
Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

Laboratory in Natural Language Processing

Shuly Wintner, shuly@cs.haifa.ac.il

Semester B, 2010: Wednesday, 18:00–21:00

1 Objectives
The Lab offers a number of practical projects in Natural Language Processing (NLP), focusing on
(but not limited to) processing of Hebrew. Some projects require previous knowledge of compu-
tational linguistics but some assume no previous background. All projects (except one) involve
programming: the end result is a relatively large-scale, well-documented and efficient software
package. Some of the projects may involve also some research (e.g., reading a research paper and
implementing its ideas).

2 Administration
Projects are to be implemented by groups of at most two students. All systems will be presented at
the end of the semester for a final demo. A coordination meeting is planned for Wednesday, June
2nd; all work must be completed by Tuesday, August 31st. A project presentation meeting will be
held on Wednesday, September 1st.

The programming language must be portable enough to be usable on a variety of platforms;
Python is recommended, C++, Perl or Java will be tolerated, if you have a different language in
mind discuss it with the instructor. Most projects will have to be executed in a Linux environment
due to dependencies on external packages.

Grading will be based on comprehension of the problem, quality of the implementation and
quality of the documentation. In particular, the final grade will be based on: Comprehension of the
problem (and the accompanying paper(s), where applicable); Full implementation of a working
solution; Presentation of a final working system; Comprehensive documentation.

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

3 List of projects

3.1 Morphological analysis of dotted Hebrew
Introduction to Computational Linguistics recommended but not mandatory. As you will be
revising an existing Java code, knowledge of Java is mandatory.

Morphological analysis is the process of determining the base (also known as lexeme, or
lemma) of a word, along with its morphological attributes. An example of the morphological
analysis of a simple Hebrew sentence is depicted in Figure 1.

Figure 1: Example morphological analysis

Hebrew has a complex morphology and hence the design of a morphological analyzer for the
language is a complex task. We currently have a large-scale and relatively accurate morphological
system for Hebrew (Yona and Wintner, 2008; Itai and Wintner, 2008) which works for undotted
texts. In this project you will create a variant of the morphological system for the dotted script.

The main task here is to understand the morphological rules that apply to words, as stipulated
for the undotted case, and then revise and refine them for the dotted case. The greatest benefit of
such a system is that it will facilitate, in conjunction with a morphological disambiguation system
which is currently under development, an automatic vocalization of undotted texts.

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

3.2 Converting dotted to undotted Hebrew
No prior knowledge is required.

The Hebrew script has two main standards: dotted (vocalized) and undotted. In this project
you will develop a program which converts the dotted words to their undotted counterparts. Note
that this does not simply imply removing the dots, as many times letters such as Ě or Ľ are inserted
to replace the missing dots. The rules are available from The Academy of the Hebrew Language.
Ideally, your solution should be reversible, so as to (non-deterministically) generate dotted forms
from undotted ones.

3.3 A web-based user interface for KWIC in Hebrew
No prior knowledge is required. Understanding of SQL databases is recommended.

Key Word In Context (KWIC) is an algorithm which, given a text and a keyword, presents all
the occurrences of the word in the text, allowing a few context words on both sides of the keyword
to be displayed. Such a tool is very useful for linguistic research.

You will develop a KWIC system with a web-based graphical user interface which will allow
users to present queries referring not just to words, but also to their morphological features. This
tool will be similar to an existing GUI for Arabic (Dror et al., 2004), but will be specific to Hebrew
corpora. The underlying corpora will be XML documents of morphologically analyzed Hebrew
texts. The GUI will enable users to specify a corpus to work with, and then search the corpus for
combinations of words and/or their properties. To this end, the corpora will have to be stored in
an efficient database; you will be able to use an existing infrastructure for storing corpora, such
as The Corpus Workbench. The GUI should be accessible on the Web, and hence will have to be
developed in a Web-supporting environment, e.g., JSP or PHP.

A detailed requirements specification will be available in a separate document.

3.4 A generic transliteration system
Introduction to Computational Linguistics recommended but not mandatory.

When texts are translated from one language to another, some words are not translated; rather,
they are transliterated: rendered in the writing system of the target language in a way that retains
or approximates the original pronunciation of the word. Transliterated words are frequently proper
names or loan words. For example, when the Hebrew sentence 0: 3 ŇĽĘŸĄ ŽĂ ĎŚĽĄĎ ČŸŤŚ is trans-
lated to English, the proper name ČŸŤŚ is translated to Spain, but the proper name ŇĽĘŸĄ is translit-
erated as Brazil.

You will develop a generic system for transliterating words in a large number of languages to
English, following the methodology of Kirschenbaum and Wintner (2009, 2010). Transliteration
will be based on statistical machine translation (Brown et al., 1990), in which the translation model
maps characters in the source language to characters in English, and the language model is a
unigram English word model (viewed as a character n-gram model). The language model will

http://hebrew-academy.huji.ac.il/decision4.html
http://cwb.sourceforge.net/

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

be provided to you. The translation model will be extracted from multilingual titles of Wikipedia
documents.

In order to create a translation model for a given source language, you will have to extract from
Wikipedia all the titles of the articles that occur both in the source language and in English, and to
determine whether these titles are translations or transliterations. This can be done by comparing
the characters in the title terms, given some possible mappings of characters from the source to
English. For example, the Hebrew-English mapping will include the pairs Ą–b, Ą–v, Ť–p, Ť–f,
Ś–s, Ÿ–r, Č–d, Ę–z, Ň–l. Based on such mapping, you will be able to determine that ŇĽĘŸĄ–Brazil is
a transliterated pair, whereas ČŸŤŚ–Spain is not. You will have to prepare such character mapping
tables for a few languages.

In order to evaluate the quality of your solution, you will have to prepare an evaluation corpus.
This should consist of some 1000 hand-transliterated term-pairs (from various sources). You will
evaluate the accuracy of your system on these held-out data.

Variant: a more generic system will allow transliteration to any language. Two additional
resources will be required:

• a monolingual (target) language model: you will use the monolingual projection of Wikipedia
on the target language to create such a language model.

• a mapping of characters between the source and target languages: you will have to provide
such mappings for a few language pairs.

3.5 Identifying synonyms using multilingual parallel texts
Introduction to Computational Linguistics recommended but not mandatory.

Synonyms are words that carry similar meaning and can usually be freely used in the same
contexts: for example, car, auto, automobile or predict, foretell, prognosticate. A database of
synonyms can be useful for a variety of natural language applications. The most wide-spread
repository of synonyms is WordNet (Fellbaum, 1998), and variants in many languages have been
created in the last decade.

Identifying synonyms is a non-trivial task. In this project you will use parallel corpora and
a simple algorithm (Dyvik, 2002, 2005, 2009) to solve the problem. A parallel corpus (Koehn
et al., 2005) is a collection of translated texts in two languages, where each sentence in the source
language is aligned to its translation in the target language. Standard (statistical) algorithms exist
that can align the words in a parallel corpus such that each source-language word is mapped to
its possible translations in the target language, with a probability measure that determines the
plausibility of the translation pair, without a bilingual dictionary (Koehn et al., 2007).

Once a parallel corpus is word-aligned, the word translation pairs whose probability is high
can be used to extract synonyms by identifying translation loops. Let E = {e1, e2, . . . en} be a
set of words in the source language and F = {f1, f2, . . . fn} a set of words in the target language,
such that for all i, 1 ≤ i ≤ n, ei is translated to fi with high probability, and fi is translated to
ei+1 (mod n) with high probability. Then we can assume that E is a set of synonyms in the source

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

and F is a set of synonyms in the target. For example, if ask is translated to ŹŮĽĄ, ŹŮĽĄ to request
and request to ŹŸČ, then we can assume that ask, request are synonyms, as are ŹŸČ ,ŹŮĽĄ.

You will implement this algorithm using off-the-shelf tools for word alignment (Och and Ney,
2003). You will have to determine the confidence level required for determining that a loop is a
good one. To test and evaluate your implementation, you will use the Europarl corpus to extract
synonyms, and WordNet to verify them.

3.6 A classifier for Translationese
Introduction to Computational Linguistics recommended but not mandatory.

Translated texts are known to have linguistic properties that set them apart from texts written
originally in the target language. Given the same domain and genre, translated texts tend to have
shorter sentences, lower type/token ratio (i.e., less rich language), more limited syntactic construc-
tions, etc. In this project you will use machine learning techniques to construct a classifier that
can distinguish between translated and original texts in English, following Baroni and Bernardini
(2006).

You will be provided with a training corpus consisting of newspaper articles in a single domain
in English. The articles will be tagged as either translated (from three different languages) or
original. Your main task will be to define a set of distinctive features and implement the feature
extractor. Features may include superficial characteristics, such as the average length of sentences
or the type/token ratio in a document; n-gram features, such as unigrams of function words, or
specific bigrams or trigrams; or more linguistically-informed features, such as n-grams of part-of-
speech tags, ratio of active to passive verbs, complexity of syntactic structures, etc. You will be
able to use off-the-shelf tools for processing the corpus, and publicly-available machine learning
packages for implementing the classifier.

Once the feature extractor is implemented, you will train a classifier on the training material
and conduct a robust evaluation of the results. The result of this project will be used in a research
on selecting the best language models for machine translation.

3.7 Grammar induction
Introduction to Computational Linguistics recommended but not mandatory.

A grammar is a concise representation of a set of sentences (a language). When children
acquire language, they are exposed to a finite sample of the utterances in the language they are
learning, but they are somehow able to generalize the finite sample to a coherent representation
that has the potential to generate infinitely many utterances, including many novel ones (that the
child was never presented with). Exactly how children find patterns in the ambient language and
construct their grammars is for the most part unknown. Several psycholinguistic theories attempt
to explain this process, but we are far from fully understanding it.

At the same time, computational linguists develop algorithms that learn (formal) grammars
from raw data (Adriaans and van Zaanen, 2006). While such algorithms are not generally targeted

http://www.statmt.org/europarl/

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

at modeling child language acquisition, they are nonetheless interesting in this context. In this
project you will implement such an algorithm and evaluate it on child language data.

The input to the algorithm is a set of utterances, a corpus; you will have access to several
corpora recording spoken interactions between children and their caretakers (MacWhinney, 2000).
The data are all precisely and consistently formatted. You will have to pre-process the input in
order to prepare it for the format expected by the algorithm. A certain portion of the training
corpus will be held out for evaluation; after training the algorithm, you will execute it on the held-
out data and evaluate its ability to account for novel utterances. In order to assess over-generation,
you will also execute the algorithm on non-utterances using the methodology of Kol et al. (2009).

The algorithms to implement are the following:

• Bayesian Model Merging (Stolcke and Omohundro, 1994)

• EMILE (Adriaans and Vervoort, 2002), and see The EMILE Homepage

• Alignment-based learning (van Zaanen, 2000, 2002a,b), and see the ABL Homepage

• MK10/SNPR (Wolff, 1982, 1988, 2003), and see here

When all projects are submitted, we will hold a competition among the various systems.

3.8 Unification Grammars
Introduction to Computational Linguistics required.

This is a very different kind of project. You will be required to read and fully understand
a textbook on Unification Grammars. Your main task will be to fully solve numerous exercises
scattered throughout the text. Some of the exercises are technical and easy, some require more
thought.

4 Available resources
You may freely use the following available resources:

• Wikipedia as a source of multilingual texts, in particular in order to extract transliterated
term-pairs

• Weka, a toolbox of various general-purpose machine learning tools, in particular in order to
implement classifiers

• Open NLP, a set of tools for natural language processing, in particular in order to pre-process
English texts

• NLTK, a natural language processing toolkit in Python.

http://staff.science.uva.nl/~pietera/Emile/
http://ilk.uvt.nl/~menno/research/software/abl
http://www.cognitionresearch.org.uk/lang_learn.html
http://en.wikipedia.org/wiki/Wikipedia_database
http://www.cs.waikato.ac.nz/ml/weka/
http://opennlp.sourceforge.net/
http://www.nltk.org/

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

References
Pieter Adriaans and Marco Vervoort. The EMILE 4.1 grammar induction toolbox. In Pieter

Adriaans, H. Fernau, and Menno van Zaanen, editors, ICGI 2002, volume 2481 of LNAI,
pages 293–295. Springer, Berlin and Heidelberg, 2002. doi: 10.1007/3-540-45790-9 24. URL
http://dx.doi.org/10.1007/3-540-45790-9_24.

Pieter W. Adriaans and Menno M. van Zaanen. Computational grammatical inference. In Dawn E.
Holmes and Lakhmi C. Jain, editors, Innovations in Machine Learning, volume 194 of Studies in
Fuzziness and Soft Computing, chapter 7. Springer-Verlag, Berlin Heidelberg, Germany, 2006.
ISBN: 3-540-30609-9.

Marco Baroni and Silvia Bernardini. A new approach to the study of Translationese: Machine-
learning the difference between original and translated text. Literary and Linguistic Computing,
21(3):259–274, September 2006.

P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer,
and P. S. Roossin. A statistical approach to machine translation. Computational Linguistics, 16
(2):79–85, 1990.

Yehudit Dror, Dudu Shaharabani, Rafi Talmon, and Shuly Wintner. Morphological analysis of the
Qur’an. Literary and linguistic computing, 19(4):431–452, 2004.

Helge Dyvik. Translations as a semantic knowledge source. In Proceedings of the Second Baltic
Conference on Human Language Technologies, Tallinn, 2005. Institute of Cybernetics at Tallinn
University of Technology, Institute of the Estonian Language. Unpublished manuscript.

Helge Dyvik. Semantic mirrors. Unpublished manuscript, 2009.

Helge Dyvik. Translations as semantic mirrors: From parallel corpus to Wordnet. Un-
published manuscript, 2002. URL http://www.hf.uib.no/i/LiLi/SLF/Dyvik/
ICAMEpaper.pdf.

Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database. Language, Speech and
Communication. MIT Press, 1998.

Alon Itai and Shuly Wintner. Language resources for Hebrew. Language Resources and Evalua-
tion, 42:75–98, March 2008.

Amit Kirschenbaum and Shuly Wintner. Minimally supervised transliteration for machine trans-
lation. In Proceedings of The 12th Conference of the European Chapter of the Association for
Computational Linguistics (EACL-09), April 2009.

Amit Kirschenbaum and Shuly Wintner. A general method for creating a bilingual transliteration
dictionary. Under Review, 2010.

http://dx.doi.org/10.1007/3-540-45790-9_24
http://www.hf.uib.no/i/LiLi/SLF/Dyvik/ICAMEpaper.pdf
http://www.hf.uib.no/i/LiLi/SLF/Dyvik/ICAMEpaper.pdf

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

Philipp Koehn, Joel Martin, Rada Mihalcea, Christof Monz, and Ted Pedersen, editors. Proceed-
ings of the ACL Workshop on Building and Using Parallel Texts, Ann Arbor, Michigan, June
2005. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bo-
jar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical machine
translation. In ACL 2007, Proceedings of the 45th Annual Meeting of the Association for Com-
putational Linguistics. The Association for Computational Linguistics, June 2007.

Sheli Kol, Bracha Nir, and Shuly Wintner. Acquisition of abstract slot-filler schemas: Computa-
tional evaluation. Presented at the COGSCI-2009 Workshop on Psychocomputational Models
of Human Language Acquisition, July 2009.

Brian MacWhinney. The CHILDES Project: Tools for Analyzing Talk. Lawrence Erlbaum Asso-
ciates, Mahwah, NJ, third edition, 2000.

Franz Josef Och and Hermann Ney. A systematic comparison of various statistical alignment
models. Computational Linguistics, 29(1):19–51, 2003.

Andreas Stolcke and Stephen M. Omohundro. Inducing probabilistic grammars by bayesian model
merging. In ICGI ’94: Proceedings of the Second International Colloquium on Grammatical
Inference and Applications, pages 106–118, London, UK, 1994. Springer-Verlag. ISBN 3-540-
58473-0.

Menno van Zaanen. Implementing alignment-based learning. In ICGI ’02: Proceedings of the
6th International Colloquium on Grammatical Inference, pages 312–314, London, UK, 2002a.
Springer-Verlag. ISBN 3-540-44239-1.

Menno van Zaanen. ABL: alignment-based learning. In Proceedings of the 18th conference on
Computational linguistics, pages 961–967, Morristown, NJ, USA, 2000. Association for Com-
putational Linguistics. doi: http://dx.doi.org/10.3115/992730.992785.

Menno van Zaanen. Bootstrapping Structure into Language: Alignment-Based Learning. PhD
thesis, University of Leeds, Leeds, UK, January 2002b.

J. Gerard Wolff. Learning syntax and meanings through optimization and distributional analysis.
In I M Schlesinger Y Levy and M D S Braine, editors, Categories and Processes in Language
Acquisition, chapter 7, pages 179–215. Erlbaum, Hillsdale, NJ, 1988.

J. Gerard Wolff. Language acquisition, data compression and generalization. Language and Com-
munication, 2:57–89, 1982.

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

Jerry G. Wolff. Information compression by multiple alignment, unification and search as a unify-
ing principle in computing and cognition. Artificial Intelligence Review, 19(3):193–230, 2003.
ISSN 0269-2821. doi: http://dx.doi.org/10.1023/A:1022865729144.

Shlomo Yona and Shuly Wintner. A finite-state morphological grammar of Hebrew. Natural
Language Engineering, 14(2):173–190, April 2008.

	Objectives
	Administration
	List of projects
	Morphological analysis of dotted Hebrew
	Converting dotted to undotted Hebrew
	A web-based user interface for KWIC in Hebrew
	A generic transliteration system
	Identifying synonyms using multilingual parallel texts
	A classifier for Translationese
	Grammar induction
	Unification Grammars

	Available resources

