Lesson 7:

Mathematical Induction
&
Recursion

* Recursive Definitions
 Mathematical Induction
* Variations on Induction
« Strong Induction

* Recursive Functions

* Recursive Sets

Chapter 3.3-3.4



Recursive Definitions of Functions

fr N> N
f(n) = 2"

Can also be defined in terms of f:
f(n) =2 * f(n-1)

Note: Needs stopping criteria: f(0) = 1

g(n) =n!
g(n) =n*g(n-1)



Mathematical Induction

Prove thatif f(n)=2*f(n-1), f(0)=1
then f(n) = 2"

Prove thatif g(n)=n*g(n-1), g(0)=1
then g(n) = n!

Prove that the sum of the first n odd positive integers is nZ.

Prove that n < 2" for all positive integers n.



Mathematical Induction (n'on'nn n'¥pPITI'X)

An important proof technique for problems of this sort.

Used in wide variety of areas:
« Complexity of algorithms
* Program run-times
 Correctness of programs
* Theorems about graphs and trees

Main issue: equivalence exists only needs proof.



Well-Ordering Property (2vu'n 1I70)

Axiom:

The Well-Ordering Property (av'n 21710’ napn)
of Natural Numbers (or positive Integers) :

Every nonempty subset of /" has a least member.

Intuitively means that the set /N can be linearly ordered.

Examples: {x]|0<x<10} xe N
Has a least member: 1

{xX|0<x<10} xe R
Does NOT have a least member.
R _is not Well-Ordered.



Mathematical Induction (n'on'nn n¥PITI'N)

Principle of Induction:

To prove a statement on a well-ordered set:
* order the set linearly
» prove specifically for first element
* prove for all elements: if statement is true for an
element then is true for following one.

Statement is thus proved for all elements in the set.

AN NN N NN\



Mathematical Induction (n'on'nn n¥EPITI'N)

Induction is used to prove Theorems of the form:
vnP(n) neZf

Proving ¥n P(n) by induction:
Step 1. Basis Step (n'¥j1T2'’n 0'01)

prove P(1) < T
Step 2: Inductive Step ("a'opITI'R TYX)
prove Vk P(k) > P(k+1) ke Z*

P(n) is called the Induction Hypothesis (n'x¥jIT1*'®n nNan)

[P(1) A ¥n (P(n) > P(n+1)) ] > ¥n P(n) ne



Mathematical Induction (n'on'nn n'¥pITINR)

vnP(n) neZ" isproven because:
P(1) =T Proven in Induction Basis

P(2)=T because P(1)=T and
P(1)—>P(2) = T by Induction Step.

P(3)=T because P(2)=T and
P(2)—>P(3) = T by Induction Step.

P(k) =T because P(k-1)=T and
P(k-1)—>P(k) = T by Induction Step.

Forallk e Z*



Mathematical Induction (n'on'nn n'¥pITINR)

The First Theorem proven by induction :

Francesco Maurolico (1494-1575)

Theorem:
The sum of the first n odd positive integers is nZ.

1=1 1+3=4 1+3+5=9

1+3+5+7=16 1+3+5+7+8=25



Mathematical Induction (n'on'nn n'¥pITINR)

Proof: By induction:

P(n) = “The sum of the first n odd integers equals n?”.

1) Basis step: P(1) =T because 1 =12,

2) Inductive Step: prove that for all k P(k) »> P(k+1)
Assume P(k) =T and prove P(k+1) =T
1+3+5+7+ ...+ (2k-1) =k? (Induction Hypothesis)
1+3+5+7+ ...+ (2k-1) + (2k+1) = k? + (2k + 1)
= k?+ 2k +1=(k+1)? (math)
Thus P(k+1) = T.

Thus VnP(n) =T for ne Z*




Induction Proof for Inequality.

Theorem: n<2n forallne ZF.

Proof: By induction:

P(n)="n<2n",

1) Basis step: P(1) =T because 1 <21 =2,

2) Inductive Step: prove that for all k P(k) —»> P(k+1)
Assume P(k) =T and prove P(k+1) =T
k < 2k (Induction Hypothesis)
k+1<2k+1 (math)
k+1<2Kk+1 <2k+2k=2k1  (math and that 1 < 2k)
Thus P(k+1) =T.
Thus VvnP(n) =T for ne Z*




Induction Proofs for n > n,

Proof of statements of the form P(n) forn>n,, neZ".

Since Z* is well-ordered, any subset of Z" is well-ordered.

Thus {n | n > ny} is well-ordered and induction can be applied.

Proving P(n) for n > n,, neZ" by induction:

Step 1. Basis Step (n'¥jpIT1'Rn 0'01)
prove P(ny) < T
Step 2: Inductive Step (*2'oITI'R TYX)
prove Vk P(k) > P(k+1) for k=>n,




Induction Proofs for n > n,

Theorem: 2"<n! forn>4.

Proof: By induction:
P(n) ="2" <nl”
1) Basis step: P(4) =T because 24 =16 < 1*2*3*4 = 24,
2) Inductive Step: prove that for all k >4 P(k) > P(k+1)
Assume P(k) =T and prove P(k+1) =T

2K < k! (Induction Hypothesis)
2*2k<2* Kkl (math)

2 * 2k < (k+1) * k! (math & 2 < (k+1)fork >4)
2kt < (k+1)! (math)

Thus P(k+1)=T and VvnP(n) =T for n>4



Induction Proofs on Countable Sets

Proof of statements on countable sets.

Since Z* is well-ordered, any subset of Z" is well-ordered.

Thus {n | n > ny} is well-ordered and induction can be applied.

Proving P(n) for n > n,, neZ" by induction:

Step 1. Basis Step (n'¥jpIT1'Rn 0'01)
prove P(ny) < T
Step 2: Inductive Step (*2'oITI'R TYX)
prove Vk P(k) > P(k+1) for k=>n,




Induction Proofs on Countable Sets

Theorem: |If S is a finite set with n elements then S has 2"
subsets. l.e. P(S) (the Power Set of S) has 2" elements.
IP(S)| = 2I°!
Proof: By induction:
P(n) = “Sets of cardinality n have 2" subsets.
1) Basis step: P(0) =T because forn=0, S = and
P(S) ={J}, then |P(S)=1=20=28l
2) Inductive Step: prove that P(k) —» P(k+1)
Assume |S| = k and S has 2* subsets.

Prove that |T| = k+1 has 2k*1 subsets.




Induction Proofs on Countable Sets

Proof cont:
2) Inductive Step:
Let T be a set, |T| = k+1 (k>0)
T # O thus there exists an element ae T.
Define S=T-{a} (i.,e. T=S v {a})
For every subset X — S there are exactly 2 subsets of T:
X and Xu {a}
There are 2% elements in S (Induction Hypothesis)

thus there are 2*2k = 2k*1 glements in T.
Thus P(k+1)=T and vnP(n) =T



Induction Proofs on Area/Size

Theorem:
Any 2" x 2" chessboard (n € Z%), with 1 square removed,

can be tiled with L-shaped tiles (each tile covers three
squares).




Induction Proofs on Area/Size

Proof: By induction on n:
P(n) = “Any 2" x 2" board with one square removed can
be tiled with L-tiles”.
1) Basis step: P(1) =T because any 2 x 2 board with 1

tile removed can be tiled with L-tiles:




Induction Proofs on Area/Size

Proof cont:
2) Inductive Step: Assume P(k) is True.

Consider a 21 x 2k*1 chessboard with 1 tile removed.
Split the board into four 2k x 2k boards:

.
Zk{
- Dk+1

G J
Y
2k+1
One quarter will have a missing piece . By the Induction

Hypothesis, this quarter can be tiled with L-tiles.



Induction Proofs on Area/Size

Proof cont:
2) Inductive Step (cont): From each of the other 3 quarters,

remove one corner tile:

.
2{
- Dk+1

-~
2k+1

They can now be L-tiled (by the Induction Hypothesis).

The 3 missing squares can be tiled by 1 L-tile.

Thus all 4 quarters can be L-tiled and P(k+1) is True.




Induction Proofs with k-wise Basis Step

If the Induction Step implies truth of m elements forward,

O00000O0 O -
—

vn (P(n) > P(n+3))

then the Basis step must include m element:

@00 O0OOQOQ e

[P(1) A P(2) AP(3) A Vn (P(n) > P(n+3)) ] > ¥n P(n)



Induction Proofs with k-wise Basis Step

Theorem: Anyinteger n>7is asumof 3'sand 5's.

Proof: By induction:
P(n)="nisasumof 3'sand 5's”.
1) Basisstep: P(8)=T : 8=3+5
PO)=T : 9=3+3+3
P(10)=T: 10=5+5
2) Inductive Step: prove that P(k-2) —> P(k+1)
Assume P(k-2) for k > 10.
k+1 = (k-2) + 3
(k-2) is a sum of 3’s and 5’s (Induction Hypothesis).
Thus (k-2)+3 is a sum of 3’'s and 5's and
P(k+1)=T.




Strong Inductions (nn7w n'xpITI'R)

The Induction Step assumes truth of all previous elements.

AN NN NONORORLLL

e

Step 1. Basis Step (n'¥pIT1*'Rkn 0'01)

prove P(1) < T
Step 2: Inductive Step ('2'opITI'N TYY)
prove VK (P(1) AP(2) AP(3) A ... AP(K)) > P(k+1)
for k>1




Strong Inductions (nn7w n'xpITI'R)

Theorem: The Fundamental Theorem of Mathematics
(N7'on'nnn 7w 'TI0'N VOWNN)
Any integer n > 1 is a product of primes.

Proof: By strong induction:
P(n) = “n is a product of primes”.
1) Basis step: P(2) =T : 2is a product of 1 prime: 2.
2) Inductive Step: prove P(k+1)
Assume P(j))=T forall 1<j<Kk.
if (k+1) is prime then P(k+1) = T.




Strong Inductions (nn7w n'x¥jITI'N)

Proof (cont):
2) Inductive Step (cont):
Else (k+1) is not prime and there exist integers a,b

s.t. (k+1)=a"b and 1 <a,b <k+1
Since P(a)= P(b) = T (Induction Hypothesis).

a and b are products of primes.

Thus a*b=(k+1) is a product of primes.
Thus P(k+1)=T.



Recursion (n'o117)

Mathematical Induction is strongly related to Recursion.

Definition:
Defining an object in terms of itself is called
Recursion (n'o0ij).

"n'22un naTan" "n'py nnman”

Sets, functions, procedures, algorithms...

Chapter 3.4



Recursive Image




Recursive Windows

EET——

B N s (el L0 56
rulatnd o ipmend, sriwebs, md sriesrh devises O i flaally ieeleding
4 -

wa. Bin cweputeT 1
Bf Be e Bl LS

5
ill‘r‘él i

Bis e

iC

f® |

14 start & ®m o o o PHC Upate % e ol &8 vi]e mam




Recursion (n'o117)

Recursive Definitions always have 2 parts:
1) a Basis Step

2) a Recursive Step

Example:

fr N> N
f(n) = 2n

Recursive Definition:
f(0) =1 Basis Step
f(n+1) =2 * f(n) Recursive Step



Recursive Computer

What is the Basis step? the Recursive step?



Recursive Functions

A well defined function assigns a single value to every
element of the domain.

The Recursive Definition of a function f: N — N:
1) Basis Step - define f(0)
2) Recursive Step - define f(n+1) using f(n)




Recursive Functions

Example:

fr: N> N
f(n) = n!

Recursive Definition:
f(0) =1 Basis Step
f(n+1) = (n+1)*f(n) Recursive Step

£(3) = 3*f(2) = 3*2*f(1) = 3*2*1*f(0) = 3*2*1*1 = 6



Recursive Functions

Example:

frNo>N
f(0) =3 Basis Step
f(n+1) = 2*f(n)+3 Recursive Step

f(1) = 2*f(0)+3 = 2*3+3 =9
f(2) = 2*f(1)+3 = 2*9+3 = 21
f(3) = 24f(2)+3 = 2*21+3 = 45



Recursive Functions

Example:

fr N> N
f(n)=i§loai

Recursive Definition:

f(0) = 2 &= ag Basis Step

n+1 n

f(n+1) = 2 & =2 a+a,,=f(n) +a,; Recursive Step



Recursive Functions

Prove by induction:
P(n) = “fis defined onn”

Basis Step of induction Basis Step of Definition
PO)=T since f(0) is defined.
Inductive Step Recursive Step of Definition

Assume P(k) =T and prove P(k+1)

P(k) =T so f(k) is defined

f(k+1) = h(f(k)) (h some function) (Recursive definition)
and P(k+1) =T.



Recursive Functions

Generalize Recursive Definition of functions analogous to
Strong Induction.

The Recursive Definition of a function f: N —> N
1) Basis Step - define f(0)
2) Recursive Step - define f(n+1) using the values
f(k) fork <n




Fibonacci Numbers

Example: The Fibonacci Numbers (*'xa12'o "mo0n)

Leonardo de Pisa (1180 - 1228)
= Fibonacci

Wrote the book “Liber Abaci” in which Arabic numerals
and algorithms were introduced.



Fibonacci Numbers

The Rabbit problem

2 rabbits are placed on a secluded island

* A rabbit pair starts breeding only after 2 months.
 Thereafter, every month they breed 2 rabbits.
 Rabbits live forever.



Month

1

2

Fibonacci Numbers

The Rabbit problem

Young Adults

& : Ty vt - i
g s
998" 9B a8 a9

Total #pairs
1



Fibonacci Numbers
The Rabbit problem

f(n) = the # of rabbit pairs at end of month n.

Recursive Formula:

Basis Step: f(1) =

Recursive Step:

f(n) = f(n-1) + f(n-2)

f(n) = the number of pairs in previous month (rabbits
don’t die) + the number of new born pairs .



Fibonacci Numbers

Definition:

The Fibonacci Numbers (*'xia1a'o oon) fj, f;, f,, ...

are defined recursively:
fy=0
f,=1
f=f,+f, forn>2

0,1,1,2,3,5,8, 13, 21, 34, ....




Recursive Definitions of Sets

Recursive Definition of sets is typically analogous to
Strong Induction.

The Recursive Definition of a function f ;: N —> N:

1) Basis Step - define specific elements in the set.
2) Recursive Step - define additional elements in the

set using elements already in the set.




Recursive Sets
Example:

The set S is defined recursively:

3¢S Basis Step
X+yeS ifxeS andyeS Recursive Step

Analogous to Strong Induction:

Basis Step : P(1)
Induction Step: (P(1) A. .. AP(K)) > P(k+1)

S = the set of all positive integers divisible by 3.



Recursive Sets

Example:

The set of Mathematical Formulae.

Basis Step
fis a formula if it is a number or variable.

Recursive Step

if f, g are formulae then:

(f+9), (f-9), (f*9), (f/9)
are formulae.

Thus: 5, x are formulae
(5 + x), ((5™x) - (5/5)) are formulae



Recursive Sets

Example:

The set of Logical Compound Propositions.

Basis Step
T, F are Compound Propositions
Statement with truth value is a Compound Proposition

Recursive Step
if p, @ are Compound Propositions then:

_lp,p/\q,p\/q,p®q,p_)q
are Compound Propositions.



Recursive Sets

Example:

The set X" of strings over the alphabet

Basis Step
A e X* where A is the empty string.

Recursive Step

if weX*and x e X then: WX € X*

Example: X ={0,1} 0, 1,00, 11011, 1110 ... € X~




Induction on Recursively Defined Sets

Theorem:
Math formulae have equal number of left & right parentheses.

Proof: By induction on the structure of the set of formulae

Basis Step : A number or variable has no parenthesis so
number of left and right parenthesis are equal.

Inductive Step: Assume f, g are formulae with equal
number of left and right parenthesis: I;=r; & 1= r, then:
(f+9), (f-g), (f*g), (f/g)

each have I¢+ | + 1 left parenthesis and rgtrg+1 right
parenthesis. Since |; = r;, 1= rywe have: I+ | + 1 = rtr+1
- equal number of left and right parenthesis.



Recursive Procedures A~

Recursive functions translate directly to programming of
procedures and functions.

function factorial (n : integer) : integer
if n=1then
factorial := 1 Basis Step
else
factorial := n*factorial(n-1) Recursive Step
endif
end



Recursive Procedures A~

function power (a : pos real, n: non-neg integer) : integer
if n =0 then
power := 1 Basis Step
else
power := a*power(a,n-1)  Recursive Step
endif
end



X
|
)

'ﬂ?{ = —"
Pa i

Recursive Procedures

,_

function g (a ,b : integer) : integer
fa<b then g:=g(b,a)
else [*a=b*/
ifa==Dbthen g:=a Basis Step
else a>Db"*
g := g(a-b,b) Recursive Step
endif
endif
end

What does this function compute?



Recursive Procedures

function g (a ,b : integer) : integer

Example runs: a,b a.,b
9,6 7,3

3,6 4,3

6,3 1,3

3,3 3,1

2,1

g(9,6) =3 11

9(7,3) =



Recursive Procedures @

Improving the GCD function:

function g (a ,b : integer) : integer
fb=0 then g:=a Basis Step
else "b=0"%

g :=g(b,amodb) Recursive Step

endif
end a.b a.b a.b
9,6 7,3 10, 2
Example runs: 9,3 3,1 2,0
3,0 1,0
g(9,6)=3 g(9,6) =1 g(10,2) =2



Recursive Algorithms

Definition:
An algorithms is called Recursive if it solves the given

problem by reducing it to the same problem with a
smaller/simpler input.




Recursive Algorithms

Example: Search Algorithms

Given an ordered list L of numbers, find a given number, x,

In this list. L




Recursive Algorithms

Algorithm |: Linear Search (iterative)

function L_search (x,start,end) : integer
for ind = start to end
if L(ind) ==
L search :=ind;
return;
endfor
L search := -1
end




Recursive Algorithms

Algorithm |: Linear Search (recursive)

function L_search (x,start,end) : integer
if list(start) == x
L _search := start;
elseif start ==end
L search := -1
else
L _search = L_search(x, start+1,end);
endif
end



Recursive Algorithms
Algorithm Il: Binary Search

» Test middle of list.
* If equal to x then - found.
* Else, reduce search to smaller search:
* if x is smaller than middle element -
search 1st half of list.
* if X is greater than middle element -
search 2nd half of list.




Recursive Algorithms

function B_search (x,start,end) : integer
middle = floor((start+end)/2)
if list(middle) ==
B _search := middle;
elseif (x<list(middle)) & (start < middle)
B _search := B_search(x,start,middle-1)
elseif (x>list(middle) & (end > middle)
B search := B_search(x,,middle+1,end)
else
B _search := -1
endif
end



Recursive Algorithms

Run times:
Linear search worst case O(n)
Binary Search worst case O(log,n)

When number is in first in list:
Best case for linear search & worst case for binary search.



Recursive Algorithms
Recursive solution is not always faster!

function f (n: non-neg integer) : integer

if n==
f:=0;
elseif n ==
f:=1
else

f:=f(n-1) + f(n-2);
endif
end



Recursive Algorithms

Recursive calculation of Fibonacci Numbers

f(n) = f(n-1) + f(n-2)

/N

f(n-2) + f(n-3)  f(n-3) + f(n-4)

7 N T

f(n-3) + f(n-4) f(n-4) + f(n-5) f(n-4) + f(n-5) f(n-5) + f(n-6)

v v v v

£(0) / f(1) £(0) / f(1)



Recursive Algorithms

Example: f(4) = f(3) + f(2)

/

f(2) +1(1) (1) + f(0)
/N )
f(1)+f0) 1 1 0

/N

1 0

f(4) = 1+0+1+1+0 =3



Recursive Algorithms

lterative calculation of Fibonacci Numbers

function fib (n: non-neg integer) : integer
fn==0 then fib:=0;
else *n>1"%
n 1:=0;
fib := 1
fori=1 to n-1
n2:=n1;
n_1:=fib;
fib=n1+n_2
end,;
endif;



Recursive Algorithms

lterative calculation of Fibonacci Numbers

Example:

f(4) = 1+0+1+1+0 = 3



Recursive Algorithms

Comparison of number of Ops Iterative vs Recursive
of Fibonacci Numbers

Recursive Alg: f is computed with f .- 1 additions.

Iterative Alg:  f_ is computed with n - 1 additions.

Recursive algorithms are often more time consuming
BUT they are easier to understand and design.




Recursive Fun

http://www.mantasoft.co.uk/anim/ Jim Bryan (UBC)



