Practical Parallel Programming
course - Winter 2017
CS @ Haifa University

Performance Analysis in Modern Multicores

Ahmad Yasin

CPU Architect, Intel Corporation
14 January 2018

eeeeeeeeee

Outline

* Architecture

Performance Monitoring

Hands on 1: VTune

- Introduction, Advanced Hotspots, custom analysis, OpenMP support

Top-down Microarchitecture Analysis (TMA) method

Hands on 2: Matrix Multiply Optimizations
- General Exploration (TMA) reflecting Parallelization, Vectorization, parch tuning

Summary & Pointers

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

Skylake processor & memory subsystem

@ Chipset GFX card

DM pcle | usP
Caches and memory system
System agent
Memory ﬁ
LLC 1+ Cache Cache Cache
+ [
|A core IA core
+ Ra nd
LLC +1 Last-level cache
LLC $4
PN I R
|A core IA core
MEE
N -
LLC +
LI Cache tags P—‘ MC ¢—DDR
Processor graphics EDRAM CNTL
GT2/3/4
EDRAM =l

Figure 1. Skylake block diagram with zoom into cache and memory subsystem. The memory subsystem is shown with the
eDRAM-based memory side cache.

Source: Inside 6th-Generation Intel Core: New Microarchitecture Code-Named Skylake. Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius
Mandelblat, Anirudha Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, Adi Yoaz. IEEE Micro, Volume 37, Issue 2, 2017. [IEEE]

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

http://ieeexplore.ieee.org/abstract/document/7924286/

Modern Out-of-Order cores

* Pipelined sranch 11,
p Predictor -cache > Cihe
* Superscalar :
. Fetch . Fetch
e 00O Execution Urlitn UniIl -
° SpeCUlation \—'—/ d-cache

* Multiple Caches l |

« Memory Pre-fetching and e " T
. . . (issue) \5 Outof ¥4
Disambiguation U order '3
. C it Execution
« Vector Operations etire) |© Cw_ 7| AW

Source: Fine-Grain Power Breakdown of Modern Out-of-Order Cores and Its Implications on Skylake-Based Systems. Jawad Haj-Yihia, Ahmad Yasin,
Yosi Ben-Asher, Avi Mendelson. In ACM Transactions on Architecture and Code Optimization (TACO) Journal, Volume 13 Issue 4, December 2016

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

Skylake Core microarchitecture

LSD
32-Kbyte L1 |-cache Predecode Decoders
: & micro-op
Branch prediction unit icro- queue i
In order

~ Scheduler e ' “606~

VA‘II' b ALLL4 L AL 4

L Chift 4 - L Chift 4

UNMP 24 L NML L A JMP 14

Memory control

L2 cacl L1 D-cache

256-be\3lte —Ft= 32-Kbyte
e B S

Figure 4. Skylake core block diagram.

Source: Inside 6th-Generation Intel Core: New Microarchitecture Code-Named Skylake. Jack Doweck, Wen-Fu Kao, Allen Kuan-yu Lu, Julius
Mandelblat, Anirudha Rahatekar, Lihu Rappoport, Efraim Rotem, Ahmad Yasin, Adi Yoaz. IEEE Micro, Volume 37, Issue 2, 2017. [IEEE]

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

http://ieeexplore.ieee.org/abstract/document/7924286/

X86 vectors for Floating Point (FP)

Max Vector FP-SP Introduced in
° FP width elements |processor

128-bit
- Single Precision (SP) AVX 256-bitFPonly 8 Sandy Bridge
= 32-bits (2nd gen Core)
= 8 elements in AVX2 AVX2 fnigg*;'rt f:al\jl’/‘i)s 8 ('lff‘g:r‘]‘ Core)
" float'inC AVX512 512-bit 16 Skylake Server
- Double Precision PEEDSEEBE
- 64-bits -
» 4 elements in AVX2 _
» ‘double’in C

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

Performance Monitoring

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

Performance Counters 101

 PMU - Performance Monitoring Unit
- Non-intrusive generic set of capabilities to retrieve info related to CPU execution
- Info: Mostly on microarchitecture performance but also Arch., Energy, and more
- Probably the single such capability to provide what's going on under the hood
- Example usage: avoid u-arch inefficiencies via code tuning
* Terms
- General-purpose counters
- Predefined HW events
- Counting vs. Sampling modes
- PMI (PerfMon Interrupt) & Samples, Sample-After-Value

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

Intel® Core™ Processor PMU

 Architectural PMU (Performance Monitoring Unit)
- 3 fixed counters
» |nstructions Retired, Core- and Reference-Unhalted-Cycles
- 4 general-purpose counters
» Expands to 8 when SMT is off (since Sandy Bridge)
- Global Status and Controls

* Rich list of performance events
- Most useful events are model-specific
- A subset of 7 events are architected
 Advanced mechanisms

- PEBS: Precisely tags performance events & profiling data into software location
- LBR: Non-intrusive branch recording facility

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

10

Perf. Counters
or PerfMon events

* Links

- VTune Index to PerfMon
Tables of all Intel processors:
https://software.intel.com/en-
us/vtune-amplifier-help-intel-

Th wyn'2pn NionoIR X | & Intel Processor Events Re X

processor-events-reference

- E.g. Skylake:
https://download.01.org/perf
mon/index/skylake.html

[hitpsi//download.0l.org X

c 0O | @ Secure | https;//download.01.0rg/perfman/index/skylake.html ﬁ‘ E e

INT_MISC.CLEAR_RESTEER_CYCLES

INT_MISC.RECOVERY_CYCLES

INT_MISC.RECOVERY_CYCLES_ANY

ITLB.ITLB_FLUSH

ITLE_MISSES.MISS_CAUSES_A_WALK

ITLB_MISSES.STLB_HIT

ITLBE_MISSES.WALK_ACTIVE

ITLB_MISSES.WALK_COMPLETED

ITLB_MISSES.WALK_COMPLETED_1G

ITLB_MISSES.WALK_COMPLETED_2M_4M

Cycles the issue-stage is waiting for front-end to fetch from
resteered path following branch misprediction or machine
clear events.

Core cycles the Resource allocator was stalled due to
recovery from an earlier branch misprediction or machine
clear event.

Core cycles the allocator was stalled due to recovery from
earlier clear event for any thread running on the physical
core (e.g. misprediction or memory nuke).

Counts the number of flushes of the big or small ITLB pages.
Counting include both TLB Flush (covering all sets) and TLB
Set Clear (set-specific).

Counts page walks of any page size (4K/2M/4M/1G) caused
by a code fetch. This implies it missed in the ITLB and
further levels of TLB, but the walk need not have completed.

Instruction fetch requests that miss the ITLB and hit the
STLB.

Cycles when at least one PMH is busy with a page walk for
code (instruction fetch) request. EPT page walk duration are
excluded in Skylake microarchitecture.

Counts completed page walks (2M and 4M page sizes)
caused by a code fetch. This implies it missed in the ITLB
and further levels of TLB. The page walk can end with or
without a fault.

Counts store misses in all DTLB levels that cause a
completed page walk (1G page size). The page walk can end
with or without a fault.

Counts code misses in all ITLB levels that caused a
completed page walk (2M and 4M page sizes). The page
walk can end with or without a fault.

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

https://software.intel.com/en-us/vtune-amplifier-help-intel-processor-events-reference
https://download.01.org/perfmon/index/skylake.html

Intel Performance tools

VTune - the rich profiler

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

12

Performance Tools Map

Intel® VTune™ Amplifier
Intel® Top-Down

Intel® Emon

Intel® Compiler

Intel® Architecture Code
Analyzer

Intel® Intrinsics Guide

Intel® Integrated Performance
Primitives (Intel® IPP)

Intel® Math Kernel Library

Intel® Threading Building Blocks

(Intel® TBB)

Performance Profiler

Bottleneck analysis using Performance Monitoring Units
Event monitor — collect HW counters

Highly optimizing compiler, lead in autovectorization
Static performance analyzer, good for theoretical
performance threshold.

Intel GUI tools that helps writing in intrinsics

low-level building blocks for image processing, signal
processing, and data processing

highly optimized, threaded, and vectorized math functions
that maximize performance on each processor family

Widely used C++ template library for task parallelism

Ack: Asaf Hargil

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

VTune

g

Groupingv‘;‘ Function / Call Stack v .@
CPUTime v «/| Context Switch Time « |Context!a
FEnCRon (GO Ok 8idte E"'g’:ﬂ;":):y l.m'::;:m. Over . SpinTime | Overhead ... | Wait Time | Inactive Time Preernpl?
v updateBusinessAccount 7915 @ D 0s 0s 0s 0.055s ¢
< manSomsSporalel 11263 ;
» = __kmp_invoke_microtask — [Og 7.915s I D 0s 0s 0s 0.042s £ a
» = updateBusinessAccount « mai: 0Os Os Os 0Os 0.013s
» updateCustomerAccount | 77665 | S 05 0 0s 008 1,
» _ kmpc_atomic_fixed8_add \ 2.772s |\ D [Os| 0s ‘ _
» __kmpc_critical | 0s | 2.021s Os 0s 0.014s ‘ G
’3=———| | < S i 3 & AR >
QOQFQ-Q® __ 555 Ruler Area "
OMP Worker Thread .. | [N B 7 Region Instance
g |OMP Worker Thresd .. (¥ Thread [v]
£ [mtest_openmp (TID:.. V] @8 Running
OMP Worker Thread ... il . V) Context Switches
() Preemption
CPU Time [Synchronization
(] iy CPU Time

> » [¥] ik Spin and Overhead ...

S AnsProce w W any Theas I Any oo« I Any Ut v I User uncio w I Show i v I Funcions »

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

14

VTune 2018 Introduction

Hands On #1

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

15

VTune small tips

* Installation
- Disable Virtualization (in BIOS) for Windows 10

* Measurements
- Close all applications (e.g. Chrome) and unneeded services or even do a clean boot
- Disable SMT (Hyperthreading) and Turbo Frequency if you can

» Often introducing indeterminism and run-to-run variations
= Remember to turn it on once done

- Use affinity esp. when utilizing subset of cores/threads
» E.g. taskset @Ox<mask> inLinuxor start /affinity ©x<mask> in Windows

* Optimizations
- Try one optimization/change at a time!

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

VTune for OpenMP

VTune Amplifier XE/OpenMP Analysis ki L

Metrics in Summary

= Advanced Hotspots

M) Fepuendy Aatioe Lill
i Time: um: s serial time of my applicetion significant to prevent scaling?
Gremitrmad Tir:
3T1 Tass
qs-cuurlurl. purties ol O e o Spa wal Ling. Use Thigdnetic oo disoos ey ms.-.-n:hm.aalm A S[TANG. C oo der s e g Spin mait
TS, changing e kack implementation (for exarghie, by backing off then desc i eyt grasulaniy.

% ﬁpenﬂl'-" n.na.l_-,-sls Applll:aliun Elapged Time: 69.073

How efficient is my parallelizsticn fowards ideal parallel execution?

Hosws much theoretical gain | can get I invest in imbalance /overhead tuning

= Top OpenMP Reglons by Potential Gain
Thif fbiod 1515 sk P fibguoss with Thi lghesl pobenlisl A7 SToftdnds: o pioreiinenl. Thi Poliital Dol iestiee §hows T daseid s thal
uh.ldbl‘unndl'Ihl'Iyuundqﬂllllhlhhinuoiul]lnl.h‘l'i'\irdimll iy TaTHE Slitanad
CipeEnHF Regian Patertal Galn Tirma| EJHH‘ Time Imtarce Coumt
ke i e il 2k e 43 195
> 1 ki .
E_zahee_Somphparalel: 2AEnEnTATL AL TG
1 Sarmuh N 24 kg 1T 436
ol e B 24 gme ey 18 2T

What resgions sre more
pRripacitye ta et ¥

Link goes to grid view for
iiafe dutails an inePlichency

i T LY] - ““Eu
e =

Source: Enhanced OpenMP Analysis in VTune Amplifier XE 2015 - Ahmad Yasin for Corey Alsamariae and Dmitry Prohorov (Intel Corporation).
Software Development Conference - Tel Aviv, 1st July 2015.

16 Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

17

Performance Analysis
Top-down Microarchitecture Analysis
(TMA)

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

What is Performance Analysis?

* A definition

- “A performance analysis methodology is a
procedure that you can follow to analyze
system or application performance. These
generally provide a starting point and then
guidance to root cause, or causes. Different
methodologies are suited for solving different
classes of issues, and you may try more than
one before accomplishing your goal.

- Analysis without a methodology can become a
fishing expedition, where metrics are examined
ad hoc, until the issue is found —if'it is at all.”

Source: Brendan D. Gregg,
http://www.brendangregg.com/methodology.html

'_ Application _

+ Runtime

Architectural
+ pArch.

18 Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

http://www.brendangregg.com/methodology.html

Skylake Core

.+ aninstruction) O

“ cache miss in \
. next function g()

19 Intel® Microarchitecture, Code Name Skylake

Branch Prediction

Hop Cache

Ready pop’s q*Rename
Execution Memory
Scheduler Scheduler

il

Execution « Memory
Units Control
L2 Cache =Y D-Cache BEE®

TMA is designed to help developer to focus on areas that matter

Front-end
of processor
pipeline

Back-end
of processor
pipeline

[; A data cache

miss in current
function, say f()

u‘\

IDF

INTEL DEVELOPER FORUM

20

Challenges

* Nailve approach (from in-order cores land)
Stall_Cycles = Penalty; * MissEvent;

« Example
- Branch Misprediction penalty = 50 * # Pipeline Clears

* Unsuitable for modern out-of-order cores due to (Gaps):
1) Stalls Overlap
2) Speculative Execution
3) Workload-dependent penalties
4) Predefined set of miss-events
5) Superscalar inaccuracy

Ahmad Yasin — Performance Analysis in Out-of-Order Cores — Technion 2017

// JEClear

21

Top Down Analysis

 Identifies true p-arch bottlenecks in a simple, structured hierarchical process
- Simplicity avoids the p-arch high-learning curve
» i.e. Analysis is made easier for users who may lack hardware expertise
- The hierarchy abstracts bottlenecks to cover many p-arch’s
- The structured process eliminates “guess work”

* Addressing Gaps
- Generic performance metrics abstract the many hazards into categories, using
- Top-down oriented perf-counters that count:
» when matters; e.g. stalls vs cycles
» where matters; e.g. single point of division
= atfiner-grain; e.g. superscalar width.
- Bad Speculation metric at the top

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

Top Level Breakdown

No

Back-end
stall?

Yes No Yes No

Backend Frontend
Bound Bound

Uop := micro-operation. Each x86 instruction is decoded into uop(s)
Uop Issue := last front-end stage where a uop is ready to acquire back-end resources IDF

27 Back-end stall := Any backend resource fills up which blocks issue of new uops L L

23

The Hierarchy" (example)
B (PUBound___

e T

e

Y s _n
Frontendiss ABAC e Backend Bound
Bound Speculation

|

Core
Bound

“Frontend Band

Machine
Clears

Microcode

Sequencer

Latency

|
|

Memory Bound

Ports
‘ Utilization

Divider (
L2 Bound (

FREF
1%2]
Bogoo
._4_,_6_‘:
E2ER
ex E S
SEP S
m ¥ @
O En Y
TEQE
@

Vector

aka Compute Bound:
(1) Execution Units (hardware)
(2) Low ILP (software)

Contested Acces§ |

[1] A. Yasin, “A Top-Down Method for Performance Analysis and Counters Architecture”, ISPASS 2014

L3 Latency|

MEM
Bandwidth

Top Level for SPEC CPU2006
Average|)\47.1% | 9.9% | 82% | 348% | 18

Retiring Bad_Speculation

Pipeline fed w/
useful uops

Most Apps are Backend

Few have high
Bound, esp. FP

Bad Speculation

401.bzip2
445.gobmk
456.hmmer
458.sjeng
libquantum
464.h264ref
471.omnetpp
473.astar
410.bwaves
416.gamess
433.milc
434.zeusmp
435.gromacs
437.leslie3d
444 .namd
447 dealll
450.soplex
453.povray
454 calculix
59.GemsFDTD
465.tonto
470.lbm
482.sphinx3

400.perlbench
183.xalancbmk
136.cactusADM

62

u-arch bottlenecks do greatly vary across workloads
SPEC CPU2006 v1.2, rate 1-copy, Intel Complier 14 targeting AVX2, Skylake @ 3 GHz nF

INTEL DEVELOPER FORUM

Memory Bound (1-core vs. 4-cores)

IPC := Instructions Per Cycle

W Retiring mmm Bad Speculation mmmmm Frontend Bound Backend_Bound = 4= IPC W Retiring W Bad_Speculation mmmmm Frontend_Bound Backeound == IPC
100% ——— 15
80% - 5% ’
60% . N 15
-
40% e 1
- .-h--.-‘——-b-"‘-..ili" 05
0
w o L o
: 2 : : :
20 o] =] <
I T T T T T T T T | T T T T T | g E g ’; i-
g g
- 15— — ’;
£
E T] . \Vlemory_Bound
= ol i 100%
EOl B] 80%
i 1T B 2 . 60%
¥ s i 40%
20%
r 1 0%
© \\Ibb‘ \;;p \f\e \J\% \{u \'n T \Ie, slm elb« \flgs oS "I_BOU“dSO% 80 I |1 Bound NN (2 Bound M (3 Bound MEEEEN MEM Bound M Stores Bound «seeee Memory_Bound 8%
- - o 0 (']
70%
TMA identifies true bottlenecks for multi-core workloads as well 6%
50%
. 25% [40% N 4
20% il [P m— 2%
10% . 10%
0% —_ 0%

25 Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

26

Performance Optimization example:
Matrix Multiply

Hands On #2

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

Matrix Multiply insight

for (int i=0; i < rows; i++) ‘ Non
for (int j=0; j < cols; j++) Ih adjacerlt
for (int k=0 ; k < cols; k++) mm® cachelines

RIAJ[T] = RLL][T] +
A[i][k] * BLk][1];

Fix memory access pattern (Loop Interchange optimization)

27

28

Experimental setup

HW |Processor | Intel(R) Core(TM)i5-6440HQ CPU @ 2.60GHz
uarch| Skylake
Cores| 4 (1 thread/core)
L3 Cache| 6 MB
_____________________________ Frequency] Base of 2.6 GHz w/ Turbo Boost (on) up to 3.5 GHz
Memory Type| DDR4
DRAM Frequency| 1067 MHz
Size| 8 GB
SW |0S Microsoft Windows 10 Enterprise
Version| 10.0.14393 Build 14393
________________ Virtualization (Hyper:V) Disabled _____________________________________|
Compiler |Intel® C++ Compiler 16.0 Version 16.0.1.146 Build 20151021
OpenMP Version 4.0
Test Code |Matrix Multiply
Data-type| FP Double Precision
______________________ single matrixsize) 32MB_________
Tools VTune Intel VTune Amplifier 2018 (build 542108)
TopDown TMA Metrics version 3.31

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

29

Matrix Multiply Optimizations Summary

Step: Optimization DRAM |BW Utilization| CPU Util-
[s] up |(*1)| [Billions] |[Bound (*3 *4) [GB/s] |ization (*5)
7.2 1

1: None (textbook version) 739 1.0x 3.71 52.08 80.1%

2:(*2) Loop Interchange 7.68 9.6x 0.37 56.19 10.4% 10.5 1

3: Vectorize inner loop (SSE) 6.87 10.8x 0.92 20.83 20.2% 11.6 1

4: Vectorize inner loop (AVX2) 6.39 11.6x 1.40 12.73 18.2% 11.8 1

5: Use Fused Multiply Add (FMA) 6.06 12.2x 1.93 8.42 47.7% 12.6 1

6: Parallelize outer loop (OpenMP) 3.59 20.6x 3.02 8.59 61.6% 13.8 2.8

*1) Cycles Per Instruction
*2) Had to set 'CPU sampling interval, ms' to 0.1 starting this step since run time went below 1 minute
*3) TopDown's Backend_Bound.Memory_Bound.DRAM_Bound metric under VTune's General Exploration viewpoint
*4) Per 'Average Bandwidth' (for DRAM) under Vtune's '"Memory Usage' viewpoint.
Measured 'Observed Maximum' was 14 [GB/s]. See more on next foil.
(*5) Per 'Average Effective CPU Utilization' line in Effective CPU Usage Histogram
All Optimization steps are incremental, e.g. Step 6 is on top of Step 5, with the exception that step 4’s baseline is step 2.

—~ e~~~

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

30

Why CPI

increased with

i General Exploration General Exploration viewpoint (change) @

Soze oz
1) Analysis Target iy Analysis Type [CollectionLog &) Sum oo bo
e B

Elapsed Time : 73.891s

OpenMP (Step 6)?

Step 5

Elapsed Time ~: 6.056s

CPU Time 5627s

Memory Bound ¥ 60.7% R of Pipeline Slots
L1 Bound 1.8% of Clockticks
L2 Bound 00% of Clockticks
L3 Bound 10.7% ® of Clockticks
DRAM Bound ™: 47.7% [of Clockticks

DRAM Bandwidth Bound 96.6% % of Elapsed Time

Stores: 2,132,000,000

LLC Miss Count 473,070,000

Total Thread Count: 3

Paused Time 2 0s

Bandwidth Utilization Histogram

Explore bandwidth utilization over time using the histogram and identify memory objects or functions with maximum contribution to the high bandwidth utilization.

Bandwidth Domain: | DRAM, GB/sec ~

Bandwidth Utilization Histogram

This histogram displays the wall time the bandwidth was utilized by certain value. Use sliders at the bottom of the histogram to define thresholds for Low,
Medium and High utilization levels. You can use these bandwidth ufilization types in the Bottom-up view to group data and see all functions executed during
a particular utiization type. To leam bandwidth capabilities, refer to your system specifications or run appropriate benchmarks to measure them: for

example, Intel Memory Latency Checker can provide maximum achievable DRAM and Interconnect bandwidth

Elapsed Time
Average Bandwidth

Bandwidth Utilization

Observed Maximum

Clockticks: 19! Hardware |ssues
Instructions Refired: 52 Hotspots
CPI Rate =] "Mm

MUX Reliability
Front-End Bound
Bad Speculation

Step 6

Elapsed Time ~: 3.585s

CPU Time 9881s

Memory Bound 72.3% R of Pipeline Slots
L1 Bound = 03% of Clockticks
L2 Bound 01% of Clocklicks
L3 Bound 8.5% ® of Clockticks
DRAM Bound : 61.8% M of Clockticks

DRAM Bandwidth Bound = 96.8% * of Elapsed Time

Stores: 2.202,200.000

LLC Miss Count 489,320,000

Total Thread Count: 6

Paused Time ~: Os

Bandwidth Utilization Histogram

General Exploration

sunt {5 Platform

HPC Performance Characterization

ots

of Pipeline Slots

Explore bandwidth utilization over time using the histogram and identify memory objects or functions with maximum contribution to the high bandwidth utilization

Bandwidth Domain: | DRAM, GB/sec v

Bandwidth Utilization Histogram

This histogram displays the wall time the bandwidth was utilized by certain value. Use sliders at the bottom of the histogram to define thresholds for Low,
Medium and High utilization levels. You can use these bandwidth utilization types in the Bottom-up view to group data and see all functions executed during

a particular utilization type. To learn bandwidth capabilities, refer to your system specifications or run appropriate benchmarks to measure them; for

example, Intel Memory Latency Checker can provide maximum achievable DRAM and Interconnect bandwidth

35s
3s

Elapsed Time

Bandwidth Utilization

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

31

Optimized code

//Step 6: Loop interchange & vectorize & FMA (AVX2) inner loop; parallelize outer loop

#pragma intel optimization_parameter target arch=CORE-AVX2

void matrix_multiply(int msize, TYPE a[][NUM], TYPE b[][NUM], TYPE c[][NUM]) {
#pragma omp parallel for

for (int i = @; i<msize; i++) {
for (int k = 0; k<msize; k++) {
#pragma ivdep
for (int j = @; j<msize; j++) {

c[i][3] = c[i][J] + a[i][k] * b[k][J];

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

32

Performance Analysis

Sample use-cases & Summary

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

Datacenter Profiling

 Profiling a Warehouse-Scale Computer - S. Kanev, J. P. Darago, K. Hazelwood, P.
Ranganathan, T. Moseley, G. Wei and D. Brooks, in International Symposium on

Computer Architecture (ISCA), June 2015.
- A highly-cited work by Google and Harvard

 First to profile a production datacenter

- Mixture of p-arch bottlenecks
= Stalled on data most often
= Heavy pressure on i-cache
= Compute in bursts
= Low memory BW utilization

ads

flight-search
gmail
gmail-fix
indexingl
indexing2
searchl
search2
search3
video
400.perlbench
445 . gobmk
429 mcf
471.omnetpp
433.milc

I Retiring B Bad speculation
I Front-end bound @ Back-end bound
1
=
S —
H e I e
H e 1

0 20 40 60 80 100 120

Pipeline slot breakdown (%)

Figure 4: Top-level bottleneck breakdown. SPEC CPU2006
benchmarks do not exhibit the combination of low retirement

rates and high front-end boundedness of WSC ones.
&__

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

A Server Workload Optimization

Deep-dive Analysis of the Data Analytics Workload in CloudSuite - Ahmad Yasin, Yosi Ben-Asher, Avi
Mendelson. In IEEE International Symposium on Workload Characterization, 11ISWC 2014. [paper] [slides]

ac-=aead . Customized

* -threefold analysis

Data Analytics Workload in CloudSuite

IPCof~1.2

Bad
Frontend v y 30, -
Bottleneck#3: | Bound 17% . en Backend Bound 43% | Bottleneck#1:

Bad Speculation | S ‘ | Memory >

- Mispredictions | L3 Bound

4

Fetch 7 . &
¥ v 9

Bottleneck #3:

Mispredictions> |5 2% § . s |, gusovon | 8177 [l veme

Branch Resteers >3 41 : |8 Uskestin TE T “ Bottleneck#2:
IZ# | Core Bound

i3 | = Divider

T
o
5
s
r.
ro
.
B
pos
¢

bt
N \ z,
SER Gk f

B 1vmad esin — Deepdive Analyss of the Data Analytics Workiced in CbudSiite (ESWC 2014)
s

Opt. 54 108 328 2% Lol

B 1vmad asin - Deepdive Analyss of the Data Analytics Workiced in CbudSiite (ESWC 2014)

34 Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

https://sites.google.com/site/analysismethods/yasin-pubs/AnalyticsAnalysis-Yasin-IISWC14.pdf?attredirects=0
https://sites.google.com/site/analysismethods/yasin-pubs/AnalyticsAnalysis-Yasin-IISWC14-foils.pdf?attredirects=0

35

Summary

* Modern multicores utilize sophisticated microarchitectures to increase
performance

* Intel Core™ processors offer useful list of performance counters
- and advanced monitoring capabilities.

» Tools can provide insights on the actual execution to enable software
developers to optimize their applications and thus further increase
performance

* VTune lumps together key profiling techniques — for free for students

« Top-down Microarchitectural Analysis (TMA) simplifies performance
analysis and eliminates the “guess work”

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

36

Useful pointers

* FreeIntel tools for students, including VTune:
>>> https://software.intel.com/en-us/qualify-for-free-software/student
* PMU events Documentations
- https://software.intel.com/en-us/vtune-amplifier-help-intel-processor-events-reference
- PerfMon Events — electronic files (.json, .csv etc) for tools
- Intel® 64 and IA32 Architectures Performance Monitoring Events — for humans
* Top-down Analysis

- A Top-Down Method for Performance Analysis and Counters Architecture, Ahmad Yasin. In IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS 2014. [paper] [slides]

Session for programmers at Intel Developer Forum

= Software Optimizations Become Simple with Top-Down Analysis Methodology on Intel® Microarchitecture Code Name
Skylake, Ahmad Yasin. Intel Developer Forum, IDF 2015. [Recording] [session direct link]
http://myeventagenda.com/sessions/OB9F4191-1C29-408A-8B61-65D7520025A8/7/5#session|D=338

TMA-metric files: https://download.07.org/perfmon/
toplev: open source tool in Linux by Andi Kleen: https://github.com/andikleen/pmu-tools/wiki/toplev-manual

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

https://software.intel.com/en-us/qualify-for-free-software/student
https://download.01.org/perfmon/
https://download.01.org/perfmon/
https://software.intel.com/sites/default/files/managed/8b/6e/335279_performance_monitoring_events_guide.pdf
https://sites.google.com/site/analysismethods/yasin-pubs/TopDown-Yasin-ISPASS14.pdf?attredirects=0
https://sites.google.com/site/analysismethods/yasin-pubs/TopDown-yasin-ISPASS14-foils.pdf?attredirects=0
http://intelstudios.edgesuite.net/idf/2015/sf/aep/ARCS002/ARCS002.html
http://myeventagenda.com/sessions/0B9F4191-1C29-408A-8B61-65D7520025A8/7/5#sessionID=338
http://myeventagenda.com/sessions/0B9F4191-1C29-408A-8B61-65D7520025A8/7/5#sessionID=338
https://download.01.org/perfmon/
https://github.com/andikleen/pmu-tools/wiki/toplev-manual

37

Backup

Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

Matrix Multiply Summary [IDF'15 version]

A function is iteratively analyzed

- multiplyl is Ext. Memory Bound Textbook
@ Loop Interchange (base“”e)
- multiply2 becomes Core Bound due to execution e Loop 51 8.1x
ports high utilization Interchange ' '
€) Vectorization © vectorization 4.1 10.1x
- multiply3 reduces ports pressure but workload is
still Core Bound and Memory Bound e +EMA 28 14.7x

@ FMA - Fused Multiply-Add

- multiply4 further reduces instruction count with better
latency/throughput in Skylake. Workload back to Memory Bound

Performance bottlenecks vary as the code is optimized

IDF

38 Intel® Microarchitecture, Code Name Skylake INTEL DEVELOPER FORUM

Support in Linux

* Linux kernel supports TopDown Level-1 metrics
- Since Linux kernel 4.8
- For shipping Core and Atom products!
- Simply do: perf stat -a --topdown <user-app>
$ sudo perf stat -a --topdown ./main

nmi_watchdog enabled with topdown. May give wrong results.
Disable with echo 0 > /proc/sys/kernel/nmi_watchdog

Performance counter stats for 'system wide':

retiring bad speculation frontend bound backend bound
S0-CO 2 74.5% 0.2% 1.9% 23.4%
S0-C1 2 17.3% 6.3% 48.9% 27.5%
S0-C2 2 16.3% 7.4% 50.9% 25.4%
S0-C3 2 15.2% 8.0% 50.5% 26.3%

Ahmad Yasin — Performance Analysis in Out-of-Order Cores — Technion 2017

http://lxr.free-electrons.com/source/tools/perf/builtin-stat.c?v=4.8

Display: ¥ TopLevel ¥ Backend_Bound ¥ Backend Bound.Core_Bound ¥ Backend_Bound.Memory_Bound ¥ Bad_Speculation ¥ Frontend_Bou
Frontend_Bound.Frontend_Latency ¥ Retiring ¥ Toggle all [Auto-refresh 1000 | Refresh rate (ms) [/ Interleave CPUs
Drag to zoom. Double click to zoom out again
mu-tools/toplev TopLevel C U
100/, ‘.‘ \. |, |'\ .,. M\ ‘M | | - { I | ". 1 P ‘v 4+ 102.507074952: BI(hEIllJ Bound: 50.18° =
W \/ / v ’||u H. l’uh '“; F" ,‘ '., i “ \I \ ‘,."-’ | II ‘Bad_Speculation: 3.98
o . Fromend Bound: 28.32 Retlrlng 18.94 =
E . progsor S g nundarsp'p 1 B
iy W \Mn; A h\l N
3 L \
ES
o
% toplev. -13 --single-thread ./c-asm numbers
: P Py g / Backend_Bound CO
BE Backend_Bound: 64.2% 100
BE/Mem Backend_Bound.Memory_Bound: g) '
) - IEIER | Y M\ [wﬂ‘“L l‘ Mm“ MWH A
8] . 1
BE/Mem Backend_Bound.Memory_Bound.L1l Bound: 49.3%| = ’ } M
o
This metric represents how often CPU wals 10 2 . nndnndnmnﬁ,MW_nimA,n 70 o % 100

stalled without missing the L1 data cache...

Sampling events: mem_load_uops_retired.ll _hit:pp,mem_load_uops_retired.hit_lfb:pp
BE/Mem Backend_Bound.Memory_Bound.L3 Bound: 48.7%

This metric represents how often CPU was stalled on L3 cache

or contended with a sibling Core...

Sampling events: mem_load uops_retired.13 hit:pp
BE/Core Backend_Bound.Core_Bound: 28.3%
BE/Core Backend_Bound.Core_Bound.Ports_Utilization: 28.3%

This metric represents cycles fraction application was

stalled due to Core computation issues (non divider-related)...

an Ahmad Yasin — Performance Analysis in Modern Multicores — Haifa U. 2018

41

Abstracted Metrics

* Frontend Bound is an Abstracted Metric

- High-level category of all front-end bottlenecks i;

« Abstracted Metrics are better for
performance analysis

- Think IPC (Instructions Per Cycle) not MPKI
(Miss Per Kilo Instructions)

* Enable evaluations across
- parch generations

= Haswell (4t generation Intel® Core™ processor) has improved
front-end through speculative i-TLB and i-cache accesses with
better timing to improve the benefits of prefetching

= Benefiting benchmarks show clear Frontend Bound reduction

- parch families — e.g. Intel Core™ vs Atom™
- Architectures — e.g. X86 vs. ARM

050

B Frontend Bound

W Bad Speculation

I~ 3rd CoreGen.

A28, mcf [

473, astar HIRE]

445 gabmk
458 sjeng

400.perlbench
483 xalancbml

Retiring Backend Bound |

7 Bth Core Gen.

AF3 astar iR

445.g0bmk
458 sjeng

400.perlbench
A83 xalanchmk P

Abstracted Metrics Enable cross-processors Comparisons

Ahmad Yasin — Performance Analysis in Out-of-Order Cores — Technion 2017

IDF’15 Summary foil

« TMA: Top—down Microarchitectural ms -
Analysis method Bound™® -

lation
- Simplifies Performance Analysis using
a structured hierarchy

= Eliminates guess work

» Reduces microarchitecture high
learning curve

-
N =
T g
e ©
Q o
- =
R =
= |5
N =
[a14]

- Forward compatibility, consistency
across |A processors

—iCache Miss <
—Branch Resteers«
DSBswitches
Ports Utilization
Ext. Memory

42 Ahmad Yasin — Performance Analysis in Out-of-Order Cores — Technion 2017 IDF

INTEL DEVELOPER FORUM

