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Abstract. Multiple Sequence Alignment (MSA) is one of the most fundamen-
tal problems in computational molecular biology. The running time of the best
known scheme for finding an optimal alignment, based on dynamic program-
ming, increases exponentially with the number of input sequences. Hence, many
heuristics were suggested for the problem. We consider the following version
of the MSA problem: In a preprocessing stage pairwise alignments are found
for every pair of sequences. The goal is to find an optimal alignment in which
matches are restricted to positions that were matched at the preprocessing stage.
We present several techniques for making the dynamic programming algorithm
more efficient, while still finding an optimal solution under these restrictions.
Namely, in our formulation the MSA must conform with pairwise (local) align-
ments, and in return can be solved more efficiently. We prove that it suffices to
find an optimal alignment of sequence segments, rather than single letters, thereby
reducing the input size and thus improving the running time.

1 Introduction

Multiple Sequence Alignment (MSA) is one of the central problems in computational
molecular biology — it identifies and quantifies similarities among several protein or
DNA sequences. Typically, MSA helps in detecting highly conserved motifs and remote
homologues. Among its many uses, MSA offers evolutionary insight, allows transfer of
annotations, and assists in representing protein families [20].

Dynamic programming (DP) algorithms compute an optimal Multiple Sequence
Alignment for a wide range of scoring functions. In 1970, Needleman and Wunsch [19]
proposed a DP algorithm for pairwise alignment, which was later improved by Masek
and Paterson [13]. Murata et al. [17] extended this algorithm to aligning k sequences
(each of length n). Their solution constructs a k-dimensional grid of size O(nk), with
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each of the sequences enumerating one of its dimensions. The optimal MSA is an opti-
mal path from the furthermost corner (the end of all sequences) to the origin (their be-
ginning). Unfortunately, the O(nk) running time of this approach makes it prohibitive
even for modest values of n and k. There is little hope for improving the worst-case
efficiency of algorithms that solve this problem, since the MSA problem is known to
be NP-Hard for certain natural scoring functions [10,3]. This is shown by reduction
from Max-Cut and Vertex Cover [8], that is, instances of these problems are encoded as
a set of sequences. However, the encoding sequences are not representative of protein
and DNA sequences abundant in nature, and the alignments are not reminiscent of ones
studied in practice. This is the main motivation for our work.

Since MSA is NP-hard, heuristics were devised, including MACAW [22],
DIALIGN [14], ClustalW [25], T-Coffee [21], and POA [12]. Many of these meth-
ods share the observation that aligned segments of the pairwise alignments are the basis
for the multiple alignment process. Lee et al. [12] argued that the only information
in MSA is the aligned sub-sequences and their relative positions. Indeed, many meth-
ods (e.g., [14,22,21]) align all pairs of sequences as a preprocessing step and reason
about the similar parts; the additional computational cost of O(n2k2) is not consid-
ered a problem. In progressive methods, this observation percolates to the order of
adding the sequences to the alignment [21,25,5]. Other methods assemble an alignment
by combining segments in an order dictated by their similarity [22,14]. The Carrillo-
Lipman method restricts the full DP according to the pairwise similarities [4]. Unfor-
tunately, none of these methods guarantee an optimal alignment. Another expression
of this observation is scoring, and then matching, of full segments rather than single
residues [16,14,21,27]. See [20] for recent results on MSA.

Alternatively, researchers designed optimal algorithms for (mostly pairwise) se-
quence alignment that are faster than building the full DP table. The algorithms of Epp-
stein et al. [6,7] modify the objective function for speedup. Wilbur and Lipman [26,27]
designed a pairwise alignment algorithm that offers a tradeoff between accuracy and
running time, by considering only matches between identical “fragments”. Myer and
Miller [18] and Morgenstern [15] designed efficient solutions for special cases of the
segment matching problem. In particular, the case considered by Myer and Miller can
be solved in polynomial time [18], while the general problem is NP-hard.

In this study, we identify combinatorial properties that are amenable to faster DP
algorithms for MSA, and are biologically reasonable. We measure the efficiency of a
DP solution by the number of table updates; this number is correlated with both the
time and memory required by the algorithm. We suggest a way to exploit the fact that
the input sequences are not general, but rather naturally occurring — some of their
segments are evolutionary related, while others are not.

We define and study the Multiple Sequence Alignment from Segments (MSAS) prob-
lem, a generalization of MSA. Intuitively, MSAS accounts for assumptions regarding
the pairwise characteristics of the optimal MSA. In MSAS, the input also includes a
segmentation of the sequences, and a set of matching segment pairs. As in the original
problem, we seek an MSA that optimizes the objective score. However, only corre-
sponding positions in matching segments may be aligned. Trivially, one can segment
the sequences into individual letters and specify all possible segment (letter) pairs, each
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with their substitution matrix score, getting back the original MSA problem. However,
for biological sequences we can often postulate that only solutions that conform to
some pairwise alignments are valid, e.g. when segments of different sequences clearly
match, or clearly do not match. Using these assumptions, we develop a more efficient
DP algorithm.

We then prove that the MSAS problem is essentially equivalent to the segment
matching problem. This equivalence implies that it is enough to match segments, rather
than individual positions. In particular, the complexity of DP algorithm for MSA, and,
indeed, any algorithm for MSA, depends on the number of segments in each sequence,
rather than the number of letters. We show that in practice this reduces the number of
table updates by several orders of magnitude. For example, aligning five human pro-
teins (denoted by their Swiss-Protidentifiers) GBAS, GBI1, GBT1, GB11, and GB12
requires 4.3 × 108 rather than 6.6 × 1012 table updates. Nonetheless, we prove that in
general it is NP-hard.

We can make the algorithm even faster, while still guaranteeing an optimal solution,
by further decoupling the sub-problems computation. Essentially, this improved DP
algorithm avoids some of the nodes in the k-dimensional grid when calculating the
optimal path. Indeed, in practice it outperforms naive DP, and the MSA of the example
mentioned above requires only 1.5 × 105 table updates.

Lastly, we further study the combinatorial structure of the problem by considering
two additional assumptions, and the performance improvement they imply. The follow-
ing assumptions may hold in some cases of aligning DNA sequences, where a match
indicates (near) identity. Here, we assume that the segment matches have a transitive
structure, i.e., if segment A matches segment B, and B matches C, then A necessarily
matches C. Also, an optimal alignment is one of minimal width, rather than optimal
under an arbitrary scoring function. We prove that under these assumptions, an optimal
alignment has a specific structure, which leads to a faster algorithm.

The paper is organized as follows: In Section 2 we define the MSA problem and cast
it into a graph-theoretic framework; for completeness, we mention the straightforward
DP solution. In Section 3 we present the MSAS problem and prove its equivalence to
the segment matching problem, leading to a faster algorithm. We improve the running
time even more by considering only “relevant directions” in Section 3. We describe
our implementation in Section 4, including the conversion of pairwise alignments to
the input format of MSAS, and give several examples of the performance when align-
ing human proteins. Lastly, in Section 5 we show that a transitivity assumption on the
matches leads to further improved efficiency.

2 Multiple Sequence Alignment

The input of a Multiple Sequence Alignment (MSA) problem is a set S = {σ1, . . . , σk}
of k sequences of lengths n1, . . . , nk over an alphabet Σ and a scoring function f :
(Σ ∪ {−})∗ → R (where the gap sign, “−”, is not in Σ). A multiple alignment of the
sequences is a k × n matrix with entries from Σ ∪ {−}. In the ith row the letters of
the ith sequence appear in order, possibly with gap signs between them. The score of a
column of the matrix is the value of f on the k-tuple that appears in that column. The
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FindOptimalPath(x) (Version 0)

1. If x = 0 return 0
2. For all ∅ �= I ⊆ [k]

2.1 If px−eI is undefined, compute px−eI = FindOptimalPath(x − eI)
3. I = arg maxJ⊆[k] s(x, x − eJ) + s(px−eJ )
4. Return the path x, px−eI .

Fig. 1. Basic DP MSA algorithm

score of a multiple alignment of S is the sum of scores over all columns. The objective
in the MSA problem is to find an alignment of S with optimal score. Without loss of
generality, we consider scoring functions whose optimum is a maximum, rather than a
minimum. Other formulations of MSA, which have been suggested (e.g. [12,16]), are
beyond the scope of this work.

We first define our notation: Let I ⊆ [k], where [k] := {1, . . . , k}. We denote by
ei ∈ {0, 1}k the vector that is zero in all coordinates except the ith, where it is 1, and
eI =

∑
i∈I ei. For a vector x = (x1, . . . , xk) ∈ N

k let x|I be the projection of x
onto the subspace spanned by {ei}i∈I , i.e., the ith coordinate of x|I is xi if i ∈ I ,
and 0 otherwise. For two vectors, x, y ∈ N

k we say that x dominates y, and write
x > y if xi ≥ yi for i = 1, . . . , k. We study the directed graph G0 — its vertex set is
[n1]∪{0}× [n2]∪{0}× . . . × [nk]∪{0}, and there is an edge (x, y) in G0 if and only
if x > y and x − y = eI for some ∅ �= I ⊂ [k]; in this case we call I the direction that
leads from x to y.

The paths from the vertex (n1, . . . , nk) to (0, . . . , 0) in G0 correspond to alignments
of the input sequence. Let p be such a path. Consider (x, x − eI), the jth edge that the
path transverses: In the corresponding sequence alignment, the jth column is a k-tuple
that aligns positions xi of sequences i ∈ I , and has a gap in the rest (in this case we
say that the path matches position xi of sequence i and position xi′ of sequence i′, for
all i, i′ ∈ I). We define s : E(G0) → R to be a scoring function over the edges of
G0, based on the scoring function f over the columns of the alignment. The function s
assigns to an edge the value that f assigns to the corresponding column. We also extend
s to paths, or sets of edges E′ ⊆ E(G0): s(E′) =

∑
e∈E′ s(e). It is not hard to see that

every such path defines a multiple alignment, and that every multiple alignment can be
described by such a path.

In MSA we seek a maximal (scoring) path from (n1, . . . , nk) to (0, . . . , 0) in G0.
The well-known DP solution to this problem is straightforward; we sketch it in Figure 1.
Most importantly, we store the optimal scores of subproblems that have been solved
recursively to avoid recomputing them later. For each vertex x ∈ G0, we compute the
optimal path from x to the origin, denoted px, by considering the optimal scores of all
its neighbors that are closer to the origin. Thus, we calculate the optimal MSA by calling
FindOptimalPath(n1, . . . , nk). The time complexity of the algorithm is the number of
edges in G0, i.e., Θ(2k

∏k
j=1 nj).
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3 MSA from Segments

In this section we formulate Multiple Sequence Alignment from Segments (MSAS) —
a generalization of MSA. We assume a preprocessing step that partitions the sequences
into segments and matches pairs of these segments. These define a subgraph G1 ⊆
G0, and we then consider the restricted problem of finding an optimal path in G1.
Intuitively, G1 disallows some of the pairwise alignments in G0 and consequently in
the optimal alignment; clearly, we can allow all the diagonals in G0 (by segmenting the
sequences into letters), leaving the MSA problem unchanged. Next, we show that the
vertices of G1 can be condensed, yielding an even smaller graph G2; the vertices in G2
correspond to the segments of input sequences computed in the preprocessing step. The
problem is now reduced to computing an optimal path in G2, which we refer to as the
segment matching problem. Finally, we show that for computing the optimal path at a
vertex it suffices to consider a subset of directions – the so-called relevant directions.
We discuss the implementation of the algorithm and elaborate on the preprocessing step
in Section 4.

Preliminaries.

Definition 1. For a sequence q of length n, a segmentation of q is a sequence of ex-
tremal points 0 = c0 ≤ c1 ≤ . . . ≤ cl = n. The interval [ci−1 + 1, ci] is called the
ith segment of q. The extremal point ci is said to be the entry point into segment i (for
i = 1, . . . , l), and the exit point from segment i + 1 (for i = 0, . . . , l − 1). Denote by lj
the number of segments in the jth sequence.

Definition 2. A segment matching graph (SMG) over k segmented sequences is a k-
partite undirected weighted graph with vertex set {(j, i) : j ∈ [k], i ∈ [lj ]}. Each
vertex has an edge connecting it to itself. In addition, vertices (j1, i1) and (j2, i2) may
be connected if the i1th segment of sequence j1 has the same length as the i2th segment
of sequence j2, and j1 �= j2.

An edge e = ((j1, i1), (j2, i2)) in the SMG signifies a match between segment
i1 in sequence j1 and segment i2 in sequence j2. Let l be the (same) length of these
segments, and x1 and x2 their exit points on sequences j1 and j2, respectively, then for
t = 1, . . . , l, the edge e implies a match between position x1 + t of sequence j1 and
position x2 + t of sequence j2.

The input to the MSAS problem is a set of segmented sequences, and a list of
matching segments, described by an SMG M . The objective is still finding the highest
scoring sequence alignment, but with the following restrictions. First, two sequence
positions may be aligned together only if they appear in matching segments, and in the
same relative position therein. Second, the score of a multiple match depends only on
the weights of the corresponding edges in the SMG (and not on the letters themselves).
In other words, we can think of the domain of the scoring function as being k-tuples of
segments, rather than positions.

The intuition behind these restrictions is that the preprocessing stage identifies
matching segments, and commits the algorithm to them. Furthermore, it assigns a “con-
fidence level” (or the weight) to each match, and the objective is to find a highest-
scoring alignment, with respect to these values. Here, the segments of each sequence
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Fig. 2. Example of an SMG for two sequences: Panel (A) shows the sequences, their partitioning
and the SMG where each segment corresponds to a (gray) node. Panel (B) shows G1. Unlike G0

that has all diagonals, the diagonals in G1 are defined by the SMG. An allowed path in G1 is also
shown. Panel (C) shows G2, and an allowed path in it. The directions of the edges are omitted in
the illustration for clarity, but are towards the origin.

are non-overlapping. In practice, we derive the segments from aligned portions of two
sequences, and these may be overlapping. This is resolved by splitting the overlapping
segments to smaller non-overlapping ones, as we discuss in Section 4.

Formally, given a set of segmented sequences, and an SMG M , we define G1(M)
as follows. It is a subgraph of G0, containing all vertices. The edge (x, x − eI) is in
G1(M) if and only if for all i, j ∈ I there is an edge m ∈ E(M), such the position xi

on sequence i is matched to position xj on sequence j. In this case we say the I is an
allowed direction at x, and that m is a match defining the edge (x, x − eI). The score
of such an edge depends only on the weights of the corresponding edges in M (e.g.,
the sum-of-pairs scoring function). It is not hard to see that if x and y are vertices such
that xI = yI and I is allowed at x, then I is also allowed at y. Note also, that because
all vertices in M have an edge connecting them to themselves, for i ∈ [k], {i} is an
allowed direction at all vertices x such that xi > 0.

As in the MSA problem, the goal in the MSAS problem is to find a highest scoring
path from (n1, . . . , nk) to (0, . . . , 0). Clearly the previously mentioned DP algorithm
solves this restricted MSA problem as well. In the following subsections we describe
how it can be improved.

MSAS and Segment Matching. The vertices of G1 correspond to k-tuples of positions
along the input sequences, one from each sequence. We now define the graph G2, a
“condensed” version of G1, whose vertices correspond to k-tuples of segments. That
is, its vertex set is [l1] ∪ {0} × [l2] ∪ {0} × . . . × [lk] ∪ {0}. There is a directed edge
from z = (z1, . . . , zk) to z − eI in G2 if for all i, j ∈ I the zith segment of sequence
i matches the zjth segment of sequence j. Define x ∈ V (G1) by taking xi to be the
entry point into the zith segment of sequence i. Suppose the length of the segments
defining the edge (z, z − eI) is l (recall that two segment match only if they are of the
same length). Observe that (z, z − eI) ∈ E(G2) implies that (x, x − eI), (x − eI , x −
2eI), . . . , (x − (l − 1)eI , x − l · eI) are all edges in G1. In this sense, (z, z − eI) is a
“condensation” of all these edges. Define the score of the edge (z, z − eI) as the sum
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FindOptimalPath(x) (Version 1)

1. If x = 0 return 0.
2. For all y = x − l · eI that is extremal with respect to x

2.1 If py is undefined, compute py = FindOptimalPath(y)
2.2 dy = l · s(x, x − eI)

3. y∗ = arg max s(py) + dy

4. Return the path x, py∗ .

Fig. 3. Segment based DP MSA algorithm

of the scores of all the edges in G1 that it represents. Since the score depends only on
the segments, this is simply l · s(x, x − eI).

The segment matching problem is to find a highest-scoring path from (l1, . . . , lk)
to (0, . . . , 0) in G2. Clearly the same DP algorithm as above can be used to solve this
problem in time Θ(2k

∏k
j=1 lj). Hence, when the sequences are long, but consist of

a small number of segments, DP for solving the segment matching problem may be
plausible, while solving the MSA problem might not.

In the sequel of this section we prove that in order to find an optimal solution to
the MSAS problem, it is enough to solve the associated segment matching problem. To
state this precisely, we need the following definition.

Definition 3. Let x be a vertex in G1(M). We say that x is an extremal vertex if for all
i ∈ [k], xi is an extremal point of sequence i.
We say that y is extremal with respect to x, if it is the first extremal vertex reached when
starting at x and repeatedly going in direction I , for some allowed direction I . Denote
X(x) = {y ∈ V (G1(M)) : y is extremal w.r.t. x}.

Theorem 1. There is an optimal path, p = p1, . . . , pv, such that if x1, . . . , xu are the
extremal points, in order, through which it passes, then xi+1 ∈ X(xi).

Observe that in particular, the theorem says that segments are either matched in their
entirety, or not matched at all. Hence, any solution to the segment matching problem
defines an optimal solution of the MSAS problem. In other words, it suffices to solve the
problem on the “condensed” graph G2. While Theorem 1 is intuitively clear, the proof
is somewhat involved, and omitted from this version. Figure 3 sketches the revision of
the DP algorithm based on Theorem 1.

Narrowing the Search Space: Relevant Directions. Consider an input to the MSAS
problem that consists of two subsets of k sequences each. Suppose that none of the
segments in the first subset match any of those in the second subset. Naively apply-
ing the algorithm above will require running time exponential in 2k. Yet clearly the
problem can be solved on each subset independently, in time exponential in k rather
than 2k. Intuitively, this is also the case when there are only few matches between the
two subsets. We make this notion explicit in this subsection. Again, we start with some
definitions:
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FindOptimalPath(z) (Version 2)

1. If z = 0 return 0.
2. D = minimal set of directions that intersect a subset of independent relevance.
3. For all ∅ �= I ∈ D

3.1 If pz−eI is undefined, compute pz−eI = FindOptimalPath(z − eI)
4. I = arg maxJ∈D s(z, z − eJ ) + s(pz−eJ )
5. Return the path z, pz−eI .

Fig. 4. Version 2 of MSA algorithm. Details on how to compute D are given in the full version

Definition 4. Let x be a vertex in G2(M). Let ((i, yi), (j, yj)) be a match in the SMG.
We say that such a match is relevant for x at coordinate i, if xi = yi and xj > yj .
We say that a subset of indices S ⊂ [k] is of independent relevance at x if for all i ∈ S
the match ((i, yi), (j, yj)) is relevant for x at coordinate i implies j ∈ S.

Theorem 2. Let p be an optimal path in G2, and x a vertex on it. Let S be a subset of
indices of independent relevance at x. Then there is an optimal path p′ that is identical
to p up to x, and from x goes to x − eI for some I ⊂ [k] such that I ∩ S �= ∅.

Proof: Let y be the first vertex on p after x, such that yi = xi−1 for some i ∈ S. Define
p′ to be the same as p up to x, and from y onwards. We will define a different set of
allowed directions that lead from x to y. Let I1, . . . , It be the directions followed from
x to y. Let i ∈ It ∩S. For all i �= j ∈ It, there is a match between (i, xi) and (j, yj +1).
Hence, either j ∈ S, or yj + 1 = xj . Since y is the first vertex in p that differs from
x on a coordinate in S, if j ∈ S, then j /∈ I1, . . . It−1. Clearly, if yj + 1 = xj then
again j /∈ I1, . . . It−1. In other words, for all h < t, we have Ih ∩ It = ∅. Define p′

to follow directions It, I1, . . . , It−1 from x. As It is disjoint from the other directions,
this indeed defines an allowed path from x to y, and i ∈ It ∩ S.

The theorem implies that in the DP there is no need to look in all directions. Let S be a
subset of independent relevance at a point x, then to compute the optimal path from x
to the origin it is enough to consider paths from x − eI to the origin for I ⊂ [k] such
that I ∩ S �= ∅. This suggests the DP algorithm sketched in Figure 4 (this time think of
z as a vertex in G2). Note that to implement this algorithm there is no need to keep a
table of size |V (G2)|. The vertices that are actually visited by the algorithm can be kept
in a hash table.

4 Implementing the Algorithm

We have implemented Version 2 of our algorithm, described in Figure 4. Using our
implementation of the algorithm, we investigate its efficiency (measured in the number
of vertices it visits, or table updates) on real biological sequences. We first describe the
preprocessing step that constructs the SMG, and then discuss the performance of the
algorithm on a few examples. We stress that efficiency is indeed the property of interest
here, as the multiple alignment found is an optimal solution for the MSAS problem.
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Generating a Segment Matching Graph (SMG). Existing tools, such as BLAST [2]
or DIALIGN [16], provide local alignments rather than the input format that we as-
sumed previously. In order to restrict the problem only to MSAs that conform to these
local pairwise alignments, we must convert them to an SMG. In particular, we need to
segment the sequences, and allow matches only between equal-length segments.

Starting with the set of sequences, we add breakpoints onto them based on the local
alignments. This way, we progressively build the SMG, stopping when all local align-
ments are properly described. The ends of an alignment define breakpoints in the two
aligned sequences. If the segments between those breakpoints have the same length, we
simply add a connecting edge (or edges) to the SMG. However, the segments lengths
may differ due to two reasons: First, gapped alignments match segments of unequal
length; we solve this by adding breakpoints at the gap ends. Second, regions of the se-
quences corresponding to different alignments may overlap; we solve this by adding
breakpoints at the ends of the overlapping region (or regions). Notice that if we add a
breakpoint inside a segment that already has an edge associated with it, we must split
the edge (and a corresponding breakpoint must be added to the connected segment).

Table 1. Number of table updates for three sets of human proteins. We compare full DP (Ver-
sion 0), full DP on the Segment Matching Graph (Version 1), and the actual number of table
updates when considering only relevant directions (Version 2); the SMG is generated using all
significant gapped/un-gapped BLAST alignments. We see that in all cases, the actual work is
several orders of magnitudes faster than the DP calculation.

gapped BLAST un-gapped BLAST
Human proteins full DP Version 1 Version 2 Version 1 Version 2
MATK,SRC, 6.65 × 101091 · 98 · 99 · 89 7.20 × 10677 · 84 · 81 · 74 1, 994, 813
ABL1,GRB2 =78, 576, 498 =38, 769, 192
PTK6,PTK7, 2.40 × 101492 · 96 · 106 · 88· 281, 752 60 · 53 · 66 · 57·2, 980
RET, SRMS, DDR1 ·125=1.03 × 1010 ·58=3, 736, 260
GBAS, GBI1, GBT1,6.62 × 1012148 · 116 · 113 · 115·270, 289 61 · 72 · 68 · 71·145, 366
GB11, GB12 ·120 = 2.68 × 1010 ·70=4.3 × 108

Example MSAs.We demonstrate the effectiveness of our algorithm by several exam-
ples of aligning human protein sequences. We align two sets of proteins from kinase
cascades: (1) MATK, SRC, ABL1, and GRB2 of lengths 507, 535, 1130, and 217 re-
spectively. (2) PTK6, PTK7, RET, SRMS, DDR1 of lengths 451, 1070, 1114, 488, and
913 respectively. We also align five heterotrimeric G-protein (subunits alpha) GBAS,
GBI1, GBT1, GB11, GB12 of lengths 394, 353, 349, 359, and 380 respectively. We
chose these (relatively long) proteins because their “mix-and-match” modular compo-
nents characteristic highlights the strengths of our method. We use gapped and un-
gapped BLAST with E-value threshold of 10−2 to find local alignments. Namely, in the
optimal MSA two letters can be matched only if they are in a local BLAST alignment
with E-value at most 10−2.

Table 1 lists the number of table updates needed to find the optimal MSA for these
alignments. The first column has the size of the full DP matrix, or the product of the
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sequences lengths (same for gapped and un-gapped). The second column lists the num-
ber of segments in each sequence in the SMG, which was calculated from the BLAST
gapped or ungapped alignments, and the size of their DP matrix. The last column has
the actual number of vertices visited, or equivalently, the number of table updates. The
number of updates drops dramatically, in the best case from 1014 to less than 3000.
Other alignments that we studied had similar properties to the ones shown. Complete
figures of the cases listed in Table 1 are available at [1] in a format that allows zooming
for exploring the details.

5 The Transitive MSAS

In this section we further restrict the problem by making the following two assumptions,
which allow for additional “shortcuts” in the DP algorithm.

ASSUMPTION 1: The matches are transitive, in the sense that if {i, j} is an allowed
direction at x, and {i, k} is an allowed direction at x, then {j, k} is also allowed at x
(and hence, {i, j, k} as well).
ASSUMPTION 2: The scoring function is such that we seek to find an alignment of
minimal width, or equivalently, the shortest path from (n1, . . . , nk) to (0, . . . , 0) in G0.

The assumption of transitivity may be too restrictive in many biological relevant
cases. We study it here for two main reasons: (1) The assumption holds in special cases
of aligning nucleotide sequences, where a match indicates (near) identity; and (2) this
analysis illuminates additional properties of the combinatorial structure of the problem,
by further limiting the search space. The missing proofs appear in the full version.

Assumption 2 is achieved by setting the scoring function (over the edges of G1) as
s(x, x − eI) = |I| − 1: The longest possible path from (n1, . . . , nk) to (0, . . . , 0) is of
length

∑
ni. Each edge (x, x − eI) “saves” |I| − 1 steps in the path, exactly its score.

Hence, a shortest path, or the one that “saves” the most steps, is the highest scoring one.
Since this scoring function is so simple over G1, it is convenient to return the discussion
from G2 to G1. At the end of this section we prove that the techniques developed here
apply to G2 as well.

We call the problem of finding the highest scoring path from (n1, . . . , nk) to (0, . . . ,
0) in G1(M), with s and M as above, the Transitive MSAS Problem.

Maximal Directions. The first observation is that an optimal solution to the Transitive
MSAS proceeds in “maximal” steps.

Definition 5. An edge (x, x − eI) ∈ E(G1(M)) is called maximal, and the subset I a
maximal direction (at x), if for all J � I , the pair (x, x−eJ ) is not an edge. We denote
by D(x) the collection of maximal directions at vertex x (note that by transitivity, this
is a partition of [k]). A path in G1(M) is called a maximal path if it consists solely of
maximal edges.

Lemma 1. There is an optimal path in G1(M) that is also maximal.

Henceforth, by “optimal path” we refer to a maximal optimal path. As a corollary of
Lemma 1, the DP algorithm for the transitive MSA problem needs not check all direc-
tions (or all those that intersect a subset of independent relevance), only maximal ones.
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This reduces the time complexity of the algorithm to O(k
∏

li), with a data structure
that allows finding the maximal directions at a given vertex in O(k). Details will be
provided in the full version.

Obvious Directions. The notion of “relevant directions” discussed in Section 3 can
be strengthened in the transitive setting. Indeed, there is a simple characterization of
vertices in G1 for which the first step in an optimal path is obvious, and there is no need
for recursion.

Definition 6. Let x be a vertex in G1(M) and I a maximal direction at x. The set I is
called an obvious direction (at x) if for all y ∈ G1(M), y < x, such that x|I = y|I , I
is a maximal direction at y. If y = x − c · eI is extremal with respect to x, and I is an
obvious direction at x, we say that y is an obvious vertex with respect to x.

Lemma 2. Let p be an optimal path, x a vertex in p and I an obvious direction at x.
Then there is an optimal path p′ that is identical to p up to x, and that proceeds to x−eI

from x.

Corollary 1. There is an optimal path p, such that if x is an extremal vertex in p, and
y is obvious with respect to x, then p proceeds from x to y.

Intuitively, obvious directions are cases where all benefits to the scoring function can be
gained in the first step, or equivalently, there are no tradeoffs to consider. Hence, as for
relevant directions, the DP algorithm can be revised to immediately move to an obvious
vertex, avoiding the recursion over all extremal vertices.

Special Vertices. In this section we extend the “leaps” that the DP algorithm performs.
Once more, we start with a few definitions.

Definition 7. We say that a vertex y is special with respect to a vertex x if the following
four conditions hold: (1) x dominates y; (2) D(x) �= D(y); (3) there is a path from x
to y consisting solely of maximal edges; and (4) no vertex y′ satisfies all the above, and
dominates y. Denote by S(x) the set of vertices that are special with respect to x.

We define the set of special vertices S ⊆ G1(M) as the smallest one such that (n1, . . . ,
nk) ∈ S, and for every x ∈ S, S(x) ⊂ S. We first show that instead of “leaping” from
one extremal vertex to another, we can “leap” from one special vertex to another.

Definition 8. Let p = (p0, . . . , pr) and p′ = (p′0, . . . , p
′
r) be two paths. Let I1, . . . , Ir

be the sequence of directions that p moves in, and I ′1, . . . , I
′
r be the sequence of direc-

tions that p′ does. We say that p and p′ are equivalent if p0 = p′0, pr = p′r and there is
some permutation σ ∈ Sr such that Ii = I ′σ(i) for i = 1, . . . , r.

Note that equivalent paths have the same length, and hence the same score. We also
observe:

Lemma 3. Let p be an optimal path. Let x be a vertex in p, and let y be the first vertex
in p that is also in S(x). Then all maximal paths from x to y are equivalent.
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Let p = (p1, . . . , pt) be an optimal path. Define x1 = p1 and xi+1 to be the first vertex
in p that is also in S(xi). Lemma 3 says that we only need to specify the vertices {xi}
to describe an optimal path — all maximal paths connecting these vertices in order are
equivalent.

As a corollary, we can further restrict the search space of the DP algorithm. When
computing the shortest path from a vertex x, rather than considering the relevant ex-
tremal vertices, it is enough to consider the special ones. As we shall soon show, this is
indeed a subset of the extremal vertices.

Before describing the modified algorithm in detail, let us observe that special points
have a very specific structure.

Definition 9. Let x, y ∈ G1(M) be such that y is special with respect to x. Let I and I ′

be maximal directions at x. We say that y is a breakpoint of direction I , if y = x− c ·eI

for some natural c, and I is not allowed at y.
We say that y is a straight junction of direction I if y = x − c · eI for some natural c,
and I is allowed, but not maximal, at y.
We say that y is a corner junction of directions I and I ′ if y = x − c · eI − c′ · eI′ for
some natural c and c′, and I and I ′ are allowed, but not maximal, at y.

Theorem 3. Let y be a special vertex with respect to x. Then y is one of the types in
definition 9. Furthermore, if x is an extremal vertex, then so is y.

Corollary 2. All special vertices are extremal vertices.

This suggests a further improved DP algorithm that runs on G2. We defer the pseudo
code listing and a detailed analysis of the running time of the algorithm to the full
version. The analysis shows that the running time is linear in the number of segments
and the number of special vertices, and at most cubic in the number of sequences.
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