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Propositional Equivalences

Mathematical proofs and deduction is based on
exchanging one proposition with another proposition
of the same truth value (an equivalent proposition).

3 types of propositions.



Tautology

Definition:

A compound proposition whose truth value is
always T regardless of the truth value of its
components is called a Tautology ( naroixo).

Example:

PV =P




Contradiction

Definition:

A compound proposition whose truth value is
always F regardless of the truth value of its
components is called a Contradiction ( namno).

Example:

P A=P




Contingency

Definition:
A compound proposition that is not a Tautology nor
a Contradiction is a Contingency ( nnwoex).

Example:

P—=P




Tautology vs Contradiction vs Contingency
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Logical Equivalences

Definition:
The propositions p and g are Logically Equivalent
( naz oipw) If p <> q Is a Tautology.

Pp<=(

Example:

pvq <qQqvp

P—>Qq < —QqQ—>—p




Logical Equivalences

* |dentity: pvF <p paAT<p

« Domination: pvi < T pAF<F

* |dempotent: Pvp &< P pAP &P

 Double

11 @
Complement: P P

« Commutative: pvq < qvp

PAQ < QAP

« Associative: (pvQ)Vvr < pv(qvr)
(PAQIAT < PA(QAT)




Logical Equivalences Vs Set Identities

|dentity:

Aud = A= AnU

Domination:

AuU=U , A=Y

|dempotent:

AUA = A=ANA

Double
Complement:

(A) = A

Commutative:

AuUB = BUA |
ANB = BNA

Associative:

Au(BUC)=(AuB)uUC ,
AN(BNC)=(AnB)NC




Logical Equivalences

 Distributive:

PVQ)AT < (PAr)V(QAT)
PAQIVI < (PVv)A(Qvr)

 De Morgan

(
(

—(p A Q) < —p v—Q
(

« Tautology

e Contradiction

pV—|p<Z>T




Logical Equivalences

Generalized Distributive:

P1V P2V ...V Py,
P1 A P2 A APy

Generalized De Morgan

—(P1APIA ... AP,) < (—P4V —P5V ... vV =P,)
—(P1VP5V ... VP,) < (—P4A mPoA oo A =P,)

Transitivity p<q andg<rthenp<<r

More in book p. 24.



Proving Logical Equivalences

Method 1: Truth Table

Example: Prove de Morgan’s Law —(p v q) & —p A—(Q

P | g \pvq\ﬁ(p‘vq)\ﬂp\ﬁq\ﬁpéﬁq
T | T T F F | F F
T | F T F F I T F
F | T T F T | F F
F | F F T T | T T




Proving Logical Equivalences

Another Example: Prove (p—>q)< —pvq

p l gl —p | pvglp—
T|T| F T T
T|F| F F F
Fl T T T T
FIF| T T T




Proving Logical Equivalences

Method 2: Use logical equivalences

A proposition in a compound proposition can be replaced
by one that is logically equivalent (maintaining the truth
value of the compound proposition).

If p< g then

pPp—>I < (-—>TI



Proving Logical Equivalences

Method 2: Use logical equivalences

Example: Prove  —(P Vv (—PA q)) < —p A—Q

—(PVv (=P AQ) < —pPA-(=pPAQ)
< —p A (==p v —Q)
< —pA(pVv—Q)
< (=P AP) V(=P A—Q)
< F v (=p A—Q)
< (—pA—q)VvF

De Morgan |l

De Morgan |
Double Negation
Distributive
Contradiction
Commutative

|dentity Law for F



Proving Logical Equivalences

Example: Prove (p A Q) — p is a tautology

Method 1:
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Example: Prove

Method 2:

Proving Logical Equivalences

(PAQ) —>p
<= (pAq)vp
< (-pv—q)vp
< (-qv—p)vp
< —q Vv (=p Vv p)
< —qQvT
T

(bA Q) — p is a tautology

Given

Equivalence (p > q) < —p Vv Q
De Morgan

Commutative

Associative

Tautology of —p v p

Domination



Predicates & Quantifiers

X+ 1 =3 Is nota proposition

Can be turned into a proposition via 2 methods:
1) Predicates - assign specific values to unknowns

2) Quantifiers - define a set of values for the unknowns.

Chapter 1.3



Predicates

X+1=3
Assign a value to the unknowns.

Example:
Assign the value 2tox: x+ 1 =3 isthen True.

Assign the value O tox: x+ 1 =3 isthen False.

Definition: x is called a Variable (ninwn).

Definition: x+1=3 is called a Predicate (vj*19)

or Propositional Function (n'pios n'xjao).
A statement that has no value because no

assignment has been made.




Predicates

Example:
P(x)=“x>3" P(x)is a predicate

P(x) - no truth value
P(2) < F
P4)<=T

Example:
P(x)="x(x+1)=1"

P(x) - no truth value
P(2) < F



Multi Varible Predicates

Example:
P(x,y)=“x+y=5" P(x,y)is a predicate

P(23)<=T
P(3,0) = F
P4,4) < F

Examples:

P(x,y,z) ="x-y=2z

P(X{,X5,...,X,) = “Xy+X,+... +X, = 07



a‘if?’; )\

Predicates and the Computer

|
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Example:
IF x>0 THEN x:=x+ 1

P(x) =“x>0" predicate

In a correct program an assignment has been made
prior to this statement.

If P(x) < T then command x:=x+1 is executed.



Quantifiers o'mnd

P(x,y)="“x+y=y+x" P(x,y)is a predicate

P23)=T  P(100,00=T  P(-3,05)<T

P(x)=“x>110 A x<130 A Xxis prime”

P(120) > F  P(111) & F P(-125) < F



The Universal Quantifier

Definition: P(x) is a predicate then VxP(x)
(“for all x, P(x)" - "p(x) ,x 73%" ) is a proposition
whose value is True if P(x) < T for all
assignments x in the Universe of Discourse.

vV i1s called the Universal Quantifier ("727"-n nnd)



The Universal Quantifier
Examples:

VX (x+1=1+x) Truth value is T for numbers

VX (X * 0 =x) Truth value is F for Natural numbers

“All students in this class study Algebra.”

P(x) = “x studies Algebra”
vx P(x) Universe x are students in this class.

OR

S(x) = “x is in this class”
vx (S(x) — P(x)) Universe x are students in general.



The Universal Quantifier
Examples:

P(x) = "x<27
Vx P(x) x are real numbers.

vx P(x) is False. Proof.: P(3) < F

P(x) = "x +3<20”
Vx P(x) x are natural numbers smaller than 5.

vx P(x) is True.
Proof: P(1) < T,P2) < T,PEB) < T,P4)=T

Note: If the domain of x is finite then
VX P(X) < P(Xq) A P(X,) A ... AP(X,)



The Universal Quantifier

To prove Vx P(x) < F 1 example of x is enough.

To prove Vx P(x) < T must test all possible x.






The Existential Quantifier

Definition: P(x) is a predicate then IxP(x)
(“there exists x, such that P(x)" - "p(x) -w 70 x 7" )
IS a proposition whose value is True if there exists

at least 1 x for which P(x) < T.

1 is called the Existential Quantifier ("n""-n nnod)




The Existential Quantifier
Examples:

ax (x > 3) Truth value is T for numbers

Ix (x+ 1=x)  Truth value is F for Natural numbers

“There is a person in this room wearing glasses.

P(x) = “x wears glasses”
dx P(x) Universe x are people in this room.

OR

S(x) = “x is a person in this room”
Ix (S(x) — P(x)) Universe x are people in general.



Examples:

The Existential Quantifier

P(x) = "x<27
dx P(x) x are real numbers.

dx P(x) is True. Proof: P(-1)< T

P(x) = “x2> 10"
dx P(x) x are natural numbers smaller than 4.

dx P(x) is False.
Proof: P1)<F P(2)<F P@Q3)sF

Note: If the domain of x is finite then
IX P(x) & P(x4) v P(x,) v ...vP(x,)



The Existential Quantifier

To prove dx P(x) < T 1 example of x is enough.

To prove dx P(x) < F must test all possible x.



P(x) = “Face x on this Page”. x are faces
X P(X) & ?
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Quantifiers and the Computer §
V="
Write a program that outputs the truth value of a

quantified proposition.

dx P(x) VX P(x)
% Loop over all values of x.| % Loop over all values of x.
For every x evaluate P(x). For every x evaluate P(x).
If PX)< T If P(x) < F
return (3x P(x) < T); return (Vx P(x) < F);
endfor endfor
return (3x P(x) < F); return (vVx P(x) < T);




Negating Quantifiers
“Every student in this room studies Discrete Math”
P(x) = “x studies DM”  Universe x is a student in this room.

VxP(x) = “Every student in this room studies Discrete Math”

Negate the proposition:

“NOT every student in this room studies Discrete Math”
—VXP(X)

“There is a student in this room that does NOT study DM’
Ix —P(x)

—VXP(X) < 3Ix —P(X)




Negating Quantifiers

“There is a student in this room studying French”

P(x) = “x studies French” X is a student in this room.

IXP(x) = “There is a student in this room studying French”

Negate the proposition:

“There is NOT a student in this room studying French”
—3IxP(x)

“All students in this room do NOT study French”
VX =P(x)

—3IXP(X) < VX —P(X)




Negating Quantifiers

Examples:
p = VX (X* > X) g =3x (X = x?)
_'p=—|VX(X2>X) —qQ =—|E|X(X=X2)

= 3x —(x? > X) = VX —(x = x2)
= 3x (x? < X) = VX (X # x2)




Negating Quantifiers

—VXP(X) < 3x =P(x) —3IXP(X) < Vx =P(x)

Can be deduced from De Morgan’s Laws:

—VXP(X) = =(P(Xx4) A P(X5) A ... A P(X,))
= (—P(x4) v =P(x,) v ... v =P(x,))
= 3Ix =P(x)

—3IXP(x) = —(P(xq) v P(X,) v ... v P(x,))
= (—P(x4) A =P(X,) A ... A =P(X,))
= Vx —P(x)



Translating Spoken Language
to Logical Expressions (ni? nixn)

“‘Every CS student studies Discrete Math”
)

“For every CS student, that student studies Discrete Math”

0

“For every CS student x, x studies Discrete Math”

C(x) = “x studies Discrete Math
vx C(x) The universe: x is a CS student
OR
S(x) = “xis a CS student
VX (S(x) — C(x)) The universe: x is a person



Translating Spoken Language
to Logical Expressions (ni? nixn)

“Every even number is divisible by 2.

)
“For every even number n, n is divisible by 2.”
)
C(n)= “nis even”
D(n) = “nis divisible by 2~

vn (C(n) — D(n)) nis awhole number



Translating Spoken Language
to Logical Expressions (ni? nixn)

“There are some even numbers that are divisible by 4.”

0

“There exists an even number n, s.t. n is divisible by 4.”

0

C(n) = “nis even”
D(n) = “nis divisible by 4”

in (C(n) A D(n))  nis awhole number



Translating Spoken Language
to Logical Expressions (ni? nixn)

Charles L. Dodgeson (Lewis Carroll) (1832-1898)

“Begin at the beginning and go on till
you come to the end; then stop.”
Lewis Carroll, Alice in Wonderland



Logical Expressions - Lewis Carroll

_ “All lions are fierce”
premise _ |
“Some lions do not drink coffee”

conclusion { “Some fierce creatures do not drink coffee”

P(x) ="“xis a lion”

Q(x) = “x is fierce”

R(x) = “x drinks coffee”
VX (P(X) = Q(x))
Ix (P(x) A =R(x))

Ax (Q(x) A =R(x))



Binding Variables

Definition:
When a quantifier is used with a variable we say the
variable is bound (h1wp nanwn). A variable that is not

bound by a quantifier is free (*woin ninwn).

Definition:
The part of the proposition to which the quantifier is
applied is called the scope (n21an ninn) of the quantifier.

. A variable is free if it is outside the scope of all
quantifiers using the variable.




Binding Variables

Examples:

VXP(X,y) X is bound. y is free.

Ix P(x) A Vy (Q(y) = R(y))
“—— "

scope of 3x scope of Yy

All variables are bound.

Variables of different scope can be the same letter:

Ix P(x) A 3Ix (Q(x) > R(x))



Nested Quantifiers

Examples:
VX Vy (X+y=y+X) The Commutative Law
vx3dy (x +y=0) The Inverse Law

VX Yy Vz ( x+(y+z)=(x+y)+z ) The Associative Law

Chapter 1.4



Translating Spoken Language (n'ar? ninxn)

vx (C(x) v 3y (C(y) A F(x.y))

C(x) = “x has a computer”
F(x,y) = “x and y are friends”

Universe: x,y students

“Every student has a computer or has a friend
with a computer.”



Translating Spoken Language (nai? ninxn)

“Everyone has exactly one best friend”

B(x,y) = “x and y are best friends” Universe: x,y people

vx 3y (B(x,y) A Vz (zzy —> —B(X,z))
&
vx 3y vz (B(x,y) A (zzy > —B(X,z))

?
=

vx 3y (B(x,y) A =3z( zzy A B(X,z))



Order of Quantifiers
P(xy)="x+y=0"

) 3y Vx P(x,y) There exists ay for which every x, p(x,y).
< F

I1) Vvx 3y P(x,y) Forevery x there exists a y for which p(x,y).

= T

Note:

dy Vx P(x,y) — Vx 3y P(x,y)

Jy Vx P(x,y) < Vx 3y P(x,y)



Negating Quantifiers

For every x there exists a y for which “x+y =0"

P(xy) ="x+y =0’
Vx 3y P(x,y)
It is not true that for every x there exists a y for which “x+y =0"
—Vx 3y P(x,y) &
dx -3y P(x,y) <
dx Vy —P(x,y) <

There exists an x for which “x+y #0" for all y.



Nested Quantifiers - Summary

Statement Negation

vVx Vy P(x,y) < |3Ix 3y =P(Xxy) <

vy VX P(X,y) dy Ix =P(x,y)
vx 3y P(x,y) Ix vy =P(x,y)
Ix Vy P(x,y) vx 3y —P(x,y)

Ix 3y P(x,y) < VX Yy —P(X,y) <
dy Ix P(x,y) vy VX =P(X,y)




