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Mathematical Induction  
& 

Recursion

Lesson 7:

• Recursive Definitions
• Mathematical Induction
• Variations on Induction
• Strong Induction
• Recursive Functions
• Recursive Sets

Chapter 3.3-3.4
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f : N→ N
f(n) = 2n

Recursive Definitions of Functions

Can also be defined in terms of f:

f(n) = 2 * f(n-1)

Note: Needs stopping criteria:   f(0) = 1

g(n) = n!

g(n) = n * g(n-1)
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Mathematical Induction

then f(n) = 2n

Prove that if    f(n) = 2 * f(n-1),      f(0)=1

then g(n) = n!

Prove that if    g(n) = n * g(n-1),    g(0)=1

Prove that the sum of the first n odd positive integers is n2.

Prove that n < 2n for all positive integers n.
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Mathematical Induction (אינדוקציה מתימטית)

An important proof technique for problems of this sort.

Used in wide variety of areas:
• Complexity of algorithms
• Program run-times
• Correctness of programs
• Theorems about graphs and trees

Main issue: equivalence exists only needs proof.
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Well-Ordering Property (ס דור היטב)

Axiom: 
The Well-Ordering Property ( 'סדור היטב'תכונת  )
of Natural Numbers (or positive Integers) :
Every nonempty subset of N has a least member.

Intuitively means that the set N can be linearly ordered.

Examples: {x | 0 < x < 10}   x ∈ N
Has a least member: 1

{x | 0 < x < 10}   x ∈ R
Does NOT have a least member.
R is not Well-Ordered.
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Mathematical Induction (אינדוקציה מתימטית)

Principle of Induction:

Statement is thus proved for all elements in the set.

To prove a statement on a well-ordered set:
• order the set linearly
• prove specifically for first element
• prove for all elements: if statement is true for an 
element then is true for following one.



7 Discrete Math - University of Haifa - H. Hel-Or

Mathematical Induction (אינדוקציה מתימטית)

Induction is used to prove Theorems of the form:

Proving ∀n P(n)  by induction:

∀n P(n)     n ∈ Z+

Step 1:  Basis Step (בסיס האינדוק ציה)

prove P(1) ⇔ T
Step 2:  Inductive Step (צע ד אינדוקטיבי)

prove  ∀k P(k) → P(k+1)     k ∈ Z+

P(n) is called the Induction Hypothesis (ה נחת ה אינדוק ציה)

[ P(1) ∧ ∀n (P(n) → P(n+1)) ] → ∀n P(n)    n ∈ Z+
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Mathematical Induction (אינדוקציה מתימטית)
∀n P(n)    n ∈ Z+ is proven because:

P(1) = T Proven in Induction Basis

P(2) = T because    P(1) = T and  
P(1)→P(2) = T by Induction Step.

P(3) = T because    P(2) = T and  
P(2)→P(3) = T by Induction Step.

For all k ∈ Z+

P(k) = T because    P(k-1) = T and  
P(k-1)→P(k) = T by Induction Step.
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Mathematical Induction (אינדוקציה מתימטית)

The First Theorem proven by induction :

Francesco Maurolico (1494-1575)

Theorem: 
The sum of the first n odd positive integers is n2.

1 = 1 1 + 3 = 4 1 + 3 + 5 = 9

1 + 3 + 5 + 7 = 16 1 + 3 + 5 + 7 + 8 = 25
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Mathematical Induction (אינדוקציה מתימטית)

Proof: By induction:

P(n) = “The sum of the first n odd integers equals n2”.

1)  Basis step:   P(1) = T because 1 = 12.

2)  Inductive Step:   prove that for all k  P(k) → P(k+1)

Assume P(k) = T and prove P(k+1) = T

1+ 3 + 5 + 7 + ... + (2k-1)  = k2 (Induction Hypothesis)

1+ 3 + 5 + 7 + ... + (2k-1) + (2k+1) = k2 + (2k + 1) 

=  k2 + 2k + 1 = (k+1)2    (math)

Thus P(k+1) = T.

Thus ∀n P(n)  = T for  n ∈ Z+
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Induction Proof for Inequality.

Theorem: n < 2n for all n ∈ Z+ .

Proof: By induction:
P(n) = “n < 2n ”.
1)  Basis step: P(1) = T because 1 < 21 = 2.
2)  Inductive Step: prove that for all k  P(k) → P(k+1)

Assume P(k) = T and prove P(k+1) = T
k < 2k (Induction Hypothesis)
k + 1 < 2k + 1                  (math)
k + 1 < 2k + 1  ≤ 2k + 2k = 2k+1 (math and that 1 ≤ 2k )
Thus P(k+1) = T.

Thus ∀n P(n)  = T for  n ∈ Z+



12 Discrete Math - University of Haifa - H. Hel-Or

Induction Proofs for n ≥ n0

Proof of statements of the form  P(n) for n ≥ n0,  n∈Z+ .

Since Z+ is well-ordered, any subset of Z+ is well-ordered.
Thus {n | n ≥ n0} is well-ordered and induction can be applied. 

Proving P(n) for n ≥ n0,  n∈Z+ by induction:

Step 1:  Basis Step (בסיס האינדוק ציה)
prove P(n0) ⇔ T

Step 2:  Inductive Step (צע ד אינדוקטיבי)
prove  ∀k P(k) → P(k+1)   for   k ≥ n0
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Induction Proofs for n ≥ n0

Theorem: 2n < n!   for n ≥ 4.

Proof: By induction:
P(n) = “2n < n!”
1)  Basis step: P(4) = T because 24 = 16 <  1*2*3*4 = 24.
2)  Inductive Step: prove that for all k ≥ 4  P(k) → P(k+1)

Assume P(k) = T and prove P(k+1) = T
2k < k!                            (Induction Hypothesis)
2 * 2k < 2 * k!                 (math)
2 * 2k < (k+1) * k!           (math   &   2 ≤ (k+1) for k ≥ 4)
2k+1 < (k+1)!                   (math)
Thus P(k+1) = T and  ∀n P(n)  = T for  n ≥ 4
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Induction Proofs on Countable Sets

Proof of statements on countable sets.

Since Z+ is well-ordered, any subset of Z+ is well-ordered.
Thus {n | n ≥ n0} is well-ordered and induction can be applied. 

Proving P(n) for n ≥ n0,  n∈Z+ by induction:

Step 1:  Basis Step (בסיס האינדוק ציה)
prove P(n0) ⇔ T

Step 2:  Inductive Step (צע ד אינדוקטיבי)
prove  ∀k P(k) → P(k+1)   for   k ≥ n0
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Theorem: If S is a finite set with n elements then  S has 2n

subsets.   I.e.  P(S)  (the Power Set of S)  has 2n elements.
|P(S)| = 2|S|

Proof: By induction:

P(n) = “Sets of cardinality n have 2n subsets.

1)  Basis step: P(0) = T because for n = 0,  S = ∅ and 

P(S) = {∅},  then   |P(S)| = 1 = 20 = 2|S|

2)  Inductive Step: prove that P(k) → P(k+1)
Assume |S| = k and S has 2k subsets.

Prove that |T| = k+1 has 2k+1 subsets.

Induction Proofs on Countable Sets
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Proof cont:
2)  Inductive Step: 

Let T be a set, |T| = k+1  (k≥0)

T ≠ ∅ thus there exists an element a∈ T.

Define S = T- {a}  (i.e. T = S ∪ {a})

For every subset X ⊆ S  there are exactly 2 subsets of T:

X   and  X ∪ {a}
There are 2k elements in S  (Induction Hypothesis)

thus there are 2*2k = 2k+1 elements in T.

Thus P(k+1) = T and  ∀n P(n)  = T

Induction Proofs on Countable Sets



17 Discrete Math - University of Haifa - H. Hel-Or

Theorem: 
Any 2n x 2n chessboard (n ∈Z+), with 1 square removed,      
can be tiled with L-shaped tiles (each tile covers  three        
squares). 

Induction Proofs on Area/Size



18 Discrete Math - University of Haifa - H. Hel-Or

Induction Proofs on Area/Size

Proof: By induction on n:

P(n) = “Any 2n x 2n board with one square removed can

be tiled with L-tiles”.

1)  Basis step: P(1) = T because any 2 x 2 board with 1 

tile removed can be tiled with L-tiles:
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Induction Proofs on Area/Size
Proof cont:
2)  Inductive Step:   Assume P(k) is True.

Consider a 2k+1 x 2k+1 chessboard with 1 tile removed.
Split the board into four  2k x 2k boards:

2k

2k+1

2k+1

One quarter will have a missing piece . By the Induction 
Hypothesis, this quarter can be tiled with L-tiles.
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Induction Proofs on Area/Size
Proof cont:
2)  Inductive Step (cont):   From each of the other 3 quarters,

remove one corner tile:

2k

2k+1

2k+1

They can now be L-tiled (by the Induction Hypothesis). 
The 3 missing squares can be tiled by 1 L-tile. 
Thus all 4 quarters can be L-tiled and P(k+1) is True.
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Induction Proofs with k-wise Basis Step

then the Basis step must include m element:

If the Induction Step implies truth of m elements forward,

∀n (P(n) → P(n+3))

[ P(1) ∧ P(2) ∧ P(3) ∧ ∀n (P(n) → P(n+3)) ] → ∀n P(n)

then the Basis step must include m element:
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Induction Proofs with k-wise Basis Step
Theorem: Any integer  n > 7 is a sum of 3’s and 5’s.

Proof: By induction:
P(n) = “n is a sum of 3’s and 5’s”.
1)  Basis step: P(8) = T   :   8 = 3 + 5

P(9) = T   :   9 = 3 + 3 + 3
P(10) = T :   10 = 5 + 5

2)  Inductive Step: prove that P(k-2) → P(k+1)
Assume P(k-2)   for k ≥ 10.
k+1 = (k-2) + 3
(k-2) is a sum of 3’s and 5’s  (Induction Hypothesis).
Thus (k-2)+3 is a sum of 3’s and 5’s  and
P(k+1) = T.
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Strong Inductions (אינדוק ציה  ש ל מה)

The Induction Step assumes truth of all previous elements.

Step 1:  Basis Step (בסיס האינדוק ציה)
prove P(1) ⇔ T

Step 2:  Inductive Step (צע ד אינדוקטיבי)
prove  ∀k (P(1) ∧P(2) ∧P(3) ∧ . . . ∧P(k)) → P(k+1)   
for   k ≥ 1
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Theorem: The Fundamental Theorem of Mathematics
 (המשפט היסודי של המתימטיקה )

Any integer  n > 1 is a product of primes.

Proof: By strong induction:
P(n) = “n is a product of primes”.
1)  Basis step: P(2) = T   :   2 is a product of 1 prime: 2.
2)  Inductive Step: prove P(k+1)

Assume P(j)=T for all 1 ≤ j ≤ k.
if (k+1) is prime then P(k+1) = T.

Strong Inductions (אינדוק ציה  ש ל מה)
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Strong Inductions (אינדוק ציה  ש ל מה)

Proof (cont):
2)  Inductive Step (cont):

Else (k+1) is not prime and there exist integers a,b

s.t.  (k+1) = a*b  and 1 < a,b < k+1

Since P(a)= P(b) = T  (Induction Hypothesis).

a and b are products of primes.

Thus a*b=(k+1) is a product of primes.

Thus P(k+1) = T.
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Recursion (רקור סיה)

Chapter 3.4

Mathematical Induction is strongly related to Recursion.

Definition: 
Defining an object in terms of itself is called 
Recursion .(רקורסיה )

"הג דר ה מעג לית"  "הג דר ה ציק לית"

Sets, functions, procedures, algorithms...
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Recursive Image
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Recursive Windows
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f : N→ N
f(n) = 2n

Recursive Definitions always have 2 parts:

1) a Basis Step

2) a Recursive Step

f(n+1) = 2 * f(n)

Example:

Recursion (רקור סיה)

f(0) = 1 Basis Step

Recursive Step

Recursive Definition:
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Recursive Computer

What is the Basis step? the Recursive step?
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Recursive Functions

A well defined function assigns a single value to every
element of the domain.

The Recursive Definition of a function f : N→ N :

1) Basis Step - define f(0)

2) Recursive Step - define f(n+1) using f(n)
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Recursive Functions

f : N→ N
f(n) = n!

f(n+1) = (n+1)*f(n)

Example:

f(0) = 1 Basis Step

Recursive Step

Recursive Definition:

f(3) = 3*f(2) = 3*2*f(1) = 3*2*1*f(0) = 3*2*1*1 = 6
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Recursive Functions

f : N→ N

f(n+1) = 2*f(n)+3

Example:

f(0) = 3 Basis Step

Recursive Step

f(1) = 2*f(0)+3 = 2*3+3 = 9

f(2) = 2*f(1)+3 = 2*9+3 = 21

f(3) = 2*f(2)+3 = 2*21+3 = 45
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Recursive Functions

f : N→ N

f(n) = Σ ai

Example:

Recursive Definition:

i=0

n

f(0) = Basis StepΣ ai = a0i=0

0

f(n+1) = Recursive StepΣ ai =i=0

n+1
Σ ai +an+1 = f(n) + an+1i=0

n
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Recursive Functions

Assume P(k) =T and prove P(k+1)
Inductive Step

Are recursively defined functions - well defined?

Prove by induction:
P(n)   =   “f is defined on n”

Recursive Step of Definition

P(k) = T so f(k) is defined
f(k+1) = h(f(k))  (h some function)    (Recursive definition)
and P(k+1) = T.

Basis Step of induction
P(0) = T

Basis Step of Definition
since f(0) is defined.
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Recursive Functions

Generalize Recursive Definition of functions analogous to
Strong Induction.

The Recursive Definition of a function f : N→ N :

1) Basis Step - define f(0)

2) Recursive Step - define f(n+1) using the values

f(k) for k ≤ n



37 Discrete Math - University of Haifa - H. Hel-Or

Fibonacci Numbers

Example: The Fibonacci Numbers ( י'מספרי פיבונצ  )

Leonardo de Pisa (1180 - 1228)
= Fibonacci

Wrote the book “Liber Abaci” in which Arabic numerals
and algorithms were introduced.
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Fibonacci Numbers

The Rabbit problem

2 rabbits are placed on a secluded island 

• A rabbit pair starts breeding only after 2 months.
• Thereafter, every month they breed 2 rabbits.
• Rabbits live forever.

How many pairs of rabbits are there after n months?
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Fibonacci Numbers
The Rabbit problem

Young Adults Total #pairsMonth

1

2

3

4

5

0

0

1

1

2

3

5
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Fibonacci Numbers
The Rabbit problem

Recursive Formula:

f(n) =  the # of rabbit pairs at end of month n.

f(1) = 1
f(2) = 1

Basis Step: 

Recursive Step:

f(n) = f(n-1) + f(n-2)

f(n) =  the number of pairs in previous month (rabbits
don’t die)  +  the number of new born pairs .
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Fibonacci Numbers

Definition: 
The Fibonacci Numbers ( י'מספרי פיבונצ )  f0, f1, f2, ...
are defined recursively:

f0 = 0
f1 = 1
fn = fn-1 + fn-2 for n ≥ 2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ....
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Recursive Definitions of Sets

Recursive Definition of sets is typically analogous to
Strong Induction.

The Recursive Definition of a function f : N→ N :

1) Basis Step - define specific elements in the set.

2) Recursive Step - define additional elements in the 

set using elements already in the set.
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Recursive Sets
Example:

The set S is defined recursively:

3 ∈ S
x + y ∈ S     if x ∈ S  and y ∈ S

Analogous to Strong Induction: 

Basis Step :        P(1)
Induction Step:   (P(1) ∧. . . ∧P(k)) → P(k+1)

S =  ?the set of all positive integers divisible by 3.

Proof ?

Basis Step
Recursive Step
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Recursive Sets
Example:

f is a formula if it is a number or variable.

The set of Mathematical Formulae.

Basis Step

Recursive Step

if f, g are formulae then:
(f + g) ,  (f - g),   (f * g),   (f / g)  

are formulae.

Thus:        5 , x   are formulae
(5 + x) , ((5*x) - (5/5))   are formulae
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Recursive Sets
Example:

T , F are Compound Propositions 
Statement with truth value is a Compound Proposition

The set of Logical Compound Propositions.

Basis Step

Recursive Step

if p, q are Compound Propositions then:
¬p , p ∧ q , p ∨ q , p ⊕ q , p → q

are Compound Propositions.
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Recursive Sets
Example:

λ ∈ Σ*     where λ is the empty string.

The set Σ* of strings over the alphabet Σ

Basis Step

Recursive Step

if   w ∈ Σ* and   x ∈ Σ then:      wx ∈ Σ*

What if strings can not be empty?

Example: Σ = {0,1} 0, 1, 00, 11011, 1110 ... ∈ Σ*
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Induction on Recursively Defined Sets
Theorem:
Math formulae have equal number of left & right parentheses.

Basis Step : A number or variable has no parenthesis so 
number of left and right parenthesis are equal.

Inductive Step: Assume f, g are formulae with equal 
number of left and right parenthesis:  lf = rf &  lg= rg then:
(f + g) ,  (f - g),   (f * g),   (f / g)  
each have lf+ lr + 1 left parenthesis and rf+rg+1 right 
parenthesis. Since lf = rf,  lg= rg we have: lf+ lr + 1 = rf+rg+1 
- equal number of left and right parenthesis.

Proof:   By induction on the structure of the set of formulae
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Recursive Procedures

Recursive functions translate directly to programming of
procedures and functions.

function factorial (n : integer) : integer
if n = 1 then

factorial := 1
else

factorial := n*factorial(n-1)
endif

end

Basis Step

Recursive Step
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Recursive Procedures

function power (a : pos real,  n : non-neg integer) : integer
if n = 0 then

power := 1
else

power := a*power(a,n-1)
endif

end

Basis Step

Recursive Step
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Recursive Procedures

function g (a ,b : integer) : integer
if a < b   then g := g(b,a)
else    /* a ≥ b */

if a == b then  g := a
else  /* a > b */

g := g(a-b,b)
endif

endif
end

Basis Step

Recursive Step

What does this function compute?
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Recursive Procedures

function g (a ,b : integer) : integer

Example runs: a , b

9 , 6
3 , 6
6 , 3
3 , 3

g(9,6) = 3

a , b

7 , 3
4 , 3
1 , 3
3 , 1
2 , 1
1 , 1

g(7,3) = 1

a , b

10 , 2
8 , 2
6 , 2
4 , 2
2 , 2

g(10,2) = 2
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Recursive Procedures

function g (a ,b : integer) : integer
if b = 0   then g := a
else    /* b ≠ 0 */

g := g(b,a mod b)
endif

end

Basis Step

Recursive Step

Improving the GCD function:

Example runs:

a , b

9 , 6
9 , 3
3 , 0

g(9,6) = 3

a , b

7 , 3
3 , 1
1 , 0

g(9,6) = 1 g(10,2) = 2

a , b

10 , 2
2 , 0
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Recursive Algorithms

Definition: 
An algorithms is called Recursive if it solves the given
problem by reducing it to the same problem with a 
smaller/simpler input.
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Recursive Algorithms

Example: Search Algorithms

Given an ordered list L of numbers, find a given number, x,
in this list.

x ?

L
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Recursive Algorithms

Algorithm I:  Linear Search (iterative)
L

x
?function L_search (x,start,end) : integer

for ind = start  to  end
if L(ind) == x   /* x found */
L_search := ind;
return;

endfor
L_search := -1   /* not found */

end
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Recursive Algorithms

Algorithm I:  Linear Search (recursive)

function L_search (x,start,end) : integer
if list(start) == x   /* x found */

L_search := start;
elseif start == end

L_search := -1   /* not found */
else    /* keep searching */

L_search = L_search(x, start+1,end);
endif

end
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Recursive Algorithms

Algorithm II:  Binary Search
L

x
?

• Test middle of list. 
• If equal to x then - found.
• Else, reduce search to smaller search:

• if x is smaller than middle element -
search 1st half of list.

• if x is greater than middle element -
search 2nd half of list.
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Recursive Algorithms

function B_search (x,start,end) : integer
middle = floor((start+end)/2) 
if list(middle) == x   /* x found */

B_search := middle;
elseif (x<list(middle)) & (start < middle)   /* search 1st half of list */

B_search :=  B_search(x,start,middle-1)
elseif (x>list(middle) & (end > middle)     /* search 2nd half of list */

B_search :=  B_search(x,,middle+1,end)
else

B_search := -1   /* not found */
endif

end
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Recursive Algorithms

Run times:
Linear search worst case O(n)
Binary Search worst case O(log2n)

When number is in first in list:
Best case for linear search & worst case for binary search.

What should be minimized in terms of search time?
worst case
average case
simplest 

?
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Recursive Algorithms

Recursive solution is not always faster!

function f (n: non-neg integer) : integer
if n == 0  

f := 0;
elseif n == 1

f := 1
else

f := f(n-1) + f(n-2);
endif

end
What does this function calculate?
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Recursive Algorithms

Recursive calculation of Fibonacci Numbers

f(n) =  f(n-1) + f(n-2)

f(n-2) + f(n-3) f(n-3) + f(n-4)

f(n-3) + f(n-4) f(n-4) + f(n-5) f(n-4) + f(n-5) f(n-5) + f(n-6)

f(0) / f(1) f(0) / f(1)
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Recursive Algorithms

f(4) =  f(3) + f(2)

f(2) + f(1) f(1) + f(0)

f(1) + f(0) 1 1 0

1 0

Example:

f(4) =  1+0+1+1+0 = 3
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Recursive Algorithms

function fib (n: non-neg integer) : integer
if n == 0   then   fib := 0;
else  /* n ≥ 1 */

n_1 := 0;
fib := 1
for i = 1 to n-1

n_2 := n_1;
n_1 := fib;
fib = n_1 + n_2

end;
endif;

Iterative calculation of Fibonacci Numbers
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Recursive Algorithms

f(1) + f(2)

f(4)

f(2) + f(3)

Example:

f(4) =  1+0+1+1+0 = 3

Iterative calculation of Fibonacci Numbers

f(0) + f(1)
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Recursive Algorithms

Comparison of number of Ops Iterative vs Recursive
of Fibonacci Numbers

Recursive Alg:  fn is computed with  fn+1 - 1 additions.

Iterative Alg:     fn is computed with   n - 1 additions.

Recursive algorithms are often more time consuming
BUT they are easier to understand and design. 
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Jim Bryan (UBC) http://www.mantasoft.co.uk/anim/

Recursive Fun


