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Equivalence Relations

Example:

DM students are divided into 3 classrooms for the final exam
according to the first letter of their family name:

A -H -room1
| -N -room 2
M-Z -room3

R is a relation on the students. (a,b) € R iff and b are in the
same group of family names.

R is Reflexive, Symmetric and Transitive.

R divides the students into 3 groups.



Equivalence Relations

Example:

R is a relation on the set of Hebrew words.
a R b iff length of a equals length of b.

R is Reflexive, Symmetric and Transitive.

R divides the Hebrew words into groups.
Each group contains words of equal length.
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Equivalence Relations

Definition:

A relation R on a set A is called Equivalence Relation

(ni7'pw on') ifitis reflexive, symmetric and transitive.

Definition:

2 elements of A that are related by an equivalence

relation are called Equivalent (n'71pw).

* An element is equivalent to itself (reflexivity).
* If a and b are equivalent and b and c are equivalent
then a and c are equivalent (transitivity).




Equivalence Relations

Example:

R Is a relation on the real numbers.
aRb iff a-bis a whole number.

Answer:

1) R is Reflexive.
Proof: For real a, a-a =0 and 0 is whole.
So Va (a,a) € R.



Equivalence Relations
Answer cont:

2) Ris Symmetric.
Proof: if (a,b)eR then, a-b =k s.t. kis whole. But then
b-a = -k and -k is also whole. So (b,a) € R.

3) Ris Transitive.
Proof: if (a,b)eR and (b,c)eR then, a-b =k and b-c =1
s.t. k and | are whole. But then a-c = (a-b)+(b-c) = k+l is
whole. So (a,c) € R.



Equivalence Relations

Example:

Ris arelationon Z. me Z* , m>1.
R,={(ab)| m](a-b) }

Answer:

1) R, Is Reflexive.
Proof: a-a=0and m|0 . So (a,a) € R

ml



Equivalence Relations

Answer cont:

2) R is Symmetric.
Proof: if (a,b)eR., then, m|a-b i.e.(a-b)=km s.t.keZ
But then (b-a) = (-k)m and -k is also whole. So m|(b,a)
and (b,a) € R,..

3) Ris Transitive.
Proof: if (a,b)eR , and (b,c)eR, then, m|(a-b) and m|(b-c)
l.e. a-b=km and b-c=Im s.t. kand | are whole.
But then a-c = (a-b)+(b-c) = km+Im = (k+I)m and
k+l is whole. So mj(a-c) and (a,c) € R...



Equivalence Relations

R, divides Z" into groups.

(a,b) eR,, iff (a-b)is a multiple of m

O, m, 2m, 3m, ....

1, 1+m, 1+2m, 1+3m, ....

m-1, m-1+m, m-1+2m, m-1+3m, ....

R.={(a,b)|a=b (mod m)}



Equivalence Classes

Definition:

Let R be an equivalence relation on set A.
The set of all elements of A that are related Rtoa € A

Is called the Equivalence Class (ni7'pwin n77nn) of a.

The set is denoted [a]k

If only the relation is obvious then denote by [a].

[ar=1{s]| (a,8) e R}



Equivalence Classes

Example:

R={(a,b)|a=b (mod4)}

= integers with
Og= 1.,-8,-4,0,4,8,12 ...} remgainder 0

1= {....-7,-3,1,5,9,13,....} integers with
remainder 1

R={(a,b)|a=b (mod m)}

[al, = {..., a-2m, a-m, a, a+m, a+2m, 2+3m,....}



Equivalence Classes

Example:

Equivalence R on set A divides A into disjoint

equivalence classes.

R={(a,b)|]a=b(mod4)}

[0]r

[]r

[2]r

A

[Slr



Equivalence Classes

Theorem: Let R be an equivalence relation on set A.
The following 3 statements are equivalent:
1) (a,b) e R
2) [a] =[b]
3) [a]n[b] #T

Corollary: Every pair of equivalence classes are
either identical or equivalent.




Equivalence Classes
Proof:

l. Prove 1) —> 2)
Assume aRb and show equality of the sets [a]=[b].
A) Prove [a] c [b].

Assume c e [a], thus

(a,c) e R (def. of equiv. class)
(a,b) e R (assumption 1) )
(b,a) e R (R is symmetric)
(b,c) e R (R is transitive)

c € [a] (def. of equiv. class)

Thus [a] < [b].
B) Prove [b] < [a] similarly



Equivalence Classes
Proof cont.:

Il. Prove 2) —> 3)
Assume [a]=[b] and show [a] N [b] # &
Since [a]=[b], [a] " [b] = [a] = [b]
We must show that [a] Is not empty.
However a € [a], since R is reflexive and (a,a) € R.

Ill. Prove 3) > 1)
Assume [a] N [b] # D and show aRb.
There exists c € [a] N [b] not empty set.
(a,c) e R, (b,c) e R def. of equiv. class.
(c,b) e R R is symmetric
(a,b) e R R is transitive



Equivalence Classes

Theorem: Every equivalence relation R on set A induces
a Partition (njz17n) of A.

Definition:
A Partition (nj717n) of a set A is a collection of nonempty
subsets A. of A such that :
A =D
ANA=J
\{Aq=/\

Proof : from previous theorem and corollary.




Equivalence Classes

Example:

Rs={(a,b)|a=Db (mod6)}

Partition induced by Ry :

N m



Equivalence Classes

Theorem: Every partition of set A induces an equivalence
relation R on A.

Proof : Assume { A, },_, ,, Is a partition of A.

Define a relation Ron A: (a,b) € Rifaand b are in the
same subset A,

Prove that R is an equivalence relation.
1) R is reflexive:

(a,a) e R sincea € A
2) R is symmetric
if (a,b) € Rthen (b,a) e R by definition of R (same sets).



Equivalence Classes

Proof cont. :
2) R is symmetric
if (a,b) € Rthen (b,a) e R definition of R (same sets).

3) R is transitive:
assume (a,b) e R and (b,c) e R then
a,beA; b,ceA ({A} is a cover of A)
(beA)n(behA) > A=A (since A and A, are
either equal or disjoint)
Thus a,b,c € A and (a,c) € R (definition of R).



Partial Orderings

Relations can be used to order objects:

R ={(a,b) | if a precedes b alphabetically } Alphabetical
order
R={(a,b)|ifais atask that must Task
be completed before b} scheduling
= ' Numerical
R=t@b)fita=b order

Adding (a,a) € R for all a, R becomes:
Reflexive, Anti-Symmetric, and Transitive.



Partial Orderings

Definition:

A relation R on a set A is called a Partial Order
('77n 2710 on') if it is reflexive, anti-symmetric and

transitive.

Definition:

A set A together with a partial order R is called a
Partially Ordered Set or Poset (n'77n naiTo nxiap).
Denoted: (A,R)




Partial Orderings

Example:

The relation > is a partial order on the integers.

Reflexive - sincea>a
Antisymmetric - sincea>b andb>aimpliesa=Db

Transitive - ifa>b andb >cthen a>c.

(Z,>) -is a partially ordered set.



Partial Orderings

Example:

The relation | (“divides”) is a partial order on Z*.

Reflexive - since a| a
Antisymmetric - sincea|b andb|aimpliesa=0>b

Transitive - ifa|b andb|cthen a]c.

(Z",|) -is a partially ordered set.



Partial Orderings

Example:

The relation < on the power set P(S) is a partial order .

Reflexive - since T — T for any subset of S.
Antisymmetric - since TcQand Qc TimpliesT =Q

Transitive - f TcQandQcUthen TcU.

(P(S), <) -is a partially ordered set.



Partial Orderings

Definition:

Two elements a,b of a partially ordered set (A, R)
are called Comparable (nxnwn m2) if aRb or bRa.

Otherwise they are called Incomparable.

Examples:

(Z5 ) 243 and 312 2 and 3 are incomparable.

(PS), <) {1,220z {2,3) {1,2} and {2,3} are
{2,3} « {3,2} incomparable.



Linear Orderings

Definition:
A partially ordered set (A, R) in which every 2 elements
are comparable is called a
Totally Ordered Set (a7 na1To nxiay)
or a
Linearly Ordered Set (n'x1'7 n11T70 NXIAR)
or a

Chain (nww)

The relation R is called a
Total Order (X 110 on') or a Linear Order ("1x1'7 on)




Linear Orderings

Example:

(Z,>) -is alinearly ordered set.

It is a partially ordered set (proven above) and all
pairs of elements are comparable:

foralla,b e Z a<b orb < a orboth.

(Z7,|) -is notalinearly ordered set (only partially)
because 2 and 3 are not comparable.



Minimal/Maximal Elements

Definition:

An element a of a partially ordered set (A, R) is called
Minimal (*7n1m) if thereis no elementb € A s.t.
b#a and bRa.

Definition:

An element a of a partially ordered set (A, R) is called
Maximal (*7n'opn) if there is no elementb € A s.t.
b=#a and aRb.




Minimal/Maximal Elements

Examples:

{2, 4, 5, 10, 12, 20, 25}, | )
Elements 2,5 are minimal - there is no a s.t. al2 or a|5.

Elements 12, 20,25 are maximal - there is no a s.t.
12|a, 20|a or 25]a.



Minimal/Maximal Elements

Examples:
Minimal Maximal
(P(B), ©) %, B
all elements
(P(B)-4, ©) of B B
(N-{0}, ) 1 None
(N-{0,1}, |) all primes None
(Z, <) None -1

(Z, <) None None



Minimal/Maximal Elements

Theorem: Every Partially Ordered set (A,R) has at least
one minimal (maximal) element .

Theorem: Every Linearly Ordered set (A,R) if it contains
a minimal (maximal) element then it is unique.




Smallest/Greatest Elements

Definition:

An element a of a partially ordered set (A, R) is called
The Smallest Element (hnia juoy) if for every element
beA aRb.

Definition:

An element a of a partially ordered set (A, R) is called
The Greatest Element (hnira 71m) if for every element
beA bRa.




Well Ordered Sets

Definition:
A set (A, R) is called a

Well Ordered Set (av'n n1ITO N¥Iap)

If it is linearly ordered and every subset of A has a

smallest element.

(Z*,>) - is awell ordered set.

(R ,>) - is not well ordered.

(Z,>) - isnotwell ordered.




Topological Sorting

Example:

In task scheduling, some tasks can start only after other
tasks have finished, other tasks are independent.
A scheduling (order) must be determined for the tasks.

Define a relation R on the tasks s.t. aRb iff task a must
finish before b can start.

The set (Tasks,R) is a partial order.

The scheduler must produce a linear order which is
compatible with this partial order.



Topological Sorting

Definition:

A linear order R is Compatible (oximn) with a partial
order S if aSb — aRb.

Example:

S={(11),(2,2),(3,3), (1.2) }
R={(1,1),(2,2),(3,3), (1,2), (2,3), (1,3) }

L9 g

1 2 3




Topological Sorting

Compatible Linear Orders are not necessarily unique:

S={(11),(2,2), (3,3), (1,2)}
R={(1.1),(2,2),(3,3), (1,2), (2,3), (1,3) }

Q/\?

R, =1(1,1),(2,2), (3,3), (1,2), (3,1), (3,2) }




Topological Sorting

Definition:

Constructing a linear ordering from a partial ordering is

called Toplogical Sorting (*ar71910 [I'n).

Lemma: Every finite partial ordered set (A,R) has a
minimal element (at least one).




Topological Sorting

Topological Sorting Algorithm:

Given a partially ordered set (A,S).
1) Choose a minimal element a, in A
2) Choose a minimal element a, in A-{a,}

3) Choose a minimal element a, in A-{a,,a,}

Continue until: {a,,a,, ... ,a,} = A



Topological Sorting

Example:
S =({1,2,4,512,20}, | )
1) 1 is minimal in S a, =1
2) 2,5 are minimal in S-{1} a, =
3) 2 is minimal in S-{1,5} as =
4) 4 is minimal in S-{1,5,2} a, =
5) 12,20 are minimal in S-{1,2,4,5} as = 20

6) 12 is minimal in S-{1,2,4,5,20} ag =12



Topological Fun

Roger N. Shepard
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