How to create your own DLL

(With Visual Studio .NET)

Introduction

An export DLL is a dynamically linked library, which has functions, classes,
and variables that are available to any application that links to this DLL.
Suppose that you create a DLL called MyDLL.dll. Then the application,
which uses that DLL, needs to include the following files in its project
directory:

= MyDLL.h - the DLL’s header file.

= MyDLL.lib — short static library of the DLL.

= MyDLL.dll — the compiled DLL.

The actual code resides within the DLL, and will not be linked to the
application at compile time (only at run time), thus the application is smaller

in size, and can be updated very easily by replacing the DLL.

Creating your first DLL

To create your DLL, follow these steps:

1. Stat a new project in Visual Studio .NET.

2. Select Visual C++ Projects — Win32 and Win32 Console Project.
3. Give the project a name (like MyDLL) and press OK.

[MET
[aTL
[MFC
£3) Win3z

[ceneral . V]

M= o~

A Consale applicati-u:in' kype of Win3z project,

Mew Project
oo ooe-
Project Tvpes: Templates: [§§ wla:
I:l Wisual Basic Projects -A o
[C wisual C# Projects =
(1 wisual 2# Projects Win32 Conscle Win32 Project
-7 wisual C++ Projects = Project

Mame: 1 M}.-'DLLl

Location:

] CiDocuments and SettingstShai\Deskiop

Project will be created at C:Documents and SettingsishaiiDeskiopi My DLL,

o]

L] Browse, ..

Cancel | Help |

FMore

4. Click on Application Settings, select DLL and Export Symbols and press

Finish.

Win32 Application Wizard - MyDLL

Application Settings

Specify the bype of application wou will build with this project and the options or libraries vou
want supported.

Application bype:

Cervien

Application Settings
&+ DLL
(" Skatic library

Additional options:

" Windows application

(" Console application

&dd support For:
[&
r

| Empty project

Finish Zancel

Help

5. That’s it; you’re done creating the DLL.

Some Explanations

Before we move to the point of actually doing something with the DLL, here

are some explanations about the created project.

Look at the 4 files that were created:

e MyDLL.h — header for the DLL

e MyDLL.cpp — Implementation of the DLL.

e StdAfx.h — Standard include (you can write here the standard

#includes like stdlib.h and stdio.h).

e StdAfx.cpp — Standard object file — Do not edit this one!

Both StdAfx files are not interesting, so let’s skip them for now.

MyDIl.h

The code below was added by the DLL creation wizard.

#ifdef MYDLL_EXPORTS

#define MYDLL_API __declspec(dllexport)
#else

#define MYDLL_API __declspec(dllimport)
#endif

// This class is exported from the MyDLL.dII
class MYDLL_API CMyDLL {
public:
CMyDLL(void);
// TODO: add your methods here.
3

extern MYDLL_APT int nMyDLL;

MYDLL_APT int fnMyDLL(void);

Pre-processor definitions. No need to
touch that piece of code.

If you decide to change MYDLL_API to
another constant, make sure you change it
references in the code.

This is a class defined in the DLL. To
add more methods, simply modify the
class.

Note: when implementing the methods,
remember to prefix them with
MYDLL_APIL

These are a variable and a function
exported from the DLL. I will not discuss
them here.

Make sure you do this:

= Define MYDLL_EXPORTS in the project’s preprocessor settings.

o Right-click you project and Properties.

o Go to Configuration Properties — C/C++ and Preprocessor.

o Make sure that MYDLL_EXPORTS appear in Preprocessor

Definitions line.

o=

MyDLL Property Pages

w

Configuration: |F'-l:ti\-'e(DE|:|ugj

General
Debugaing
=5 O+
General
Opimizakion
g Preprocessar
Code Generatio
Language
Precompiled He.
Qukpuk Files
Browse Informs
Advanced
Command Line
(23 Linker
(23 Browse Information
(23 Build Everts

=5 Configuration Propertie [

[Custom Build Skep ._
(23 web Deployment %]

| Platform: |Active(win3z)

F‘.reprocessur Definitions
Ignore standard Include Path
Generate Preprocessed File
keep Camments

Preprocessor Definitions

Specifies one of more preprocessor defines.,

[~

Caonfiguration Manager. .. /J/

\HIN32;_DEBUE;_WINDDWS;_USRDLL;M?I@

Mo
Mo
i[a]

0K | Cancel

({D[macra])

Help

MyDLL.cpp

This code was added by the wizard.

#include "stdafx.h"
#include "MyDLL.h"

CPP header. Includes, etc.

Here

// This is an example of an exported function.
MYDLL_APT int fnMyDLL(void) {
return 42;

}

// This is the constructor of a class that has been exported.
// see MyDLL.h for the class definition
CMyDLL::CMyDLL() {

return;

}

Compile your code

BOOL APTIENTRY DIlIMain(HANDLE hModule, The DLL entry point. Look in:
DWORD ul_reason_for_call . .
= ~. http://msdn. .
LPVOID IpReserved) { p://msdn.microsoft.com/library/def
switch (ul_reason_for_call) { ault.asp?url=/library/en-
// Called when a process starts. us/dllproc/base/dllmain.asp for more
case DLL_PROCESS_ATTACH:
// Called when a thread starts. explanations.
case DLL_THREAD_ATTACH:
// Called when a thread ends.
case DLL_THREAD_DETACH:
// Called when a process ends.
case DLL_PROCESS_DETACH:
break;
}
return TRUE;
}
// This is an example of an exported variable These are the variable and function
MYDLL_APT int nMyDLL=0; implementations.

This is the constructor’s

implementation.

I created another project in the Visual Studio’s solution and called it

TestDLL. What we want to do now is use MyDLL in this project. In order to

do it, we need to set some settings.

1. Copy MyDLL.h, MyDLL.lib and MyDLL.dll to TestDLL’s project

directory.

2. Include MyDLL.h in main.cpp (like: #include "mydIl.h").

3. Right-click TestDLL’s project and go to Properties.
4. Select Linker and Command Line. Type ./MyDLL.lib in Additional

Options.

TestDLL Property Pages

Configuration: |Active{Debug)

=5 Configuration Propertics
General
Debugging
[Cfc++
3 Linker
General
Input
Debugaging
Swskem
Opkirizakion
Embedded IDL
Advanced
g Zommand Ling
(23 Browse Information
(23 Build Everts
(23 Custom Build Step
(23 Web Deployment

L] Elatfarm: |F'.ctive(\.-\.-'in32}l ﬂ Configuration Manager. .. I

All Options:

JOUT: "Debug) TestDLL . exe" JINCREMENTAL fMOLOGD (DEBUG [PDEB: "Debug/TestDLL,
pdb” fSUBSYSTEMCOMNSOLE JMACHIME: %86 kernel3Z lib user3z lib gdi32 lib winspoal,
lib comdlg3z lib advapi3z lib shell32.lib ole3Z.lib oleaut3z.lib uuid.lib odbe3z lib odbocp
32.lib

Additional Options:

/My DLL b

] | Cancel | Help

Now you can add additional functions to it

For example, let’s add a method to CMyDLL class which prints a char *

object and also modify the constructor to accept a char * object.

class MYDLL_APT CMyDLL {

private:

char* _strToPrint;

public:

CMyDLL(char * strToPrint);
void printStr() const;

¥
Also, in MyDLL.cpp let’s add the following code:

CMyDLL::CMyDLL(char * strToPrint) {
_strToPrint = strdup(strToPrint);

}

void CMyDLL::printStr() const {
cout << _strToPrint <« end|;

}

After compiling the code and copy the necessary files, your main() can look
like this:
#include "mydlIl.h"

int main () {
CMyDLL *cmd = new CMyDLL("This is my first DLL");

cmd->printStr();
return O;

That’s it; you’re done creating you first DLL.

