
Towards a Source Level Compiler: Source Level

Modulo Scheduling

Yosi Ben-Asher Danny Meisler

Computer Sci. dep.

Haifa University, Haifa.

Email:dmeisler@cs.haifa.ac.il

Abstract

Modulo scheduling is a major optimization of high performance

compilers wherein The body of a loop is replaced by an overlapping of

instructions from different iterations. Hence the compiler can sched-

ule more instructions in parallel than in the original option. Mod-

ulo scheduling, being a scheduling optimization, is a typical backend

optimization relying on detailed description of the underlying CPU

and its instructions to produce a good schedule. This work considers

the problem of applying modulo scheduling at source level as a loop

transformation, using only general information of the underlying CPU

architecture. By doing so it is possible: a) Create a more retarge-

ble compiler as modulo scheduling is now applied at source level, b)

Study possible interactions between modulo scheduling and common

loop transformations. c) Obtain a source level optimizer whose output

is readable to the programmer, yet its final output can be efficiently

compiled by a relatively “simple” compiler.

Experimental results show that source level modulo scheduling can

improve performance also when low level modulo scheduling is applied

by the final compiler, indicating that high level modulo scheduling and

1

low level modulo scheduling can co-exist to improve performance. An

algorithm for source level modulo scheduling modifying the abstract

syntax tree of a program is presented. This algorithm has been imple-

mented in an automatic parallelizer (Tiny). Preliminary experiments

yield runtime and power improvements also for the ARM CPU for

embedded systems.

1 Introduction

This work considers the problem of implementing Modulo Scheduling (MS)

[16] at software level rather than implementing it at machine level, as is usu-

ally done in modern compilers [12]. The main motivation in doing so is to

allow users to view the effect of modulo scheduling at source level, allowing

possible interaction with other loop transformations and manual improve-

ments. During experiments, it turned out that in many cases, Source Level

Modulo Scheduling (SLMS) improved the execution times even when the

underlying compiler used “exact” machine level MS. Consequently, SLMS

and machine level MS should co-exist even in a high performance compiler.

Thus SLMS is used for two different tasks: optimizing programs at source

level along with other loop transformations and as a stand alone optimiza-

tion complementary to machine level MS.

Basically, MS is one type of solution to the problem of extracting paral-

lelism from loops by “pipelining” the loop’s iterations as follows:

for(i = 0; i < n; i + +)

{

S1i : t = A[i] ∗ B[i];

S2i : s = s + t;

}

−→

S10 : t = A[0] ∗ B[0];

for(i = 0; i < n − 1; i + +)

{

S2i : s = s + t;

S1i+1 : t = A[i + 1] ∗ B[i + 1];

}

S2n−1 : s = s + t;

2

Note that after this “pipelining” the dependency between S1i and S2i has

been eliminated and the new statements S2i and S1i+1 can be executed in

parallel (denoted by S2i||S1i+1).
1

Many techniques have been proposed to approximate the solution to the

problem of optimal pipelining of loops iterations by eliminating the maximal

number of inter iteration dependencies [3, 23].

A common technique to illustrate MS (very schematically) puts con-

secutive iterations i, i + 1, . . . shifted by a fixed size (called the Initiation

Interval or II [16]) in a 2D table of “rows”. The instructions of iteration

i + k (k = 0, 1, 2, . . .) are placed in the k’th column of this table, starting

at the II ∗ k row. Let I0, . . . , In−1 be the assignments or instructions in

the loop’s body, then rows n − II, . . . , n − 1 will repeat themselves i.e., the

instructions in rows n− II, . . . , n− 1 will be identical to the instructions in

rows n, . . . n+ II − 1 and so forth. This repeated II rows form the kernel of

the new loop. The first n− II rows form the prologue used to initialize the

“iterations pipe” and the last n− II rows (if we put only 2n− II iterations)

from the epilogue that drains the pipe. The II is valid if the resulting kernel

does not violate any data dependency of the original loop. Figure 1 depicts

this basic form of MS.

In modern compilers, MS is executed at machine level after the machine

depended optimization level. It is natural since in this case the machine

instructions of the loop’s body fill the columns of the MS table, which forms

a schedule of the new loop’s instructions. Every row of the table corresponds

to instructions that can be executed in parallel:

• For VLIW architectures such as TI, each row of the kernel is a VLS

1This parallel execution S2i||S1i+1 is valid under the assumption that in a parallel

execution the load of t in S2i is not affected by the update of t in S1i+1. Such a claim is

true for most VLIW machines and other models.

3

S0(i);
S1(i);
S2(i);
S3(i);
S4(i);
S5(i);

S1(i+2);
S0(i+2);S4(i);

S5(i); S3(i+1);
S2(i+1);

S0(1);
S1(1);
S2(1);
S3(1);

S0(2);
S1(2);

S1(i+2);
S0(i+2);S4(i);

S5(i); S3(i+1);
S2(i+1);

S4(n−1);
S5(n−1);

S2(n);
S3(n);
S4(n);
S5(n);

i=1..n−2

i=1..n i i+1 i+2 i+3

prologue

epilogue

repeated
pattern

kernel

S0(i);
S1(i);
S2(i);
S3(i);

S0(i+1);
S1(i+1);

S4(i+1);
S5(i+1); S3(i+2);

S2(i+2); S0(i+3);
S1(i+3);

S5(i+2);
S4(i+2); S2(i+3);

S3(i+3);
S4(i+3);
S5(i+3);

initial loop MS table II=2
after MS

Figure 1: Using the MS table.

(compound instruction).

• For super scalar architectures such as the Pentium, each row contains

instructions that can be executed in parallel by the different pipeline

units of the CPU.

Consequently, each row of the MS table should be valid, in terms of the

data dependencies, as well as in order not to violate the amount of hardware

resources (and possibly encoding restrictions). For example, if the hardware

allows only two parallel additions, any row with more than two additions

implies that either the II is wrong or the instructions in the kernel’s rows

should be rearranged. In addition, MS is also used to minimize the amount

of pipeline stalls between the consecutive rows (VLSs in VLIW architectures)

of the resulting kernel. Figure 2 depicts MS of a simple loop after it has been

compiled to machine code. In this case, the hardware allows VLSs with up

to two load/store instructions and up to two additions. The MS table was

filled by using II = 1 and (r0), (r0 + 1), (r0 + 2), . . . as the iteration index.

This work considers another possibility of implementing MS, namely to

4

ST (r0+1),d1

ADD d1,d0,9

LD d0, (r0+1)

ADD r0,r0,1

1) LD d0, (r0)
2) ADD d1,d0,9
3) ST (r0),d1
4) ADD r0,r0,1

LD d0, (r0)

ADD d1,d0,9

ST (r0),d1

ADD r0,r0,1 ADD d1,d0,9

ADD r0,r0,1

LD d0, (r0+2)

ST (r0+2),d1

ST (r0+1),d1

ADD d1,d0,9

ADD r0,r0,1

LD d0, (r0+3)

r0 r0+1 r0+2 r0+3

prologue

kernel

epilogue

for(i=0;i<n;i++) A[i]+=9;

code generation of the loop’s body

modulo scheduling of the loop’s body

Figure 2: Machine level MS.

implement it as a source level loop transformation. The goal is to develop

eventually a Source Level Compiler (SLC) that will combine SLMS and

known loop transformations such as peeling, fusion, and tiling as described

in [4]. A program is first compiled by using the SLC and then the resulting

optimized program is compiled to the target architecture by using a regular

compiler (called the final compiler).

Figure 3 depicts how SLMS is applied. After SLMS the final compiler

applies code-generation, register allocation and list scheduling of basic blocks

to create VLIW instructions. The outcome in this case is as efficient as the

one would have obtained by using machine level MS. Remark: some MS

algorithms such as Iterative MS [17] use modified versions of List scheduling

to schedule the kernel after the II has been computed. In this respect, it may

be possible to view SLMS as moving the first part of MS to the front-end

(computing the II and generating the prologue, kernel and epilogue) leaving

the actual scheduling of the kernel to the List scheduling of the backend.

5

Figure 3: Using SLMS followed by List scheduling.

2 Source level compiler scheme

We show that the SLC can improve final performances of programs (by using

advanced array analysis and source level transformations) as follows:

• Based on the interaction with the SLC, the user can modify parts

of its code producing new opportunities for the SLC (e.g, replacing

while-loops by fixed range for-loops or using arrays instead of point-

ers/records). The user can acknowledge speculative operations of the

SLC such as allowing SLMS to use II that violates some data depen-

dency. The proposed SLMS algorithm is designed to minimize the

changes to the original program thus, preserving the readability of the

optimized code.

• SLMS is a powerful optimization that can potentially improve the ex-

ecution times even if the underlying final compiler includes a machine

level MS. Thus, the SLC can potentially improve execution times of

modern compilers or cover the lack of a given optimization (e.g., MS)

in the backend of the final compiler.

• The combination of SLMS and loop transformations can be, in some

cases, more effective when it is implemented at source level (as shown

6

later on several possible combinations).

Figure 4 presents a block diagram of the SLC scheme. The programmer

interacts with the SLC to improve the performance of his code.

Figure 4: Source Level Compiler Interaction with the User, Final Compiler

and HW.

Figure 5 is an example of how the SLC can improve the register allocation

of the final compiler. This is done in the following steps:

1. The original loop is given as input to the SLC

2. The SLC tips the user that the life-times of loop-variants (a,b and c)

can be reduced.

7

3. Than the user marks the code that does not depend on those variables.

4. SLC re-arranges the source code such that the life-times are reduced.

5. The loop is than compiled by the final compiler resulting a better

register allocation scheme.

Note that this optimization is usually done by the register allocation of the

compiler, apart from cases where the compiler is not able to move instruction

due to possible dependencies with the rest of the code. For example of the

code after a = A[i] contains a call to a function that may change the value

of a than only the user can hint the SLC that a = a[i] can be safely move

after this call.

Figure 5: Source Level Compiler can improve register allocation.

8

3 Basic operations used by the SLMS algorithm

In the following subsections, are listed shortly the elementary operations

used by the proposed SLMS algorithm. Some of these operations are known

and were used in other MS algorithms. Initially, the loops are represented by

their abstract syntax tree (AST) [2]. In addition, the dependencies (includ-

ing the iteration-distances) between array references and scalar variables in

the AST are given as directed labeled edges between the AST nodes. For

example, the body of the loop for(i = 0; i < n; i + +)A[i]+ = A[i − 1];

is depicted in figure 6. The input AST is logically partitioned to “multi-

instructions”(MI), corresponding to assignments, function-calls or to ele-

mentary if-statements. For example the AST in figure 6 contains a single

MI.

assign

store_array

load_array load_array

A dec

add

A

A i

i

1i

p=0

p=1

Figure 6: Input structure for the SLMS algorithm.

Next, we describe the concept of the minimum initiation interval (MII)

[16] and how it is computed. The minimum initiation interval is the one

for which a valid schedule exists. Smaller values of II correspond to higher

throughput. Calculation of the II accounts for two constrains:

1. Resource constraint (RMII). Let r(i) be the number of available re-

sources (e.g. add units) and n(i) the number of times the resource i

is used in the code. RMII = maxi⌈
r(i)
n(i)⌉.

9

2. Recurrence constraint (PMII) is computed over the data dependency

graph G of the loop’s body [4]. For a given cycle of dependencies Ci

in G let pmi be the ratio of the sum of delays along Ci and the sum of

“iteration-distances” in Ci. The delay (for machine level) between two

instructions is basically the number of pipeline stalls that occur if the

two instruction are executed one after the other. For SLMS a different

notion of delays will be defined as pipeline stalls has no meaning at

source level.

The “iteration-distance” indicates the number of iterations that sep-

arate the “define” and “use” of a value (e.g., the iteration-distance

between A[i] = x and y = A[i − 3]) is three).

3. The value of MII is set to MII = Max{PMII,RMII}.

The MS algorithm first attempts to obtain a valid schedule of with II = MII

MIs. In case that such a schedule is not possible the MS algorithm tries

larger values of II until such a schedule is obtained.

3.1 Source level if-conversion

MS algorithms are basically designed to work on simple loops without con-

ditional branches. The algorithms that do handle conditional branches usu-

ally use predicated instructions to eliminate the conditional branches [19].

In case that the underlying machine does not have predication, the reverse

if-conversion is used to restore conditional branches after MS was applied

[21]. This work, uses predication at source level. If-statements of the AST

are predicated with Boolean variables, similar to the if-conversion opera-

tion performed in assembly mode. For example, the if-statement if(x <

10

y)x = x + 1;A[i]+ = x; elsey = y + 1; is converted to

c = (x < y);

if(c) x = x + 1;

if(c) A[i]+ = x;

if(not(c)) y = y + 1;

Remark: apart from the use of if-conversion in MS there have been other

proposals for MS of loops with conditional statements. For example, Lam

[10] uses a sequence of hierarchical reductions of strongly connected compo-

nents to MS a loop with conditional statements.

3.2 Decomposition of MIs

This operation divides a complex “large” MI to a set of “smaller” MIs, e.g.,

A[i] = a+b∗c; may be divided to t = b∗c; A[i] = a+t;. As explained before,

in SLMS the resulting code must be as similar as possible to the original

code. Hence, we are seeking to minimize the number of decompositions of

MIs needed to obtain a valid SLMS. Finding a minimal decomposition of

MIs is a key problem in SLMS and the implemented algorithm uses the

following two types of operations:

1. Break a self data dependency edge inside the AST of the MI, e.g. the

one between A[i]+ = A[i − 1];.

2. Reduces the number of resources (arithmetic operations and load/store

operations) in the MI. For example the MI x = A[i]+B[i]+C[i]+D[i];

contains four load operations and four additions. In assumption that

the underlying CPU is a VLIW machine allowing up to two additions

and two load/store operation in a multi-instruction (VLS), it is better

to decompose x = A[i] + B[i] + C[i] + D[i]; to t = A[i] + B[i]; and

x = t + C[i] + D[i].

11

Decomposition is needed for two reasons:

1. In case that the original loop contains only one MI, at least two are

needed to perform MS.

2. In case a loop-carried self dependency prevents finding the MI (section

5).

Consider the loop:

for(i = 0; i < N ; i + +){

A[i] = A[i − 1] + A[i − 2] + A[i + 1] + A[i + 2]; }

This loop does not have a valid schedule for II = 1, because there is only one

MI and because of the loop-carried self dependency between A[i], A[i − 1].

First, we select one load array reference A[i + 1] with no flow dependence

with the store operation A[i] =. By using this selected array reference we

create two MIs using a temporary variable as follows:

for(i = 0; i < (N − 2); i + +){

reg1 = A[i + 2];

A[i] = A[i − 1] + A[i − 2] + A[i + 1] + reg1;

}

The data dependency of reg1 = ... and A[i − 2] + reg1+ will be eliminated

by applying Modulo Variable Expansion (MVE), described in section 3.3.

At this stage SLMS can be applied with II = 1 as follows:

reg1 = A[2];

for(i = 0; i < (N − 3); i + +){

A[i] = A[i − 1] + A[i − 2] + A[i + 1] + reg1; ||

reg1 = A[i + 3];

}

A[i] = A[i − 1] + A[i − 2] + A[i + 1] + reg1;

12

The symbol || is used between multi instructions that can be totally par-

allelized by the final compiler/hardware in terms of not violating any data

dependencies.

Remark: SLMS assumes that the backend compiler shall use a register

for the new local variable “reg1”.

3.3 Modulo variable expansion

The SLMS operation, as explained so far can introduce new data dependen-

cies between MIs, such as the dependency between ... a[i−2]+reg1+a[i+2]...

and ...reg1 = a[i + 2]; in the last code example of subsection 3.2. Such de-

pendencies may prevent the underlying scheduler (the scheduler of the final

compiler) or the hardware (in case of a Super scalar CPU) to extract par-

allelism. Modulo variable expansion (MVE) [10] is used to eliminate such

dependencies. Basically, MVE of a variable (say reg1) is performed by un-

rolling 2 the kernel, and renaming the variable such that the data dependency

inside each unrolled copy of the kernel is removed.

reg1 = a[2];

for(i = 0; i < (N − 4); i+ = 2){

a[i] = a[i − 1] + a[i − 2] + a[i + 1] + reg1; ||

reg2 = a[i + 3];

a[i + 1] = a[i] + a[i − 1] + a[i + 2] + reg2; ||

reg1 = a[i + 4];

}

a[i] = a[i − 1] + a[i − 2] + a[i + 1] + reg1;

Note that after MVE the MIs of each copy (in the unroll operation) can be

executed in parallel forming a source level “parallel set of MIs” (indicated

2The number of times we need to unroll the loop depends on the lifetime of each

variable in the loop as described in [10].

13

by the || symbol in each row).

The following example (see figure 7) presents an application of SLMS

and MVE. In this example the original loop contained a loop variant named

scal. The first MI of the loop was decomposed by SLMS generating a second

loop variant named reg. MVE was applied separately for each loop variant,

generating two registers for each variant.

Figure 7: SLMS decomposition and original loop scalar.

3.4 Scalar expansion

Another possibility to remove data dependencies caused by scalar variables

is to use scalar expansion [4] and replace the scalar variable by a sequence

of array references. For example, instead of applying MVE on the loop of

section 3.2 scalar expansion can be applied by replacing reg1 by regArr[i]

14

so that the SLMS will be:

regArr[2] = a[2];

for(i = 0; i < (N − 3); i + +){

a[i] = a[i − 1] + a[i − 2] + a[i + 1] + regArr[i + 2];

|| regArr[i + 3] = a[i + 3];

}

a[i] = a[i − 1] + a[i − 2] + a[i + 1] + regArr[i + 2];

This operation removed the anti-dependence caused by reg1 and enables the

parallel execution of the two expressions indicated by ||.

3.5 Delay Calculations

For SLMS the delay between two MIs must be defined in general terms

related to the source code rather than the hardware. The delay of a data

dependency edge (see figure 6) has been defined so, that the sum of delays

along every cycle of dependencies will be greater or equal the number of

edges in that cycle. If this condition is not met, some dependency will be

violated in the resulting kernel. Let MIi,MIj be two MIs connected by a

dependency edge ei,j then the delay(MIi,MIj) is defined as follows:

1. delay(MIi,MIj) = 1 if i = j (loop-carried self dependency).

2. delay(MIi,MIi+1) = 1 .

3. delay(MIi,MIj) = k if ei,j is a forward edge and k is the maximal

delay along any path from MIi to MIj . Note: j is sequentially ordered

after i i < j.

4. delay(MIi,MIj) = 1 if ei,j is a back edge.

Figure 8 depicts a data dependency graph whose edges are labeled by pairs

of < itr distance, delay > yielding two cycles: C1 = c → d → e → f → c

15

and C2 = c → d → f → c. The MII due to C1 is (1 + 1+ 1 + 1)/(2 + 2) = 1

while the MII due to C2 is (1 + 2 + 1)/2 = 2. Indeed (as depicted in figure

8), a feasible schedule is obtained for MII = 2 and not for MII = 1 which

violates the backedge from f to c.

d

e

f

g

b

c
<0,1>

<0,1>

<0,1><0,2>

<2,1>

<0,1>

<2,1>

d
e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
cd

e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
cd

e
f
g

b
c

d
e
f
g

b
c

II=2 II=1

Figure 8: delays between MIs.

3.6 Computing the MII

In SLMS the MII accounts only for recurrence constraint (PMII [16]). The

computation of the MII is a complex task since the MII is computed over

all cycles of dependencies. The Iterative Shortest Path algorithm presented

in [3, 23] has been selected for two reasons.

1. First, its simplicity and its ability to naturally handle the case where

each dependency edge has several pairs of < iteration−distance, delay >.

This case is frequent in SLMS as each MI may contain more than one

array reference, e.g., the edge connecting MIi : A[i] = B[i − 1] + y;

to MIj : B[i] = A[i− 2] + A[i− 3] has two iteration distances one for

A[i − 2] −→ A[i] and one for A[i − 3] −→ A[i].

2. Second, it does not use the resource MII which is an advantage for

SLMS.

16

4 Filtering Bad-Cases

Filtering “bad cases” where SLMS reduces performance is the first phase of

the SLMS algorithm. This phase has to includes various types of heuristics

that are specific for both the final compiler and target machine. An example

of such a filter is given.

In order to “skip” bad cases, where SLMS reduce performances we com-

pared the ratio between the number of load/store operations (LS) and the

arithmetic operations (AO) in the loop’s body LS
LS+AO

. This ratio is termed

as the memory-ref ratio. High values of memory-ref implies that overlap-

ping of iterations may lead to too many parallel load store operations in

one “row”. In that case, SLMS might cause stalls due to memory reference

pressure. Experimentaly, it turned out that many such “bad cases” can be

eliminated if we require that the above ratio will be less than 0.85. For

example, the following loop has LS = 6 and AO = 1 and ratio 0.857 and

thus SLMS will not be applied here.

for(k = 0; k < n; k + +){

CT = X[k, i];

X[k, i] = X[k, j] ∗ 2;

X[k, j] = CT ;

}

Note that if we have several arithmetic operations per each load/store oper-

ation then the scheduler can probably hide memory delays (such L1-cache

misses) using these arithmetic computations. Remark: Although not tested

on other machines, we assume that the memory-ref ratio is machine-specific,

and that this ratio depends on the machine’s capacity to perform parallel

memory operations and the delay of an L1-cache miss. An alternative way

of filtering bad cases would have been to estimate the expected number of

17

cycles of the loop’s body after SLMS length of the critical path Other factors

that can affect this ratio include: penalty of L1-cache misses,

Following is an example showing how SLMS may increase the number

of memory references due to overlapping of successive iterations. In the

following simplified loop, most array references can be replaced by a register.

But, after applying SLMS, the array references must be implemented by

separate load/store operations.

for(i = 0; i < n; i + +){

a[i]+ = i;

a[i]∗ = 6;

a[i] −−;

}

−→

prologue

for(i = 0; i < n − 2; i + +){

a[i] −−; ||a[i + 1]∗ = 6; ||a[i + 2]+ = i;

}

epilogue

5 The SLMS algorithm

The Overall structure of the SLMS algorithm is as follows.

1. A test to filter bad cases where SLMS will probably degrade perfor-

mances is applied (explained in section 4).

2. Apply software if-conversion.

3. Generate all the MIs in the loop’s body, following the order of execu-

tion in the source code. Re-name multi defined-used scalars.

4. Find the MII.

(a) Dependency edges are “raised” to the root of each MI (section

3.6).

(b) Obtain the delays of the data dependencies edges (section 3.5).

(c) Compute the MII (section 3.6).

18

5. If there is no valid MII, then repeat the following until a valid II is

obtained or a failure occurs:

(a) Select 3 a MI and decompose it (section 3.2) based on data de-

pendency analysis. If there are no MIs that can be decomposed

then a failure occurs.

(b) Re-compute delays and MII.

6. If the MII was found, then:

(a) Update registers lifetime (used for MVE 3.3), save the maximum

lifetime.

(b) Build the prologue kernel and epilogue.

(c) For each decomposed MI, MVE (section 3.3) or Scalar Expansion

(section 3.4) is applied to eliminate dependencies caused by the

decomposition. MVE or Scalar Expansion may also be activate

to eliminate false dependencies caused by the use of scalars in the

loop. The choice between MVE and Scalar Expansion is given to

the user as MVE implies loop unrolling and code expansion while

Scalar Expansion uses temporary arrays.

Computing MII is performed as follows.

1. initialize the difMin Matrix [3], and obtain delay and flow or anti data

dependencies between MIs. Edges connecting memory reference nodes

are propagated up to the parent MI.

2. activate the Iterative Shortest Path algorithm [23] with increasing val-

ues of II until a valid II is found and returned, or II is equal to the

number of MI in the loop, in this case return error.

3Selection of a MI can be done by sequential order or by data dependence analysis.

19

Note, SLMS defines a valid II as one that yields a better schedule then the

sequential one, e.g. II < number of sequential MIs.

Consider the following loop for finding the maximum of an array:

max = arr[0];

for(i = 0; i < n; i + +)

if(max < arr[i])max = arr[i];

Using source level if-conversion and MVE, the following SLMS was obtained:

max0 = arr[0];

max1 = max0;

pred0 = (max0 < arr[1]);

for(i = 1; i < n − 2; i+ = 2){

if(pred0)max0 = arr[i]; ||

pred1 = (max1 < arr[i + 1]);

if(pred1)max1 = arr[i + 1]; ||

pred0 = (max0 < arr[i + 2]);

}

if(pred0) max0 = arr[i];

if(max0 > max1) max = max0; else max = max1;

Note: The last line was added manually.

Some loops don’t require decomposition of MI nor MVE, such loops have

more than one MI and no loop variants. The following example demonstrates

such a case. In this loop the lack of loop-carried dependence edges generated

20

a MS with MII = 1.

for(ky = 1; ky < n; k + +){

DU1[ky] = U1[ky + 1] − U1[ky − 1];

DU2[ky] = U2[ky + 1] − U2[ky − 1];

DU3[ky] = U3[ky + 1] − U3[ky − 1];

U1[ky + 101] = U1[ky] + 2 ∗ DU1[ky] + 2 ∗ DU2[ky] + 2 ∗ DU3[ky];

U2[ky + 101] = U2[ky] + 2 ∗ DU1[ky] + 2 ∗ DU2[ky] + 2 ∗ DU3[ky];

U3[ky + 101] = U3[ky] + 2 ∗ DU1[ky] + 2 ∗ DU2[ky] + 2 ∗ DU3[ky];

}

SLMS transformation removed inter-iteration sequential dependencies al-

lowing parallel execution of all MIs within one iteration.

Epilogue...;

for(ky = 1; ky < n − 5; ky + +){

U3[ky + 101] = U3[ky] + 2 ∗ DU1[ky] + 2 ∗ DU2[ky] + 2 ∗ DU3[ky]; ||

U2[ky + 1 + 101] = U2[ky + 1] + 2 ∗ DU1[ky + 1] + 2 ∗ DU2[ky + 1] + 2 ∗ DU3[ky + 1]; ||

U1[ky + 2 + 101] = U1[ky + 2] + 2 ∗ DU1[ky + 2] + 2 ∗ DU2[ky + 2] + 2 ∗ DU3[ky + 2]; ||

DU3[ky + 3] = U3[ky + 3 + 1] − U3[ky + 3 − 1]; ||

DU2[ky + 4] = U2[ky + 4 + 1] − U2[ky + 4 − 1]; ||

DU1[ky + 5] = U1[ky + 5 + 1] − U1[ky + 5 − 1]; ||

}

6 SLMS and other loop transformations

SLMS can be combined with other loop reordering and restructuring trans-

formations [4]. At source level, MS can be applied both before or after other

loop transformations. The first form of combining is to apply SLMS after

loop transformations to extract the parallelism exposed by these transfor-

mations. For example, SLMS can not be directly applied to the following

21

inner loop due to the dependency of a[i, j + 1] = t; and t = a[i, j + 1]; as

depicted by the following erroneous kernel obtained by using II = 1:

for(i = 0; i < n; i + +)

for(j = 0; j < n; j + +){

t = a[i][j];

a[i][j + 1] = t;

}

−→

t = a[i][j];

a[i][j + 1] = t; || t = a[i][j + 1];

a[i][j + 2] = t;

Using loop interchange [4] to replace the innermost loop from ′j′ to ′i′ yields

a legal kernel with II = 1. Note that the dependence on the temporary

variable t is resolved by using MVE. This allows the parallel execution of

MI separated by ||.

for(j = 0; j < n; j + +){

for(i = 0; i < n; i + +){

t = a[i, j];

a[i, j + 1] = t;

}

−→

for(j = 0; j < n; j + +){

t1 = a[0, j];

for(i = 0; i < n − 2; i+ = 2){

a[i, j + 1] = t1; || t2 = a[i + 1, j];

a[i + 1, j + 1] = t2; || t1 = a[i + 2, j];

}

a[i, j + 1] = t1;

}

Performing MS at source level enables its application also before other

loop transformations. Another example where loop transformations allow

us to apply SLMS is loop fusion [4]. Each of the following two loops can not

be SLMSed due to the dependency between the first statement of the next

iterations and the last statement of the current iteration. After loop fusion

we get a single loop, now SLMS can be applied obtaining a valid scheduling

22

with II = 3 as follows:

for(i = 1; i < n; i + +){

t = A[i − 1];

B[i] = B[i] + t;

A[i] = t + B[i];

}

//second loop

for(i = 1; i < n; i + +){

q = C[i − 1];

B[i] = B[i] + q;

C[i] = q ∗ B[i];

}

TR

for(i = 1; i < n; i + +){

t = A[i − 1];

B[i] = B[i] + t;

A[i] = t + B[i];

q = C[i − 1];

B[i] = B[i] + q;

C[i] = q ∗ B[i];

}

t = A[i − 1];

B[i] = B[i] + t;

A[i] = t + B[i];

q = C[i − 1]; ||t = A[i];

B[i] = B[i] + q; ||B[i + 1] = B[i + 1] + t;

C[i] = q ∗ B[i]; ||A[i + 1] = t + B[i + 1];

q = C[i];

B[i + 1] = B[i + 1] + q;

C[i + 1] = q ∗ B[i + 1];

Consider two loops, applying SLMS separately to each loop followed by

Fusion of the two loops will generate a different schedule than first applying

Fusion and then SLMS to the fused loop. The example depicted in figure 9

demonstrates this case.

SLMS can also be used to enable the application of loop transformations.

For example, the following two loops can not be joined by loop fusion. Usu-

ally, this example is solved using a complex combination of loop peeling +

loop reversal, however one application of SLMS (as depicted in figure 10)

will allow loop fusion.

Loop unrolling is used to resolve cases where the II is to high (close to

the number of MI). Also, in some cases, unrolling the kernel of an SLMSed

loop can improve resource utilization. In conclusion, clearly there are cases

where the combination of loop transformations and SLMS is useful.

23

Figure 9: The order of transformations changes the final scheduling.

7 Cases where SLMS optimizes better than the

lower level MS

In here we consider possible explanations of why SLMS can in some cases

obtain better schedulings than the underlying lower level MS. First it is

important to understand the difference between optimizing at source level

mode and at machine level mode. At machine level the optimization can use

exact knowledge of the CPU resources and obtained optimized scheduling.

The opposite is true for source level optimization which is actually performed

ignoring hardware resources constrains, optimizing for maximal parallelism

at source level. This “disadvantage” can work to the benefit of a SLMS.

In particular, it can happen that due to hardware resource constrains the

underlying MS will not optimize a given loop while after SLMS a more

optimized scheduling will be obtained. Typically, even an elementary list

24

Figure 10: SLMS allows loop fusion.

scheduling of basic blocks applied after SLMS can in some cases find better

scheduling than the more constrained machine level MS.

We mainly consider the Iterative MS as presented in [18] (IMS) however

the following is also valid for other types of MS. The IMS has a complete

knowledge of the available hardware resources and once the II has been

computed it tries to schedule the kernel’s instructions in a modulo reserva-

tion table (RT) with II rows. The filling of the RT rows is done following

the original instruction order mixing instructions from consecutive iterations

i, i + 1, i + 2, The instruction are placed in the RT “as is” relaying on

the epilogue to create the necessary pipeline chain. Figure 11 demonstrates

a case where the IMS may fail due to increased register pressure. The DDG

in figure 11 contains three instructions x, y, z and is frequently found in loop

accessing arrays. For example the long delay between x and y can be the re-

sult of a more complex arithmetic operation such as floating multiplication,

while the dependency cycle between y and z can be easily generated by the

index increment of array accesses (y = ...z[i − 1]) or by an accumulator in-

struction (y+ = z[i]). In this case II = 2 and we assume the the IMS is able

25

to build the corresponding kernel (figure 11 left). The use of such a kernel

implies that the last four values of x must be held in four different registers

since they must remain alive to be used by later iterations of this kernel. As

explained before, modulo variable expansion will unroll the kernel four times

in order to let the value computed by the x instruction stay alive during the

next four iterations. This unrolling increases the register pressure and may

lead to performance degradation or the compiler will prevent from using the

code generated by the IMS+Modulo-variable-expansion. On the other hand

SLMS can be applied to this loop leading to the kernel [z||x]; [y] which can

be safely schedule (figure 11). Basically the SLMS in this example was used

only to expose the possible parallelism of [z||x].

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x

z

y

x
y

z x
y

z x
y

z x
y

z

z || x

y

machine level MS
x

y

z

0,6

DDG

0,1

1,1

SLMS Scheduling

6

Figure 11: Failure due to register pressure.

Another drawback of the IMS is that it can not explicitly correct the

indexes of instructions that are placed in the RT. Note that when the k’th

instruction is scheduled in a RT with II < k rows it is assumed to belong to

the i + ⌊k/II⌋ iteration where i marks the iteration of the first instruction.

Hence the IMS can not violate the order of the instruction scheduling. The

code in the example in figure 12 is taken from [18] where it is used to

26

show how IMS fails to schedule A3 and A4 in a RT with II = 4 rows

(figure 12 left). Since SLMS ignores the issue of hardware resources is will

produce the kernel [A3i||A1i+1]; [A4i||A2i+1] which can be schedule (using

list scheduling) in a RT with 4 rows (as depicted in figure figure 12 right).

Technically the IMS failed since A3 and A4 must be scheduled to the rows

already occupied by A1 and A2. Note that even if the IMS would have

considered mixed solutions such as the one described in figure 12 (right) it

lacks the ability of changing the indexing of A1 A2 from i to i+1. Thus this

failure of the IMS is not a technical issue it follows from the fact that unlike

IMS, SLMS can change the index of instructions while scheduling them in the

II rows of the kernel, e.g., from A1 : r1 = r0+x[i] to A1 : r1 = r0+A[i+1].

A
A

bussalu

A1
A2
A3
A4

alu buss
A3 i

A3 iA1i+1
A1i+1A4 i
A4 iA2i+1

A2i+1

bussalu
A1

A1
A2

A2

i

i

A1
A2

A3
A4

i+1

i+1

0,2

0,2

0,2

2,2

A1

A2

A3

A4

after scheduling

reservation table

DDG
iterative MS fails
to schedule A3

SLMS find a kernel

A3
A4

A1
A2 i

i

A3
A4

|| A1
|| A2i+1

i+1

SLMS’s kernel

Figure 12: Failure due to in ability to change indexing of instruction during

scheduling.

Finally, SLMS usually changes the data dependencies of the loop’s body

compare to the original code thus allowing different (possibly better) schedul-

ings not available in the original code. As an example consider the loop

a[i] = a[i−2]+a[i+2]; of figure 13 where the code generation used rotating

27

registers [9] to create the loop’s code. The underlying MS parallelizes the

loop (MII = RecII = 1) due to, the dependency cycle between the ”load”

and the ”add”. Note, that the ”add” was assigned a delay of 2 cycles. The

Data Dependency (DD) edges between the ”load” and the ”add” and not

between the ”load” and the ”store” are due to the use of rotating registers.

In addition, redundant ”load” optimization was applied (no need to ”load”

a[i − 2]). Next, SLMS was applied before code generation obtaining the

loop a[i] = a[i − 2] + reg; reg = a[i + 3];. Due to simplicity MVE was

not applied. After SLMS, the DD graph for the SLMSed loop (we present

only ”flow” DD arcs) changes. The MII calculated by the underlying MS

remains 1. But since the DD graph changed, the underlying scheduler can

generate a different schedule for that loop. Since the scheduler has now more

options,the new schedule can be better than the original one. However, note

that, any form of parallelization obtained by a machine level MS is clearly

obtainable using SLMS, as SLMS is less restricted than machine level MS

(limited from resource constrains).

Apart from this ability of SLMS to find optimized scheduling by first

ignoring resource constrains, there are some technical factors working in

favor of SLMS.

1. It is common that compilers restrict MS to small size loops such as

loops with less than 50 instructions. Thus SLMS can optimize and par-

allelize even large size loops improving their final scheduling however

there is no special benefit in applying loop unrolling before SLMS.

2. SLMS works at source level thus can directly determine the exact

dependencies between each two array references. Though a compiler

can also obtain these dependencies at the front-end/AST level it may

fail to transfer them to the machine level representation (RTL) of the

back-end. Thus, MS operations such as replacing A[2∗i] by A[2∗(i+1)]

28

Figure 13: SLMS changes the DD graph thus enabling other scheduling

options.

are more complicated to implement in RTL/machine level than at

source level.

8 Working with the source level compiler

In here we shortly demonstrate how the user can use the source level compiler

(SLC) to on-line improve its source code such that SLMS can be applied.

Consider the following loop for which the SLMS obtained a MS with II = 2.

Based on the outcome, the user can determine that II = 1 was not obtained

due to a dependency cycle with temp− = x[lw] ∗ y[j] of the next iteration

29

and lw + + of the current iteration.

lw = 6;

for(j = 4; j < n; j = j + 2)

{

temp− = x[lw] ∗ y[j];

lw + +;

}

−→

lw = 6;

reg1 = y[4];

temp = temp − x[lw] ∗ reg1;

for(j = 4; j < n − 1; j = j + 2)

{

lw + +; || reg1 = y[j + 1];

temp = temp − x[lw] ∗ reg1;

}

lw + +;

The user can fix this problem by moving the lw + + before the first MI

allowing the MVE to operate replacing lw by two variables lw1, lw2. The

outcome is that SLMS now obtains a schedule with II = 1 increasing the

parallelism:

lw = 5;

for(j = 4; j < n; j = j + 2)

{

lw + +;

temp− = x[lw] ∗ y[j];

}

−→

lw1 = 4;

lw2 = 5;

lw1 + +;

for(j = 4; j < n − 2; j = j + 4)

{

temp− = x[lw1] ∗ y[j]; || lw2 + +;

temp− = x[lw2] ∗ y[j + 2]; || lw1 + +;

}

temp− = x[lw1] ∗ y[j];

An even better improvement would have been obtained had the user de-

cided to apply manual decomposition of temp− = x[lw]∗y[j] before moving

lw + +. Since the lifetime of lw after SLMS is two iterations, then MVE

30

will unroll twice and use renaming to obtain the following code.

lw = 5;

for(j = 4; j < n; j = j + 2)

{

lw + +;

reg1 = y[j];

temp− = x[lw] ∗ reg1;

}

−→

lw1 = 4; lw2 = 6; lw3 = 4;

lw1 + +; reg1 = y[4];

for(j = 4; j < n − 6; j = j + 6)

{

temp− = x[lw1] ∗ reg1; || reg2 = y[j + 2]; || lw3+ = 3;

temp− = x[lw2] ∗ reg2; || reg1 = y[j + 4]; || lw1+ = 3;

temp− = x[lw3] ∗ reg1; || reg2 = y[j + 6]; || lw2+ = 3;

}

temp− = x[lw1] ∗ reg1; || reg2 = y[j + 2];

temp− = x[lw2] ∗ reg2;

9 Experimental results

SLMS was implemented in Wolfe’s Tiny system [22] enhanced by the Omega

test [14]. Tiny, was chosen, due to its support in source-to-source transfor-

mations and its support of array analysis. Tiny is a loop restructuring and

research tool which interacts with the user. Tiny’s GUI allows the user

to select which transformation to apply, it includes among others, Distri-

bution, Interchange, Fusion, Unroll and SLMS. The following benchmarks

were used to test SLMS: The NAS [5] benchmark, Livermore [11] loops, Lin-

pack [6] loops, and the STONE benchmark. The benchmarks were compiled

and tested using several commercial compilers and machines: Intel’s ICC-

ia64(V 9.1) and GCC-ia64 over Itanium II (IA64), IBM’s XLC over Power

4 Regata, and GCC over ARM simulator. We have also tested SLMS with

GCC over superscalar processor Pentium(R). The Experimental results are

divided into three subsections: the first describes the results with GCC and

the second describes the results obtained using ICC and XLC, and the third

describes results for embedded systems. The GCC has a weak Swing MS

31

and thus modeling the use of a general source level compiler optimizing the

program (with SLMS) before it is compiled by the relatively weak compiler.

ICC and XLC are high performance compilers with advanced machine level

MS, their results support the claim that SLMS is a separate optimization

that can be used before low level MS is applied. Remarks: (1) in all the

following graphs, the Y axes represents the speedup obtained by SLMSed

loop vs. non SLMSed loops. In all tests both SLMSed and non SLMSed

loops are compiled with the same compilation flags. (2) SLMS was tested

with and without source level MVE, the presented results show the best

time obtained. (3) In ia-64 architecture, improvement can be measured by

counting the number of bundles in the loop body, a bundle can be viewed

as a VLS regarding for explicit instruction level parallelism.

9.1 Experimental results over a relatively weak compiler

As explained in the introduction, SLMS is considered as part of a potential

SLC. Thus, showing that SLMS improves execution times over GCC sup-

ports the claim that a SLC can be used to improve execution times over

relatively weak final compilers. The following graphs 14 and 15, present

speedups obtained using GCC (IA64) over Itanium II with and without

−O3. Analyzing GCC’s assembly for −O3 revealed that scheduling opti-

mizations such as MVE and Unrolling where not performed. In some suc-

cessful cases such as ddot2 the application of those transformations at source

level compensated for the lack of them in the final compiler. Another suc-

cessful loop is kernel 8, this loop has a big loop body without loop-carried

dependency edges and contains only array references. For this kind of loop,

SLMS doesn’t need to decompose and in this case MII = 1. The appli-

cation of SLMS released the intra-iteration sequential dependency between

MI and revealed the parallelism between them, thus enabling the generation

32

of less bundles. Indeed before SLMS GCC’s assembly contained 23 bundles

and after SLMS 16 bundles.

Regarding bad cases, most of them are within the Linpack loops. Most of

those loops contain one long MI and use intensive floating point calculations.

The negative results can be explained by the level of parallelism of floating

point operations in the Itanium processor. To prove this, we replaced all the

floating point variables with integer ones and re-run the test. The results

where reversed in favor of SLMS. Another prove is by the fact that those

same loops have better speedups on Pentium(R) and Power4-Regata. Filter-

ing bad cases is an important issue in SLMS. Bad cases can be identified at

source level by general high level characteristics, experimental results prove

that they are specific for the pair compiler/hardware.

Figure 14: Livermore & Linpack over GCC

Another interesting experiment is to see how SLMS as a SLC can be

used to close the gap between using and not using -O3 for example in the

33

Figure 15: Stone and NAS over GCC

ICC compiler. If SLMS can cover a significant part of this gap, it can cover

up cases where the underlying final compiler fails to optimize for new archi-

tectures. Thus increasing the retargibility of the underlying final compiler.

In order to see this, we have compared how SLMS without -O3 can bridge

the gap between using -O3 and the relative weak compiler obtained when

-O3 is not used. Figure 16 depicts the results over ICC+Itanium, showing

that using SLMS without -O3 as a SLC can “close” the gap between a good

highly optimizing compiler and a relative weak compiler.

We also tested SLMS on a superscalar processor (Pentium(R)) where

all the parallelism is obtained by the HW pipeline. Figure 17 depicts the

results, the loops where compiled using GCC with and without −O3. The

results show that SLMS was successful in exposing the parallelism in most of

the loops. One example for which SLMS had a negative impact is kernel 10.

Kernel 10 contains several loop-variants and a big loop body causing SLMS’s

MVE to use 35 register, apparently causing spilling since Pentium(R) has

much less registers.

34

Figure 16: SLMS can be used to close the gap between using and not using

-O3.

9.2 Experimental results over highly optimizing compilers

The following graphs 18, 19 and 20, present speedups obtained using ICC

(IA64) over Itanium II and XLC over Power 4 Regata. Showing that SLMS

improves performance over highly optimizing compilers and powerful ma-

chines, proving that SLMS should co-exist with low level MS. Another indi-

cation to the fact that SLMS can co-exist with low level MS is that out of 31

loops that were tested, ICC performed MS both before and after SLMS for

26 of those loops. For three loops (kernels 2,7 and 24), ICC did not apply

MS but SLMS did resulting in positive speedups. For two loops (idamax2

35

Figure 17: SLMS can improve performance over superscalar processor.

and kernel 8), ICC performed MS only before SLMS. SLMS prevented MS of

those loops, kernel 8 achieved speedup of almost 15 percent while idamax2

had a negative of the same amount. Showing that SLMS should be selec-

tively applied.

In the following example we analyze a loop that has an intensive floating

point computation.

float k[n];

for(k = 1; k < n; k + +)

{

X[k] = X[k − 1] ∗ X[k − 1] ∗ X[k − 1] ∗ X[k − 1] ∗ X[k − 1]+

X[k + 1] ∗ X[k + 1] ∗ X[k + 1] ∗ X[k + 1] ∗ X[k + 1];

}

The loop was transformed using SLMS and MVE and compiled with ICC

36

Figure 18: Livermore & Linpack over ICC

−O3 over ItaniumII.

float k[n];

reg1 = X[1];

for(k = 1; k < n − 3; k+ = 2)

{

X[k] = X[k − 1] ∗ X[k − 1] ∗ X[k − 1] ∗ X[k − 1] ∗ X[k − 1]+

reg1 ∗ reg1 ∗ reg1 ∗ reg1 ∗ reg1; || reg2 = X[k + 2];

X[k + 1] = X[k + 1] ∗ X[k + 1] ∗ X[k + 1] ∗ X[k + 1] ∗ X[k + 1]+

reg2 ∗ reg2 ∗ reg2 ∗ reg2 ∗ reg2; || reg1 = X[k + 3];

}

X[k] = X[k − 1] ∗ X[k − 1] ∗ X[k − 1] ∗ X[k − 1] ∗ X[k − 1]+

reg1 ∗ reg1 ∗ reg1 ∗ reg1 ∗ reg1;

Since the ItaniumII has two floating point units, and can concurrently

execute two bundles, each bundle can contain one fma.s (floating multiply

37

Figure 19: Stone and NAS over ICC

and add) instruction. For the original loop ICC unrolled the kernel 8 times

until maximum resource utilization was achieved, ICC achieved 5.8 bundles

per iteration. SLMS aided ICC to produced a compact and optimized code

with 4 bundles per iteration. For both loops ICC performed MS, but the

II for the SLMS loop was much smaller than the one for the original loop.

This example shows that SLMS can aid the low level MS to find a better

solution. This specific example is also relevant for improvement of floating

point numeric applications. Livermore kernel 24 contains a condition branch.

For both loops (original and SLMSed) ICC did not unroll nor performed

MS. For the original loop ICC generated 5 bundles per iteration and for the

SLMS loop it generated 3.5 bundles per iteration. This improvement was

because SLMS transformed the loop in a way that gave ICC other scheduling

options. Apparently, unrolling and mixing iterations enabled ICC to better

utilize resources.

38

Figure 20: Livermore & Linpack + NAS over XLC

9.3 Experimental results for embedded systems

In order to test the effectiveness of SLMS for embedded systems, one should

test the power consumption gain/loss involved with SLMS. Moreover, the

comparison should be made over a classic embedded core such as the ARM

or over a VLIW machine. 4 The effectiveness of SLMS for VLIW machines

has been demonstrated by the experiments over the IA-64. The Panalyzer

system [1] with the simple-scalar tool chain for ARM is used to measure

the effect of SLMS on the power dissipation of the ARM 7TDMI processor.

Figure 21 depict the improvements obtained in the overall power dissipation

including caches and memories. The results show that SLMS can indeed

improve the power dissipation, but not in all cases, hence SLMS must be

applied selectively. Similar, results where also obtained for cycle count fig-

ure 22. There is a clear correlation between the bad cases of the power

consumption and the cycle count. in addition the results over the ARM

are worse than those obtained over other architectures. The main reason is

4SLMS has a very minor effect on the code size, and thus this aspect of embedded

systems has not been considered.

39

that the ARM does not use Instruction Level Parallelism using basically one

ALU operation per cycle. Consequently, the parallelism that SLMS created

could only be used for hiding memory latencies and pipeline stalls (compare

to the IA64 where it was used to fill empty slots). Thus, the results of fig-

ure 21 should be regarded as a success, provided that SLMS will be used

selectively.

Figure 21: Power dissipation for the ARM

10 Possible extensions

In here possible extensions to SLMS are considered, showing its generality of

handling more complex cases than the simple loops presented so far. These

extensions include applying SLMS to while-loops and applying SLMS to

loops with conditional statements. The potential of SLMS to handle while-

loops and conditional statements is only demonstrated via examples, full

40

Figure 22: Total number of cycles for the ARM

implementation of these extensions is beyond the scope of this work.

It is well known [8] that in some cases while-loops can be unrolled in spite

of the fact that their iteration count is not fixed. The ability to unroll while-

loops suggests that SLMS can also be applied to while-loops. Following are

two examples showing how SLMS can be applied to while-loops.

In the first example, the loop finds the first element in a linked list,

whose value equal a given key.

for(p = head; p= null; p = p− > next){

if(p− > key == KEY) break;

}

41

This loop can be unrolled as follows.

for(p = head; p= null && p− > next= null; p = p− > next− > next){

if(p− > key == KEY)break;

if(p− > next− > key == KEY)break;

}

p = (p− > key == KEY)?p : p− > next;

A kernel can be obtained by overlapping successive iterations as follows.

iteration i iteration i + 1 iteration i + 2

c = (p− > key == Key)

if(c)break; (c = p− > next− > next) == Key

if(c)break;

The final SLMS version of this loop is as follows.

(c1 = head)= nuu?head− > key == KEY : false;

for(p = head; p= null; p = p− > next− > next){

[if(c1)break; || c2 = (p− > nextSLMS = null)? p− > next− > key == KEY : true;]

[if(c2)break; || c1 = (p− > next− > next= null)? p− > next− > next− > key == KEY :

}

if(c2) result = p− > next;

else if(c1) result = (head− > key == KEY)?head : p;

else result = null;

In the second example, the loop performs a shifted copy of a string.

i = 0;

while(a[i + 2]){

a[i] = a[i + 2];

i + +;

}

42

This loop can be unrolled as follows.

i = 0;

startUpCode();

while(a[i + 2] && a[i + 3]){

a[i] = a[i + 2];

a[i + 1] = a[i + 3];

i+ = 2;

}

closeUpCode();

The SLMS version after decomposition is as follows.

i = 0; j = 1;

startUpCode();

reg1 = a[i + 2];

a[i] = reg1; || reg2 = a[j + 2];

while(a[j + 3] && a[i + 3]){

i+ = 2; || a[j] = reg2; || reg1 = a[j + 3];

j+ = 2; || a[i] = reg1; || reg2 = a[i + 3];

}

closeUpCode();

Note: this outcome is better (in terms of extracted parallelism) than the

unrolled version.

The second extension is to apply SLMS to loops with conditional if-

statements. The solution of section 3.1 using source level if-conversion is

not very efficient as it adds conditional checks before every statement of the

if-then/if-else body. Instead we can use the following idea (to the best of

our knowledge a novel one but there is some similarity to the work of [20]):

• Let L be a simple loop with an if-statement L = for(i = 0; i <

n; i + +){if(Ai)Bi else Ci; Di; }.

43

• Assume that we can identify (via profile information or static analysis)

that Pf = Ai;Bi;Di is the most frequent path.

• We can chose the II according to Pf assuming that it is executed

repeatedly many times. By overlapping successive iterations of Pf a

kernel KPf = Di||Bi+1||Ai+2 may be obtained. Note that KPf can

be repeatedly executed as long as Ai+2 is evaluated to true.

• Thus, when Ai+2 is false we must:

– exit KPf .

– drain the pipeline by executing Di+1;Ci+2;D[i + 2].

– continue executing the original loop until KPf can be re-started.

• Note that the less efficient fix-up code for draining the pipeline and

locating a restart point for KPf is not executed frequently.

The process of transforming a loop with if-statements is schematically de-

picted in figure 23. This method can be generalized to loops with more than

one if-statements and to loops with nested if-statements. The final code for

44

the loop’s kernel is a s follows.

for(i = 0; i < n − 2; i + +){

D[1]; B[i + 1];

if(!A[i + 2]){

D[i + 1]; C[i + 2]; D[i + 2];

for(i = i + 3; i < n; i + +){

if(!A[i]){ C[i]; D[i]; }

else {

B[i];

if(a[i + 1]){

i −−;

break;

} else {

D[i];

}}}}}

11 Conclusions

In this work a method for source level modulo scheduling (SLMS) has been

developed and implemented in the Tiny parallelizer. In spite of its relative

simplicity it obtained good speedups over the GCC (with and without

the Swing MS), ICC and XLC as-well improvements of power-dissipation

on ARM. Experimental results show that SLMS can have a different effect

depending on the compiler and architecture hence SLMS must be applied

selectively. The bad cases of performance degradation can be attributed

to the additional array references inserted by the SLMS transformation. It

turned out that by applying SLMS to loops with more than six arithmetic

45

Figure 23: Schematic representation of SLMS that is focused on the most

frequent path.

operations per each array references almost all of these bad cases can be

eliminated.

To the best of our knowledge this is the first time SLMS has been demon-

strated and implemented. This work, also presents two possible extensions

to SLMS. An extended solution to loops with if-statements, and a partial

solution to while-loops. The development of these extension will enable the

application of SLMS to complex loops, thus allowing SLMS to use the full

power of source level transformations. Register pressure (a critical issue

with machine level MS) basically did not occurred in our experiments (ex-

cept for kernel 10), in spite of the extensive parallelism obtained by the

SLMS. This also may be attributed to the fact that register allocation and

code generation are executed after SLMS.

The relation between SLMS and known loop transformations has been

considered and demonstrated. The fact that SLMS is a source level optimiza-

tion implies that it can be easily combined with other loop transformations

to form a source level compiler (SLC) (a tool currently developed at Haifa

46

University). Though, the relation of SLCs and SLMS is not the focus of this

work, it is an important usage of SLMS. Other compilers such as Polaris

[7] that apply loop transformations and are able to generate C source code

should not be considered as SLC as they produce C code from machine level

intermediate representation. More related are real SLCs such as the Loop-

Tool [15] interactively applying controlled loop fusion and unroll-and-jam to

optimize programs at source level. Finally automatic parallelizers acting as

a SLC such as the Parafrase system [13] can also benefit from using SLMS.

SLMS is useful for two tasks: as an addition to the arsenal of loop trans-

formations for a source level compiler and as a preliminary optimization that

differs from machine MS. We have proved, via examples and experiments

that SLMS can lead to different scheduling results than machine level MS.

Thus, SLMS can be also used as a regular optimization.

References

[1] Sim-panalyzer: http://www.eecs.umich.edu/panalyzer/.

[2] J. Ullman. A. Aho, R. Sethi. Compilers: Principles, Techniques and

Tools. Addison-Wesley, 1986.

[3] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software pipelining.

ACM Computing Surveys, 27(3):367–432, 1995.

[4] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations

for high-performance computing. ACM Computing Surveys, 26(4):345–

420, 1994.

[5] David Bailey. Nas kernel benchmark program:

http://www.netlib.org/benchmark/nas.

47

[6] J. Dongarra, P. Luszczek, and A. Petitet. The linpack benchmark:

Past, present, and future: http://www.netlib.org/utk/jackdongarra.

[7] K. A. Faigin, S. A. Weatherford, J. P. Hoeflinger, D. A. Padua, and

P. M. Petersen. The Polaris internal representation. International Jour-

nal of Parallel Programming, 22(5):553–586, 1994.

[8] J. Huang and T. Leng. Generalized loop-unrolling: a method for pro-

gram speed-up, 1997.

[9] Sverre Jarp. Optimizing IA-64 performance. Journal of Software tools,

26(7):21–22, 24, 26, July 2001.

[10] M. Lam. Software pipelining : an effective scheduling technique for

vliw machines. In PLDI, pages 318–328, 1988.

[11] F. H. McMahon. Lawrence livermore national laboratory fortrn ker-

nel:mflops.

[12] V. R. North. Ia-64 code generation:

http://citeseer.ist.psu.edu/385244.html.

[13] C. D. Polychronopoulos, M. B. Gikar, M. R. Haghighat, C. L. Lee,

B. P. Leung, and D. A. Schouten. The structure of parafrase-2: an

advanced parallelizing compiler for c and fortran. In Selected papers of

the second workshop on Languages and compilers for parallel computing,

pages 423–453, 1990.

[14] W. Pugh. The omega test: a fast and practical integer programming

algorithm for dependence analysis. In Supercomputing, pages 4–13,

1991.

48

[15] A. Qasem, G. Jin, and J. Mellor-Crummey. Improving performance

with integrated program transformations. Technical Report TR03-419,

Rice University, 2003.

[16] B. R. Rau and C. D. Glaese. Some scheduling techniques and an eas-

ily schedulable horizontal architecture for high performance scientific

computing. In Proceeding of the 14th Annual Workshop on Micropro-

gramming, pages 183–198, October 1981.

[17] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for

software pipelining loops. In MICRO, pages 63–74, 1994.

[18] B. Ramakrishna Rau. Iterative-modulo-scheduling. In HPL-94-115,

November 22,1995.

[19] Warter, Lavery, and Wwu (1993). The benefit of predicated execution

for software pipelining. In HICSS-26 Conference Proceedings, page Vol.

1, January 1993.

[20] N. J. Warter, J. W. Bockhaus, G. E. Haab, and K. Subramanian. En-

hanced modulo scheduling for loops with conditional branches. In The

25th Annual International Symposium on Microarchitecture, Portland,

Oregon, 1992. ACM and IEEE.

[21] N. J. Warter, S. A. Mahlke, W. W. Hwu, and B. R. Rau. Reverse

if-conversion. SIGPLAN Not., 28(6):290–299, 1993.

[22] M. Wolfe. The tiny loop restructuring research tool. In Proceedings of

the International Conference on Parallel Processing, 1991.

[23] A. M. Zaky. Efficient Static Scheduling of Loops on Synchronous Mul-

tiprocessors. PhD thesis, Ohio State University, OH, 1989.

49

