
New User Interface for Tiny
and Other Extensions

User Guide

Wayne Kelly Vadim Maslov

Dept. of Computer Science Dept. of Computer Science
Univ. of Maryland, College Park, MD 20742 Univ. of Maryland, College Park, MD 20742

wak@cs.umd.edu, (301)-405-2726 vadik@cs.umd.edu, (301)-405-2726

January 29, 2013

Contents

1 Introduction 1

2 Command line options 2

3 New user interface 3

3.1 Scrolling . 3

3.1.1 Direct Control . 3

3.1.2 Indirect Control . 3

3.2 The Mouse . 4

3.3 Dependence status . 4

3.4 The Dependence Window . 5

3.5 Dependence Filters . 5

3.6 Zapping Dependences . 6

4 Changes to Tiny language 6

4.1 Assert Statements . 6

4.2 Change of Operator precedences . 6

4.3 Built-in functions . 7

4.4 Storage classes . 7

4.5 Update statements +=, *=, max=, min= . 7

4.6 DOANY loop . 8

4.7 RETURN statement . 8

4.8 Run-time dimensions and undeclared variables . 8

5 New analyses and transformations 9

5.1 Induction Variable Recognition (IVR) . 9

5.2 Forward substitution of scalars . 9

5.3 Elimination of dead scalar assignments . 9

1

5.4 Example of SSA graph–related techniques application . 9

5.5 Reduction dependences . 10

5.6 Strip-mine loop transformation . 11

5.7 Array and scalar renaming and expansion . 11

5.8 Array privatization . 13

5.9 Data dependences from Entry and to Exit nodes . 14

6 Unified system for performing transformations 14

6.1 Using the system . 14

6.2 The Unified transformation control panel . 14

6.3 Performance estimates . 16

7 Miscellaneous 16

8 f2t — Fortran-77 to Tiny converter 16

9 Syntax of Tiny 17

1 Introduction

This document is intended for use by users of Michael Wolfe’s Tiny Tool as extended by the
University of Maryland. It is assumed that users are already familiar with the functionality of the
original Tiny Tool. The extensions described below were implemented to allow Tiny to be used on
non trivial sized programs. It is now possible to examine and transform programs that are longer
that one screen in length by being able to change the portion of the program displayed on the
screen. The new user interface also includes supplemental ways to view dependences. All existing
capabilities of Tiny have been maintained (to the best of our knowledge).

November 1992 release of Tiny by University of Maryland at College Park (UMCP) research
group has many new features. Here’s a short list of important ones:

• A Unified system for performing transformations

• Induction variable recognition (IVR) using Static Single Assignment (SSA) graph

• Forward substitution of scalars

• Elimination of dead assignments to scalars

• Fortran-77 to Tiny converter named f2t

• Built-in functions

• Storage classes, Entry and Exit nodes for dependences involving global variables

• Update (assignment) statements +=, *=, max=, min=

• Reduction dependences

• DOANY loop

• Scalar and array expansion to kill anti and output dependences

• Array privatization

• Strip-mine loop transformation

2

2 Command line options

Tiny is invoked with any number of command line options, and, (optionally,) a initial file to read
in. Options may precede file name or follow it. The command line options are:

-ad Use data dependence analysis algorithm number d. By default Omega test is used. Currently
the following algorithms may be used (identified by algorithm number):

1 DDalg banerjee: Banerjee test.

2 DDalg simultaneous: ?

3 DDalg sim exp: ?

4 DDalg sim constrain: Power test.

5 DDalg no banerjee: ?

6 DDalg lambda: Lambda test

7 DDalg omega: Omega test

-c Ignore Tiny program comments. That is, don’t display them and don’t keep them in Tiny
Abstract Syntax Tree (AST). By default comments are displayed.

-d Make arrays have AUTO storage class by default, that is, if no storage class is explicitly
mentioned for the array. Normally arrays are of INOUT class (equivalent to COMMON) by
default.

-e Don’t perform elimination of dead scalar assignment statements. Performed by default.

-g Don’t compute dependences coming from Entry node to all variables defined on entry to the
Tiny procedure and from all variables used on exit from the procedure to Exit node. Done
by default.

-i Don’t perform induction variable recognition. IVR is performed by default. SSA graph is
always built (even if IVR is not performed).

-l Replace affine expressions with their canonical form. Not done by default.

-p Perform privatization of arrays for the whole program. Not done by default.

-r Try to convert assignment statements to update statements. That is, perform transformations
like s = a+s+b --> s += a+b. This conversion is not done by default.

-q Make Tiny indicate what phase of analysis it is running (parsing, IVR stuff, dependence
analysis). Off by default.

-s Skip data dependence analysis for scalar variables.

-t Skip data dependence analysis for top-level dependences (dependences between references
that share no common loops).

-x Perform array expansion for the whole Tiny program. Not done by default.

-y If array expansion is performed, do it only once. By default array expansion is repeated until
no further changes can be made.

-z Don’t substitute expressions containing scalar variables with unknown values. That is, sub-
stitution will be done only for expressions containing constants and loop variables. By default
integer scalar variables which have unknown values can form a part of expression to be sub-
stituted.

-2 Skip Omega-2 analysis, that is, dependence killing, termination, covering, and refinement.

3

Not skipped by default.

-A Run somewhat expensive assertions in the code for static single assignment and induction
variable recognition (useful for discovering bugs). Not done by default.

-I Write a lot of induction variable recognition debugging information to trace.out file.

-D Don’t perform dependence analysis at all. May be useful if you want to see effects of IVR
and don’t need dependence information.

-Olevel Set Omega test debug level. May be -O1, -O2, or -O3. The more the debugging level, the
more debugging information will appear in trace.out file.

-P Turn on printing of results of Omega test.

-Z Print dependence zap gists.

3 New user interface

3.1 Scrolling

In the original Tiny, it was intended that the entire program be displayed on the screen. The new
implementation treats the screen as a window through which the program can be viewed. At any
time only a portion of the entire program can be seen through the window. The portion of the
program that is currently visible through the window can be changed by the user both directly and
indirectly.

3.1.1 Direct Control

Whenever the program is displayed on the screen the user is free change which portion of the
program is visible through the window by scrolling the window up or down using the keys described
below. These scrolling options do not appear explicitly in any menu, but they are implicitly available
in all menus where the program is displayed.

The keys used for scrolling are based on those used by the “vi” editor available under Unix.
The keys used are: ’ctrl j’ and ’ctrl k’ cause the window to scroll down one line and up one line
respectively; ’ctrl d’ (d for down) and ’ctrl u’ (u for up) cause the window to scroll down half a
page and up half a page respectively; finally ’ctrl f’ (f for forward) and ’ctrl b’ (b for backward)
cause the window to jump one page forward or one page backward respectively.

3.1.2 Indirect Control

The user controlled scrolling in the previous section does not affect the node and/or dependence
if any, that is currently being browsed. However by modifying the node and/or dependence that
is currently being browsed, the user may cause the current node and/or dependence to no longer
be in the portion of the program visible through the window. When this occurs the Tiny system
automatically scrolls the window up or down appropriately, so that the the current node and/or
dependence is visible through the window. It is sometimes not possible to display both nodes
involved in a dependence on the screen at the same time because they are more than one screen
apart. When this occurs only one of one two nodes is marked on the screen. However the user can
still scroll manually to the part of the program where the other node involved in the dependence is

4

located and it will be shown marked as normal.

3.2 The Mouse

The mouse can now be used to select menu options by clicking on the appropriate word in the menu
line. This allows Tiny to be used almost entirely without the use of the keyboard. The mouse can
also be used to change the current node and/or dependence being browsed.

Mouse works only in xterm terminal emulator running under X Windows System in UNIX
operating system.

Clicking the left button on a node causes it to become the current node being browsed. If the
user is not already in the browse menu then they are automatically placed in the browse menu, and
when they exit this menu they are returned to the menu they were working in when they clicked the
button. If the user is already in the browse dependence menu when they click the left button and
the node they click on is involved in a dependence then the first dependence that node is involved
in becomes the current dependence being browsed.

The middle button is used change the dependence currently being browsed. If the user is
not already in the browse dependence menu then they are automatically placed in the browse
dependence menu, and when they exit this menu, they are returned to the menu they were working
in when they clicked the button. The middle button can only be used to select nodes that could
possibly be involved in dependences. The first dependence involving the selected node, if any,
becomes the current dependence being browsed. The middle button also has the affect of pulling
up the pop up dependence window described below.

The right button is used to toggle whether this dependence window is displayed on the screen.

3.3 Dependence status

In any listing of a dependence, the status of a dependence may be indicated by a set of letters in
square brackets at the right end of the line describing the dependence. These status flags arise
from two types of extended analysis. First, we attempt to determine which dependences are based
on values and which are based solely on sharing memory locations. Dependences based solely on
shared memory locations are termed dead. We also check to see if there exist interesting assertions
that can be added to the program so as to eliminate the dependence. The meanings of the letters
are as follows:

R - the direction/distance associated with this dependence has been updated (refined) so as to
reflect dependences based on references values, not shared memory references

C - This is a covering dependence; every location accessed by the sink of the dependence is first
overwritten by the source of the dependence

T - This is a terminating dependence; every location accessed by the source of the dependence is
later overwritten by the sink of the dependence

k - This dependence was killed by an explicit test and therefore dead.

r - this dependence is the original (pre-refined) version of a dependence that has been refined (as
is therefor as dead).

5

c - This dependence was quick killed by a covering dependence.

t - This dependence was quick killed by a terminating dependence.

Z - This dependence can be zapped (i.e., an interesting assertion can be used to delete this depen-
dence).

For a description of these terms, see the SIGPLAN PLDI’92 paper on the Omega test.

3.4 The Dependence Window

The dependence window is a pop up window that appears on top of the main window. It contains
a list of the dependences involving the node currently being browsed. At any time this dependence
window will only show some of these of these dependences, however this window can also be
scrolled to see the other dependences. This scrolling is controlled by clicking on the “Up” and
“Down” options in the dependence window. By default, dependences involving the current browse
node as either the source or destination node are shown in the window. The dependences involving
the current browse node as the destination node are separated from the dependences involving the
current browse node as the source node are separated by a line of ∼’s. Initially the dependences
involving the current browse node as the source node are displayed. The dependences involving the
current browse node as the destination node can be viewed by scrolling the dependence window
up.

The first dependence in the dependence window is always the current dependence being browsed,
therefore scrolling the dependence window changes the current dependence being browsed. Cor-
respondingly changing the current dependence being browsed using existing Tiny features, will
change the dependences shown in the dependence window (e.g. “cycle” and “next”).

The size and position of the dependence window can be altered by clicking on the “Resize” and
“Move” options in the dependence window. A move is achieved by pressing a mouse button down
on the “Move” option, and then dragging the mouse to the line representing the required top of
the dependence window. A resize is achieved similarly by pressing a mouse button down on the
“Resize” option and then dragging the mouse to the line representing either the required top or
bottom of the dependence window. The dependence window also contains a set of toggled filter
options which modify the dependences which are shown to the user as described in the next section.

3.5 Dependence Filters

The dependence window contains a set of filter options. Clicking on these options toggles whether
the corresponding filter should be applied to the dependences shown to the user. If a filter is “on”
then that option is highlighted in the dependence window and dependences of the type correspond-
ing to this filter are shown to the user. Initially all filters are set to “on”. The filter settings remain
in affect until they are changed, even after the dependence window is closed. The filters affect all
dependences that are shown to the user, not just dependences shown in the dependence window,
i.e. they affect the existing “cycle” and “next” options for example.

There are four filters “flow”, “anti”, “output” and “reduce” (the last one for reduction depen-
dences) which determine which types of dependences are shown to the user. The four filters “dead”,
“∼dead”, “∼refine” and “∼cover” determine whether dependences that have are dead (killed or

6

covered), not dead, not refined and are not covering respectively should be shown to the user. The
“∼carry” filter determines whether loop independent dependences are shown to the user. Finally
the scalar filter determines whether dependences between scalars are shown to the user.

3.6 Zapping Dependences

In order to zap dependences in Tiny, select the zap option which is under the DD option, which in
turn is under the browse option in the main menu. When this is done, Tiny displays the conditions
that must hold in order for a dependence to exist. The user can then indicate that one of these
conditions is known to be false, and Tiny will add an assertion negating that condition, and remove
the dependence.

Tiny can not handle those cases in which the conjunction of the conditions is known to be false,
but no individual condition is false. Thus if the conditions displayed are

1. 3 <= n
2. n <= 10

and we know that n < 3 holds then we just choose 1. But Tiny can not handle the case in which
we know that either n < 3 or n > 10 is true, but neither condition by itself is always true.

4 Changes to Tiny language

Except for changes listed below some “syntactic sugar” changes were made. These changes should
be checked at Tiny grammar file src/tinyy.y.

4.1 Assert Statements

Assert statements can now be added to a Tiny program. These can be placed anywhere in the
program text and must be true for the entire program. The syntax for these statements is

assert(<arithmetic expression> <comparison operator> <arithmetic expression>)

where a <comparison operator> can be any one of >,<,>= and <=, and the arithmetic expressions
must be comprised of numeric and symbolic constants and arithmetic operators.

4.2 Change of Operator precedences

The exponentiation operator (∗∗) now has the highest precedence and the <,<=, >,>= and <>
have been assigned the lowest precedence. Thus the expression

a ∗∗ 2 + b ∗ c < 10

is now equivalent to

((a ∗∗ 2) + (b ∗ c)) < 10.

7

4.3 Built-in functions

Built-in functions can now be used in Tiny program. First, built-in function should be declared
like

builtin real abs(), sin(), myfun()

This declaration informs Tiny that functions abs, sin, and myfun have no side effect and can
be treated as conventional arithmetic operations.

F2t converter automatically declares all standard Fortran-77 functions as builtin.

4.4 Storage classes

Now each Tiny variable has a storage class. It’s needed to tell whether variable is defined on entry
to the procedure and whether variable value is used on exit from the procedure. This information
is used by the IVR transformations and by the dependence analyzer.

There are following storage classes defined:

auto Automatic variable. No value is assigned to variable on entry to procedure, and value of
variable on exit from the procedure is not used.

common

static

formal Common, static or formal (dummy parameter) variable. Variable has a value on entry to
procedure and its value on exit from procedure is used. The class common corresponds to
Fortran COMMON. The class static corresponds to Fortran SAVEd. The class formal

corresponds to Fortran subroutine dummy parameter.

in Variable has a value on entry to the procedure, but its value on exit from the procedure is
not used.

out Variable has no value on entry, but its exit value is used.

inout Equivalent to COMMON — both entry and exit values are present.

private Private variable. There exists separate instance of the private variable for each point of
iteration space created by loops surrounding the declaration of this variable. Therefore no
dependence can be carried by surrounding loops for private variable.

builtin Built-in function — see above.

const Named constant.

When variable is declared its class should precede variable type. If class is omitted then variable
is considered to be of the class auto for scalars and of class inout for arrays. Also if there is a use
of scalar variable before its definition in Tiny program and no storage class is explicitly assigned
to variable, the variable gets in class.

F2t converter generates relevant storage classes for Fortran variables.

4.5 Update statements +=, *=, max=, min=

Now it’s possible to write a la C

8

s += a(i,j) + b(k)

instead of

s = a(i,j) + b(k) + s

We introduced update statements only for both commutative and associative operations (+,
*, min, max). It was done so because we introduced reduction dependences which may exist only
between two updates (see below).

There’s no need to rewrite existing Tiny programs to get advantage of reduction dependences
which are less restrictive than other types of dependences. Tiny now can automatically convert as-
signment statements to semantically equivalent update statements if it is started with -r command
line option.

For example, assignment s = s + a(i,j) + 2 or even s = a(i,j) + s + 2 is converted by
Tiny to s += a(i,j) + 2.

4.6 DOANY loop

This type of loop was suggested by Michael Wolfe in the paper “Doany: Not Just Another Parallel
Loop” published at Conference record of 5th Workshop on Languages and Compilers for Parallel
Computers, Yale University, August 1992. It instructs computer to execute iterations of the loop
in any sequential order but not simultaneously.

When performing parallelization of a loop (either by running menu command Browse.Restr.Par
or while doing parallelization of all loops by running System.Auto.AutoParallel) Tiny makes loop
to be DOANY if all dependences carried by it are reduction dependences.

DOANY loop is intimately related to reduction dependences (see below).

4.7 RETURN statement

RETURN statement is now allowed to appear at the end of the Tiny program. It may contain
expression which is ignored.

f2t assigns storage class OUT to Fortran function return variable, so assignments to it won’t
be eliminated by IVR dead statement eliminator.

4.8 Run-time dimensions and undeclared variables

Array dimensions can be run-time.

Undeclared variables are allowed to appear in the bounds of array being declared. They will
be automatically declared with type integer. Warning (not error) message is issued on double
definition of variable.

9

5 New analyses and transformations

5.1 Induction Variable Recognition (IVR)

A new IVR recognition technique proposed by Michael Wolfe at paper “Beyond Induction Variables”
published at PLDI ’92 conference proceedings is implemented. This technique is based on Static
Single Assignment (SSA) Graph. Right now we recognize only basic induction variables, that is,
variables which are affine functions of loop parameters.

5.2 Forward substitution of scalars

This technique is based on the SSA graph too. We substitute variable by the expression assigned
to it if this expression is considered to have known value. The following things are considered to
have known value:

• Constants,

• Loop parameters,

• Result of operation which arguments are known values,

• Value of variable assigned with known value.

It should be noted that array reference, even if all of its indexes are known values, is not a
known value.

5.3 Elimination of dead scalar assignments

Assignment to scalar is considered to be dead if value assigned by it is not used later in the program.

Decision to eliminate assignment is taken using the SSA graph of program. If there are no edges
going from strongly connected component (SCC) in reverse of SSA graph (in reverse graph edge
goes from definition of value to its use) then this SCC can be eliminated.

By eliminating not just single statement but whole SCC we are able to eliminate mutually
dependent but otherwise useless assignments.

5.4 Example of SSA graph–related techniques application

real a(100,100,100),b(100),c(200)

integer n, s, t, u

real c1

s = 100

t = 1

for k = 3 to 100 by 2 do

c1 = c(k)

a(k,s+10,t) = a(k,s,t)+c1

b(s+10) = b(s)+c1

s = s - 10

t = t + 10

c1 = c(k)

10

u = t

endfor

for k = 0 to 100 by 1 do

b(t) = b(s)+1

s = s - 10

t = t + 10

c1 = b(t)

u = s

endfor

is converted to the following using IVR, forward substitution and dead statement elimination:

auto real a(1:100,1:100,1:100), b(1:100), c(1:200)

auto integer n, s, t, u

auto real c1

for k = 3,100,2 do

c1 = c(k)

a(k,125-k*5,-14+k*5) = a(k,115-k*5,-14+k*5)+c1

b(125-k*5) = b(115-k*5)+c1

endfor

for k = 0,100,1 do

b(k*10+491) = b(-390-k*10)+1

endfor

5.5 Reduction dependences

This is 4th type of dependence in addition to three known types — flow, anti, and output depen-
dences.

There is a reduction dependence between two instances of statements iff these two instances
may be executed in any order but not simultaneously or in such a fashion that the semantics of
reduction is preserved.

Reduction dependences may exist only between variable updates of the same type (that is, there
is a reduction dependence between s+=expr and s+=expr but not between s+=expr and s*=expr).
Variable update is done by an update statement (see above).

Another distinctive feature of reduction dependences is that they are not forward in time. It
is so because reduction dependences don’t impose any ordering on sequence of commutative and
associative updates of the same memory cell. They rather indicate that instances of statements
can not be executed in parallel but it’s OK to execute them sequentially in any order (or to use
special reduction operations hardware support present in many parallel/vector computers).

real a(100,100)

real s

S4: s = 2

for i=1 to 100 by 2 do

for j=3 to 100 by 3 do

11

S7: s += a(i,j) + 2

S8: s *= a(i,j)

S9: s += a(j,i) - 1

endfor

endfor

S12: a(50,50) = s

In this example we have the following dependences coming from statement S7 (with Omega-2
turned off). As you may note, reduction dependence between S7 and S9 (or between S7 and S7)
has (*,*) direction vector which is not valid for time-directed dependences.

flow 7: s --> 12: s

reduce 7: s --> 7: s (*,*)

output 7: s --> 8: s (0,0+)

output 7: s --> 8: s (+,*)

flow 7: s --> 8: s (+,*)

flow 7: s --> 8: s (0,0+)

anti 7: s --> 8: s (0,0+)

anti 7: s --> 8: s (+,*)

reduce 7: s --> 9: s (*,*)

Even though we say that reduction dependence is between statements S7 and S9, it is shown in
Tiny as going both from S7 to S9 and from S9 to S7. Reduction dependence direction vector is the
same for both directions.

5.6 Strip-mine loop transformation

This is done by running menu entry Browse.Restr.Mine. Since it is not reordering transformation,
user is not asked any questions except for he/she is requested to type in strip-mine factor which
should be positive integer constant.

Say, we have a loop

DO i = a, b, c

...

DOEND

After strip-mining it by a factor f we have the following two loops:

DO i# = a, b, c*f

DO i = i#, MIN(i# + c*(f-1)), c

...

DOEND

DOEND

5.7 Array and scalar renaming and expansion

This transformation allows us to kill anti and output (generic name — storage) dependences by
renaming and expanding involved variables.

12

To kill storage dependence by expansion select menu entry Browse.DD.Expnd when dependence
browser is on the dependence you want to kill. Please note that kill is not guaranteed because we
use simplified algorithm for the expansion.

To run expansion for the whole program run menu entry System.Auto.ExpanArr or start Tiny
with command line flag -x.

We use the following renaming and expansion algorithm: For each variable

1 Find connected components of dependence graph based on flow and reduction dependences
only. For each connected component:

2 To kill a storage edge between two different components, rename one of them.

3 To kill a storage edge within a component:
Find a depth d such that all flow and reduction edges within the component has distance 0
at level d and the edge being killed has a non-zero distance.
Note: all references must share the same outer d loops.
Rename the component, and add an additional subscript to all references, containing the loop
variable for level d.

Example. File test/tiny/local/givens.t:

real a(1:100,1:100)

integer n

real c,s,d,a1,a2

for i = 1 to n do

for j = i+1 to n do

a1 = a(i,i)

a2 = a(j,i)

d = sqrt(a1*a1+a2*a2)

c = a1/d

s = a2/d

for k = i to n do

a1 = a(i,k)

a2 = a(j,k)

a(i,k) = c * a1 + s*a2

a(j,k) = -s * a1 + c*a2

endfor

endfor

endfor

After scalar and array renaming and expansion:

inout real a(1:100,1:100)

auto integer n

auto real c_e(1:n,i+1:n), s_e(1:n,i+1:n), d_e(1:n,i+1:n)

auto real a1_e(1:n,i+1:n), a1_r_e(i:n,1:n,i+1:n)

auto real a2_e(1:n,i+1:n), a2_r_e(i:n,1:n,i+1:n)

for i = 1,n do

for j = i+1,n do

a1_e(i,j) = a(i,i)

13

a2_e(i,j) = a(j,i)

d_e(i,j) = sqrt(a1_e(i,j)*a1_e(i,j)+a2_e(i,j)*a2_e(i,j))

c_e(i,j) = a1_e(i,j)/d_e(i,j)

s_e(i,j) = a2_e(i,j)/d_e(i,j)

for k = i,n do

a1_r_e(k,i,j) = a(i,k)

a2_r_e(k,i,j) = a(j,k)

a(i,k) = c_e(i,j)*a1_r_e(k,i,j)+s_e(i,j)*a2_r_e(k,i,j)

a(j,k) = -s_e(i,j)*a1_r_e(k,i,j)+c_e(i,j)*a2_r_e(k,i,j)

endfor

endfor

endfor

5.8 Array privatization

The basic idea of this transformation is to make each processor of MIMD system own separate
instance of a given variable thus eliminating communication and subscripts computation. Privatized
variables have storage class PRIVATE.

To apply privatization to the whole program select menu entry System.Auto.Privatize or
start Tiny with command line flag -p.

We use the following privatization algorithm: For each variable

1 Find connected components, just as in expansion. For each connected component:

2 For each component, let d be the level such that all flow and reduction dependences have
distance 0 at this level.

3 Privatize the component at the level d. Put variable declaration inside the appropriate loop.

4 Remove any subscripts that are all identical (e.g., the variable is privatized in the i loop, and
the second subscript is i in all references). Do not refer to unprivatized loop variables or any
non-loop variables.

5 Repeat steps 2, 3, 4 until no new d can be found.

Example: after the privatization of previously expanded program:

inout real a(1:100,1:100)

auto integer n

for i = 1,n do

for j = i+1,n do

private real d_e_p, s_e_p, c_e_p, a2_e_p, a1_e_p

a1_e_p = a(i,i)

a2_e_p = a(j,i)

d_e_p = sqrt(a1_e_p*a1_e_p+a2_e_p*a2_e_p)

c_e_p = a1_e_p/d_e_p

s_e_p = a2_e_p/d_e_p

for k = i,n do

private real a1_r_e_p, a2_r_e_p

a1_r_e_p = a(i,k)

a2_r_e_p = a(j,k)

14

a(i,k) = c_e_p*a1_r_e_p+s_e_p*a2_r_e_p

a(j,k) = -s_e_p*a1_r_e_p+c_e_p*a2_r_e_p

endfor

endfor

endfor

5.9 Data dependences from Entry and to Exit nodes

Entry node symbolizes the outer context of Tiny procedure which defines variables of COMMON,
STATIC, FORMAL, IN, INOUT storage classes.

Exit node symbolizes the outer context which uses variables of COMMON, STATIC, FORMAL,
OUT, INOUT classes.

Dependences involving one of these nodes have empty direction and distance vectors because
these nodes are not surrounded by any loops.

Flag -g makes Tiny ignore dependences involving Entry and Exit nodes.

6 Unified system for performing transformations

This new transformation system is a major addition to the Tiny system. The system enables
the user to optimize their program using a single universal transformation operation, rather than
composing a number of different transformations. In this respect our system is very similar to the
unimodular transformation framework, however our system is more general. The basic idea is to
associate an affine schedule with each statement, that specifies the “time” at which each of their
iterations should be executed. So a transformation is represented by a set of schedules (one for
each statement). For more details please refer to:

A Framework for Unifying reordering Transformations, Wayne Kelly and Bill Pugh,
Technical Report CS-TR-2995.1, Department of Computer Science, University of Mary-
land

Our system generates a list of schedule sets (corresponding to transformations). This list only
contains schedules corresponding to transformations which are “profitable” according to our simple
performance estimators. The user is able to control the size of the search space that is considered in
generating these schedules. This allows the user to balance the time spent finding schedules verses
the likelyhood that the most profitable transformation will be found.

6.1 Using the system

The Unified transformation system is reached by choosing the “Unif” option in the Restructuring
menu, which is reached by choosing the “Restr” option in the Browse menu. The user must select
the outer level loop which they wish to transform before entering the Unified transformation system.

6.2 The Unified transformation control panel

The top half of the screen contains two windows for displaying sections of code. Initially the left
window contains the section of code which is about to be transformed. The schedules corresponding

15

to the sections of code are displayed immediately above the sections of code.

The middle section of the screen contains a window for viewing the list of schedules generated
by the system. The schedules are listed one per row in a tabular fashion. The first column
contains reference numbers which uniquely identify the schedules. The remaining columns contain
the various performance estimates (simplicity, parallelism, locality and code length). Each of the
performance estimate columns has a heading identifying it. Beneath each of these column headings
there are displayed two cutoff values corresponding to their respective columns. These cutoff values
can be modified by the user and control how many schedules will be generated. If column A has
an absolute cutoff value of a%, then only schedules which are within a% of the best schedule w.r.t
column A will be displayed. An absolute cutoff value of “No Limit” is equivalent to a value of
infinity. If a schedule is worse than some other schedule by more than the desirable cutoff value
di% w.r.t. to all columns i that are “Applicable”, then that schedule will not be displayed.

The absolute cutoff values can be toggled between “No Limit” and some limit by clicking the
middle button of the mouse over the corresponding values. The absolute cutoff values can be
incremented and decremented respectively by clicking the left and right buttons of the mouse over
the corresponding values. The desirable cutoff values can be toggled between “Not Applicable”
and applicable by clicking the middle button of the mouse over the corresponding values. The
desirable cutoff values can be incremented and decremented respectively by clicking the left and
right buttons of the mouse over the corresponding values.

The bottom section of the screen displays other user toggled options which affect the search
space which is considered when generating schedules. The options correspond to various traditional
transformations (loop reversal, loop fusion, loop skewing, statement duplication, loop alignment
and access normalization). If an option is selected by the user (indicated by reverse video) then
schedules corresponding to that traditional type of transformation will be considered. The user can
toggle each of the options by clicking over the corresponding positions.

Selecting the “Edit” option will place the cursor in the section of the screen where the schedule
of the left code is displayed. The user can then modify this schedule. All valid characters typed
by the user are inserted into the schedule. The delete key, cursor keys and return key can also be
used to edit the schedule. When the user hits the return key in the schedule of the last statement,
the modified schedule is checked for legality. If it is legal, the corresponding code is produced and
the normal mode of operation of the uniform menu is restored. Modulo and integer division can
be included in schedules using the syntax “MOD(expr, int)” and “DIV(expr, int)”.

Selecting the “Trans” option will cause the system to start generating schedules and displaying
them in the middle section of the screen. When it has finished the message “ Scheduling complete”
will appear on the message line. The user is then able to browse the schedules that are displayed.
The middle section of the screen can be scrolled vertically using the cursor keys if there are more
schedules than can be displayed in the middle section of the screen. The code corresponding to
a schedule can be viewed by clicking the mouse anywhere over the line displaying that schedule.
This new code is displayed in the right hand window at the top of the screen. The code displayed
in the top section of the screen can be scrolled vertically using the ’j’ and ’k’ keys and horizontally
using the ’h’ and ’l’ keys. The schedules displayed on the screen can be sorted based on any of the
performance metrics by clicking the mouse over the heading of the corresponding column.

The “Copy” option copies the code in the right hand window to the left hand window. The
“Original” option copies the original code into the left hand window. The “Write” option write
the code in the left hand window to a file specified by the user. The “Delete” option removes the

16

schedule currently being viewed from the list of schedules. The “Select” option replaces the original
section of code with the code in the left hand window and returns the user to the Restructure menu.
At any time the user can return to the Restructuring menu using the normal “Xcape” feature and
no transformation will have been applied.

6.3 Performance estimates

Our performance metrics are forced to be fairly simple because they are based on schedules rather
than actual code.

• The simplicity metric is an estimate of how conplex the transformed code will be.

• Our estimate for parallelism is based on how many outer level loops can be run in parallel.

• The locality estimate is determined by considering only self reuse, i.e. we do not consider
reuse between different references even if they are in the same statement. The estimates are
based on whether the accesses are stride 0, stride 1 or other. We assume that there are enough
iterations of the inner loop to flush the cache lines, so there is no temporal reuse across outer
loops for stride 1 accesses. Our estimates are based on an arbitary cache line size of 8 “values”
and we assume all loops have 40 iterations.

• The length metric is the size of the transformed code in characters. This metric is not
displayed until the corresponding code is displayed.

7 Miscellaneous

• Menu entry Browse.Optns is added. When activated it displays how command line options
are set.

• User profile file capability is added. That is, command line options are first read from file
.tinyrc residing in user’s home directory. After that command line options are parsed.

• Error messages are clarified and improved. If Tiny is forced to exit/abort it says whether
user or Tiny is to blame.

• Declarations which were in one statement in the source program, are displayed on one line
(not one name per line as it was before).

• Number of subscripts in array reference is checked against declaration.

• Indentation is added to files saved by menu command Write.

• Quit menu command is made to work in every menu.

• Original Tiny was using its own memory allocation routine which tried to overcome deficien-
cies of malloc/free functions. Since now optimized versions of malloc/free are available,
we use “pure” malloc/free for memory management.

8 f2t — Fortran-77 to Tiny converter

It is a hack of f2c (Fortran-77 to C converter) which, in turn, is a hack of ancient f77 UNIX
compiler. f2t is given name of Fortran program to convert:

17

f2t foo.f

If conversion is successful file foo.t will appear in your working directory. If you already had
foo.t in your working directory it will be overwritten. Your favorite *.t files can be protected
from overwriting by making them read-only.

If Tiny is given a Fortran source, it automatically translates it to the Tiny language by calling
f2t. Since Tiny doesn’t know path to f2t, it should be on your PATH.

It’s not recommended to use f2t on files containing more that 1 Fortran program unit (procedure
or function). First use fsplit to make each file contain exactly one program unit.

If you try to convert something which can not be expressed in Tiny, C code is likely to appear
and to be rejected by Tiny. f2t is not designed to convert full Fortran-77 to Tiny. Moreover, it
can not do it because of Tiny restrictiveness.

Here’s a short list of things that are converted but are not likely to be accepted by Tiny:

• GOTO statements and any unstructured control statements. It may be recommended to use
first some restructuring tool (like VAST, KAP, or even struct) to get rid of unstructured
control.

• CHARACTER type and any manipulations with string values.

• RETURN statement in the middle of a program. In fact, RETURN statement is just special
case of GOTO statement. So, if you have RETURN at the end of your SUBROUTINE, Tiny
will accept it. But if you have it in the middle of a program, use third party restructurer first
to make your program structured.

• COMPLEX things may cause a problem.

9 Syntax of Tiny

This is taken from file src/tinyy.y which is YACC parser for Tiny language.

Terminals are capitalized or are represented by input sequences in double quotes, non-terminals
are lower case names.

Explanations for some of terminals:

TID name

TINT integer constant

TFLOAT real constant

TEOS ";" or "\n" -- end of statement

TCOMMENT comment starting with "!"

pgm: stlist

stlist: stmt

| stlist TEOS stmt

stmt:

| stassert

18

| stcomment

| stasgn

| stasgnoper

| stconst

| stfor

| stforall

| stif

| stparfor

| stdoany

| stdecl

| streturn

streturn: "return"

| "return" expr

stassert: "assert" "(" expr ")"

stcomment: TCOMMENT

stasgn: lhs "=" expr

stasgnoper: lhs asgnoper expr

asgnoper: "+="

| "*="

| "max="

| "min="

lhs: TID

| TID "(" list ")"

stconst: "const" constlist

constlist: constdecl

| constlist "," constdecl

constdecl: newid "=" cexpr

stfor: "do" doid "=" expr forto expr optforby TEOS stmt

| "do" doid "=" expr forto expr optforby "{" stlist "}"

| "for" doid "=" expr forto expr optforby "do" stlist "endfor"

optforby:

| forby expr

stforall: "forall" doid "=" expr forto expr optforby "do" stlist "endfor"

19

stparfor: "doall" doid "=" expr forto expr optforby "do" stlist "endfor"

stdoany: "doany" doid "=" expr forto expr optforby "do" stlist "endfor"

forto: "to"

| ","

| ":"

forby: "by"

| ","

| ":"

stif: "if" expr "then" stlist elsepart "endif"

elsepart:

| "else" stlist

stdecl: class type decllist

class:

| "auto"

| "common"

| "static"

| "formal"

| "in"

| "out"

| "inout"

| "private"

| "builtin"

type: "integer"

| "real"

decllist: decl

| decllist "," decl

decl: newid init

| newid "(" boundlist ")" init

init:

| "=" expr

boundlist:

| bound

| boundlist "," bound

20

bound: expr

| expr ":" expr

newid: TID

doid: TID

cexpr: TID

| TINT

| cexpr "+" cexpr

| cexpr "-" cexpr

| "-" cexpr

| "+" cexpr

| cexpr "*" cexpr

| "(" cexpr ")"

oldid: TID

expr: oldid

| oldid "(" list ")"

| TINT

| TFLOAT

| "(" expr ")"

| expr "+" expr

| expr "-" expr

| "+" expr

| "-" expr

| expr "*" expr

| expr "/" expr

| expr "**" expr

| expr "<" expr

| expr "<=" expr

| expr "==" expr

| expr "!=" expr

| expr ">=" expr

| expr ">" expr

| expr "mod" expr

| expr "max" expr

| expr "min" expr

| TSQRT "(" expr ")"

| "floor" "(" expr "/" expr ")"

| "ceiling" "(" expr "/" expr ")"

| assocop "(" list ")"

assocop: "max"

21

| "min"

list: expr

| list "," expr

22

