 2k + 1 (math)
k + 1 < 2k + 1 ≤ 2k + 2k = 2k+1 (math and that 1 ≤ 2k)
Thus P(k+1) = T.

Thus ∀n P(n) = T for n ∈ Z+

12 Discrete Math - University of Haifa - H. Hel-Or

Induction Proofs for n ≥ n0

Proof of statements of the form P(n) for n ≥ n0, n∈Z+ .

Since Z+ is well-ordered, any subset of Z+ is well-ordered.
Thus {n | n ≥ n0} is well-ordered and induction can be applied.

Proving P(n) for n ≥ n0, n∈Z+ by induction:

Step 1: Basis Step (בסיס האינדוק ציה)
prove P(n0) ⇔ T

Step 2: Inductive Step (צע ד אינדוקטיבי)
prove ∀k P(k) → P(k+1) for k ≥ n0

13 Discrete Math - University of Haifa - H. Hel-Or

Induction Proofs for n ≥ n0

Theorem: 2n < n! for n ≥ 4.

Proof: By induction:
P(n) = “2n < n!”
1) Basis step: P(4) = T because 24 = 16 < 1*2*3*4 = 24.
2) Inductive Step: prove that for all k ≥ 4 P(k) → P(k+1)

Assume P(k) = T and prove P(k+1) = T
2k < k! (Induction Hypothesis)
2 * 2k < 2 * k! (math)
2 * 2k < (k+1) * k! (math & 2 ≤ (k+1) for k ≥ 4)
2k+1 < (k+1)! (math)
Thus P(k+1) = T and ∀n P(n) = T for n ≥ 4

14 Discrete Math - University of Haifa - H. Hel-Or

Induction Proofs on Countable Sets

Proof of statements on countable sets.

Since Z+ is well-ordered, any subset of Z+ is well-ordered.
Thus {n | n ≥ n0} is well-ordered and induction can be applied.

Proving P(n) for n ≥ n0, n∈Z+ by induction:

Step 1: Basis Step (בסיס האינדוק ציה)
prove P(n0) ⇔ T

Step 2: Inductive Step (צע ד אינדוקטיבי)
prove ∀k P(k) → P(k+1) for k ≥ n0

15 Discrete Math - University of Haifa - H. Hel-Or

Theorem: If S is a finite set with n elements then S has 2n

subsets. I.e. P(S) (the Power Set of S) has 2n elements.
|P(S)| = 2|S|

Proof: By induction:

P(n) = “Sets of cardinality n have 2n subsets.

1) Basis step: P(0) = T because for n = 0, S = ∅ and

P(S) = {∅}, then |P(S)| = 1 = 20 = 2|S|

2) Inductive Step: prove that P(k) → P(k+1)
Assume |S| = k and S has 2k subsets.

Prove that |T| = k+1 has 2k+1 subsets.

Induction Proofs on Countable Sets

16 Discrete Math - University of Haifa - H. Hel-Or

Proof cont:
2) Inductive Step:

Let T be a set, |T| = k+1 (k≥0)

T ≠ ∅ thus there exists an element a∈ T.

Define S = T- {a} (i.e. T = S ∪ {a})

For every subset X ⊆ S there are exactly 2 subsets of T:

X and X ∪ {a}
There are 2k elements in S (Induction Hypothesis)

thus there are 2*2k = 2k+1 elements in T.

Thus P(k+1) = T and ∀n P(n) = T

Induction Proofs on Countable Sets

17 Discrete Math - University of Haifa - H. Hel-Or

Theorem:
Any 2n x 2n chessboard (n ∈Z+), with 1 square removed,
can be tiled with L-shaped tiles (each tile covers three
squares).

Induction Proofs on Area/Size

18 Discrete Math - University of Haifa - H. Hel-Or

Induction Proofs on Area/Size

Proof: By induction on n:

P(n) = “Any 2n x 2n board with one square removed can

be tiled with L-tiles”.

1) Basis step: P(1) = T because any 2 x 2 board with 1

tile removed can be tiled with L-tiles:

19 Discrete Math - University of Haifa - H. Hel-Or

Induction Proofs on Area/Size
Proof cont:
2) Inductive Step: Assume P(k) is True.

Consider a 2k+1 x 2k+1 chessboard with 1 tile removed.
Split the board into four 2k x 2k boards:

2k

2k+1

2k+1

One quarter will have a missing piece . By the Induction
Hypothesis, this quarter can be tiled with L-tiles.

20 Discrete Math - University of Haifa - H. Hel-Or

Induction Proofs on Area/Size
Proof cont:
2) Inductive Step (cont): From each of the other 3 quarters,

remove one corner tile:

2k

2k+1

2k+1

They can now be L-tiled (by the Induction Hypothesis).
The 3 missing squares can be tiled by 1 L-tile.
Thus all 4 quarters can be L-tiled and P(k+1) is True.

21 Discrete Math - University of Haifa - H. Hel-Or

Induction Proofs with k-wise Basis Step

then the Basis step must include m element:

If the Induction Step implies truth of m elements forward,

∀n (P(n) → P(n+3))

[P(1) ∧ P(2) ∧ P(3) ∧ ∀n (P(n) → P(n+3))] → ∀n P(n)

then the Basis step must include m element:

22 Discrete Math - University of Haifa - H. Hel-Or

Induction Proofs with k-wise Basis Step
Theorem: Any integer n > 7 is a sum of 3’s and 5’s.

Proof: By induction:
P(n) = “n is a sum of 3’s and 5’s”.
1) Basis step: P(8) = T : 8 = 3 + 5

P(9) = T : 9 = 3 + 3 + 3
P(10) = T : 10 = 5 + 5

2) Inductive Step: prove that P(k-2) → P(k+1)
Assume P(k-2) for k ≥ 10.
k+1 = (k-2) + 3
(k-2) is a sum of 3’s and 5’s (Induction Hypothesis).
Thus (k-2)+3 is a sum of 3’s and 5’s and
P(k+1) = T.

23 Discrete Math - University of Haifa - H. Hel-Or

Strong Inductions (אינדוק ציה ש ל מה)

The Induction Step assumes truth of all previous elements.

Step 1: Basis Step (בסיס האינדוק ציה)
prove P(1) ⇔ T

Step 2: Inductive Step (צע ד אינדוקטיבי)
prove ∀k (P(1) ∧P(2) ∧P(3) ∧ . . . ∧P(k)) → P(k+1)
for k ≥ 1

24 Discrete Math - University of Haifa - H. Hel-Or

Theorem: The Fundamental Theorem of Mathematics
 (המשפט היסודי של המתימטיקה)

Any integer n > 1 is a product of primes.

Proof: By strong induction:
P(n) = “n is a product of primes”.
1) Basis step: P(2) = T : 2 is a product of 1 prime: 2.
2) Inductive Step: prove P(k+1)

Assume P(j)=T for all 1 ≤ j ≤ k.
if (k+1) is prime then P(k+1) = T.

Strong Inductions (אינדוק ציה ש ל מה)

25 Discrete Math - University of Haifa - H. Hel-Or

Strong Inductions (אינדוק ציה ש ל מה)

Proof (cont):
2) Inductive Step (cont):

Else (k+1) is not prime and there exist integers a,b

s.t. (k+1) = a*b and 1 < a,b < k+1

Since P(a)= P(b) = T (Induction Hypothesis).

a and b are products of primes.

Thus a*b=(k+1) is a product of primes.

Thus P(k+1) = T.

26 Discrete Math - University of Haifa - H. Hel-Or

Recursion (רקור סיה)

Chapter 3.4

Mathematical Induction is strongly related to Recursion.

Definition:
Defining an object in terms of itself is called
Recursion .(רקורסיה)

"הג דר ה מעג לית" "הג דר ה ציק לית"

Sets, functions, procedures, algorithms...

27 Discrete Math - University of Haifa - H. Hel-Or

Recursive Image

28 Discrete Math - University of Haifa - H. Hel-Or

Recursive Windows

29 Discrete Math - University of Haifa - H. Hel-Or

f : N→ N
f(n) = 2n

Recursive Definitions always have 2 parts:

1) a Basis Step

2) a Recursive Step

f(n+1) = 2 * f(n)

Example:

Recursion (רקור סיה)

f(0) = 1 Basis Step

Recursive Step

Recursive Definition:

30 Discrete Math - University of Haifa - H. Hel-Or

Recursive Computer

What is the Basis step? the Recursive step?

31 Discrete Math - University of Haifa - H. Hel-Or

Recursive Functions

A well defined function assigns a single value to every
element of the domain.

The Recursive Definition of a function f : N→ N :

1) Basis Step - define f(0)

2) Recursive Step - define f(n+1) using f(n)

32 Discrete Math - University of Haifa - H. Hel-Or

Recursive Functions

f : N→ N
f(n) = n!

f(n+1) = (n+1)*f(n)

Example:

f(0) = 1 Basis Step

Recursive Step

Recursive Definition:

f(3) = 3*f(2) = 3*2*f(1) = 3*2*1*f(0) = 3*2*1*1 = 6

33 Discrete Math - University of Haifa - H. Hel-Or

Recursive Functions

f : N→ N

f(n+1) = 2*f(n)+3

Example:

f(0) = 3 Basis Step

Recursive Step

f(1) = 2*f(0)+3 = 2*3+3 = 9

f(2) = 2*f(1)+3 = 2*9+3 = 21

f(3) = 2*f(2)+3 = 2*21+3 = 45

34 Discrete Math - University of Haifa - H. Hel-Or

Recursive Functions

f : N→ N

f(n) = Σ ai

Example:

Recursive Definition:

i=0

n

f(0) = Basis StepΣ ai = a0i=0

0

f(n+1) = Recursive StepΣ ai =i=0

n+1
Σ ai +an+1 = f(n) + an+1i=0

n

35 Discrete Math - University of Haifa - H. Hel-Or

Recursive Functions

Assume P(k) =T and prove P(k+1)
Inductive Step

Are recursively defined functions - well defined?

Prove by induction:
P(n) = “f is defined on n”

Recursive Step of Definition

P(k) = T so f(k) is defined
f(k+1) = h(f(k)) (h some function) (Recursive definition)
and P(k+1) = T.

Basis Step of induction
P(0) = T

Basis Step of Definition
since f(0) is defined.

36 Discrete Math - University of Haifa - H. Hel-Or

Recursive Functions

Generalize Recursive Definition of functions analogous to
Strong Induction.

The Recursive Definition of a function f : N→ N :

1) Basis Step - define f(0)

2) Recursive Step - define f(n+1) using the values

f(k) for k ≤ n

37 Discrete Math - University of Haifa - H. Hel-Or

Fibonacci Numbers

Example: The Fibonacci Numbers (י'מספרי פיבונצ)

Leonardo de Pisa (1180 - 1228)
= Fibonacci

Wrote the book “Liber Abaci” in which Arabic numerals
and algorithms were introduced.

38 Discrete Math - University of Haifa - H. Hel-Or

Fibonacci Numbers

The Rabbit problem

2 rabbits are placed on a secluded island

• A rabbit pair starts breeding only after 2 months.
• Thereafter, every month they breed 2 rabbits.
• Rabbits live forever.

How many pairs of rabbits are there after n months?

39 Discrete Math - University of Haifa - H. Hel-Or

Fibonacci Numbers
The Rabbit problem

Young Adults Total #pairsMonth

1

2

3

4

5

0

0

1

1

2

3

5

40 Discrete Math - University of Haifa - H. Hel-Or

Fibonacci Numbers
The Rabbit problem

Recursive Formula:

f(n) = the # of rabbit pairs at end of month n.

f(1) = 1
f(2) = 1

Basis Step:

Recursive Step:

f(n) = f(n-1) + f(n-2)

f(n) = the number of pairs in previous month (rabbits
don’t die) + the number of new born pairs .

41 Discrete Math - University of Haifa - H. Hel-Or

Fibonacci Numbers

Definition:
The Fibonacci Numbers (י'מספרי פיבונצ) f0, f1, f2, ...
are defined recursively:

f0 = 0
f1 = 1
fn = fn-1 + fn-2 for n ≥ 2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

42 Discrete Math - University of Haifa - H. Hel-Or

Recursive Definitions of Sets

Recursive Definition of sets is typically analogous to
Strong Induction.

The Recursive Definition of a function f : N→ N :

1) Basis Step - define specific elements in the set.

2) Recursive Step - define additional elements in the

set using elements already in the set.

43 Discrete Math - University of Haifa - H. Hel-Or

Recursive Sets
Example:

The set S is defined recursively:

3 ∈ S
x + y ∈ S if x ∈ S and y ∈ S

Analogous to Strong Induction:

Basis Step : P(1)
Induction Step: (P(1) ∧. . . ∧P(k)) → P(k+1)

S = ?the set of all positive integers divisible by 3.

Proof ?

Basis Step
Recursive Step

44 Discrete Math - University of Haifa - H. Hel-Or

Recursive Sets
Example:

f is a formula if it is a number or variable.

The set of Mathematical Formulae.

Basis Step

Recursive Step

if f, g are formulae then:
(f + g) , (f - g), (f * g), (f / g)

are formulae.

Thus: 5 , x are formulae
(5 + x) , ((5*x) - (5/5)) are formulae

45 Discrete Math - University of Haifa - H. Hel-Or

Recursive Sets
Example:

T , F are Compound Propositions
Statement with truth value is a Compound Proposition

The set of Logical Compound Propositions.

Basis Step

Recursive Step

if p, q are Compound Propositions then:
¬p , p ∧ q , p ∨ q , p ⊕ q , p → q

are Compound Propositions.

46 Discrete Math - University of Haifa - H. Hel-Or

Recursive Sets
Example:

λ ∈ Σ* where λ is the empty string.

The set Σ* of strings over the alphabet Σ

Basis Step

Recursive Step

if w ∈ Σ* and x ∈ Σ then: wx ∈ Σ*

What if strings can not be empty?

Example: Σ = {0,1} 0, 1, 00, 11011, 1110 ... ∈ Σ*

47 Discrete Math - University of Haifa - H. Hel-Or

Induction on Recursively Defined Sets
Theorem:
Math formulae have equal number of left & right parentheses.

Basis Step : A number or variable has no parenthesis so
number of left and right parenthesis are equal.

Inductive Step: Assume f, g are formulae with equal
number of left and right parenthesis: lf = rf & lg= rg then:
(f + g) , (f - g), (f * g), (f / g)
each have lf+ lr + 1 left parenthesis and rf+rg+1 right
parenthesis. Since lf = rf, lg= rg we have: lf+ lr + 1 = rf+rg+1
- equal number of left and right parenthesis.

Proof: By induction on the structure of the set of formulae

48 Discrete Math - University of Haifa - H. Hel-Or

Recursive Procedures

Recursive functions translate directly to programming of
procedures and functions.

function factorial (n : integer) : integer
if n = 1 then

factorial := 1
else

factorial := n*factorial(n-1)
endif

end

Basis Step

Recursive Step

49 Discrete Math - University of Haifa - H. Hel-Or

Recursive Procedures

function power (a : pos real, n : non-neg integer) : integer
if n = 0 then

power := 1
else

power := a*power(a,n-1)
endif

end

Basis Step

Recursive Step

50 Discrete Math - University of Haifa - H. Hel-Or

Recursive Procedures

function g (a ,b : integer) : integer
if a < b then g := g(b,a)
else /* a ≥ b */

if a == b then g := a
else /* a > b */

g := g(a-b,b)
endif

endif
end

Basis Step

Recursive Step

What does this function compute?

51 Discrete Math - University of Haifa - H. Hel-Or

Recursive Procedures

function g (a ,b : integer) : integer

Example runs: a , b

9 , 6
3 , 6
6 , 3
3 , 3

g(9,6) = 3

a , b

7 , 3
4 , 3
1 , 3
3 , 1
2 , 1
1 , 1

g(7,3) = 1

a , b

10 , 2
8 , 2
6 , 2
4 , 2
2 , 2

g(10,2) = 2

52 Discrete Math - University of Haifa - H. Hel-Or

Recursive Procedures

function g (a ,b : integer) : integer
if b = 0 then g := a
else /* b ≠ 0 */

g := g(b,a mod b)
endif

end

Basis Step

Recursive Step

Improving the GCD function:

Example runs:

a , b

9 , 6
9 , 3
3 , 0

g(9,6) = 3

a , b

7 , 3
3 , 1
1 , 0

g(9,6) = 1 g(10,2) = 2

a , b

10 , 2
2 , 0

53 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

Definition:
An algorithms is called Recursive if it solves the given
problem by reducing it to the same problem with a
smaller/simpler input.

54 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

Example: Search Algorithms

Given an ordered list L of numbers, find a given number, x,
in this list.

x ?

L

55 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

Algorithm I: Linear Search (iterative)
L

x
?function L_search (x,start,end) : integer

for ind = start to end
if L(ind) == x /* x found */
L_search := ind;
return;

endfor
L_search := -1 /* not found */

end

56 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

Algorithm I: Linear Search (recursive)

function L_search (x,start,end) : integer
if list(start) == x /* x found */

L_search := start;
elseif start == end

L_search := -1 /* not found */
else /* keep searching */

L_search = L_search(x, start+1,end);
endif

end

57 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

Algorithm II: Binary Search
L

x
?

• Test middle of list.
• If equal to x then - found.
• Else, reduce search to smaller search:

• if x is smaller than middle element -
search 1st half of list.

• if x is greater than middle element -
search 2nd half of list.

58 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

function B_search (x,start,end) : integer
middle = floor((start+end)/2)
if list(middle) == x /* x found */

B_search := middle;
elseif (x<list(middle)) & (start < middle) /* search 1st half of list */

B_search := B_search(x,start,middle-1)
elseif (x>list(middle) & (end > middle) /* search 2nd half of list */

B_search := B_search(x,,middle+1,end)
else

B_search := -1 /* not found */
endif

end

59 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

Run times:
Linear search worst case O(n)
Binary Search worst case O(log2n)

When number is in first in list:
Best case for linear search & worst case for binary search.

What should be minimized in terms of search time?
worst case
average case
simplest

?

60 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

Recursive solution is not always faster!

function f (n: non-neg integer) : integer
if n == 0

f := 0;
elseif n == 1

f := 1
else

f := f(n-1) + f(n-2);
endif

end
What does this function calculate?

61 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

Recursive calculation of Fibonacci Numbers

f(n) = f(n-1) + f(n-2)

f(n-2) + f(n-3) f(n-3) + f(n-4)

f(n-3) + f(n-4) f(n-4) + f(n-5) f(n-4) + f(n-5) f(n-5) + f(n-6)

f(0) / f(1) f(0) / f(1)

62 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

f(4) = f(3) + f(2)

f(2) + f(1) f(1) + f(0)

f(1) + f(0) 1 1 0

1 0

Example:

f(4) = 1+0+1+1+0 = 3

63 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

function fib (n: non-neg integer) : integer
if n == 0 then fib := 0;
else /* n ≥ 1 */

n_1 := 0;
fib := 1
for i = 1 to n-1

n_2 := n_1;
n_1 := fib;
fib = n_1 + n_2

end;
endif;

Iterative calculation of Fibonacci Numbers

64 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

f(1) + f(2)

f(4)

f(2) + f(3)

Example:

f(4) = 1+0+1+1+0 = 3

Iterative calculation of Fibonacci Numbers

f(0) + f(1)

65 Discrete Math - University of Haifa - H. Hel-Or

Recursive Algorithms

Comparison of number of Ops Iterative vs Recursive
of Fibonacci Numbers

Recursive Alg: fn is computed with fn+1 - 1 additions.

Iterative Alg: fn is computed with n - 1 additions.

Recursive algorithms are often more time consuming
BUT they are easier to understand and design.

66 Discrete Math - University of Haifa - H. Hel-Or

Jim Bryan (UBC) http://www.mantasoft.co.uk/anim/

Recursive Fun

