
1

CS 242

Concurrency 2

John Mitchell

Reading: Chapter 15 + additional readings
Note: book presentation of memory model is obsolete

Outline

General issues illustrated using Java
• Thread safety
• Nested monitor lockout problem
• Inheritance anomaly

Java Memory Model
• Execution orders that virtual machine may follow
• Example: concurrent hash map

Beyond Java
• Race condition detection

– Memory model provides few guarantees for code with races

• Atomicity

Concurrency references

Thread-safe classes
• B Venners, Designing for Thread Safety, JavaWorld, July 1998:

http://www.artima.com/designtechniques/threadsafety.html
Nested monitor lockout problem
• http://www-128.ibm.com/developerworks/java/library/j-

king.html?dwzone=java
Inheritance anomalyInheritance anomaly
• G Milicia, V Sassone: The Inheritance Anomaly: Ten Years After, SAC

2004: http://citeseer.ist.psu.edu/647054.html
Java memory model
• See http://www.cs.umd.edu/~jmanson/java.html
• and http://www.cs.umd.edu/users/jmanson/java/journal.pdf

Race conditions and correctness
• See slides: lockset, vector-clock, Goldilocks algorithms

Atomicity and tools
• See http://www.cs.uoregon.edu/activities/summerschool/summer06/

More detail in references than required by course

Thread safety

Concept
• The fields of an object or class always maintain a valid state, as

observed by other objects and classes, even when used
concurrently by multiple threads

Why is this important?
• Classes designed so each method preserves state invariants

– Example: priority queues represented as sorted lists

• Invariants hold on method entry and exit
– If invariants fail in the middle of execution of a method, then

concurrent execution of another method call will observe an
inconsistent state (state where the invariant fails)

• What’s a “valid state”? Serializability …

Example (two slides)

public class RGBColor {
private int r; private int g; private int b;
public RGBColor(int r, int g, int b) {

checkRGBVals(r, g, b);
this.r = r; this.g = g; this.b = b;

}

…

private static void checkRGBVals(int r, int g, int b) {
if (r < 0 || r > 255 || g < 0 || g > 255 ||

b < 0 || b > 255) {
throw new IllegalArgumentException();

}
}

}

Example (continued)

public void setColor(int r, int g, int b) {
checkRGBVals(r, g, b);
this.r = r; this.g = g; this.b = b;

}

public int[] getColor() { // returns array of three ints: R, G, and B
int[] retVal = new int[3];
retVal[0] = r; retVal[1] = g; retVal[2] = b;
return retVal;

}

public void invert() {
r = 255 - r; g = 255 - g; b = 255 - b;

}

Question: what goes wrong with multi-threaded use of this class?

2

Some issues with RGB class

Write/write conflicts
• If two threads try to write different colors, result may

be a “mix” of R,G,B from two different colors

Read/write conflicts
• If one thread reads while another writes, the color

that is read may not match the color before or after

How to make classes thread-safe

Synchronize critical sections
• Make fields private
• Synchronize sections that should not run concurrently

Make objects immutable
• State cannot be changed after object is created• State cannot be changed after object is created

public RGBColor invert() {
RGBColor retVal = new RGBColor(255 - r, 255 - g, 255 - b);
return retVal;

}

• Application of pure functional programming for concurrency

Use a thread-safe wrapper
• See next slide …

Thread-safe wrapper

Idea
• New thread-safe class has objects of original class as fields
• Wrapper class provides methods to access original class object

Example
public synchronized void setColor(int r int g int b) {public synchronized void setColor(int r, int g, int b) {

color.setColor(r, g, b);
}
public synchronized int[] getColor() {

return color.getColor();
}
public synchronized void invert() {

color.invert();
}

Comparison

Synchronizing critical sections
• Good default approach for building thread-safe classes
• Only way to allow wait() and notify()
Using immutable objects
• Good if objects are small, simple abstract data type
• Benefit: pass to methods without alias issues, unexpected side effectsp , p
• Examples: Java String and primitive type wrappers Integer, Long,

Float, etc.
Using wrapper objects
• Can give clients choice between thread-safe version and one that is not
• Works with existing class that is not thread-safe
• Example: Java 1.2 collections library – classes are not thread safe but

some have class method to enclose objects in thread-safe wrapper

Performance issues

Why not just synchronize everything?
• Performance costs
• Possible risks of deadlock from too much locking
Performance in current Sun JVM

S h i d th d 4 t 6 ti l th• Synchronized method are 4 to 6 times slower than
non-synchronized

Performance in general
• Unnecessary blocking and unblocking of threads can

reduce concurrency
• Immutable objects can be short-lived, increase

garbage collector

Nested monitor lockout problem (1)

Background: wait and locking
• wait and notify used within synchronized code

– Purpose: make sure that no other thread has called method
of same object

• wait within synchronized code causes the thread to• wait within synchronized code causes the thread to
give up its lock and sleep until notified

– Allow another thread to obtain lock and continue processing

Problem
• Calling a blocking method within a synchronized

method can lead to deadlock

3

Nested Monitor Lockout Example

class Stack {
LinkedList list = new LinkedList();
public synchronized void push(Object x) {

synchronized(list) {
list.addLast(x); notify();

Could be blocking
method of List classlist.addLast(x); notify();

} }
public synchronized Object pop() {

synchronized(list) {
if(list.size() <= 0) wait();
return list.removeLast();

} }
} Releases lock on Stack object but not lock on list;

a push from another thread will deadlock

Preventing nested monitor deadlock

Two programming suggestions
• No blocking calls in synchronized methods, or
• Provide some nonsynchronized method of the

blocking object

No simple solution that works for all
programming situations

“Inheritance anomaly”

General idea
• Inheritance and concurrency control do not mix well
Ways this might occur
• Concurrency control (synch, waiting, etc.) in derived

class requires redefinitions of base class and parentsclass requires redefinitions of base class and parents
• Modification of class requires modifications of

seemingly unrelated features in parent classes
History of inheritance anomaly
• Identified in 1993, before Java
• Arises in different languages, to different degrees,

depending on concurrency primitives

Some forms of inher. anomaly

Partitioning of acceptable states
• Method can only be entered in certain states
• New method in derived class changes set of states
• Must redefine base class method to check new states

History sensitiveness method entry
• New method in derived class can only be called after

other calls
• Must modify existing methods to keep track of history

Java example (base class)

public class Buffer {
protected Object[] buf; protected int MAX; protected int current = 0;
Buffer(int max) {

MAX = max;
buf = new Object[MAX];

}
public synchronized Object get() throws Exception {

while (current<=0) { wait(); }while (current<=0) { wait(); }
current--;
Object ret = buf[current];
notifyAll();
return ret;

}
public synchronized void put(Object v) throws Exception {

while (current>=MAX) { wait(); }
buf[current] = v;
current++;
notifyAll();

}
}

Derived class: history-based protocol

public class HistoryBuffer extends Buffer {
boolean afterGet = false;
public HistoryBuffer(int max) { super(max); }

public synchronized Object gget() throws Exception {
while ((current<=0)||(afterGet)) { wait(); }
afterGet = false;
return super get();

New method, can be
called only after get

return super.get();
}
public synchronized Object get() throws Exception {

Object o = super.get();
afterGet = true;
return o;

}
public synchronized void put(Object v) throws Exception {

super.put(v);
afterGet = false;

}
}

Need to redefine to
keep track of last

method called

Need to redefine to
keep track of last

method called

4

Java progress: util.concurrent

Doug Lea’s utility classes, basis for JSR 166
• A few general-purpose interfaces
• Implementations tested over several years

Principal interfaces and implementationsp p
• Sync: acquire/release protocols
• Channel: put/take protocols
• Executor: executing Runnable tasks

Sync

Main interface for acquire/release protocols
• Used for custom locks, resource management, other

common synchronization idioms
• Coarse-grained interface

– Doesn’t distinguish different lock semantics

Implementations
• Mutex, ReentrantLock, Latch, CountDown,

Semaphore, WaiterPreferenceSemaphore,
FIFOSemaphore, PrioritySemaphore

– Also, utility implementations such as ObservableSync,
LayeredSync that simplifycomposition and instrumentation

Channel

Main interface for buffers, queues, etc.

Producer Channel Consumer

put, offer take, poll

Implementations
• LinkedQueue, BoundedLinkedQueue, BoundedBuffer,

BoundedPriorityQueue, SynchronousChannel, Slot

Executor

Main interface for Thread-like classes
• Pools
• Lightweight execution frameworks
• Custom scheduling

Need only support execute(Runnable r)Need only support execute(Runnable r)
• Analogous to Thread.start

Implementations
• PooledExecutor, ThreadedExecutor, QueuedExecutor,

FJTaskRunnerGroup
• Related ThreadFactory class allows most Executors to use

threads with custom attributes

java.util.Collection

Adapter-based scheme
• Allow layered synchronization of collection classes

Basic collection classes are unsynchronized
• Example: java.util.ArrayList p j y
• Except for Vector and Hashtable

Anonymous synchronized Adapter classes
• constructed around the basic classes, e.g.,

List l = Collections.synchronizedList(new ArrayList());

Java Memory Model

Semantics of multithreaded access to shared memory
• Competitive threads access shared data
• Can lead to data corruption
• Need semantics for incorrectly synchronized programs

DeterminesDetermines
• Which program transformations are allowed

– Should not be too restrictive

• Which program outputs may occur on correct implementation
– Should not be too generous

Reference:
http://www.cs.umd.edu/users/pugh/java/memoryModel/jsr-133-faq.html

5

Memory Hierarchy

Thread Cache

Shared
Memory

code
load/store

read/write

Thread Cache

code

use/assign

Old memory model placed complex constraints on read, load, store, etc.

Program and locking order

Thread 1

lock M

Thread 2

lock M

y = 1

program lock

x = 1

unlock M

i = x

unlock M

j = y

program
order sync program

order

[Manson, Pugh]

Race conditions

“Happens-before” order
• Transitive closure of program order and

synchronizes-with order

Conflict
• An access is a read or a write
• Two accesses conflict if at least one is a write

Race condition
• Two accesses form a data race if they are from

different threads, they conflict, and they are not
ordered by happens-before

Two possible cases: program order as written, or as compiled and optimized

Race conditions

“Happens-before” order
• Transitive closure of program order and

synchronizes-with order

Conflict

Two possible cases: program
order as written, or as
compiled and optimized

• An access is a read or a write
• Two accesses conflict if at least one is a write

Race condition
• Two accesses form a data race if they are from

different threads, they conflict, and they are not
ordered by happens-before

Memory Model Question

How should the compiler and run-time system be
allowed to schedule instructions?
Possible partial answer
• If instruction A occurs in Thread 1 before release of

lock, and B occurs in Thread 2 after acquire of same
lock, then A must be scheduled before B

Does this solve the problem?
• Too restrictive: if we prevent reordering in Thread 1,2
• Too permissive: if arbitrary reordering in threads
• Compromise: allow local thread reordering that would

be OK for sequential programs

Instruction order and serializability

Compilers can reorder instructions
• If two instructions are independent, do in any order
• Take advantage of registers, etc.
Correctness for sequential programs

Ob bl b h i h ld b if• Observable behavior should be same as if program
instructions were executed in the order written

Sequential consistency for concurrent programs
• If program P has no data races, then memory model

should guarantee sequential consistency
• Question: what about programs with races?

– Much of complexity of memory model is for reasonable
behavior for programs with races (need to test, debug, …)

6

Example program with data race

x = y = 0

Thread 1 Thread 2start threads

x = 1

j = y

y = 1

i = x

Can we end up with i = 0 and j = 0?

[Manson, Pugh]

Sequential reordering + data race

x = y = 0

Thread 1 Thread 2start threads

x = 1

j = y

y = 1

i = x

How can i = 0 and j = 0?

OK to reorder
single thread

OK to reorder
single thread

Java definition considers this OK since there is a data race
[Manson, Pugh]

Allowed sequential reordering

“Roach motel” ordering
• Compiler/processor can move accesses into

synchronized blocks
• Can only move them out under special

i t ll t b blcircumstances, generally not observable

Release only matters to a matching acquire
Some special cases:
• locks on thread local objects are a no-op
• reentrant locks are a no-op
• Java SE 6 (Mustang) does optimizations based on this

[Manson, Pugh]

Something to prevent …

x = y = 0

r1 = x r2 = y

Must not result in r1 = r2 = 42
• Imagine if 42 were a reference to an object!

Value appears “out of thin air”
• This is causality run amok
• Legal under a simple “happens-before” model of possible behaviors

y = r1 x = r2

[Manson, Pugh]

Summary of memory model

Strong guarantees for race-free programs
• Equivalent to interleaved execution that respects

synchronization actions
• Thread reordering must preserve sequential

semantics of threadse a t cs o t ead
Weaker guarantees for programs with races
• Allows program transformation and optimization
• No weird out-of-the-blue program results
Form of actual memory model definition
• Happens-before memory model
• Additional condition: for every action that occurs,

there must be identifiable cause in the program

Volatile fields

If two accesses to a field conflict:
• use synchronization to prevent race, or
• make the field volatile

– serves as documentation
– gives essential JVM machine guarantees

Consequences of volatile
• reads and writes go directly to memory (not registers)
• volatile longs and doubles are atomic

– not true for non-volatile longs and doubles

• volatile reads/writes cannot be reordered
– reads/writes become acquire/release pairs

7

Volatile happens-before edges

A volatile write happens-before all following
reads of the same variable
• A volatile write is similar to a unlock or monitor exit

(for determining happens-before relation)
• A volatile read is similar to a lock or monitor enter

Volatile guarantees visibility
• Volatile write is visible to happens-after reads

Volatile guarantees ordering
• Happens-before also constrains scheduling of other

thread actions

class Animator implements Runnable {
private volatile boolean stop = false;

Example (Manson, Pugh)

stop must be declared volatile
• Otherwise, compiler could keep in register

private volatile boolean stop false;
public void stop() { stop = true; }
public void run() {
while (!stop)
oneStep();
try { Thread.sleep(100); } …;

}
private void oneStep() { /*...*/ }

}

Additional properties of volatile

Incrementing a volatile is not atomic
• if threads threads try to increment a volatile at the

same time, an update might get lost

volatile reads are very cheap
• volatile writes cheaper than synchronization

No way to make elements of an array be volatile
Consider using util.concurrent.atomic package
• Atomic objects work like volatile fields but support

atomic operations such as increment and compare
and swap

[Manson, Pugh]

Other Happens-Before orderings

Starting a thread happens-before the run
method of the thread
The termination of a thread happens-before a
join with the terminated threadj
Many util.concurrent methods set up happen-
before orderings
• placing an object into any concurrent collection

happen-before the access or removal of that element
from the collection

Example: Concurrent Hash Map

Implements a hash table
• Insert and retrieve data elements by key
• Two items in same bucket placed in linked list
• Allow read/write with minimal locking

TrickyTricky
“ConcurrentHashMap is both a very useful class for many
concurrent applications and a fine example of a class that
understands and exploits the subtle details of the Java Memory
Model (JMM) to achieve higher performance. … Use it, learn
from it, enjoy it – but unless you're an expert on Java
concurrency, you probably shouldn't try this on your own.”

See http://www-106.ibm.com/developerworks/java/library/j-jtp08223

ConcurrentHashMap

Array Linked lists

Data Data Data

Data Data Data Data

Concurrent operations
• read: no problem
• read/write: OK if different lists
• read/write to same list: clever tricks sometimes avoid locking

Data Data

8

ConcurrentHashMap Tricks

Immutability

Array Linked lists

Data Data Data

Immutability
• List cells are immutable, except for data field
⇒ read thread sees linked list, even if write in progress

Add to list
• Can cons to head of list, like Lisp lists

Remove from list
• Set data field to null, rebuild list to skip this cell
• Unreachable cells eventually garbage collected

More info: see homework

Races in action

Power outage in northeastern grid in 2003
Affected millions of people
Race in Alarm and Event Processing code
“We had in excess of three million onlineWe had in excess of three million online
operational hours in which nothing had ever
exercised that bug. I'm not sure that more
testing would have revealed it.”-- GE Energy's
Mike Unum

Race condition detection

Weak Java memory model guarantees for races
• If a program contains a data race, program behavior

may be unintuitive, hard to test and debug

Use language restriction, tools to identify races
• Type-Based Race Prevention

– Languages that cannot express “racy” programs

• Dynamic Race Detectors
– Using instrumented code to detect races

• Model-Checkers
– Searching for reachable race states

Type-Based Race Prevention

Method
• Encode locking discipline into language.
• Relate shared state and the locks that protect them.
• Use typing annotations.
• Recall ownership types; this will seem familiar

Example: Race-Free Cyclone

“This lock protects this variable”

“This is a new lock ”

int*l p1 = new 42;
int*loc p2 = new 43;

This is a new lock.

“This function should only be called when in
possession of this lock”

let lk<l> = newlock();

void inc<l:LU>(int*l p;{l}) {
*p = *p + 1;

}

Example: Race-Free Cyclone

“This lock protects this variable”

“This is a new lock ”

int*l p1 = new 42;
int*loc p2 = new 43;

Declares a variable of
type “an integer
protected by the lock
named l ”

loc is a special lock name
meaning that the variable is
thread-local

Lock type name

This is a new lock.

“This function should only be called when in
possession of this lock”

let lk<l> = newlock();

void inc<l:LU>(int*l p;{l}) {
*p = *p + 1;

}
When passed an int whose

protection lock is l

Ignore this “lock
polymorphism”

The caller must have
acquired lock l

9

Type-Based Race Prevention

Positives
• Soundness: Programs are race-free by construction
• Familiarity: Locking discipline is a common paradigm
• Relatively Expressive

– Classes can be parameterized by different locks
– Types can often be inferred

Negatives:
• Restrictive: Not all race-free programs are legal

– Other synchronization? (wait/notify, etc.)

• Annotation Burden: Lots of annotations to write

Dynamic Race Detectors

Find race conditions by
• Instrument source code / byte code
• Run lockset and happens-before analyses
• Report races detected for that run

No guarantee that all races are found
• Different program input may lead to different

execution paths

Basic Lockset Analysis

Monitor program execution
Maintain set of locks held at each program point
• When lock is acquired, add to the set of current locks
• Remove lock from lockset when it is released

Check variable access
• The first time a variable is accessed, set its

“candidate set” to be the set of held locks
• The next time variable is accessed, take the

intersection of the candidate set and the set of
currently held lock

If intersection empty, flag potential race condition

Happens-Before Analysis

Maintain representation of happens-before as
program executes
• Can be done using “local clocks” and synchronization

Check for races
• When a variable access occurs that happens-for does

not guarantee is ‘after’ the previous one, we have
detected an actual race

Can combine lockset, happens-before

Lockset analysis detects violation of locking discipline
• False positives if strict locking discipline is not followed

Happens-Before reports actual race conditions
• No false positives, but false negatives can occur
• High memory and CPU overhead• High memory and CPU overhead

Combined use
• Use lockset, then switch to happens-before for variables where

a race is detected

Goldilocks algorithm [FATES/RV ’06]

Lockset-based characterication of the happens-
before relation
• Similar efficiency to other lockset algorithms
• Similar precision to vector-clocks
• Locksets contain locks, volatile variables, thread ids

Theorem
• When thread t accesses variable d, there is no race

iff lockset of d at that point contains t

Sound: Detects races that occur in execution
• Race reported Two accesses not ordered by

happens-before

10

Atomicity

Concept
• Mark block so that compiler and run-time system will

execute block without interaction from other threads

Advantages
• Stronger property than race freedom
• Enables sequential reasoning
• Simple, powerful correctness property

Next slides: Cormac Flanagan

Limitations of Race-Freedom

class Ref {
int i;
void inc() {
int t;
synchronized (this) {

Ref.inc()
race-free
behaves incorrectly in a
multithreaded contextsynchronized (this) {

t = i;
}
synchronized (this) {
i = t+1;

}
}
...

}

multithreaded context

Race freedom does not
prevent errors due to
unexpected interactions
between threads

Limitations of Race-Freedom

class Ref {
int i;
void inc() {
int t;
synchronized (this) {

Ref.read()
has a race condition
behaves correctly in a
multithreaded contextsynchronized (this) {

t = i;
i = t+1;

}
}

void read() { return i; }
...

}

multithreaded context

Race freedom is not
necessary to prevent
errors due to unexpected
interactions
between threads

Atomic

An easier-to-use and harder-to-implement primitive:

void deposit(int x){
synchronized(this){
int tmp = balance;
tmp += x;

void deposit(int x){
atomic {
int tmp = balance;
tmp += x;tmp + x;

balance = tmp;
}}

tmp + x;
balance = tmp;

}}

semantics:
lock acquire/release

semantics:
(behave as if)
no interleaved execution

No fancy hardware, code restrictions, deadlock, or
unfair scheduling (e.g., disabling interrupts)

AtomJava [Grossman]

Novel prototype recently completed …

Source-to-source translation for Java
• Run on any JVM (so parallel)

At VM’ f l l l ti i ti• At VM’s mercy for low-level optimizations

Atomicity via locking (object ownership)
• Poll for contention and rollback
• No support for parallel readers yet

Hope: whole-program optimization can get
“strong for near the price of weak”

Implementing atomic

Key pieces:
• Execution of an atomic block logs writes
• If scheduler pre-empts a thread in atomic, rollback

the thread
• Duplicate code so non-atomic code is not slowed by

logging
• Smooth interaction with GC

[Grossman]

11

Concurrency Summary

Concurrency
• Powerful computing idea, complex to use

Futures: simple approach
Actors: High-level object-oriented form of concurrency
C t MLConcurrent ML
• Threads and synchronous events; no explicit locks

Java concurrency
• Combines thread and object-oriented approaches
• Some good features, some rough spots
• Experience leads to methods, libraries (util.concurrent)
• Java Memory Model

Race condition checkers, atomicity

