
1

CS 242

Concurrency 1

John Mitchell

Reading: Chapter 15

Course schedule

This week
• Two lectures on concurrency
• Homework posted to web this week; due next Wed
• Section on Friday (last Friday section)

Next week
• Monday – Logic programming
• Wednesday – Review

Following week
• Final exam on Monday, Dec 10, 12:15-3:15 PM

Concurrency

Multiprogramming
• A single computer runs

several programs at the

Multiprocessors
• Two or more processors

may be connected

Two or more sequences of events occur in parallel

p g
same time

• Each program proceeds
sequentially

• Actions of one program
may occur between two
steps of another

y
• Programs on one processor

communicate with
programs on another

• Actions may happen
simultaneously

Process: sequential program running on a processor

Concurrency increasing: many cores on single chip

From white papers and web sites of current projects:
• “Conventional wisdom is now to double the number of cores on

a chip with each silicon generation.”
• “The target should be 1000s of cores per chip, as this hardware

is the most efficient in MIPS per watt, MIPS per area of silicon,
and MIPS per development dollar ”and MIPS per development dollar.

• “To maximize programmer productivity, programming models
should be independent of the number of processors.”

• “To maximize application efficiency, programming models
should support a wide range of data types and successful
models of parallelism: data-level parallelism, independent task
parallelism, and instruction-level parallelism.”

see VIEW and RAMP projects (Berkeley, Stanford, MIT,
CMU, UW, UT Austin, processor companies, ...)

The promise of concurrency

Speed
• If a task takes time t on one processor, shouldn’t it

take time t/n on n processors?

Availability
• If one process is busy, another may be ready to help

Distribution
• Processors in different locations can collaborate to

solve a problem or work together

Humans do it so why can’t computers?
• Vision, cognition appear to be highly parallel activities

Challenges

Concurrent programs are harder to get right
• Folklore: Need at least an order of magnitude in

speedup for concurrent prog to be worth the effort

Some problems are inherently sequential
• Theory – circuit evaluation is P-complete
• Practice – many problems need coordination and

communication among sub-problems

Specific issues
• Communication – send or receive information
• Synchronization – wait for another process to act
• Atomicity – do not stop in the middle and leave a mess

2

Basic question for this course

How can programming languages make
concurrent and distributed programming easier?

What could languages provide?

Example high-level constructs
• Thread as the value of an expression

– Pass threads to functions
– Create threads at the result of function call

C i ti b t ti• Communication abstractions
– Synchronous communication
– Buffered asynchronous channels that preserve msg order

• Concurrency control
– Mutual exclusion
– Most concurrent languages provide some form of locking
– Atomicity is more abstract, less commonly provided

Basic issue: race conditions

Sample action
procedure sign_up(person)

begin
number := number + 1;
list[number] : person;list[number] := person;

end;
Problem with parallel execution

bob fred
bill
fredsign_up(fred) || sign_up(bill);

Resolving conflict between processes

Critical section
• Two processes may access shared resource
• Inconsistent behavior if two actions are interleaved
• Allow only one process in critical section

Deadlock
• Process may hold some locks while awaiting others
• Deadlock occurs when no process can proceed

Locks and Waiting

<initialze concurrency control>

Thread 1:
<wait>
sign up(fred); // critical sectiong _ p(); //
<signal>

Thread 2:
<wait>
sign_up(bill); // critical section
<signal>

Need atomic operations to implement wait

Mutual exclusion primitives

Atomic test-and-set
• Instruction atomically reads and writes some location
• Common hardware instruction
• Combine with busy-waiting loop to implement mutex

Semaphore
• Avoid busy-waiting loop
• Keep queue of waiting processes
• Scheduler has access to semaphore; process sleeps
• Disable interrupts during semaphore operations

– OK since operations are short

3

State of the art

Concurrent programming is difficult
• Race conditions, deadlock are pervasive

Languages should be able to help
• Capture useful paradigms, patterns, abstractionsp p g , p ,

Other tools are needed
• Testing is difficult for multi-threaded programs
• Many race-condition detectors being built today

– Static detection: conservative, may be too restrictive
– Run-time detection: may be more practical for now

Concurrent language examples

Language Examples
• Cobegin/coend
• Multilisp futures
• Actors (C. Hewitt)

• Concurrent ML
• Java

Some features to compare
• Thread creation
• Communication
• Concurrency control (synchronization and locking)

Cobegin/coend

Limited concurrency primitive
Example
x := 0;
cobegin

begin x := 1; x := x+1 end; execute sequentialbegin x : 1; x : x+1 end;
begin x := 2; x := x+1 end;

coend;
print(x);

execute sequential
blocks in parallel

x := 0
x := 2

x := 1

print(x)

x := x+1

x := x+1

Atomicity at level of assignment statement

Properties of cobegin/coend

Advantages
• Create concurrent processes
• Communication: shared variables

Limitations
• Mutual exclusion: none
• Atomicity: none
• Number of processes is fixed by program structure
• Cannot abort processes

– All must complete before parent process can go on

History: Concurrent Pascal, P. Brinch Hansen, Caltech, 1970’s

Multilisp future

Example
(define (split x) …)
(define (merge x y) … (car x) …)
(define (mergesort x)

(let ((y,z) (split x))
(merge (mergesort y) (mergesort z))))

How to rewrite as concurrent algorithm?

Slide credit: Michael Hicks (+ few slides)

Some general approaches

Explicit concurrency
• Fork or create threads explicitly
• Explicit communication between threads

– Producer computes useful value
– Consumer requests or waits for producer

Implicit concurrency
• Rely on compiler to identify potential parallelism
• Problems

– Instruction-level and loop-level parallelism can be inferred,
but inferring larger “subroutine”-level parallelism has had
less success

4

Middle Ground: Futures

Use future annotation [Halstead 85]
• (future e) indicates e may run concurrently with

parent

Benefits
• Notationally lightweight

– Sequential algorithm still expressed in code

• Concurrency determined by the run-time system
– Can be based on system resources

• Simple coordination between threads

19

Where to annotate?

(define (split x) …)
(define (merge x y) … (car x) …)
(define (mergesort x)
(let ((y,z) (split x))
(merge (mergesort y) (mergesort z))))

No - result is used immediately in following call

20

Where to annotate?

(define (split x) …)
(define (merge x y) … (car x) …)
(define (mergesort x)
(let ((y,z) (split x))
(merge (mergesort y) (mergesort z))))

Yes - recursive calls can operate in parallel

21

Multilisp Merge Sort

(define (split x) …)
(define (merge x y) … (car x) …)
(define (mergesort x)
(let ((y,z) (split x))
(merge (future (mergesort y)

(future (mergesort z)))))

22

Basic Implementation Approach

(future e)
• fork a new thread T to evaluate e
• return a proxy p to the parent

– called a future or promise

Producer
• Thread T stores result of e into proxy p

Consumer
• Run-time system extracts result from p when

accessed by the parent
• Called a touch or claim

23

Implementing Touches

(define (merge x y) … (car x) …)

Futurized implementation of (car x)
(if (pair? (touch x))

Could be a
future…

(if (pair? (touch x))
(get first elem of x)
(error))

Where (touch x) is
(if (future? x) (get x) x)

24

Blocks until
result has been

computed

5

Optimization I

Forking a thread per future could be expensive
and without advantage
• Particularly if not many CPUs

Idea: only use as many threads as there are
processors [Mohr et al 91]
• At a future call, use idle thread, if any
• Otherwise, continue using current thread

– Save continuation on a separate queue

• When a thread would block, save the current
continuation and grab one from the queue

25

Optimization II

Once a future computation completes, its result
is immutable
• Proxy and further touches redundant

Thus
• Use garbage collector to throw away the proxy and

replace with the result [Halstead 85]
• Avoid touching at all if static analysis can prove it’s

unnecessary [Flanagan & Felleissen 95]

26

Actors [Hewitt, Agha, Tokoro, Yonezawa, ...]

Each actor (object) has a script
In response to input, actor may atomically
• create new actors
• initiate communication
• change internal state

Communication is
• Buffered, so no message is lost
• Guaranteed to arrive, but not in sending order

– Order-preserving communication is harder to implement
– Programmer can build ordered primitive from unordered
– Inefficient to have ordered communication when not needed

Actor-Oriented Programs

class name

data

methods

What flows through
an object is

sequential control

Object orientation:

Actor orientation:

actor name

data (state)

ports

input data

parameters

output data

What flows through
an object is

streams of data

call return

Example

1, 4, 7

Insert 2

1, 2, 4, 7

2, 4, 7

1

Actor program

Stack node
a stack_node with acquaintances content and link

if operation requested is a pop and content != nil then
become forwarder to link

parameters

send content to customer
if operation requested is push(new_content) then

let P=new stack_node with current acquaintances
become stack_node with acquaintances new_content and P

Hard to read but it does the “obvious” thing, except
that the concept of forwarder is unusual….

(a clone)

6

Forwarder

Stack after pop

3 4 5 nil

Stack before pop

p p

forwarder 4 5 nil

• Node “disappears” by becoming a forwarder node.
The system manages forwarded nodes in a way that
makes them invisible to the program. (Exact mechanism
doesn’t really matter since we’re not that interested in Actors.)

Concurrency

Several actors may operate concurrently

Concurrency not controlled explicitly by program
• Messages sent by one actor can be received and

processed by others sequentially or concurrently

Pros and Cons of Actor model

High-level programming language
• Communication by messages
• Mutual exclusion: if two msgs sent, actor reacts

atomically to first one received before seeing second
• Concurrency is implicit; no explicit fork or wait

Possibly too abstract for some situations?
• How do you fork several processes to do speculative

computation, then kill them all when one succeeds?
– Seems to require many msgs to actor that tells all others

whether to proceed; this “coordinator” becomes a bottleneck

Concurrent ML [Reppy, Gansner, …]

Threads
• New type of entity

Communication
• Synchronous channelsy

Synchronization
• Channels
• Events

Atomicity
• No specific language support

Pre-Java Concept: Monitor

Synchronized access to private data
Combines
• private data
• set of procedures (methods)

Brinch-Hansen, Dahl, Dijkstra, Hoare

p ()
• synchronization policy

– At most one process may execute a monitor procedure at a
time; this process is said to be in the monitor

– If one process is in the monitor, any other process that calls
a monitor procedure will be delayed

Modern terminology: synchronized object

Java Concurrency

Threads
• Create process by creating thread object

Communication
• Shared variables
• Method calls

Mutual exclusion and synchronization
• Every object has a lock (inherited from class Object)

– synchronized methods and blocks

• Synchronization operations (inherited from class Object)

– wait : pause current thread until another thread calls notify
– notify : wake up waiting threads

7

Java Threads

Thread
• Set of instructions to be executed one at a time, in a

specified order

Java thread objects
• Object of class Thread
• Methods inherited from Thread:

– start : method called to spawn a new thread of control;
causes VM to call run method

– suspend : freeze execution
– interrupt : freeze execution and throw exception to thread
– stop : forcibly cause thread to halt

Java Thread States
Non-Existing

New

start

create thread object

destroy

Executable

Blocked Dead

run method
exits

Non-Existing

garbage collected
and finalization

wait, join notify, notifyAll
thread termination

destroy

destroy

Problem with language specification

Java Lang Spec allows access to partial objects
class Broken {

private long x;
Broken() {

Allen Holub, Taming Java Threads

new Thread() {
public void run() { x = -1; }

}.start();
x = 0;

} }

Thread created within constructor can access the object not fully constructed

Interaction between threads

Shared variables
• Two threads may assign/read the same variable
• Programmer responsibility

– Avoid race conditions by explicit synchronization !!

Method calls
• Two threads may call methods on the same object

Synchronization primitives
• Each object has internal lock, inherited from Object
• Synchronization primitives based on object locking

Synchronization

Provides mutual exclusion
• Two threads may have access to some object
• If one calls a synchronized method, this locks object
• If the other calls a synchronized method on same

object, this thread blocks until object is unlocked

Synchronized methods

Marked by keyword
public synchronized void commitTransaction(…) {…}

Provides mutual exclusion
• At most one synchronized method can be activey
• Unsynchronized methods can still be called

– Programmer must be careful

Not part of method signature
• sync method equivalent to unsync method with body

consisting of a synchronized block
• subclass may replace a synchronized method with

unsynchronized method

8

Example [Lea]

class LinkedCell { // Lisp-style cons cell containing
protected double value; // value and link to next cell
protected final LinkedCell next;
public LinkedCell (double v, LinkedCell t) {

value = v; next = t;
}}
public synchronized double getValue() {

return value;
}
public synchronized void setValue(double v) {

value = v; // assignment not atomic
}
public LinkedCell next() { // no synch needed

return next;
}

Join, another form of synchronization

Wait for thread to terminate
class Future extends Thread {

private int result;
public void run() { result = f(…); }
public int getResult() { return result;}

}
…
Future t = new future;
t.start() // start new thread
…
t.join(); x = t.getResult(); // wait and get result

Producer-Consumer?

Producer

Producer

Consumer

Buffer Consumer

Method call is synchronous
How do we do this in Java?

Producer Consumer

Solution to producer-consumer

Cannot be solved with locks alone
• Use wait and notify methods of Object

Basic idea
• Consumer must wait until something is in the buffer
• Producer must inform waiting consumers when item available

More details
• Consumer waits

– While waiting, must sleep
– This is accomplished with the wait method
– Need condition recheck loop

• Producer notifies
– Must wake up at least one consumer
– This is accomplished with the notify method

Stack<T>: produce, consume methods

public synchronized void produce (T object) {
stack.add(object); notify();

}

public synchronized T consume () {
while (stack.isEmpty()) {

try {
wait();

} catch (InterruptedException e) { }
}
Int lastElement = stack.size() - 1;
T object = stack.get(lastElement);
stack.remove(lastElement);
return object; }

See: http://www1.coe.neu.edu/~jsmith/tutorial.html (also cartoon)

Why is loop needed here?

9

Concurrent garbage collector

How much concurrency?
• Need to stop thread while mark and sweep
• Other GC: may not need to stop all program threads

Problem
• Program thread may change objects during collection

Solution
• Prevent read/write to memory area
• Details are subtle; generational, copying GC

– Modern GC distinguishes short-lived from long-lived objects
– Copying allows read to old area if writes are blocked …
– Relatively efficient methods for read barrier, write barrier

Limitations of Java 1.4 primitives

No way to back off from an attempt to acquire a lock
• Cannot give up after waiting for a specified period of time
• Cannot cancel a lock attempt after an interrupt

No way to alter the semantics of a lock
• Reentrancy read versus write protection fairness• Reentrancy, read versus write protection, fairness, …

No access control for synchronization
• Any method can perform synchronized(obj) for any object

Synchronization is done within methods and blocks
• Limited to block-structured locking
• Cannot acquire a lock in one method and release it in another

See http://java.sun.com/developer/technicalArticles/J2SE/concurrency/

Continue next time … Condition rechecks

Want to wait until condition is true
public synchronized void lock() throws InterruptedException {

if (isLocked) wait();
isLocked = true;

}
bli h i d id L k() {public synchronized void unLock() {

isLocked = false;
notify();

}
But need loop since another process may run
public synchronized void lock() throws InterruptedException {

while (isLocked) wait();
isLocked = true;

}

