
Coarse Grain Highlevel Synthesis a technique to

Reducing MUX-complexity

Y. Ben Asher

Abstract

We consider the problem of reducing the number of MUX-gates of
circuits synthesized by highlevel synthesis compilers. Our goal is to de-
vise a fast HLS compiler from C to Verilog/VHDL that can be used to
accelerate sequential C programs on Intel’s Xeon+FPGA machines. Typ-
ically an HLS compiler first transforms C-code to a graph of operations

G, schedules the nodes of G into a
rows

clock cycles ×
resource

hardware units table
T and emits a circuit that executes the rows of T at consecutive clock
cycles. This technique yields increase use of MUX-gates. This is because
the resource hardware units must be reconfigured (through MUX-gates)
to access different arguments in each clock cycle/row of T . Increase use of
MUX-gates yields increased routing complexity and a slowdown of the ex-
ecution. For example, a simple 10lines of C code in Vivado-HLS compiled
into a 700 lines of Verilog code, 242 registers and 118 MUX gates. We pro-
pose to first partition G into coarser sub-graphs that will be schedule to
coarser hardware units containing several operations each. Consequently
the number of rows in T will decrease and so is number of the hard-
ware units that are used. We believe that this will reduce the number of
MUX-gates and routing complexity of the resulting circuits.

In this proposal we plan to build the following system:

• An LLVM module that compile each suitable loop/functions of a
given C/C + + program to a graph of operations G.

• An algorithm that can find a good partition of G’s nodes/edges to
sub-graphs whose HLS scheduling will minimize the use of MUX-
gate. Though this is a complex problem we plan that the algorithm
will be linear in |G| so that the resulting HLS compiler will be fast.

• A synthesis pass containing the scheduling of the partitioned G to
T and the generation of the final Verilog code.

1

