Lesson 5:

Methods of Proof

* Mathematical Reasoning

 Methods of Proofs

— Direct / Indirect Proofs
— Vacuous / Trivial Proofs
— Proof by Contradiction
— Proof by Cases

* The Halting Problem

Chapter 1.5



Mathematical Reasoning

Mathematical Reasoning

* The basis of all mathematical reasoning is the
Argument (vViiaax) or Proof (nnoin).

» Used to validate mathematical hypothesis and
assumptions.

*Used in CS :
Validate Programs
Ensure security of Operating Systems
Inference and learning in Al

We shall learn:
Principles of correct proofs. When is a proof in/correct.



Mathematical Reasoning

Definitions:
Theorem (vown) - a statement that can be shown to be true.
Proof (nnain) or Argument (vaniaax) - a series of statements
that demonstrate that a theorem is true.
This series includes:
- Axioms (nmropx) - assumptions on the world
- Hypotheses of the theorem to be proved
- previously proven theorems.
Rules of inference (yon '7in) - laws that allow deduction of new
conclusions from previous arguments.
Lemma (nn%) - a (simple) theorem used in the proof of a
more complex theorem.
Corollary (nipon) - statement or proposition that is deduced
directly from a theorem.




Proofs

We want to prove statements of the following form:

“If p then q".

That is we want to prove p —-q orthatp >g< T

Remember: that p —q is always true except when p is
true and q is false

Note: it is enough to prove that under the assumption
of p is true, we have that q is true.



Direct Proof ( n2'w' nndin)

Direct Proof ( n'w' nnain)
Prove p—q directly by assuming p and proving
g using axioms, inference and previously proven

theorems.



Direct Proof ( n2'w' nndin)
Example:

Definition: n is even iff there exists an integer k € Z such
that n = 2*k.
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Theorem: If n is even then n? is even.

Proof: Assume n is even (assume p <T),
then there exists an integer k € Z such that n=2%k.

Then n? = (2*k)? = 4*k2 = 2*(2*k?).
Since k € Zthen 2*k? € Z

Thus n? equals 2 times an integer and by definition is even.
We have proven the conclusion is true (g < T).



Indirect Proof ( n7*7w2a nnain)

Indirect Proof ( n?"7wa nndin)
Sincep > q< —q—> —p (contrapositive),
prove p — q by proving —-q — —p :
assume —q and prove —p using axioms, inference
and previously proven theorems.



Indirect Proof ( n7*7w2a nnain)

Example:

P 9
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Theorem: If 3*n+2 is odd then n is odd.

Proof: Assume the conclusion is false (—q < F)
l.e. assume that n is even.
Then there exists an integer k € Z such that n=2%k.

However, then 3*n+2 = (3*(2*k)+2) = 6"k+2 = 2*(3*k+1).
Since k € Zthen 3*k+1 € Z

Thus 3*n+2 equals 2 times an integer and by definition

Is even. We have proven that the premise is False (—p < F)
and -q —>-p<s po>geT.



Vacuous Proof ( npz* nnain)

Vacuous Proof ( n™ nndin)

If p< Fthenp > qg< T (regardless of value of q).
Prove p — q by proving p < F always.

Example:

Theorem: For natural numbers if n<0 then 2*n is even.

Proof: For all natural numbers n<0 < F
Thus premise is always False regardless of the
conclusion and theorem is proven.



Trivial Proof ( n'7x'aM0 nndin)

Trivial Proof ( n*7x'a0 nnoin)

If q< Tthenp > qg< T (regardless of value of p).
Prove p — q by proving p < F always.

Example:

Theorem: For integers, if n is prime then 2*n is even.

Proof: For all integers 2*n is even by definition.
Thus conclusion is always True regardless of the
premise value and theorem is proven.



Proof Strategy

Example:

Theorem: For integers, if n? is odd then n is odd.

Proof: 1) Try Direct Proof:
If N2 is odd then there exists k € Z such that n?2 = 2*k +1.

Thenn =+ 2%k +1 ......

2) Try Indirect Proof:

Assume n is even, then n = 2%k.
Then n?2 = (2*k)? = 4*k2 = 2*(2*k?).

If K e Zthen 2*k? € Zand n? is even.
Thus theorem is proven.



Proof by Contradiction (n2'no *"v nnoin)

We want to prove general statements p
(possibly p << (s—t) but not necessarily)

Find a Contradiction q (g < F) and prove —p — q.
l.e. =p — F. However this implies —-p< Fandp < T.

We assume —p and prove a contradiction, indicating that
the initial assumption is not true and that p << T.



Proof by Contradiction (n2'no *"v nnoin)

Example:

Theorem: out of 15 randomly chosen days, at least 3 are
the same day of the week.

Proof: Assume by contradiction that no 3 are the same
day of the week. Thus at most 2 days are the same
day of the week. The week has 7 days thus at most
2*7 = 14 days were randomly chosen.

Contradiction to the fact that 15 days were chosen.
Due to contradiction we deduce that at least 3 days
are the same day of the week.



Proof by Contradiction (n2'no *"v nndin)

Example:

Definition: n is Rational (*7a1'x1 190n) if there exist
integers a,b with b = 0 such that n = a/b.
If n is not rational it is Irrational (*721'¥1-'x).

Theorem: V2 is irrational.
Proof: Assume by contradiction that V2 is rational.

1.2 is rational
2.V2=al/b ab e zwith no common factors

(definition of rational)
3. 2 =a?b? (arithmetic)
4. 2*b? = a2 (arithmetic)
5. a%is even (definition of even)



Proof by Contradiction (n'no v nnoin)

Proof cont.:
5. a2 is even (definition of even)
6. ais even (Theorem: if n? is even then n is even)
/.a=2"k ke Z (definition of even)
8. a2 =4* k2 (arithmetic)

0.2"b%2=4*k? (from4. and 8.)

10. b?% = 2*k? (arithmetic)

11. b? is even (definition of even)

12. b is even (Theorem: if n? is even then n is even)

13. 2laand 2|b (from 6. and 12.) Contradicts 2.

14. 2. and 13. < F
Thus we showed "V2 is rational” — F so "V2 is rational” < F
and we have "V2 is irrational” .



Indirect Proof vs Proof by Contradiction
( n7'2wa NI NMoa NNt )

For theorems of the form p — q, Indirect Proof and Proof by
Contradiction is the same.

Indirect proof Proof by Contradiction
assume —q assume —(p — Q)
prove —p | T ~<_ i.e. assume p
deduce —q —»> —p TNl assume —q
equaltop —> ¢ prove —p

deduce —-pArp < F
deduce -(p > q) > F
deduce (p > q)<=T



Generalizing Proofs

Theorem of the form p A q, prove p and q separately.

Example:

Theorem: if n is divisible by 6 (6|n) then n is divisible
by 2 (2|n) and n is divisible by 3 (3|n).
6ln — (2|n A 3|n)
Proof: 6|n > (2|nA3|n) <
(6ln — 2|n) A (6|ln — 3|n) (distributive)

prove (6|n — 2|n)
prove (6|n — 3|n)



Generalizing Proofs

Theorem of the form (p, v p, v ... vp,) = Q

< P12 AP A A (P, — Q)
Prove every (p, — q) separately

Example:

Theorem: if n is divisible by 6 (6|n) or n is divisible
by 8 (8|n) then n is divisible by 2 (2|n).
(6|n v 8|n) — 2|n

Proof: prove (6|n — 2|n)
prove (8|n — 2|n)



Proof By Cases (n'77n2 nndin)

To prove a theorem of the form p—q , replace it with

(pyVvPy,V...vp,) —>q wherep< (PpiVvpsV..Vvp,)
and prove each p,— q separately.

Example: D q

A AN
s

Theorem: if n;Z IS not divisible bya then n?=1 (mod 33.

Proof: p<p,sVvp, where p, = (mod 3)”

1
2 (mod 3)’

P2 =
Case 1: prove p, —(

Case 2: prove p, —(



Proof By Cases (n'77n2 nndin)

Proof cont.:

Case 1: prove p;, —qQ (“n=1(mod 3)" - “n? =1 (mod 3)")

(Direct Proof) assume “n =1 (mod 3)’

n=3k+1 keZz (definition of mod)
n? = (3*k+1)? = )
= 9k? +6k + 1 > (math)
= 3*(3k?2 +2k) +1
N J
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n?2=1 (mod 3) (definition of mod)



Proof By Cases (n'77n2 nndin)

Proof cont.:

Case 2: prove p, —Q (“n=2 (mod 3)" - “n? =1 (mod 3)")

(Direct Proof) assume “n =2 (mod 3)
n=3k+2 keZz (definition of mod)
n? = (3*k+2)? = )
= 9k? +12k + 4 > (math)
= 3*(3k? +4k +1) +1
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n?2=1 (mod 3) (definition of mod)



Generalizing Proofs

Theorem of the form p <> ¢

< (P—>q)A(@—p)
Prove every (p — ) and (q — p) separately.

Example:
Theorem: nis odd iff n? is odd.

Proof: 1. prove (nisodd — n?is odd)
2. prove (n?is odd — nis odd)

1. (Direct proof) assume n is odd
n=2%+ 1 (definition of odd)
2 — A*|2 *
n? = 4*k? + 4*k +1 (math)
= 2*(2k? +2Kk) + 1
n? is odd (definition of odd)



Generalizing Proofs

Proof cont.:

2. prove (n2is odd — nis odd)
(Indirect proof) assume —(nis odd) i.e. nis even

n = 2%k (definition of even)
n? = 4*k?
math
= 2*(2k?) } ( )
nZ is even (definition of even)

From 1. and 2. we have (nis odd <> n?is odd)



Generalizing Proofs

Theorem of the form show that p,, p,, ..., p,, are equivalent
use tautology:

(PP > ... ©P;) & (P1=P)A(P2P3) A ... A(PR—P1)
and prove every (p, — p..4) Separately.

Example:

Theorem: Show that the following statements are equivalent:
p1 ="nis an even integer”
p2 = “n+1is an odd integer”
p3 = “n?is an even integer”

Proof: 1. prove (niseven — n+1is odd)
2. prove (n+1is odd — n?is even)
3. prove (n?is even — nis even)



Proofs of Theorems with Quantifiers

Prove theorems of the form 3x P(x) or Vx P(x)

Existence Proofs
e Constructive
 Non-constructive
« Uniqueness

Counterexamples



Existence Proofs (DI'7 nndin)

Prove theorems of the form 3x P(x) .

Method 1. Constructive Proofs (n12a v nI'g nnain)
Find a singled example a of assignment to x for
which P(a) is True.

Example:

Theorem: There exists a prime number greater than 10.
dx P(x) = 3Ix (x>10 A “x is prime”)
Proof: We show that P(11) =T.
11>10 and 11 is prime: 2411 ... 10y 11



Existence Proofs (nI'g nndin)

Example:

Theorem: For every number n there exists a number greater
than n with the same parity.

Proof: We show that the specific case of n+2 has the

same parity as n.
Case 1: nis even

n = 2%k (definition of even)

n+2=2k+2=2%(k+1) (math)

n+2 is even (definition of even)
Case 2: nis odd

n=2%% +1 (definition of odd)

n+2=2k+3=2"(k+1) +1 (math)
n+2 is odd (definition of odd)



Existence Proofs (nI'g nndin)

Prove theorems of the form 3x P(x) .

Method 2: Nonconstructive Proofs (nna v X7w nirz nnain)
Without finding a specific, prove that there must be
such a case P(x). e.g. directly or prove by contradiction.

Example: The example requires the following Lemma.

Lemma: Every natural number has at least 1 prime factor.
Proof: n is a natural number then either n can be factored
into prime factors, or it is prime and then n | nand nis its
own prime factor.



Existence Proofs (nI'g nndin)

Example:

Theorem: For every natural n there exists a prime greater
than n.

Proof: Assume nis natural. Consider (n! + 1).

nl+1 = (1"2*.."n) + 1 by the Lemma it has a prime factor.
However forall m<=n mjt} (n'+1) since m| n! and

1 =nl+1(mod m).

Thus the prime factor of (n!+1) must be greater than n.
And so there exists a prime greater than n.



Uniqueness Proofs (T'n' nI'iz nndin)

Prove theorems of the form:
“ there exists a unique x such that P(x)" .

Prove existence and then prove uniqueness;
Ix P(X) A Vy(y=x — =P(y))

Example:
Theorem: Every integer has a unique additive inverse.

Proof: xis an integer. we prove dy x+y = 0.

(by construction) Sety =-x and then x +y = 0.
Uniqueness: Assume by contradiction that there exists
integerz 2y s.t. x+z=0.

Then x+z = x+y and subtracting x from both sides we get
z=y contradiction.



Counterexample Proofs (n'1a1 xnait "'v n7'7v)

Proving theorems of the form vx P(x) may be difficult.

Proving the falsity of Vx P(x) is easier:
provide counter example a such that —P(a)<F
VX P(x) = 3x—=P(x)

Example:

Theorem: Every prime number is odd.

Proof: 2is prime and yet 2 | 2 so that it is even.
2 Is a counter example.



Counterexample Proofs (n*1a1 xnaiT1 *"v n7"9v)

Proving theorems of the form vx P(x) may be difficult.
It is not enough to test a few/many cases. Al
cases must be tested.

Example:

Is n?-n+41 prime for every positive integer n?

Answer: Trueforn=0,1,2 ...



Computer Proofs? @)

Christian Goldbach (1690-1764)

Goldbach’s Conjecture (3821712 NnOXWN) -
Every even integer greater than 2 is the sum of 2 primes.

Shown to be true:

Up to millions by hand (4 = 2+2, 6 = 3+ 3,...)

With computers proven to be true for all positive integers
up to 4*1014 1

Not proven till this day!

p. 220-223



Fermat's Conjecture

Pierre de Fermat (1601-1665)

Fermat's Conjecture (nn1o 7w jINNXN 095WnNn \nnN15 NIXWN) -
There are no positive integers x,y,z such that
Xn + yn — Zn
forn > 2.




Fermat's Theorem - Milestones

1630 - Fermat’s Theorem presented the theorem

1630 - Fermat - proven for n =4

1700 - Euler prooved for n=3

1825 - Germain, Dirichlet & Legendre proved for n=5

1832 - Dirichlet proved for n=14 (failed atempt at n=7)

1839 - Lamé proved for n=7

1847 - Lamé, Louville & Kummer proved for all primes n up to 37

1847 - Lamé, Louville & Kummer proved for al prime up to 100 except 37, 59, 67

1908 - 1912 - over 1000 false proofs published!!



Fermat's Theorem - Milestones

1937 - The calculating machines and computers come into play:

1937 - Using computers proven up ton =617

1955 - Using computers proven up to n = 4001

1976 - Using computers proven up to n = 125,000

1993 - Using computers & based on Kummer’s theory proven up to n=4,000,000
1955 - Taniyama et.al. Develop Theory of Elliptic Curves

1986 - Frey connected between Eliptic Curves & Fermat's Theorem

Beginning of the end:

1993 - Andrew Wiles concluded a talk with a corollary: “...and this proves
x" + y" =z" and here I'll stop!”
1993 - Wiles withdraws his proof due to an error found.
1994 - Wiles corrects the proof and completes the proof of Fermat’s Theorem.

1995 - Paper with proof published = a book of hundreds of pages.



The Halting Problem @2

The Halting Problem (na'xvin nwa) -

Is there a procedure/program that receives as input:

1) a computer program 2) input to the computer program
and determines whether the computer program will
eventually stop when run with the input ?

This is not trivial: one can not simply run the program
since if it does not stop in a given time is not proved that
wont stop in the future.




The Halting Problem @

j (¥

1936 - Alan Turing proved that such a program does not exist.

Alan Mathison Turing (1912 - 1954)

Turing Machine
Turing Test
Turing Prize

The Enigma Code



The Halting Problem - Proof &
Proof of Non-existence: (proof by contradiction)

Assume that there exists a program H that receives as input:
1) a program P 2) input |

and returns “halt” if P stops when given |

and returns “does not halt” if P does not stop on input |.

| |

H H(P, 1)

l

“halt” “‘does not halt”
(if p stops on |) / (if p does not stops on |)



The Halting Problem - Proof & _

Since P is a program ( = a series of letters = a series of bits)
it can also serve as an input.
Thus running H(P,P) is valid:




The Halting Problem - Proof 'Q

v’ %
Build a program/procedure K as follows:

K receives as input the program P and runs H(P,P).

If H(P,P) returns “halt” then K(P) goes into infinite loop.

If H(P,P) returns “does not halt” then K(P) returns “yes”.
F)

P

P
P

K

i K(P)

“halt” “doesnt halt”

* K does the opposite of H “Vos”



The Halting Problem - Proof &

Since K is a program ( = a series of letters = a series of bits)

it can also serve as an input.

Thus running K(K) is valid:

K

K

K
b

K

H

“halt”

“doesnt halt”

v
“YeS”



The Halting Problem - Proof

[ .,a
c-"’
:fL;, §

1) If H(K,K) outputs “halt” then K(K) goes into infinite loop
and does not stop BUT H(K,K) outputs that K(K) does

stop - contradiction!

2) If H(K,K) outputs “does not halt” then K(K) stops and
outputs “yes” BUT H(K,K) outputs that K(K) does not

stop - contradiction!

K
A 4

K

K

K

H

“halt”

ldoesnt halt”

“YeS”

Thus the assumption that procedure H exists is incorrect.



"Drawing Hands" - 1948
MC Escher



