CS 242

The Algol Family and ML
John Mitchell

2007

Plan for today

¢ Lambda calculus
— Basic concepts; postpone discussion of pure
functional programming to later in course
¢ Algol family and ML
— Few comments about earlier languages
* Algol 60, Algol 68, Pascal, C
— ML Core language
* Skip discussion of ML assignment

There are some slides that we may skip today. This outline is
to help you remember what we did not skip. If we need
some time in next lecture, we will do that.

Language Sequence

Algol 60

* Basic Language of 1960
— Simple imperative language + functions
— Successful syntax, BNF -- used by many successors
* statement oriented

* Begin ... End blocks (likeC{...})
« if ... then ... else

— Recursive functions and stack storage allocation
— Fewer ad hoc restrictions than Fortran

* General array references: A[x + B[3]*y]
— Type discipline was improved by later languages
— Very influential but not widely used in US

Algol 60 Sample

real procedure average(A,n);

real array A; integer n;

begin
real sum; sum :=0;
fori=1step 1 untilndo

sum :=sum + A[i];

average := sum/n :

end;

Algol oddity

Question
—Is x :=x equivalent to doing nothing?
Interesting answer in Algol

integer procedure p;

begin

end;
— Assignment here is actually a recursive call

Some trouble spots in Algol 60

* Type discipline improved by later languages
— parameter types can be array
* no array bounds
— parameter type can be procedure
* no argument or return types for procedure parameter
¢ Parameter passing methods
— Pass-by-name had various anomalies
* “Copy rule” based on substitution, interacts with side effects
— Pass-by-value expensive for arrays
¢ Some awkward control issues
— goto out of block requires memory management

Algol 60 Pass-by-name

* Substitute text of actual parameter
— Unpredictable with side effects!

* Example
procedure inc2(i, j);
integeri, j;
begin
i:=i+1;
ji=j+l
end; —>

inc2 (k, A[k]);

Is this what you expected?

Algol 68

Considered difficult to understand B
— ldiosyncratic terminology
* types were called “modes”
 arrays were called “multiple values”
— vW grammars instead of BNF
* context-sensitive grammar invented by A. van Wijngaarden
— Elaborate type system
— Complicated type conversions
Fixed some problems of Algol 60
— Eliminated pass-by-name
Not widely adopted

Algol 68 Modes

* Primitive modes 4 Compound modes

Other features of Algol 68

* Storage management

— Local storage on stack

— Heap storage, explicit alloc and garbage collection
* Parameter passing

— Pass-by-value

— Use pointer types to obtain Pass-by-reference
* Assignable procedure variables

— Follow “orthogonality” principle rigorously

Source: Tanenbaum, Computing Surveys

—int .
— real
— char °
— bool °
— string .
— compl (complex) .
— bits
— bytes
_ sema (semaphore) Rich and structured
— format (1/0) type system is a
— file major contribution of
Algol 68
Pascal

* Revised type system of Algol
— Good data-structuring concepts
* records, variants, subranges
— More restrictive than Algol 60/68

¢ Procedure parameters cannot have procedure
parameters

¢ Popular teaching language
* Simple one-pass compiler

Limitations of Pascal

* Array bounds part of type illegal
procedure p(a : array [1..10] of integer
procedure p(n: integer, a : array [1.@] of integer)

= Attempt at orthogonal design backfires

— parameter must be given a type
— type cannot contain variables

How could this have happened? Emphasis on teaching
@ Not successful for “industrial-strength” projects

C Programming Language

™
Designed by Dennis Ritchie for writing Unix

¢ Evolved from B, which was based on BCPL

— B was an untyped language; C adds some checking
¢ Relation between arrays and pointers

— An array is treated as a pointer to first element

— E1[E2] is equivalent to ptr dereference *((E1)+(E2))

— Pointer arithmetic is not common in other languages
* Ritchie quote

— “Cis quirky, flawed, and a tremendous success.”

ML

¢ Typed programming language
¢ Intended for interactive use
¢ Combination of Lisp and Algol-like features
— Expression-oriented
— Higher-order functions
— Garbage collection
— Abstract data types
— Module system
— Exceptions
¢ General purpose non-C-like, not OO language
— Related languages: Haskell, OCAML, F#, ...

Why study ML ?

— Types and type checking

* General issues in static/dynamic typing

* Type inference

* Polymorphism and Generic Programming
— Memory management

* Static scope and block structure

* Function activation records, higher-order functions
— Control

* Force and delay

* Exceptions

* Tail recursion and continuations

History of ML

* Robin Milner
¢ Logic for Computable
Functions
— Stanford 1970-71
— Edinburgh 1972-1995
¢ Meta-Language of
the LCF system
— Theorem proving

— Type system
— Higher-order

Logic for Computable Functions

¢ Dana Scott, 1969

— Formulate logic for proving properties of typed
functional programs

¢ Milner
— Project to automate logic
— Notation for programs
— Notation for assertions and proofs

— Need to write programs that find proofs
* Too much work to construct full formal proof by hand
— Make sure proofs are correct

LCF proof search

e Tactic: function that tries to find proof

ucceed and return proof
tactic(formula) = search forever
fail

¢ Express tactics in the Meta-Language (ML)
¢ Use type system to facilitate correctness

Tactics in ML type system

¢ Tactic has a functional type
tactic : formula — proof

¢ Type system must allow “failure”

ucceed and return proof
tactic(formula) = search forever

fail and raise exception

Function types in ML

f:A— B means
foreveryx € A,

some element y=f(x) € B
f(x) = |run forever

terminate by raising an exception

In words, “if f(x) terminates normally, then f(x)e B.”
Addition never occurs in f(x)+3 if f(x) raises exception.

This form of function type arises directly from motivating application
for ML. Integration of type system and exception mechanism
mentioned in Milner's 1991 Turing Award.

Higher-Order Functions

e Tacticis a function

¢ Method for combining tactics is a function on
functions

e Example:
f(tactic,, tactic,) =
A formula. try tactic,(formula)

else tactic, (formula)

Basic Overview of ML

* Interactive compiler: read-eval-print
— Compiler infers type before compiling or executing

Type system does not allow casts or other
loopholes.

* Examples
- (5+3)-2;
>valit=6:int
- if 5>3 then “Bob” else “Fido”;
>val it = “Bob” : string
- 5=4;

Overview by Type

* Booleans

— true, false : bool

—if... then ...else... (types must match)
* Integers

-0,1,2,..:int

—+, %, .. int*int—int andsoon ...
e Strings

— “Austin Powers”

¢ Reals
=1022 214189 dacizal naint ucad to di higu

Compound Types

Tuples
— (4,5, “noxious”) : int * int * string
Lists
— nil
—1:102,3,4] infix cons notation
Records
— {name = “Fido”, hungry=true}
: {name : string, hungry : bool}

Patterns and Declarations

¢ Patterns can be used in place of variables
<pat> ::= <var> | <tuple> | <cons> | <record> ...
* Value declarations
— General form
val <pat>=<exp>
— Examples
val myTuple = (“Conrad”, “Lorenz”);
val (x,y) = myTuple;
val mylist = [1, 2, 3, 4];
val x::rest = myList;

—local declarations

Functions and Pattern Matching

Anonymous function
—fnx=>x+1; like Lisp lambda, function (...) inJS
Declaration form
— fun <name> <pat,> = <exp,>

| <name> <pat,> = <exp,> ...

| <name> <pat,> = <exp,> ...
Examples
—fun f (x,y) = x+y; actual par must match pattern (x,y)
—fun length nil =0

Map function on lists

¢ Apply function to every element of list
fun map (f, nil) = nil
| map (f, x::xs) = f(x) :: map (f,xs);

—
@ Compare to Lisp

More functions on lists

Reverse a list
fun reverse nil = nil
| reverse (x::xs) = append ((reverse xs), [x]);
Append lists
fun append(nil, ys) = ys
| append(x::xs, ys) = x :: append(xs, ys);
Questions
— How efficient is reverse?
— Can you do this with only one pass through list?

More efficient reverse function

fun reverse xs =
letfunrev(nil,z)=z
| rev(y:ys,z)=rev(ys,y:z)
in rev(xs, nil)

end;

1 3

2 -» - -» 2

K] 311 311 1
= BB B =

Datatype Declarations

* General form
datatype <name> = <clause> | ... | <clause>
<clause> ::= <constructor> | <contructor> of <type>
¢ Examples

— datatype color =red | yellow | blue
* elements are red, yellow, blue

— datatype atom = atm of string | nmbr of int

¢ elements are atm(“A”), atm(“B”), ..., nmbr(0), nmbr(1), ...

— datatype list =nil | cons of atom*list
* elements are nil, cons(atm(“A”), nil), ...

L AR L L PPTTNEIILY

Datatype and pattern matching

¢ Recursively defined data structure
datatype tree = leaf of int | node of int*tree*tree

node(4, node(3,leaf(1), leaf(2)),
node(5,leaf(6), leaf(7))

| oNoRG

¢ Recursive function
fun sum (leafn) =n
| sum (node(n,t1,t2)) = n + sum(tl) + sum(t2)

Example: Evaluating Expressions

 Define datatype of expressions
datatype exp = Var of int | Const of int | Plus of
exp*exp;
Write (x+3)+y as Plus(Plus(Var(1),Const(3)), Var(2))
* Evaluation function
fun ev(Var(n)) = Var(n)
| ev(Const(n)) = Const(n)
| ev(Plus(el,e2))= .. —)
Examples
ev(PIus(Const(S),ConM)) Const(5)

Case expression

* Datatype
datatype exp = Var of int | Const of int | Plus of
exp*exp;
* Case expression
case e of
Var(n)=> ... |
Const(n) =>.... |
Plus(el,e2) => ...

Evaluation by cases

datatype exp = Var of int | Const of int | Plus of exp*exp;
fun ev(Var(n)) = Var(n)
| ev(Const(n)) = Const(n)
| ev(Plus(el,e2)) = (case ev(el) of
Var(n) => Plus(Var(n),ev(e2)) |
Const(n) => (case ev(e2) of
Var(m) => Plus(Const(n),Var(m)) |
Const(m) => Const(n+m) |

Plus(e3,e4) => Plus(Const(n),Plus(e3,e4))) |
Plus(e3 ed) => Plus(Plus(e3 e4) ev(e2))):

Core ML
* Basic Types @ Patterns
— Unit @ Declarations
— Booleans @ Functions
~ Integers @ Polymorphism
- SR””I‘gS # Overloading
- TS;ZS ® Type declarations
_ Lists @ Exceptions
— Records @ Reference Cells

Variables and assignment

¢ General terminology: L-values and R-values
— Assignment y:= x+3
« Identifier on left refers to a memory location, called L-value
« Identifier on right refers to contents, called R-value
* Variables
— Most languages
¢ Avariable names a storage location
« Contents of location can be read, can be changed
— ML reference cell
* A mutable cell is another type of value
« Explicit operations to read contents or change contents
* Separates naming (declaration of identifiers) from “variables”

ML imperative constructs

e ML reference cells
— Different types for location and contents

X:int non-assignable integer value

y:intref location whose contents must be integer
ly the contents of location y

ref x expression creating new cell initialized to x

— ML assignment

operator := applied to memory cell and new contents
— Examples

y := x+3 place value of x+3 in cell y; requires x:int

y := ly + 3 add 3 to contents of y and store in location y

ML examples

¢ Create cell and change contents
val x = ref “Bob”;
x := “Bill”; m
¢ Create cell and increment
valy =ref 0; n
y:=ly+1;
¢ While loop
val i =ref0;
while li<10doi:=li+1;
li;

Core ML

* Basic Types @ Patterns
— Unit @ Declarations
— Booleans @ Functions
~ Integers 4 Polymorphism
—Strings @ Overloading
~ Reals ® Type declarations
B T.ljples @ Exceptions
— Lists
_ Records @ Reference Cells

Related languages

e ML Family
— Standard ML — Edinburgh, Bell Labs, Princeton, ...
— CAML, OCAML — INRIA (France)
« Some syntactic differences from Standard ML (SML)
¢ Object system
¢ Haskell
— Lazy evaluation, extended type system, monads
e F#
— ML-like language for Microsoft .Net platform
* “Combining the efficiency, scripting, strong typing and

productivity of ML with the stability, libraries, cross-
language working and tools of .NET. “

— Compiler produces .Net IL intermediate language

