TINY

A Loop Restructuring Research Tool

Michael Wolfe
Oregon Graduate Institute of Science and Technology
19600 NW von Neumann Drive
Beaverton, OR 97006 USA
tel: 503-690-1153
fax: 503-690-1029
email: mwolfe@cse.ogi.edu

December 1990



1. Keysto Remember

Tiny is designed around a character menu interface (for the nonce); to choose a menu item, move
the menu bar between menu items by using the space or backspace key, then typing the return key
when the desired choice is highlighted. A quicker method is to type the leading character of the
desired choice; uppercase or lowercase may be used.

Three keys always (almost) have special meaning.
Q a any menu should quit Tiny and take you back to the shell prompt.

X at any menu should escape or exit out of this menu. Alternatively, the 'escape’ key has the same
effect.

"L A control-L will refresh the screen. Occasional junk gets by the Curses package and will not be
corrected by “L.

2. Starting Tiny

The screen display shows positions via highlighting, though the screen dumps in this documenta-
tion don’t show that highlighting. To save space, multiple blank lines in the screen dumps are deleted.

When starting up Tiny with no file argument, you get the screen:

Tiny Tool [as of December 1990]
*Browse File Parse Restor System Trans Write Msgs  Quit

The first 22 lines (on a standard 24 line display) are the main window; the next to last line is a message
line, and the bottom line is the current menu. The message would give the file name of the current pro-
gram, if one was chosen. The main menu has 8 choices; choices can be made from any menu by using
the space bar and backspace key to move the menu position (shown with highlighting and the asterisk)
to the desired choice and hitting the return key, or (faster) by typing the leading character of the choice.
Here, for instance, typing 'Q will quit Tiny. All menus in Tiny have the Msgs, Quit and Xcape
options (except for the main menu, which has no Xcape). Choosing Quit from any menu will quit Tiny
completely and immediately (in the absence of bugs). Choosing Msgs from any menu will display the
most recent saved messages in the main window. Choosing Xcape from any menu returns to the previ-
ous menu; Xcape may also be chosen by typing the 'Escape’ key on your keyboard.

To read in a program from a file after starting up Tiny, we choose the Parse option; Tiny then
asks for the name of the file we wish to parse:

Tiny Tool [as of December 1990]
File:

We then respond with the name of a file name:

Tiny Tool [as of December 1990]
File: ch

and this file is read in and displayed:



Entry

real a(1:100,1:100)

real b(1:100)

integer n

fork =1,ndo

a(k,k) = sgrt(a(k,k))

for i = k+1,n do
a(i,k) = ai,k)/ak,k)

13: forj = k+1,i do

150 a(ij) = a(ij)-ali k)*aj k)

13: endfor

9: endfor

5: endfor

[EnY
=

Parsed ch
Browse File *Parse Restor System Trans Write Msgs Quit

A quicker way to start up Tiny on afile is to give the file name on the command line:
%t ch

which will start up by first parsing and displaying the program.



3. Transformations

Tiny currently implements 8 elementary loop restructuring transformations, with plans for several more
to be added. Thelistis:

bumping
circulation
distribution
interchanging
negation (or reversal)
paralelization
skewing
vectorization (simple)
Each of these is explained here with examples.

3.1. Loop Bumping

Bumping is simple adjusting loop lower and upper limits by adding (or subtracting) a constant integer.
This is occasionally used to make lower or upper limits of two loops match exactly, for instance to
satisfy the strict requirements of loop interchanging for non-tightly nested loops. A more sophisticated
tool would notice the need for bumping automatically. An example is given under loop interchanging.

3.2. Loop Circulation

Circulation is a generalization of loop interchanging; it is equivalent to interchanging a loop inside of
(or outside of) multiple inner (outer) loops in a single step. For example, take the smoothing program:

1: Entry

1: real a(1:100,1:100,1:100)
3. integer n

5: for k =2,n do

7. fori=2ndo

9. forj=2ndo

11 alk,i,j) = alk,i-1,j)+ak,i,j-1)+a(k,i,j+1)+alk,i+1,j)+ak-1,i j)+a(k+1,
i)

9. endfor

7. endfor

5: endfor

Parsed wave3a
Browse File *Parse Restor System Trans Write Msgs  Quit

The outermost 'k’ loop can be ’innermosted’, or interchanged to the innermost position, or ’intercircu-
lated’ inside of the 'j’ loop in one step by choosing the Circ menu item, then choosing the circulate
inside of the 'j’ loop:



1: Entry

1: real a(1:100,1:100,1:100)

3. integer n

7. fori=2ndo

9. forj=2ndo

5. fork=2ndo

11 alk,i,j) = alk,i-1,j)+alk,i,j-1)+a(k,i,j+1)+alk,i+1,j)+ak-1,i j)+a(k+1,
i)

5. endfor

9. endfor

7. endfor

Intercirculating loop k inside of |
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

In contrast, outercirculating the 'j’ loop (of the original program) to the outermost position, in one step,
would produce:

1: Entry

1: real a(1:100,1:100,1:100)

3: integer n

9: forj =2,ndo

5. fork=2,ndo

7. fori=2ndo

11:  ak,i,j) = ak,i-1))+alk,i,j-1)+ak,i,j+1)+a(k,i+1,j)+a(k-1,i,j)+a(k+1,
i.j)

7. endfor

5. endfor

9: endfor

Quitercirculating loop j outside of k
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

The data dependence tests for intercirculation and outercirculation are explained in two recent papers:
Utpa Banerjee, "A Theory of Loop Permutations’ (which appears in the Springer-Verlag monograph
Languages and Compilers for Parallel Computing, Gelernter, Nicolau and Padua (eds.), 1990) and
Michael Wolfe, "Data Dependence and Program Restructuring” (to appear in The Journal of Supercom-
puting in late 1990 or early 1991). After these transformations, dependence direction or distance vec-
tors are modified to account for the new loop ordering.

3.3. Loop Distribution

Loop distribution is a well-known transformation which is often used to distribute an outer loop around
non-tightly nested inner loops. As an example, we use a Cholesky decomposition program:



Entry

real a(1:100,1:100)

real b(1:100)

integer n

fork =1,ndo

a(k,k) = sgrt(a(k,k))

for i = k+1,n do
a(i,k) = ai,k)/ak,k)

13: forj = k+1,i do

150 a(ij) = a(ij)-ali k)*aj k)

13: endfor

9: endfor

5: endfor

[EnY
=

Parsed ch
Bump Circ *Dist Inter Neg Par Skew Vec Msgs Quit Xcape

After distribution, the loop looks like:

1: Entry

1: real a(1:100,1:100)
1: real b(1:100)
3: integer n

5: for k = 1,n do
7. ak,k) = sgrt(alk,k))

9: fori =k+1,ndo

1. ai,k) = ai,k)/ak,k)

9: endfor

9: fori =k+1,ndo

13: forj = k+1,i do

15 a(ij) = a(ij)-adi k)*aj k)
13: endfor

9: endfor

5: endfor

[EEY

Distributing loop i
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

The dependence test for loop distribution involves finding dependence cycles, and keeping all depen-
dence cycles in a single distributed loop.

3.4. Loop Interchanging

In Tiny, choosing Interchanging will interchange the current loop with its immediate outer 1oop.
Taking the distributed loops from the loop distribution example, we can move to the ’j’ loop and inter-
change it with the 'i’ loop to get:



1: Entry
1: real a(1:100,1:100)

1: real b(1:100)

3. integer n

5. for k =1,ndo

7: a(k,k) = sgrt(a(k,k))
9: fori =k+1,ndo

1. aik) = a(i,k)/ak,k)
9: endfor

13: forj =k+1lndo

9: for i = max(k+1,j),n do
1

9

[EnY

S ai) = aij)-alik)*aj k)
. endfor

13: endfor

5: endfor

Interchanging loops i and j
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

Note how the triangular loop limits have been modified; some future version of Tiny will simplify the
loop limits of the 'i’ loop to be simply ’j,n’, eliminating the 'max’ when unnecessary. Loop inter-
changing is legal if there are no (<,>) dependence relations, and the dependence direction and distance
vector elements for the interchanged loops are aso interchanged.

Non-tightly nested loops can also be interchanged. For instance, we can take the above example
(after interchanging the 'i’ and ’j’ loops) and choose to interchange the 'j’ loop outwards. This pro-
duces the result:

1: Entry

1: real a(1:100,1:100)

: real b(1:100)

. integer n
:forj=1,ndo

for k = 1,j-1 do

for i = max(k+1,j),n do

houobwer

ai,j) = afi.j)-ai,k)*a( k)
9: endfor
5. endfor
70 &) = sart(af.j))
9. fori=j+1lndo
110 aij) = aij)/ag )
9: endfor
13: endfor

Interchanging loops k and j
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

Note that lines 4 through 6 have been moved from above the inner loop to below the inner loop, and
that the loop index 'k’ has been replaced by ’'j’. Currently, interchanging nontightly nested loops
requires the loop limits to be perfectly square or triangular; while other loops limits could be handled
by adding 'if’ statements or adjusting the loop limits automatically, this current restriction sometimes
requires "bumping’ a loop limit. For instance, suppose we take the origina Cholesky decomposition
and instead of distributing the 'i’ loop, we interchange the 'i’ loop outwards, producing:



Entry

real a(1:100,1:100)

real b(1:100)

integer n

fori =1ndo

for k = 1,i-1 do
a(i,k) = a(i,k)/a(k,k)

13: forj = k+1,i do

150 a(ij) = a(ij)-ali k)*aj k)

13. endfor

5. endfor

7. ai,i) = sort(a(i,i))

9: endfor

[EEY
=

Interchanging loops k and i
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

Now suppose we want to interchange the 'j’ and 'k’ loops. If we try to distribute the 'k’ loop, we get
the message:

Can't distribute
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

since there is a dependence cycle involving lines 6 and 8. If we try to interchange the ’j’ loop out-
wards, we get the message:

Imperfect loop interchanging requires square/triangular loops
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

The loop limits can be made triangular by subtracting one from the ’j’ loop limits (or adding one to the
'k’ loop limits). We can choose to bump the ’'j’ loop limits by choosing the 'Bump’ menu item at the
'j’ loop:

Entry

real a(1:100,1:100)
real b(1:100)

integer n

fori =1ndo

. for k = 1,i-1 do
a(i,k) = a(i,k)/ak,k)
13: forj = k+1,i do

150 a(ij) = a(ij)-a(i,k)*a( k)
13. endfor

5. endfor

7. ai,i) = sort(a(i,i))

9: endfor

[EEY
=

Imperfect loop interchanging requires square/triangular loops
*Bump Circ Dist Inter Neg Par Skew Vec Msgs Quit Xcape

Tiny then asks what constant to add to the loop limits:

Interchanging loops k and i
Bump by how much:

We answer with ’-1', which then produces the program:



Entry

real a(1:100,1:100)
real b(1:100)

integer n

fori =1ndo

for k = 1,i-1 do

11:  a(i,k) = a(i,k)/ak,k)
13: forj = k+1-1,i-1 do
15:  ai,j+1) = ai,j+1)-ali k)*a(+1,k)
13. endfor

5. endfor

7. ai,i) = sort(a(i,i))

9: endfor

a

Bump loop j by -1
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

Notice that within the loop, '}’ is replaced by 'j+1'; (also notice that no expression simplification is
done). Now the two loops can be successfully interchanged:

1: Entry

1: real a(1:100,1:100)
1: real b(1:100)

3: integer n

9: fori =1,ndo

13: forj=1ji-1do
11: a(i)) = a(ij)/a(.j)
5 fork=1jdo

15:  ai,j+1) = a(i,j+1)-ali k)*a(j+1,k)
5. endfor

13: endfor

7 ai,i) = sort(a(i,i))

9: endfor

Interchanging loops k and j
Browse DD Loop *Restr See Undo Va  Msgs Quit Xcape

3.5. Loop Negation
Loop negation (also called loop reversal) involves running the loop backward. Tiny shows a negated

loop by negating and switching the lower and upper limits of a loop, and negating the loop index within
the body of the loop. Negating the 'j’ loop in the first interchanging example gives:



1: Entry
1: real a(1:100,1:100)

1: real b(1:100)

3. integer n

5. for k =1,ndo

7: a(k,k) = sgrt(a(k,k))
9: fori =k+1,ndo

1. aik) = a(i,k)/ak,k)
9: endfor

13: for j = -n,-(k+1) do
9: for i = max(k+1,-j),n do
1

9

[EnY

S &) = adi,j)-ali.k)*a(-j,k)
. endfor

13: endfor

5: endfor

Negate loop |
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

Loop negation is legal if the loop carries no dependence relations, and the dependence graph is
modified to negate any dependence distance or directions.

3.6. Loop Parallelization

A loop can be parallelized as long as it carries no data dependence relations. Unlike other transforma-
tions, this cannot be 'Undone’, nor will it show up in the 'Restore’ display. In the previous example,
the loops that can be parallelized are:

1: Entry

1: real a(1:100,1:100)
1: real b(1:100)
3: integer n

5: fork =1,ndo
7. ak,k) = sgrt(a(k,k))
9: doadl i = k+1,n do

[EEY

1. aik) = ai,k)/ak,k)

9: endfor

3: doal j = -n,-(k+1) do

9. doal i = max(k+1,-j),n do
5

=

150 a(i,) = afi,-j)-ai,k)*a(-j k)
9. endfor

13: endfor

5: endfor

Parallelize loop i
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

3.7. Loop Skewing

Forward (reverse) loop skewing involves adding (subtracting) an outer loop index to the lower and
upper limits for an inner loop. Loop skewing is always legal, but modifies the direction and distance
vectors by adding the outer loop elements to the inner loop element. Thus, a (<,=) direction is changed
to a (<,<) direction; this means that after loop interchanging, the dependence relation will be carried by
the outer loop, alowing parallel execution of the inner loop. This is useful in a smoothing agorithm,
as in the circulation example. Forward skewing the inner 'j’ loop with respect to the 'k’ loop gives:



1: Entry

1: real a(1:100,1:100,1:100)
3. integer n

5: for k =2,n do

7. fori=2ndo

9: forj = 2+k,n+k do

11:  ak,ij-k) = a(k,i-1,j-k)+a(k,i,j-k-1)+a(k,i,j-k+1)+a(k,i+1,j-k)+a(k-1,i
J-K)+a(k+1,i,j-K)

9. endfor

7. endfor

5: endfor

Forward skew loop j with respect to k
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

Forward skewing the 'j’ loop again with respect to the 'i’ loop gives:

1: Entry

1: real a(1:100,1:100,1:100)
3: integer n

5: for k =2,ndo

7. fori=2,ndo

9: forj = 2+k+i,n+k+i do
11:  ak,i,j-i-k) = a(k,i-1,j-i-k)+a(k,i,j-i-k-1)+a(k,i,j-i-k+1)+a(k,i+1,j-i-
k)+a(k-1,ij-i-k)+a(k+1,ij-i-k)
9. endfor

7. endfor

5: endfor

Forward skew loop j with respect to i
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

Now we see the advantage of loop skewing, by circulating the 'j’ loop all

1: Entry

1: real a(1:100,1:100,1:100)

3: integer n

9: for j = 2+2+2,n+n+n do

5. for k = max(2,j-(n+n)),min(n,j-(2+2)) do
7. fori = max(2,j-(n+k)),min(n,j-(2+k)) do
11 ak,ij-i-k) = a(k,i-1,j-i-k)+a(k,i,j-i-k-1)+a(k,i,j-i-k+1)+a(k,i+1,j-i-
K)+a(k-1,ij-i-k)+a(k+1,ij-i-K)

7:  endfor

5: endfor

9: endfor

Outercirculating loop j outside of k
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

the way outside:

And now we can parallelize the inner 'k’ and ’i’ loops:



1: Entry

1: real a(1:100,1:100,1:100)

3. integer n

9: for j = 2+2+2,n+n+n do

5: doall k = max(2,j-(n+n)),min(n j-(2+2)) do
7: dodl i = max(2,j-(n+k)),min(n,j-(2+k)) do
11 ak,ij-i-k) = a(k,i-1,j-i-k)+a(k,i,j-i-k-1)+a(k,i,j-i-k+1)+a(k,i+1,j-i-
K)+a(k-1,ij-i-k)+a(k+1,ij-i-K)

7. endfor

5: endfor

9: endfor

Parallelize loop i
Browse DD Loop *Restr See Undo Va  Msgs Quit Xcape

3.8. Vectorization

Vectorization is legal when there are no loop-carried dependence cycles in the inner loop. Vectoriza-
tion in Tiny works only for trivial cases, as it does not even recognize simple reduction operators; non-
inner loops cannot be vectorized, though vectorization within an outer parallel loop is legal. Vectoriza-
tion does not change the dependence graph at all. As an example, taking the program from the Skew-
ing section, we can vectorize the inner loop to get:

1: Entry

1: real a(1:100,1:100,1:100)

3: integer n

9: for j = 2+2+2,n+n+n do

5. doal k = max(2,j-(n+n)),min(n,j-(2+2)) do
7. forall i = max(2,j-(n+k)),min(n,j-(2+k)) do
11 ak,ij-i-k) = a(k,i-1,j-i-k)+a(k,i,j-i-k-1)+a(k,i,j-i-k+1)+a(k,i+1,j-i-
K)+a(k-1,ij-i-k)+a(k+1,ij-i-K)

7:  endfor

5: endfor

9: endfor

Parallelize loop i
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape




4. Tiny Language

The Tiny language is very smple. It comprises scalar and array variables, loops, assignments and
block-structured |F statements. The language BNF is:

program n= stlist
stlist = statement [';’ statement]...
statement ::= integerdecl

;.= realdecl

::= constdecl

;= assignment

= loop

a=if
constdecl ::=’'const’ constassignment [’,” constassignment]...
constassignment ;= ID '=" expression
integerdecl ::=’integer’ vardecllist

real decl = "red’ vardecllist
vardecllist ::= vardec! [, vardecl]...
vardec x=1D
= ID '(’ [expression ':'] expression
[’ [expression ':'] expression]... ')’

assignment ::= Ihs’=" expression

lhs =1ID
:=ID (" expression [',” expression]... ')’
loop = [for |’doall’]
ID ’=" expression ['to’ |’ |’:’] expression
[[by I, "] expression]

'do’ stlist "endfor’

if ;= if" expression 'then' stlist ['else’ stlist] "endif’



expression =D
= 1D ’'( expression [',” expression]...")’
= INTCONST
::= FLOATCONST
II= expression '+’ expression
II= expression -’ expression
II= expression '*’ expression
1= expression '/’ expression
expression '**’ expression
-’ expression
="+ expression
="( expression’)’
= expression '<' expression
1I= expression '<=' expression
II= expression '=" expression
1I= expression '<>' expression
1I= expression '>' expression
1I= expression '>=' expression
::= expression 'mod’ expression
II= expression 'max’ expression
1I= expression 'min’ expression
n='sgrt’ '(C expression ')’
= "floor’ ’(" expression '/ expression’)’
:="céling’ (" expression '/ expression’)’
m="max’ '(’ expression [, expression]...’)’
m="min’ '( expression [',’ expression]... )’



5. Sample Session
Start out by firing up Tiny with the command line:

%t
Tiny will return with the display:

Tiny Tool [as of December 1990]
*Browse File Parse Restor System Trans Write Msgs  Quit

Go to the File menu by typing 'f’, getting the list of files:

/ogcl/staff/mwolfe/tiny
Announcement doc/ fix/ source/ test/
dif doc.log make.out t* todo

Tiny Tool [as of December 1990]
*Down Edit Newdir Redo Sh Up Msgs Quit  Xcape

To move to the 'test’ subdirectory, choose 'Down’ by typing 'd’, getting the prompt:

Tiny Tool [as of December 1990]
Directory:

Respond by typing 'test’, following by the return key; Tiny then displays the files in the "test’ subdirec-
tory:

/ogcl/staff/mwolfe/tiny/test

ave3 dd.4 doc2.log Iu parenb  wave2
ch dd.tl dynamic  ludecomp rev wave3
dd.1 dd.t2 example.l paren rnl wave3a
dd.2 dd.t3 example2 paren2  wave wave3b
dd.3 doclog example3d parena wave.8wa

Tiny Tool [as of December 1990]
*Down Edit Newdir Redo Sh Up Msgs Quit  Xcape

To check the contents of a file, type 'E’ to edit the file; Tiny prompts for the file name, so a response
of 'ch’ gets:

real a(100,100), b(100)
integer n

for k =1tondo
a(k,k) = sgrt(a(k,k))
fori = k+1tondo
a(i,k) = a(i,k)/a(k,k)
forj=k+1toi do
aij) = a(ij)-ai,k)*aj k)
endfor

endfor

endfor

"ch" 11 lines, 191 characters

Exiting the editor returns to the same File menu. Return to the Main menu by typing the 'escape’ key:



Tiny Tool [as of December 1990]
Browse *File Parse Restor System Trans Write Msgs

Quit

Tiny Tool [as of December 1990]
File:

Notice that the default menu selection when returning from a submenu is left at the most recent choice;
to enter the 'File’ menu again, type 'return’. To parse one of those files, so type 'p':

Respond with the file name ’ decomp.cholesky’, followed by 'return’:

1: Entry

1: real a(1:100,1:100)

: real b(1:100)

: integer n

: for k = 1,n do

. alk,k) = sgrt(a(k,k))

fori = k+1,ndo
ai k) = a(i,k)/a(k,k)
for j = k+1,i do
aij) = a(ij)-ali,k)*a( k)
endfor

. endfor

. endfor

WO NXINIARWN R

Parsed ch

Browse File *Parse Restor System Trans Write Msgs

Quit

To explore some interactive restructuring, go to the Browse menu by typing 'B’:

1: Entry
1: real a(1:100,1:100)
1: real b(1:100)
2: integer n
3: fork =1,ndo
4: a(k,k) = sgrt(a(k,k))
5: fori =k+1,ndo
6: a(i,k) = a(i,k)/alk,k)
7. forj =k+1, do
8 ai,j) = a(i,j)-ai,k)*a( k)
7. endfor
5: endfor
3: endfor
Parsed ch
*Browse DD Loop Restr See Undo Va Msgs

Quit  Xcape

Notice that when entering a new menu, the default menu item is aways the first choice, not necessarily
the one most often chosen. Notice that in the Browse menu, there is always a current position in the
file; initially the current position is the 'Entry’ node, at the top of the file. To look at the data depen-
dence relations in the program, enter the DD Browse Menu by typing 'D’:



1: Entry

1: real a(1:100,1:100)
1: real b(1:100)

2: integer n

3. fork =1,ndo

4: a(k,k) = sgrt(alk,k))
5: fori =k+1,ndo

6: a(i,k) = a(i,k)/alk,k)
7. forj=k+1, do

8 ai,j) = alij)-ai,k)*aj k)
7. endfor

5: endfor

3: endfor

No DD successors.

*Cycle Goto Next Pred Succ Var Write Msgs Quit

Xcape

The message tells that the current position has no DD successors; this is not surprising since the current
position is the Entry node. (Some future version of Tiny may link upwardly-exposed uses to the Entry
node.) Two ways to browse the DD graph are given. The most useful way is to cycle through all the
dependences in the program by using the Cycle menu choice; this moves the current position to the
next variable reference that has data dependence successors and displays that dependence relation on
the message line. It will display each dependence successor from that variable reference, then move on
to the next reference. Typing 'C' (or just return, since Cycle is the default menu item) gives the

display:

[EnY

: Entry

: real a(1:100,1:100)

: real b(1:100)

: integer n

. for k =1,ndo

. ak,k) = sgrt(a(k,k))

fori = k+1,ndo
a(i k) = ai,k)/ak,k)
for j = k+1,i do

ai,j) = a(ij)-a(i,k)*a( k)

endfor

. endfor

. endfor

flow dependence 4: --> 6:(=) (0)
*Cycle Goto Next Pred Succ Var Write Msgs Quit

Xcape

Notice the highlighting in lines 4 and 6 showing the variable references in question. The message line
shows the kind of dependence (flow, anti, output), the line numbers involved, the direction vector and
the distance vector (unknown directions or distances appear as "*"). Typing 'C’ again gives the next

dependence relation:



. Entry

: real a(1:100,1:100)

. real b(1:100)

. integer n

: for k = 1,n do

. ak,k) = sgrt(a(k,k))

for i = k+1,n do
a(i k) = a(i,k)/ak,k)
for j = k+1,i do

a(ij) = a(i,j)-a(i k)*a( k)

endfor

endfor

. endfor

AWNRPRPRE

WUuNONDUT

flow dependence 6: --> 8:(=,=) (0,0)

*Cycle Goto Next Pred Succ Var Write Msgs Quit

Xcape

and so on.

The other method to browse the dependence relations interactively is to use the Var menu option
to move the current position to the next variable reference. The first predecessor or successor of that
variable reference may be displayed by using the Pred or Succ menu items, and Next will show the
next predecessor or successor, as appropriate. Goto will move the current position to the dependence
predecessor or successor reference shown on the message line.

In any case, al these messages are saved in the message buffer, and may be displayed by typing

the 'M’ key:

Parsed ch

No DD successors.

flow dependence 4: --> 6:(=) (0)

flow dependence 6: --> 8:(=,=) (0,0)
flow dependence 6: --> 8:(=,<=) (0,*)
anti dependence 8; --> 4:(<) (*)

anti dependence 8: --> 6:(<,=) (*,0)

anti dependence 8: --> 8:(<,=,=) (*,0,0)
flow dependence 8: --> 4:(<) (*)

output dependence 8: --> 4:(<) (*)

flow dependence 8: --> 6:(<,=) (*,0)
flow dependence 8: --> 6:(<,<) (*,*)
output dependence 8: --> 6:(<,=) (*,0)
flow dependence 8: --> 8:(<,=,=) (*,0,0)
flow dependence 8: --> 8:(<,=,<) (*,0,%)
flow dependence 8: --> 8:(<,<=,<) (***
output dependence 8: --> 8:(<,==) (*,0,0)
No DD successors.

No DD successors.
*Xcape Quit

The dependence relations can al be written to a file by choosing the Write menu option; Tiny prompts
for the file to which to write the dependence information. The file for this program would look like:



flow dependence: 4 --> 6(=) (0) alk,k) --> a(k,k)

flow dependence: 6 --> 8(=,=) (0,0) a(i k) --> a(i,k)
flow dependence: 6 --> 8(=<=) (0,*)  ai,k) --> a(j,k)
anti dependence: 8 --> 4 (<) (*)  &i,j) --> ak,k)

anti dependence: 8 --> 6 (<,=) (*,0) a(i,j) --> ai,k)

anti dependence: 8 --> 8 (<,=,=) (*,0,0) a(i,j) --> a(i,j)

flow dependence: 8 --> 4(<) (*) &i,j) --> ak,k)

output dependence: 8 --> 4 (<) (*)  ai,j) --> ak,k)
flow dependence: 8 --> 6(<,=) (*,0) a(i,j) --> a(ik)
flow dependence: 8 --> 6(<,<) (*,*) a(i,j) --> ak,k)
output dependence: 8 --> 6  (<,=) (*,0) a(i,j) --> ai,k)
flow dependence: 8 --> 8(<,==) (*,0,0) a(i,j) --> &(i,j)
flow dependence: 8 --> 8(<,=<) (*,0,*) &i,j) --> a(i,k)
flow dependence: 8 --> 8(<,<=,<) (*,**)ai,j) --> a(j,k)
output dependence: 8 --> 8  (<,==) (*,0,0) a(i,j) --> &(i,j)

Now to do some transformations. Type 'X' from the DD Browse Menu to get to the Browse
menu:

: Entry

: real a(1:100,1:100)

: real b(1:100)

. integer n

:fork =1,ndo

o alk,k) = sort(a(k,k))

. fori =k+1,ndo
a(i k) = ai,k)/ak,k)
for j = k+1,i do

aij) = a(ij)-ali,k)*a( k)

endfor

endfor

. endfor

AWNR PP

WO NN O

No DD successors.
Browse *DD Loop Restr See Undo Va Msgs Quit Xcape

Currently the only transformations supported are loop transformations. To perform a loop transforma-
tion, move the current position to the loop to be transformed. Typing 'L’ twice will move the current
position from Entry to the first "for’ loop, then to the second 'for’ loop:

[EnY

. Entry

: real a(1:100,1:100)

: real b(1:100)

: integer n

: for k = 1,n do

. alk,k) = sgrt(a(k,k))

fori = k+1,ndo
ai k) = a(i,k)/a(k,k)
for j = k+1,i do

aij) = a(ij)-ali,k)*a( k)

endfor

. endfor

. endfor

No DD successors.
Browse DD  *Loop Restr See Undo Va Msgs Quit Xcape

Choose the Restructure menu by typing 'R’:



. Entry

: real a(1:100,1:100)

. real b(1:100)

. integer n

: for k = 1,n do

. ak,k) = sgrt(a(k,k))

for i = k+1,n do
a(i k) = a(i,k)/ak,k)
for j = k+1,i do

a(ij) = a(i,j)-a(i k)*a( k)

endfor

endfor

. endfor

No DD successors.
*Bump Circ Dist Inter Neg Par Skew Vec Msgs Quit Xcape

The choices are loop bumping, loop circulation (generalized loop interchanging for tightly nested
loops), loop distribution, loop interchanging (for tightly or non-tightly nested loops), loop negation, loop
paralelization, and loop skewing (along with the standard MQX menu choices). Distribute loop 'i’ by
typing 'D’:

1: Entry
1: real a(1:100,1:100)
1: real b(1:100)
2: integer n
3: fork =1,ndo
4: a(k,k) = sgrt(a(k,k))
5. fori =k+1,ndo
6: a(i,k) = a(i,k)/ak,k)
5. endfor
5. fori =k+1,ndo
7. forj=k+1, do
8 ai,j) = a(i,j)-ai.k)*a( k)
7. endfor
5. endfor
3: endfor
Distributing loop i
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

Now type 'L’ to move to the 'j’ loop, and go to the restructuring menu again:



. Entry

: real a(1:100,1:100)

. real b(1:100)

. integer n

: for k = 1,n do

a(k,k) = sgrt(a(k,k))

for i = k+1,n do
a(i k) = a(i,k)/ak,k)

endfor

fori =k+1,ndo
for j = k+1,i do

aij) = a(ij)-ali,k)*a( k)

endfor

endfor

. endfor

WUNXINTTOIAREWNERR

Distributing loop i
*Bump Circ Dist Inter Neg Par Skew Vec Msgs Quit Xcape

This time, let’'s see what happens when the ’j’ loop is negated by typing 'N’:

1: Entry
1: real a(1:100,1:100)
1: real b(1:100)
2: integer n
3. fork =1,ndo
4: a(k,k) = sgrt(ak,k))
5. fori = k+1,ndo
6: a(i,k) = a(i,k)/ak,k)
5: endfor
5. fori = k+1,ndo
7. forj =-i,-(k+1) do
8 a(i-) = ali,-j)-ali.k)*a(-j k)
7:  endfor
5: endfor
3: endfor
Negate loop |
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

This negates and switches the loop limits, and negates the index variable inside the range of the loop.
It dso affects the dependence relations of the loop. But if this turns out to be uninteresting, and the
original version of the program with the forward loop is desired. One could re-negate the loop, but it is
simpler to undo the negation by typing 'U’ for Undo:



1: Entry
1: real a(1:100,1:100)
1: real b(1:100)
2: integer n
3 fork=1ndo
4: a(k,k) = sgrt(alk,k))
5: fori =k+1,ndo
6: a(i,k) = a(i,k)/alk,k)
5: endfor
5: fori =k+1,ndo
7. forj=k+lido
8 ai,j) = a(i,j)-a(i.k)*a( k)
7. endfor
5. endfor
3: endfor
Negate loop |
Browse DD Loop Restr See *Undo Va Msgs Quit Xcape

Notice that the current position is moved back to the Entry node. Again move to the 'j’ loop (typing
'L") and go to the Restructure menu, choosing instead the Intchg (interchange) menu item. This inter-
changes the ’i’ and ’j’ loops:

[EnY

. Entry
: real a(1:100,1:100)
: real b(1:100)
: integer n
: for k = 1,n do
a(k,k) = sgrt(a(k,k))
fori = k+1,ndo
a(i k) = a(i,k)/ak,k)
endfor
for j = k+1,n do
for i = max(k+1,j),n do
aij) = a(ij)-ali,k)*a( k)
endfor
endfor
. endfor

WNTRXIINTOIAREWNER

Interchanging loops i and j
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

Parallelize the j loop by going to the Restructure menu and typing P for Parallelize, giving:



. Entry
: real a(1:100,1:100)
. real b(1:100)
. integer n
:fork=1ndo
a(k,k) = sart(a(k,k))
for i = k+1,n do
a(i k) = a(i,k)/ak,k)
endfor
doal j = k+1,n do
for i = max(k+1,j),n do
a(ij) = a(i,j)-a(i.k)*a( k)
endfor
endfor
. endfor

WNTXIINTOIAREWNERR

Parallelize loop j
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

Now type X to escape to the main menu, and type W to write this version of the program to a file.
The file will contain the program:

real a(1:100,1:100)

real b(1:100)

integer n

for k =1,ndo

a(k,k) = sort(a(k,k))
fori = k+1,ndo

a(i,k) = a(i,k)/ak,k)
endfor

doal j = k+1,n do

for i = max(k+1,j),n do
a(i,j) = a(i,j)-ali.k)*a( k)
endfor

endfor

endfor

To work with the wave program, type 'P at the main menu (to parse a new program) and type 'wave'
in response to the prompt for the filename. The new program is displayed:

1: Entry

1: real a(1:100,1:100)

3. integer n

5: for k = 1,100 do

7. fori=2n-1do

9. forj=2n-1do

110 aiy,j) = (ai-1,j)+a(i,j-1)+a(i+1,))+a(i,j+1))/4
9. endfor

7. endfor

5: endfor

Parsed wave
Browse File *Parse Restor System Trans Write Msgs Quit

To try to paralelize the ’j’ loop, enter the 'Browse’ menu (by typing 'b’) and move to the ’j’ loop by
using the 'L’ key:



1: Entry

1: real a(1:100,1:100)

3. integer n

5: for k = 1,100 do

7. fori=2n-1do

9. forj=2n-1do

11:  a(iy,j) = (ai-1,j)+a(i,j-1)+a(i+1,))+a(i,j+1))/4
9. endfor

7. endfor

5: endfor

Parsed wave
Browse DD  *Loop Restr See Undo Va Msgs Quit Xcape

Parallelize the ’j’ loop by typing 'R’ and choosing the Parallelize menu item:

1: Entry

1: real a(1:100,1:100)

3: integer n

5: for k = 1,100 do

7. fori=2n-1do

9. forj=2n-1do

110 ai,j) = (ai-1,j)+a(i,j-1)+a(i+1,j)+a(i,j+1))/4
9. endfor

7. endfor

5: endfor

Parsed wave
Bump Circ Dist Inter Neg *Par Skew Vec Msgs Quit Xcape

Unfortunately, parallel execution of the 'j’ loop would be illegal; Tiny responds by telling about the
offending data dependence relations:

1: Entry

1: real a(1:100,1:100)

3: integer n

5: for k = 1,100 do

7. fori=2n-1do

9. forj=2n-1do

11 a(ij) = (ai-1j)+a(i j-1)+a(i+1j)+a(i,j+1))/4
9. endfor

7. endfor

5: endfor

flow dependence 11: --> 11:(<==<) (*,0,1)
*Accept  Next Override Msgs Quit Xcape

From this menu, you can accept the facts of life, or look at the next dependence relation, or override al
these dependence relations (perform the transformation anyway). Typing 'N’ to see the next depen-
dence relation gives:



1: Entry

1: real a(1:100,1:100)

3. integer n

5: for k = 1,100 do

7. fori=2n-1do

9. forj=2n-1do

11:  a(iy,j) = (ai-1,j)+a(i,j-1)+a(i+1,))+a(i,j+1))/4
9. endfor

7. endfor

5: endfor

anti dependence 11: --> 11:(<=,=<) (*,0,1)
Accept  *Next Override Msgs Quit Xcape

Any transformation which would violate a data dependence relation gets to this menu; typing 'A’ to
accept these relations (or X’ to escape) returns to the restructuring menu, without performing the
transformation:

1: Entry

1: real a(1:100,1:100)

3: integer n

5: for k = 1,100 do

7. fori=2n-1do

9. forj=2n-1do

110 aiy,j) = (ai-1,j)+a(i,j-1)+a(i+1,j)+ai,j+1))/4
9. endfor

7. endfor

5: endfor

Data Dependence prevents loop parallelization
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

In order to run one of i’ or ’j’ in paralel, since they both carry dependence relations, one of the loops
must be skewed. Move to the ’j’ loop and enter the restructuring menu again:

1: Entry

1: real a(1:100,1:100)

3: integer n

5: for k = 1,100 do

7. fori=2n-1do

9. forj=2n-1do

11 aij) = (ai-1j)+a(i j-1)+a(i+1j)+a(i j+1))/4
9: endfor

7. endfor

5: endfor

Data Dependence prevents loop parallelization
Bump Circ Dist Inter Neg Par *Skew Vec Msgs Quit Xcape

Choose 'Skew’, to get to the skew menu. Loop skewing with respect to outer loops is aways legal;
this menu alows me to choose the loop with respect to which to skew, though the skewing factor is
always one:



1: Entry

1: real a(1:100,1:100)

3. integer n

5: for k = 1,100 do

7. fori=2n-1do

9. forj=2n-1do

11:  a(iy,j) = (ai-1,j)+a(i,j-1)+a(i+1,))+a(i,j+1))/4
9. endfor

7. endfor

5: endfor

Data Dependence prevents loop paralelization

Out *Forward Reverse By Factor Msgs Quit

Xcape

Choosing 'Out’ here moves the marker to the next outer loop; choosing (-1 factor )skewing with respect
to the marked loop; choosing By Factor will skew by any constant integer factor. To choose forward

skewing with respect to the i’ loop, type 'f':

1: Entry

1: real a(1:100,1:100)

3: integer n

5: for k = 1,100 do

7. fori=2n-1do

9: for j = 2+i,n-1+i do

11 aij-i) = (ai-1,j-i)+ai,j-i-1)+a(i+1,j-i)+a(i j-i+1))/4
9. endfor

7. endfor

5: endfor

Forward skew loop j with respect to i

Browse DD Loop *Restr See Undo Va  Msgs

Quit  Xcape

Forward loop skewing simply adds the outer loop index to the lower and upper limit expressions (adds
"I’ to the limits of 'j"), and subtracts the outer loop index from the inner loop index within the body of
the loop. The other effect is on the data dependence relations, changing a (<,=) to a (<,<). Now, inter-

changing the ’j" and 'i’ loops gives:

1: Entry

1: real a(1:100,1:100)

3: integer n

5: for k = 1,100 do

9: for j = 2+2,n-1+(n-1) do

7. for i = max(2,j-(n-1)),min(n-1,j-2) do

11 aij-i) = (ai-1,j-i)+ai,j-i-1)+a(i+1,j-i)+a(i j-i+1))/4
7. endfor

9: endfor

5: endfor

Interchanging loops i and j

Browse DD Loop *Restr See Undo Var

Msgs

Xcape

Quit

This is the 'wavefront’ formulation of the loop. Now, paralelizing the 'i’ loop is legal:



1: Entry

1: real a(1:100,1:100)

3. integer n

5: for k = 1,100 do

9: forj = 2+2,n-1+(n-1) do

7: dodl i = max(2,j-(n-1)),min(n-1,j-2) do

11 a(ijj-i) = (a(i-1,j-i)+a(i,j-i-1)+a(i+1,j-i)+a(i,j-i+1))/4
7: endfor

9: endfor

5: endfor

Parallelize loop i
Browse DD Loop *Restr See Undo Va Msgs Quit Xcape

This version of the program can be written to a file by escaping to the main menu and choosing
"Write'.



6. Menu Descriptions

The various menus are described here. The main menu is first, and the remaining menus are
listed alphabeticaly. The menus, along with their parentage, are:

Main from command line
AutoParallel from System menu
Browse from Main Menu

Browse:Browse from Browse Menu

Circulate from Restructure Menu

DD Browse from Browse Menu

DD Algorithm  from System Menu

DD Prevents  from restructuring transformation

File from Main Menu

Find from See or Step Menu
Msgs from any menu

Redo from File Menu
Restore from Main Menu
Restructure from Browse Menu
See from Browse Menu
Skew from Restructure Menu
Step from Browse:Browse Menu
System from Main Menu
Trans from Main Menu

A pictoria diagram of the menu lineage is:

Main
\
+--- Browse
\ +--- Browse:Browse
\ \ +--- Step
\ +--- DD
\ \
\ +--- Restructure
\ \ +--- Circulate
\ \ +--- Skew
\ +--- See
\
+--- File
\ +--- Redo
\
+--- Restore
\
+--- System
\ +--- AutoParallel
| +--- DDAIg

\
+--- Trans



Again, typing 'M’ at any menu will get to the Msgs menu, displaying recent messages from Tiny; typ-
ing 'Q from any menu will quit Tiny immediately; typing 'X’ (or the escape key) from any menu
except the Main menu will exit (escape) to the parent menu.

6.1. Main Menu

Tiny Tool [as of December 1990]
*Browse File Parse Restor System Trans Write Msgs  Quit

From the main menu, there are the following eight choices:

Browse Go to the Browse menu to create new program version via interactive restructuring or to
browse the data structures.

File Go to the File menu to move around directories, edit files, start command shells, etc.

Parse Choose an initia file (if no file was given on the command line) or choose a different file
to parse and then browse. Tiny will ask for the file name to parse.

Restor Go to the Restore menu to restore an old program version.

System Go to the System menu to change dependence decision algorithm or verify data structures.

Trans Go to the Translate menu to change the display language, or to write out an assembler file.

Write Write the current program version to a file; Tiny will ask for the name of the file to write.

Msgs Go to the Msgs menu and display the most recent messages.

Quit Quit Tiny.



6.2. AutoParallel Menu

This menu lets you decide whether or not Tiny should attempt to parallelize every loop after each
transformation. This is a simple way to see how your transformations have affected the parallelism in
the program. Initialy this option is disabled; you can enter this menu from the System menu.

Tiny Tool [as of December 1990]
*AutoParallel  NoAutoParallel Msgs Quit Xcape

AutoParallel Enable automatic parallelization.

NoAutoParallel
Disable automatic parallelization.



6.3. Browse Menu

This is the menu where you will probably spend lots of time. When you enter the Browse Menu, Tiny
highlights a ’current position’ in the program. This will generally be a loop or a variable reference.
When you first enter this mode, the current position will be at the entry.

1: Entry

5: for k =

hj)

7. endfor
5: endfor

1: real a(1:100,1:100,1:100)
3: integer n

7. fori=2,ndo
9: forj=2ndo
11:  ak,i,j) = ak,i-1))+alk,i,j-1)+ak,i,j+1)+a(k,i+1,j)+a(k-1,i,j)+a(k+1,

9: endfor

Parsed wave3a
*Browse DD Loop Restr See Undo Va Msgs Quit Xcape

2,n do

From this menu you can browse around the data structures, move the current position to another loop or
variable, and perform or undo restructuring transformations.

Browse
DD
Loop
Restr

See

Undo

Var

Go to the Browse:Browse menu (all right, it's a stupid name).
Go to the DD Browse Menu to examine dependence relations.
Move the current position to the next loop.

Go to the Restructure Menu, to perform a restructuring transformation on this loop; the
current position must be a loop.

Traverse the abstract syntax tree (AST) data structure interactively, by going to the See
menu.

Undo the most recent restructuring transformation. See the discussion under ’Restore
Menu’ to see how this is implemented.

Move the current position to the next variable reference. Note that due to the data structure
for assignments, the right hand side expressions are visited 'before’ the left hand side.



6.4. Browse:Browse Menu

This is a simple way to traverse the abstract syntax tree (AST) in detail, by moving to sibling, parent or
child tree nodes one at atime. As in the Browse menu, the current position is highlighted.

1: Entry

1: real a(1:100,1:100,1:100)
3: integer n

5: for k =2,ndo

7. fori=2,ndo

9: forj=2ndo

11:  ak,i,j) = ak,i-1))+alk,i,j-1)+ak,i,j+1)+a(k,i+1,j)+a(k-1,i,j)+a(k+1,
i.j)

9. endfor

7. endfor

5: endfor

Parsed wave3a
*Back Decl Jump Loop Next Step Var Msgs Quit Xcap

The various menu choices move the current position around:

Back Move the current position to the last position.

Decl If the current position is on a variable reference, move the current position to the declara-
tion of that variable.

Jump Move to the next non-trivial operator or variable reference.

Loop Move the current position to the next loop.

Next If the current position is on a variable reference, move the current position to the next
reference of that variable.

Step Go to the Step Menu.

Var Move the current position to the next variable reference.



6.5. Circulate Menu

When you want to circulate a loop ordering, this menu allows you to choose what type of circulation
you want. Intercirculation is a circulation of the current loop to a position inside of some inner loop;
outercirculation is a circulation of the current loop to a position outside of some enclosing loop. The
Circulate Menu display highlights the loop inside or outside of which the current loop can be circulated.
The Out menu choice highlights the next possible choice, and the Circulate menu choice enables circu-
lation to inside of or outside of the highlighted loop.

1: Entry

1: real a(1:100,1:100,1:100)
3: integer n

5: for k =2,ndo

7. fori=2,ndo

9: forj=2ndo

11:  ak,i,j) = ak,i-1))+alk,i,j-1)+ak,i,j+1)+a(k,i+1,j)+a(k-1,i,j)+a(k+1,
i.j)

9. endfor

7. endfor

5: endfor

Parsed wave3a
*Circulate Out Msgs Quit Xcape

Circulate  attempt to circulate the current loop inside of or outside of the highlighted loop.
Out move the highlight to the next tightly-nested outer loop.



6.6. DD Browse Menu
At this menu you can inspect the data dependence relations in the program.

1: Entry
1: real a(1:

7. fori=

ij)

9. endfor
7. endfor
5: endfor

3: integer n
5: for k =2,ndo

9: forj=2ndo
11:  ak,i,j) = ak,i-1))+alk,i,j-1)+ak,i,j+1)+a(k,i+1,j)+a(k-1,i,j)+a(k+1,

No DD successors.
*Cycle Goto Next Pred Succ Var Write Msgs Quit Xcape

100,1:100,1:100)

2,n do

The message line will display the first dependence relation from the current position; if there are no

dependence
The kind of

relations (as, for instance, for non-variable reference nodes) then this will also be displayed.
dependence, line numbers, direction vector and distance vector are displayed; direction or

distance vector elements which are unknown are displayed as asterisks. By default, this will display

dependence
highlighted.

Cycle

Goto
Next
Pred
Succ
Var
Write

successors of the current node, and both source and target of the dependence relation are

perhaps the most useful menu choice, this cycles through all the dependence relations in the
program, moving the current position as necessary.

move the current position to the 'other end’ of the dependence relation being displayed.
display the next dependence successor or predecessor of the current node.

display dependence predecessors of the current node.

display dependence successors of the current node.

move the current position to the next variable reference.

prompts for a file name, and write the dependence relations to that file.



6.7. DD Algorithm Menu

This menu lets the user choose what decision algorithm to use to solve the subscript dependence equa-
tion. This option will not take effect until the next program is parsed (using the Parse item from the
Main Menu).

*Simple Triang GGCD Lambda Power Msgs Quit Xcape

Simple

Triang
GGCD

Lambda

Power

Use a simple set of tests, including an exact test when only a single loop index variable
appears in a subscript (to get dependence distances), and the GCD and simple Banerjee’s
Inequalities otherwise (to get dependence directions). These tests are applied subscript-by-
subscript.

As above, except use triangular Banerjee's Inequalities instead of the ssimple Inequalities.
Use Banerjee’s Generalized GCD simultaneous subscript test; this gives dependence dis-
tances if fixed.

Use an implementation of the Lambda Test (see Li, Yew and Zhu's paper "Data Depen-
dence Analysis on Multi-Dimensional Array References' in the 1989 ACM Int’'l Conf. on
Supercomputing proceedings, or Grunwald's paper "Data Dependence Anaysis. The
Lambda Test Revisited" in the 1990 Int'l Conf. on Parallel Processing proceedings).

Use Banerjee’s Generalized GCD test, extended by a different search for an empty solution
space by modified Fourier-Motzgin search.



6.8. DD Prevents Menu

When data dependence relations prevent application of a restructuring transformation, those dependence
relations are displayed. The user can view all the relations (using the Next menu option), Accept the
restriction, or Override the dependence relations. Note: Choosing Override will blindly apply the
transformation; the modified dependence graph after the transformation will probably no longer be
valid. In the example shown, the user tried to paraleize the 'k’ loop. Since the 'k’ loop carries a
dependence relation (actually, two dependence relations), parallel execution is not allowed.

1: Entry

1: real a(1:100,1:100,1:100)
3: integer n

5: for k =2,ndo

7. fori=2,ndo

9. forj=2ndo

11:  ak,i,j) = ak,i-1))+alk,i,j-1)+ak,i,j+1)+a(k,i+1,j)+a(k-1,i,j)+a(k+1,
i.j)

9. endfor

7. endfor

5: endfor

flow dependence 11: --> 11:(=,=,<) (0,0,1)
*Accept  Next Override Msgs Quit Xcape

Accept accept this dependence restriction; do not apply the transformation.
Next display the next data dependence relations that prevents this dependence.
Override  override the dependence restrictions and apply the transformation anyway.



6.9. File Menu

The file menu appears with a listing of the file names in the current directory. Subdirectory names are
shown with a /", and executable file names are shown with a ’*’, much as the command ’'Is -F does;
the current directory name is shown at the top of the file listing:

/ogcl/staff/mwolfe/tiny/test

ave3 dd.tl docwave example.3 parenb wave3
ch dd.t2 doc2.log lu rev wave3a
dd.1 dd.t3 doc3.log ludecomp rnl wave3b
dd.2 doc.ch dynamic  paren wave

dd.3 doc.ddfile example.l paren2 wave.8wa

dd.4 doclog example2 parena wave2

Data Dependence prevents loop paralelization
*Down Edit Newdir Redo Sh Up Msgs Quit  Xcape

Down Move down to a subdirectory; Tiny will prompt for the subdirectory name to which to
change. Currently the whole subdirectory name must be typed.

Edit Edit afile; currently, the editor to use is hard-coded in Tiny as 'vi'.

Newdir Make a new directory; Tiny will prompt for the name of the subdirectory name to create.

Redo Go to the Redo (Restart) menu, from which stopped subprocesses can be restarted.
Currently, the only processes that can be stopped are editor subprocesses.

Sh Start up a command shell; currently, the shell to use is hard-coded in Tiny as’csh'.

Up Move Up to the parent menu (ala’cd ..’).

Msgs Go to the Message display and menu.

Quit Quit Tiny.

Xcape Return to the Main Menu.



6.10. Find Menu

From the See or Step Menu, this menu moves the current position to the next operator of the specified
type:

1: Entry

1: real a(1:100,1:100)

3: integer n

5: for k = 1,100 do

7. fori=2n-1do

9. forj=2n-1do

11 aij) = (ai-1j)+a(i j-1)+a(i+1j)+a(i j+1))/4
9. endfor

7. endfor

5: endfor

Parsed wave
*Asgn Entry Index Loop Oper Var Msgs Quit Xcap

Asgn move the current position to the next assignment operator.
Entry move the current position to the entry node.

Index move the current position to the next loop index reference.
Loop move the current position to the next loop.

Oper move the current position to the next operator.

Var move the current position to the next variable reference.



6.11. Redo Menu
A list of stopped processes is given.

3al6 [0] edit ch
3a28 [1] edit ave3

spawned process 3a28 edit ave3 can be restarted
*Start Msgs Quit  Xcape

Any one process can be restarted by choosing the menu item Start, and typing the number (0-9, in
square brackets) corresponding to that process. Currently only 9 stopped processes are saved, and only
editor processes may be stopped.

Start Start one of the stopped processes.



6.12. Restore Menu

This interface is all new since the last version. When you restructure programs, or parse new programs,
as long as you do not quit Tiny, the data structures for each version of each program is saved. Using
the Restore Menu, you can return to any previously parsed or restructured version of a program in this
Tiny session. The Restore display shows the chain of restructuring transformations taken to get to the
"current’ version of the program:

File: wave3a
Origina Program
Skew loop j with respect to i
Skew loop j with respect to k
Circulate loop j outside of loop k

Quitercirculating loop j outside of k
*Child Parent Next Prev Msgs Quit Xcape

This display says that the original program was read from file 'wave3a, then skewed the ’j’ loop with
respect to 'i’ and 'k’, then circulated (interchanged) the 'j’ loop to outside the 'k’ loop. To return to a
previous version, choose Parent from the menu, which will effectively 'undo’ the bottom transforma-
tion; this is exactly how the 'Undo’ menu item in the Browse Menu is implemented. That transforma-
tion can be effectively reapplied by choosing ’Child’ from the menu. If there are ’children’ programs
or derived programs from the current one, they are displayed with number identifiers:

File: wave3a
Original Program
Skew loop j with respect to i
Skew loop j with respect to k
0: Circulate loop j outside of loop k

Outercirculating loop j outside of k
Child *Parent Next Prev Msgs Quit Xcape

Choosing Child will cause Tiny to ask which child you want, and you are expected to respond with a
digit, O through 9.

Child Choose a child version of the program as the current version, effectively 'reapplying’ a
transformation.

Parent Choose the parent version of the program as the current version, effectively 'undoing’ a
transformation.

Next Choose the next version of the program, essentially the next child of the parent. For a top-
level program, this goes to a’later-parsed’ program.

Prev Choose the previous version of the program, essentialy the previous child of the parent.

For a top-level program, this goes to an 'earlier-parsed’ program.



6.13. Restructure Menu

Here you choose one of severa restructuring transformations to perform on the current loop. The
current position must be a loop.

1: Entry
1: real a(1:100,1:100)
1: real b(1:100)
2: integer n
3: fork =1,ndo
4: ak,k) = sgrt(ak,k))
5: fori =k+1,ndo
6:  ai,k) = a(i,k)/a(k,k)
7. forj=k+1, do
8 a(ij) = a(i)-ai,k)*a(.k)
7:  endfor
5: endfor
3: endfor
Parsed ch
*Bump Circ Dist Inter Neg Par Skew Vec Msgs Quit Xcape

Most transformations have dependence tests which must be satisfied for the transformation to be legal.
They also may modify the dependence relations, such as changing the dependence direction or distance.
The restructuring transformations allowed are:

Bump bump a loop by adding a signed integer constant to both lower and upper limits.

Circ circulate the current loop inside or outside of a nest of tightly-nested loops.

Dist distribute the current loop.

Inter interchange the current loop with its immediately surrounding tightly nested surrounding
loop.

Neg negate (reverse) the current loop.

Par parallelize the current loop.

Skew skew the current loop with respect to an outer loop.

Vec vectorize the current loop, if it is an inner loop and has no dependence cycles (change to a
"foral’).

Transformations in the works are loop rotation, tiling and vectorization.



6.14. See Menu
This allows you to see a’binary dump’ of each abstract syntax tree node, and to move around the AST:

[ 50150, 4]

fetch, array a

value: 50578 (329080)
extra: 0 0(00)
wpos: 420

0l 50150 0

/50118
0
5. endfor

Parsed ch
Down *Find Goto Left Mark Rght Up Msgs Quit Xcap

The binary dump includes the hexadecimal address of the node, with its line number (in square brack-
ets), the node operator, its value in hex and decimal, the extra nodes and window position, and graphi-
cal display of the parent, child, sibling and link relationships. The menu choices are the same as for
the Step Menu.

Down Move the current position to its first child.

Find Go to the Find Menu, to move the current position to the next operator of a particular type.

Goto Move the current position to one of the 26 previously marked positions.

Left Move the current position to its left sibling.

Mark Mark the current position as one of 26 saved positions; Tiny will prompt for a single-letter
position name, [&-Z].

Rght Move the current position to its right sibling.

Up Move the current position to its parent.



6.15. Skew Menu

When you want to skew a loop, this menu allows you to choose what type of skewing (forward or
reverse) and the loop with respect to which you want to skew. Forward skewing means skewing with a
factor of +1, and reverse skewing is with a factor of -1. The Circulate Menu display highlights the
outer loop with respect to which the skewing will be done. The Out menu choice highlights the next
possible choice, and the Forward or Reverse menu choice enables the appropriate kind of skewing.

1: Entry

1: real a(1:100,1:100,1:100)
3: integer n

5: for k =2,n do

7. fori=2,ndo

9: forj=2ndo

11:  ak,i,j) = ak,i-1))+alk,i,j-1)+ak,i,j+1)+a(k,i+1,j)+a(k-1,i,j)+a(k+1,
i.j)

9. endfor

7. endfor

5: endfor

No saved program in that direction
*QOut Forward Reverse By Factor Msgs Quit Xcape

Out Move the highlight to the next outer loop.
Forward  Enable loop skewing by factor of +1.
Reverse  Enable loop skewing by factor of -1.

By Factor Prompts for a (optionally signed) constant integer skewing factor; enables skewing by that
factor.



6.16. Step Menu
This is reached from the Browse:Browse Menu, and allows detailed traversal of the data structures.

1: Entry

1: real a(1:100,1:100,1:100)
3: integer n

5: for k =2,ndo

7. fori=2,ndo

9. forj=2ndo

11:  ak,i,j) = ak,i-1))+alk,i,j-1)+ak,i,j+1)+a(k,i+1,j)+a(k-1,i,j)+a(k+1,
i.j)

9. endfor

7. endfor

5: endfor

No saved program in that direction
*Down Find Goto Left Mark Rght Up Msgs Quit Xcap

Down Move the current position to its first child.

Find Go to the Find Menu, to move the current position to the next operator of a particular type.

Goto Move the current position to one of the 26 previously marked positions.

Left Move the current position to its left sibling.

Mark Mark the current position as one of 26 saved positions, Tiny will prompt for a single-letter
position name, [&-Z].

Rght Move the current position to its right sibling.

Up Move the current position to its parent.



6.17. System Menu
The system menu lets the user change certain special options.

*Auto DDalg File Output Struc Verify Write Msgs Quit Xcape

Auto Go to the AutoParallel Menu to decide whether or not to autoparallelize every loop after
each transformation.

DDalg Go to the DD Algorithm Menu to change the DD decision algorithm.

File Prompts for a file name, then reopens 'debug’ as that file.
Output Reopens ’debug’ as standard output.
Struc Dump the abstract syntax tree (AST) data structure to the current ’'debug’ file.

Verify Verifies that the abstract syntax tree (AST) has no bogus pointers. The verifier reports any
data structure inconsistencies. This is useful when debugging new transformations.

Write Writes the program to the current *debug’ file. This is useful when 'debug’ is another file.



6.18. Trans Menu

This menu lets you choose to view the program in a Fortran syntax as opposed to Tiny syntax, or to
compile the program into Alliant assembler code.

*Fortran Tiny  Asm Quit  Xcape

Fortran This option lets you view the program using Fortran syntax for loops. You may have to
type "L (control-L) to get the Fortran to show up. Here, Alliant directives are used to show
parallel and vector loops. If Fortran is chosen, then when the program is written out, it will
also use Fortran syntax. Note that Tiny does NOT have a Fortran parser, so it will not
accept this syntax as input. Also note that the output may need modifications to be com-
piled and executed, since the Tiny language has no procedure header statements and the

like.
Tiny This option lets you view the program in the default Tiny syntax.
Asm This option will "compile” the program, as it has been transformed, into Alliant FX/8

assembler code.



7. AST Dump Information
A sample 'dump’ is given here. For the program:
real a(10,10)

fori =1to 10 do
forj=2to10do
a(ij) = aij-1) +1
endfor

endfor

the interactive display is:

: Entry

: real a(1:10,1:10)

: for i = 1,10 do

for j = 2,10 do
ai)j) = a(ij-1)+1

endfor

. endfor

Parsed al
Auto DDalg File Output *>Struc< Verify Write Msgs Quit  Xcape

The dump (to the "debug’ file, whether it be opened to standard output, the default, or to a file) would
be:

[ 35424] 0=Child, 353f0=Next, entry

. O0=Parnt, 0=Prev, o=vad

J 353f0] 353bc=Child, 3521c=Next, declare

. O=Parnt, 35424=Prev, 21404=Vd
.[ 353bc] 35388=Child, 35320=Next, bounds

. 353f0=Parnt, 0=Prev, 0=vd

[ 35388] 0=Child, 35354=Next, constant
353bc=Parnt, 0=Prev, 1=vad
[ 35354] 0=Child, 0=Next, constant
353bc=Parnt, 35388=Prev, a=va
.[ 35320] 352ec=Child, 0=Next, bounds

. 353f0=Parnt, 353bc=Prev, 0=Vd
[ 352eq] 0=Child, 352b8=Next, constant
35320=Parnt, 0=Prev, 1=vad
[ 352b8] 0=Child, 0=Next, constant
35320=Parnt, 352ec=Prev, a=vad
[ 3521c] 351e8=Child, 0=Next, do

. O=Parnt, 353f0=Prev, 1=vd

.[ 351e8] 3514c=Child, 35284=Next, dolimit

. 3521c=Parnt, 0=Prev, 21444=Vd
..[ 3514c] 35118=Child, 0=Next, do
351e8=Parnt, 0=Prev, 2=vd
...l 35118] 34edc=Child, 351b4=Next, dolimit
3514c=Parnt, O=Prev, 21484=Vd
..... [ 34edc] 34ea8=Child, 34e40=Next, stmtnumber
..... 35118=Parnt, 0=Prev, 1=va
...... [ 34ead] 0=Child, 34e74=Next, index
...... 34edc=Parnt, 0=Prev, 351e8=Va

...... [ 34e74] 0=Child, 0=Next, index



...... 34edc=Parnt, 34eaB=Prev,

35118=Va
..... [ 34e40] 34f10=Child, 0=Next, assign
..... 35118=Parnt, 34edc=Prev, o=vad
...... [ 34f10] 35048=Child, 350e4=Next, add
...... 34e40=Parnt, O=Prev, o=vad
....... [ 35048] 35014=Child,

34f44=Next, fetch array
....... 34f10=Parnt, 0=Prev, 353f0=Val
........ [ 35014] 0=Child, 34f78=Next, index
........ 35048=Parnt, 0=Prev, 351e8=Vadl
........ [ 34f78] 34fe0=Child,

O=Next, subtract
........ 35048=Parnt, 35014=Prev,

......... [ 34fel] 0=Child, 34fac=Next, index
......... 34f78=Parnt, 0=Prev, 35118=Vd
......... [ 34fac] 0=Child, 0=Next, constant
......... 34f78=Parnt,  34fe0=Prev, 1=va
....... [ 34f44] 0=Child, 0=Next, constant
....... 34f10=Parnt, 35048=Prev,

0=vd

1=vd
...... [ 350e4] 350b0=Child, O=Next, store
...... 34ed0=Parnt, 34f10=Prev, 353f0=Va
....... [ 35000] 0=Child,

3507c=Next, index
....... 350e4=Parnt, O0=Prev, 35l1e8=Vd
....... [ 3507c] 0=Child, 0=Next, index
....... 350e4=Parnt, 350b0=Prev, 35118=Vad
... 351b4] 0=Child, 35180=Next, constant
- 3514c=Parnt, 35118=Prev, 2=Vvd
...[ 35180Q] 0=Child, 0=Next, constant
. 3514c=Parnt, 351b4=Prev, a=vd
[ 35284] 0=Child, 35250=Next, constant
3521c=Parnt, 351e8=Prev, 1=vd
[ 35250] 0=Child, 0=Next, constant

3521c=Parnt, 35284=Prev, a=Va

The number in brackets is the hexadecimal address of that AST entry. The Child, Next, Parnt and Prev

numbers are the hexadecimal addresses of the AST entries pointed to by the Child, Next, Parent and
Previous pointers. The Node Operator is given in text, and the Value is given is hex.



8. Installation and Distribution

Tiny was designed to be relatively portable, but it's pretty rough; in many cases, a choice between
elegance, portability and simplicity was made in favor of ease of implementation. It has been installed
on many a Unix system using native compilers and the Gnu 'gec’, and on an IBM PC-clone using the
Turbo C++ compiler. The entire design and implementation is geared toward supporting a research
effort into elementary program restructuring, not toward developing an industrial-strength product. It is
written in ANSI 'C’ (bleah), with special hooks to be able to compile it on compilers without ANSI
function headers (just about the only ANSI C features used). Tiny uses a character-based interface,
using the 'Curses character windowing package to manage the screen (bleah) under Unix, and uses the
Turbo C screen addressing routines on a PC. | would like to install Tiny on an X-window interface, but
that awaits some other interested graduate student.

In the best of cases, a simple 'make t' do al the compiles and links. Some modifications may be
necessary.

I will gladly accept bug reports, suggestions or enhancements, but |1 cannot promise that anything
will get fixed, except that 1’1l do my best, given the time and resources at my command.

The source or object code of Tiny may be freely redistributed and reused as you see fit. Have
fun.



Table of Contents

1 KEYS 10 REMEMDET ...t sttt st et e et e e e e e e eneeneerenneens 2
2. SEAIING TINY coteieetiieeieitee sttt et st b e e be e b e s et s b bbb et s b et s b e e b et e ke st e b e st e b e se bt nb e bt sbe st st e st et 2
T =10 = o g0 07 0] USSR 4
G 300 I oo o =10 1T R 4
3.2 LOOP CIFCUIBLION ...ttt sttt st b et b et bt b et b et b e e bt e b et b st bt b b 4
GG o o) o I I 1= (] o111 o TS 5
3.4 LOOP INTEFCRANGING .. vveiveieiteieiereeie sttt sttt sttt sttt sttt b e sttt b e e b e e b e bbbt b b 6
R oo oI N[ o= 1 o o HT U PSSRSO 9
3.6 LOOP Parall€li ZAION .....ccuoeieeiiieeeieete ettt e e e b 10
A oo o I0S =TT oo USSR 10
RS AV = (o] 1174 1 o] [OOSR 12
4. TINY LGNGUBIGE ...evireieeiieiee ettt sttt se et b bt e r e r e s e et r e e ne e s e s e e e e eneeaesaeenens 13
LIS 10110 =TS = Lo o 15
6. MENU DESCIIPLIONS ..ottt sttt ettt sttt e b e st b e st b e e bbbt s b et 28
30 AV 1 /= oL OSSO 29
6.2 AULOPAIEIIE] MENU ...ttt et sttt 30
6.3 BIOWSE IMEBNU ...ttt bbb et b e et be et e she e ee s he e b e s ae et e eae et e eaeeebeeanesaeennas 31
6.4 BrOWSEIBIOWSE IMENU ...ttt st ene e r e e e nn e e e e sne e e 32
LS O (T F= (=Y, = o T SRS 33
5.6 DD BIOWSE IMENU ...ttt sttt b e st s e e e bt e she e e e s he e b e s be e b e eae e b e eneesreennesneennas 34
6.7 DD AIGOMTNM MENU ..ottt sttt st be et 35
5.8 DD PraVentS IMBINU .....c.ooiiiiiiie ettt ettt et bt e e sae e e e s ae e b e s ae et e sae et e eanenbeennesneennas 36
LSS I =1V = o L OO 37
L0 I T o 1V o SRS 38
L3 o (0 101V = oL OSSR 39
Lo D2 = o] =Y/ o O SO 40
6.13 RESIIUCIUINE IMBIU ...ttt ettt b et e s he e e s b e b e e he et e eae e b e e asenbe e e e eneennas 41
B.14 SEE IMBINU ...ttt h et e e e R R AR R R AR R R e e e R e e e n e ne e 42
B.15 SKOW IMIBNU ..ottt ettt st st s e et be st e se et et et e st e b e e aeeaeebesbeseesb et e st e ne et ene et eneenenneens 43
LI LIRS 1= o N /= o OSSR 44
B.17 SYSIEM MENU ..ottt b e Rt R e R b e e n e 45
6.18 TTANS IMBNU ...ttt b e b e et e et e e e she e e e she e eeshe e b e she e beeae e b e ensenreenneeneennas 46
7. AST DUMP INFOMMBLION ..ottt et b e e st b sbne 47
8. Installation and DIStriDULION ........cccooiiiiiriiee et e e 49



