
Finite-state technology Introduction

Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural language
is given as a list of words. Suggest a data structure that will provide
insertion and retrieval of data. As a first solution, we are looking for
time efficiency rather than space efficiency.

The solution: trie (word tree).

Access time: O(|w |). Space requirement: O(
∑

w |w |).

A trie can be augmented to store also a morphological dictionary
specifying concatenative affixes, especially suffixes. In this case it is
better to turn the tree into a graph.

The obtained model is that of finite-state automata.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 88 / 689

Finite-state technology Introduction

Finite-state technology

Finite-state automata are not only a good model for representing the
lexicon, they are also perfectly adequate for representing dictionaries
(lexicons+additional information), describing morphological processes
that involve concatenation etc.

A natural extension of finite-state automata – finite-state
transducers – is a perfect model for most processes known in
morphology and phonology, including non-segmental ones.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 89 / 689

Finite-state technology Introduction to formal language theory

Formal language theory – definitions

Formal languages are defined with respect to a given alphabet, which
is a finite set of symbols, each of which is called a letter.

A finite sequence of letters is called a string.

Example: Strings

Let Σ = {0, 1} be an alphabet. Then all binary numbers are strings over Σ.
If Σ = {a, b, c , d , . . . , y , z} is an alphabet then cat, incredulous and super-

califragilisticexpialidocious are strings, as are tac, qqq and kjshdflkwjehr.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 90 / 689

Finite-state technology Introduction to formal language theory

Formal language theory – definitions

The length of a string w , denoted |w |, is the number of letters in w .

The unique string of length 0 is called the empty string and is
denoted ǫ.

If w1 = 〈x1, . . . , xn〉 and w2 = 〈y1, . . . , ym〉, the concatenation of w1

and w2, denoted w1 · w2, is the string 〈x1, . . . , xn, y1, . . . , ym〉.
|w1 · w2| = |w1|+ |w2|.

For every string w , w · ǫ = ǫ · w = w .

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 91 / 689

Finite-state technology Introduction to formal language theory

Formal language theory – definitions

Example: Concatenation

Let Σ = {a, b, c , d , . . . , y , z} be an alphabet.
Then master ·mind = mastermind, mind ·master = mindmaster and master ·
master = mastermaster.
Similarly, learn · s = learns, learn · ed = learned and learn · ing = learning.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 92 / 689

Finite-state technology Introduction to formal language theory

Formal language theory – definitions

An exponent operator over strings is defined in the following way:

For every string w , w 0 = ǫ.
For n > 0, wn = wn−1 · w .

Example: Exponent

If w = go, then w0 = ǫ, w1 = w = go, w2 = w1 · w = w · w = gogo,
w3 = gogogo and so on.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 93 / 689

Finite-state technology Introduction to formal language theory

Formal language theory – definitions

The reversal of a string w is denoted wR and is obtained by writing
w in the reverse order. Thus, if w = 〈x1, x2, . . . , xn〉,
wR = 〈xn, xn−1, . . . , x1〉.

Given a string w , a substring of w is a sequence formed by taking
contiguous symbols of w in the order in which they occur in w . If
w = 〈x1, . . . , xn〉 then for any i , j such that 1 ≤ i ≤ j ≤ n, 〈xi , . . . xj〉
is a substring of w .

Two special cases of substrings are prefix and suffix : if
w = wl · wc · wr then wl is a prefix of w and wr is a suffix of w .

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 94 / 689

Finite-state technology Introduction to formal language theory

Formal language theory – definitions

Example: Substrings

Let Σ = {a, b, c , d , . . . , y , z} be an alphabet and w = indistinguishable a
string over Σ. Then ǫ, in, indis, indistinguish and indistinguishable are pre-
fixes of w , while ǫ, e, able, distinguishable and indistinguishable are suffixes
of w . Substrings that are neither prefixes nor suffixes include distinguish,

gui and is.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 95 / 689

Finite-state technology Introduction to formal language theory

Formal language theory – definitions

Given an alphabet Σ, the set of all strings over Σ is denoted by Σ∗.

A formal language over an alphabet Σ is a subset of Σ∗.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 96 / 689

Finite-state technology Introduction to formal language theory

Formal language theory – definitions

Example: Languages

Let Σ = {a, b, c, . . ., y, z}. The following are formal languages:
Σ∗;

the set of strings consisting of consonants only;

the set of strings consisting of vowels only;

the set of strings each of which contains at least one vowel and at
least one consonant;

the set of palindromes;

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 97 / 689

Finite-state technology Introduction to formal language theory

Formal language theory – definitions

Example: Languages

Let Σ = {a, b, c, . . ., y, z}. The following are formal languages:
the set of strings whose length is less than 17 letters;

the set of single-letter strings (= Σ);

the set {i, you, he, she, it, we, they};

the set of words occurring in Joyce’s Ulysses;

the empty set;
Note that the first five languages are infinite while the last five are finite.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 98 / 689

Finite-state technology Introduction to formal language theory

Formal language theory – definitions

The string operations can be lifted to languages.

If L is a language then the reversal of L, denoted LR , is the language
{w | wR ∈ L}.

If L1 and L2 are languages, then
L1 · L2 = {w1 · w2 | w1 ∈ L1 and w2 ∈ L2}.

Example: Language operations

Let L1 = {i, you, he, she, it, we, they}, L2 = {smile, sleep}.
Then L1

R = {i, uoy, eh, ehs, ti, ew, yeht} and L1 · L2 = {ismile, yous-

mile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep, yousleep, hesleep,

shesleep, itsleep, wesleep, theysleep}.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 99 / 689

Finite-state technology Introduction to formal language theory

Formal language theory – definitions

If L is a language then L0 = {ǫ}.

Then, for i > 0, Li = L · Li−1.

Example: Language exponentiation

Let L be the set of words {bau, haus, hof, frau}. Then L0 = {ǫ}, L1 = L

and L2 = {baubau, bauhaus, bauhof, baufrau, hausbau, haushaus, haushof,

hausfrau, hofbau, hofhaus, hofhof, hoffrau, fraubau, frauhaus, frauhof,

fraufrau}.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 100 / 689

Finite-state technology Introduction to formal language theory

Formal language theory – definitions

The Kleene closure of L and is denoted L∗ and is defined as
⋃

∞

i=0
Li .

L+ =
⋃

∞

i=1
Li .

Example: Kleene closure

Let L = {dog, cat}. Observe that L0 = {ǫ}, L1 = {dog, cat}, L2 =
{catcat, catdog, dogcat, dogdog}, etc. Thus L∗ contains, among its infi-
nite set of strings, the strings ǫ, cat, dog, catcat, catdog, dogcat, dogdog,

catcatcat, catdogcat, dogcatcat, dogdogcat, etc.

The notation for Σ∗ should now become clear: it is simply a special
case of L∗, where L = Σ.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 101 / 689

Finite-state technology Regular expressions

Regular expressions

Regular expressions are a formalism for defining (formal) languages.

Their “syntax” is formally defined and is relatively simple.

Their “semantics” is sets of strings: the denotation of a regular
expression is a set of strings in some formal language.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 102 / 689

Finite-state technology Regular expressions

Regular expressions

Regular expressions are defined recursively as follows:

∅ is a regular expression

ǫ is a regular expression

if a ∈ Σ is a letter then a is a regular expression

if r1 and r2 are regular expressions then so are (r1 + r2) and (r1 · r2)

if r is a regular expression then so is (r)∗

nothing else is a regular expression over Σ.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 103 / 689

Finite-state technology Regular expressions

Regular expressions

Example: Regular expressions

Let Σ be the alphabet {a, b, c, . . ., y, z}. Some regular expressions over
this alphabet are:

∅

a

((c · a) · t)

(((m · e) · (o)∗) · w)

(a + (e + (i + (o + u))))

((a + (e + (i + (o + u)))))∗

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 104 / 689

Finite-state technology Regular expressions

Regular expressions

For every regular expression r its denotation, [[r]], is a set of strings defined
as follows:

[[∅]] = ∅

[[ǫ]] = {ǫ}

if a ∈ Σ is a letter then [[a]] = {a}

if r1 and r2 are regular expressions whose denotations are [[r1]] and
[[r2]], respectively, then [[(r1 + r2)]] = [[r1]] ∪ [[r2]],
[[(r1 · r2)]] = [[r1]] · [[r2]] and [[(r1)

∗]] = [[r1]]
∗

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 105 / 689

Finite-state technology Regular expressions

Regular expressions

Example: Regular expressions and their denotations

∅ ∅
a {a}
((c · a) · t) {c · a · t}
(((m · e) · (o)∗) · w) {mew, meow, meoow, meooow, . . .}
(a + (e + (i + (o + u)))) {a, e, i , o, u}
((a + (e + (i + (o + u)))))∗ all strings of 0 or more vowels

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 106 / 689

Finite-state technology Regular expressions

Regular expressions

Example: Regular expressions

Given the alphabet of all English letters, Σ = {a, b, c , . . . , y , z}, the
language Σ∗ is denoted by the regular expression Σ∗.

The set of all strings which contain a vowel is denoted by
Σ∗ · (a + e + i + o + u) · Σ∗.

The set of all strings that begin in “un” is denoted by (un)Σ∗.

The set of strings that end in either “tion” or “sion” is denoted by
Σ∗ · (s + t) · (ion).

Note that all these languages are infinite.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 107 / 689

Finite-state technology Regular expressions

Regular languages

A language is regular if it is the denotation of some regular
expression.

Not all formal languages are regular.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 108 / 689

Finite-state technology Regular expressions

Properties of regular languages

Closure properties: A class of languages L is said to be closed under
some operation ‘•’ if and only if whenever two languages L1, L2 are in
the class (L1,L2 ∈ L), also the result of performing the operation on
the two languages is in this class: L1 • L2 ∈ L.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 109 / 689

Finite-state technology Regular expressions

Properties of regular languages

Regular languages are closed under:

Union

Intersection

Complementation

Difference

Concatenation

Kleene-star

Substitution and homomorphism

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 110 / 689

Finite-state technology Finite-state automata

Finite-state automata

Automata are models of computation: they compute languages.

A finite-state automaton is a five-tuple 〈Q, q0,Σ, δ,F 〉, where Σ is a
finite set of alphabet symbols, Q is a finite set of states, q0 ∈ Q is
the initial state, F ⊆ Q is a set of final (accepting) states and
δ : Q × Σ× Q is a relation from states and alphabet symbols to
states.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 111 / 689

Finite-state technology Finite-state automata

Finite-state automata

Example: Finite-state automaton

Q = {q0, q1, q2, q3}

Σ = {c , a, t, r}

F = {q3}

δ = {〈q0, c , q1〉, 〈q1, a, q2〉, 〈q2, t, q3〉, 〈q2, r , q3〉}

q0 q1 q2 q3

c a
t

r

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 112 / 689

Finite-state technology Finite-state automata

Finite-state automata

The reflexive transitive extension of the transition relation δ is a new
relation, δ̂, defined as follows:

for every state q ∈ Q, (q, ǫ, q) ∈ δ̂
for every string w ∈ Σ∗ and letter a ∈ Σ, if (q, w , q′) ∈ δ̂ and
(q′, a, q′′) ∈ δ then (q, w · a, q′′) ∈ δ̂.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 113 / 689

Finite-state technology Finite-state automata

Finite-state automata

Example: Paths

For the finite-state automaton:

q0 q1 q2 q3

c a
t

r

δ̂ is the following set of triples:

〈q0, ǫ, q0〉, 〈q1, ǫ, q1〉, 〈q2, ǫ, q2〉, 〈q3, ǫ, q3〉,
〈q0, c , q1〉, 〈q1, a, q2〉, 〈q2, t, q3〉, 〈q2, r , q3〉,
〈q0, ca, q2〉, 〈q1, at, q3〉, 〈q1, ar , q3〉,
〈q0, cat, q3〉, 〈q0, car , q3〉

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 114 / 689

Finite-state technology Finite-state automata

Finite-state automata

A string w is accepted by the automaton A = 〈Q, q0,Σ, δ,F 〉 if and
only if there exists a state qf ∈ F such that (q0,w , qf) ∈ δ̂.

The language accepted by a finite-state automaton is the set of all
the strings it accepts.

Example: Language

The language of the finite-state automaton:

q0 q1 q2 q3

c a
t

r

is {cat, car}.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 115 / 689

Finite-state technology Finite-state automata

Finite-state automata

Example: Some finite-state automata

q0 ∅

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 116 / 689

Finite-state technology Finite-state automata

Finite-state automata

Example: Some finite-state automata

q0 q1

a
{a}

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 117 / 689

Finite-state technology Finite-state automata

Finite-state automata

Example: Some finite-state automata

q0 {ǫ}

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 118 / 689

Finite-state technology Finite-state automata

Finite-state automata

Example: Some finite-state automata

q0 q1

a
a {a, aa, aaa, aaaa, . . .}

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 119 / 689

Finite-state technology Finite-state automata

Finite-state automata

Example: Some finite-state automata

q0 a a∗

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 120 / 689

Finite-state technology Finite-state automata

Finite-state automata

Example: Some finite-state automata

q0 ? Σ∗

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 121 / 689

Finite-state technology Finite-state automata

Finite-state automata

An extension: ǫ-moves.

The transition relation δ is extended to: δ ⊆ Q × (Σ ∪ {ǫ})× Q

Example: Automata with ǫ-moves

An automaton accepting the language {do, undo, done, undone}:

q0 q1 q2 q3

q4 q5 q6

u n d

o

n e

ǫ

ǫ

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 122 / 689

Finite-state technology Finite-state automata

Finite-state automata

Theorem (Kleene, 1956)

The class of languages recognized by finite-state automata is the class of

regular languages.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 123 / 689

Finite-state technology Finite-state automata

Finite-state automata

Example: Finite-state automata and regular expressions

∅ q0

a q0 q1

a

((c · a) · t) q0 q1 q2 q3

c a t

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 124 / 689

Finite-state technology Finite-state automata

Finite-state automata

Example: Finite-state automata and regular expressions

(((m · e) · (o)∗) · w) q0 q1 q2 q3

m e

o

w

((a + (e + (i + (o + u)))))∗ q0 a, e, i , o, u

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 125 / 689

Finite-state technology Finite-state automata

Operations on finite-state automata

Concatenation

Union

Intersection

Minimization

Determinization

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 126 / 689

Finite-state technology Finite-state automata

Minimization and determinization

Two automata are equivalent if the accept the same language.

If L is a regular language then there exists a finite-state automaton A

accepting L such that the number of states in A is minimal. A is
unique up to isomorphism.

A finite-state automaton is deterministic if its transition relation is a
function.

If L is a regular language then there exists a deterministic, ǫ-free
finite-state automaton which accepts it.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 127 / 689

Finite-state technology Finite-state automata

Minimization and determinization

Example: Equivalent automata

A1

n gi
g o n e

A2

g o i n g

g o n e
g o

A3

g o i n g

n e ǫ
ǫ

ǫ

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 128 / 689

Finite-state technology Finite-state automata

Applications of finite-state automata in NLP

Finite-state automata are efficient computational devices for
generating regular languages.

An equivalent view would be to regard them as recognizing devices:
given some automaton A and a word w , applying the automaton to
the word yields an answer to the question: Is w a member of L(A),
the language accepted by the automaton?

This reversed view of automata motivates their use for a simple yet
necessary application of natural language processing: dictionary
lookup.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 129 / 689

Finite-state technology Finite-state automata

Applications of finite-state automata in NLP

Example: Dictionaries as finite-state automata

go :
g o

go, gone, going :

g o i n g

g o n e

g
o

go, gone, going :

n g
i

g o n e

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 130 / 689

Finite-state technology Finite-state automata

Applications of finite-state automata in NLP

Example: Adding morphological information

Add information about part-of-speech, the number of nouns and the tense
of verbs:

Σ = {a, b, c, . . ., y, z, -N, -V, -sg, -pl, -inf, -prp, -psp}

g o i n g -V -prp

n
e -V -psp

-V
-inf

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 131 / 689

Finite-state technology Finite-state automata

The appeal of regular languages for NLP

Most phonological and morphological process of natural languages
can be straight-forwardly described using the operations that regular
languages are closed under.

The closure properties of regular languages naturally support modular
development of finite-state grammars.

Most algorithms on finite-state automata are linear. In particular, the
recognition problem is linear.

Finite-state automata are reversible: they can be used both for
analysis and for generation.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 132 / 689

Finite-state technology Regular relations

Regular relations

While regular expressions are sufficiently expressive for some natural
language applications, it is sometimes useful to define relations over
two sets of strings.
Part-of-speech tagging:

Example: Part-of-speech tagging

I know some new tricks
PRON V DET ADJ N

said the Cat in the Hat
V DET N P DET N

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 133 / 689

Finite-state technology Regular relations

Regular relations

Example: Morphological analysis

I know some new
I-PRON-1-sg know-V-pres some-DET-indef new-ADJ

tricks said the Cat
trick-N-pl say-V-past the-DET-def cat-N-sg

in the Hat
in-P the-DET-def hat-N-sg

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 134 / 689

Finite-state technology Regular relations

Regular relations

Example: Singular-to-plural mapping

cat hat ox child mouse sheep goose
cats hats oxen children mice sheep geese

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 135 / 689

Finite-state technology Finite-state transducers

Finite-state transducers

Definition

A finite-state transducer is a six-tuple 〈Q, q0,Σ1,Σ2, δ,F 〉.

Q is a finite set of states

q0 ∈ Q is the initial state,

F ⊆ Q is the set of final (or accepting) states,

Σ1 and Σ2 are alphabets: finite sets of symbols, not necessarily
disjoint (or different)

δ : Q × Σ1 ×Σ2 × Q is a relation from states and pairs of alphabet
symbols to states.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 136 / 689

Finite-state technology Finite-state transducers

Finite-state transducers

Example:

q1 q2 q3 q4 q5

q6 q7 q8 q9 q10 q11

g : g

o : e o : e s : s e : e

s : s h : h e : e e : e p : p

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 137 / 689

Finite-state technology Finite-state transducers

Finite-state transducers

Example: Shorthand notation

g
o : e o : e s e

s h e e p

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 138 / 689

Finite-state technology Finite-state transducers

Finite-state transducers

Example: Adding ǫ-moves

g o : e o : e s e

s h e e p

o x ǫ : e ǫ : n

m

o : i u : ǫ s : c e

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 139 / 689

Finite-state technology Finite-state transducers

Finite-state transducers

A finite-state transducer defines a set of pairs: a binary relation over
Σ∗

1 × Σ∗

2.

The relation is defined analogously to how the language of an
automaton is defined: A pair 〈w1,w2〉 is accepted by the transducer
A = 〈Q, q0,Σ1,Σ2, δ,F 〉 if and only if there exists a state qf ∈ F

such that (q0,w1,w2, qf) ∈ δ̂.

The transduction of a word w ∈ Σ∗

1 is defined as
T (w) = {u | (q0,w , u, qf) ∈ δ̂ for some qf ∈ F}.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 140 / 689

Finite-state technology Finite-state transducers

Finite-state transducers

Example: The uppercase transducer

q0

a : A, b : B , c : C , . . .

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 141 / 689

Finite-state technology Finite-state transducers

Finite-state transducers

Example: English-to-French

c : c

ǫ : h a : a t : t

d : c

o : h g : i ǫ : e ǫ : n

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 142 / 689

Finite-state technology Finite-state transducers

Properties of finite-state transducers

Given a transducer 〈Q, q0,Σ1,Σ2, δ,F 〉,

its underlying automaton is 〈Q, q0,Σ1 × Σ2, δ
′,F 〉, where

(q1, (a, b), q2) ∈ δ′ iff (q1, a, b, q2) ∈ δ

its upper automaton is 〈Q, q0,Σ1, δ1,F 〉, where (q1, a, q2) ∈ δ1 iff for
some b ∈ Σ2, (q1, a, b, q2) ∈ δ

its lower automaton is 〈Q, q0,Σ2, δ2,F 〉, where (q1, b, q2) ∈ δ2 iff for
some a ∈ Σa, (q1, a, b, q2) ∈ δ

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 143 / 689

Finite-state technology Finite-state transducers

Properties of finite-state transducers

A transducer T is functional if for every w ∈ Σ∗

1
, T (w) is either

empty or a singleton.

Transducers are closed under union: if T1 and T2 are transducers,
there exists a transducer T such that for every w ∈ Σ∗

1,
T (w) = T1(w) ∪ T2(w).

Transducers are closed under inversion: if T is a transducer, there
exists a transducer T−1 such that for every w ∈ Σ∗

1,
T−1(w) = {u ∈ Σ∗

2 | w ∈ T (u)}.

The inverse transducer is 〈Q, q0,Σ2,Σ1, δ
−1,F 〉, where

(q1, a, b, q2) ∈ δ−1 iff (q1, b, a, q2) ∈ δ.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 144 / 689

Finite-state technology Finite-state transducers

Properties of regular relations

Example: Operations on finite-state relations

R1 = {tomato:Tomate, cucumber:Gurke,

grapefruit:Grapefruit, pineapple:Ananas,

coconut:Koko}

R2 = {grapefruit:pampelmuse, coconut:Kokusnuß}

R1 ∪ R2 = {tomato:Tomate, cucumber:Gurke,

grapefruit:Grapefruit, grapefruit:pampelmuse,

pineapple:Ananas,

coconut:Koko ,coconut:Kokusnuß}

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 145 / 689

Finite-state technology Finite-state transducers

Properties of finite-state transducers

Transducers are closed under composition: if T1 is a transduction
from Σ∗

1 to Σ∗

2 and and T2 is a transduction from Σ∗

2 to Σ∗

3, then
there exists a transducer T such that for every w ∈ Σ∗

1,
T (w) = T2(T1(w)).

The number of states in the composition transducer might be
|Q1 ×Q2|.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 146 / 689

Finite-state technology Finite-state transducers

Example: Composition of finite-state relations

R1 = {tomato:Tomate, cucumber:Gurke,

grapefruit:Grapefruit, grapefruit:pampelmuse,

pineapple:Ananas,

coconut:Koko ,coconut:Kokusnuß}
R2 = {tomate:tomato, ananas:pineapple,

pampelmousse:grapefruit, concombre:cucumber,

cornichon:cucumber, noix-de-coco:coconut}
R2 ◦ R1 = {tomate:Tomate, ananas:Ananas,

pampelmousse:Grapefruit,

pampelmousse:Pampelmuse,

concombre:Gurke,cornichon:Gurke,

noix-de-coco:Koko, noix-de-coco:Kokusnuße}

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 147 / 689

Finite-state technology Finite-state transducers

Properties of finite-state transducers

Transducers are not closed under intersection.

Example:

q1 q2 q3 q4

T1 T2

c : a

ǫ : b

ǫ : b ǫ : a

c : b

c : b

T1(c
n) = {anbm | m ≥ 0}

T2(c
n) = {ambn | m ≥ 0} ⇒

(T1 ∩ T2)(c
n) = {anbn}

Transducers with no ǫ-moves are closed under intersection.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 148 / 689

Finite-state technology Finite-state transducers

Properties of finite-state transducers

Computationally efficient

Denote regular relations

Closed under concatenation, Kleene-star, union

Not closed under intersection (and hence complementation)

Closed under composition

Weights

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 149 / 689

Finite-state technology Motivation

Finite-state transducers for phonology and morphology

Example: A motivating example

Consider the following pairs:
accurate adequate balanced competent

inaccurate inadequate imbalanced incompetent

definite finite mature nutrition

indefinite infinite immature innutrition

patience possible sane tractable

impatience impossible insane intractable

The negative forms are constructed by adding the abstract morpheme iN to
the positive forms. N is realized as either n or m.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 150 / 689

Finite-state technology Motivation

Finite-state transducers for phonology and morphology

A linguistically accurate description of this phenomenon could be:

Rule 1: N -> m || _ [b|m|p]

Rule 2: N -> n

The rules must be interpreted as obligatory and applied in the order

given.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 151 / 689

Finite-state technology Motivation

Finite-state transducers for phonology and morphology

Example: A finite-state transducer for Rule 2 (interpreted as optional)

a : a, . . . , z : z ,N : NN : n

Example: A finite-state transducer for Rule 2 (interpreted as obligatory)

?, n : nN : n

Here, ‘?’ stands for “any symbol that does not occur elsewhere in this rule.”

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 152 / 689

Finite-state technology Motivation

Finite-state transducers for phonology and morphology

Example: A finite-state transducer for Rule 1 (interpreted as obligatory)

1

0

2

N : m

b : b,m : m, p : p

N : N

?

N : m
?, b : b,

m : m, p : p

N : N

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 153 / 689

Finite-state technology Motivation

Finite-state transducers for phonology and morphology

Example: Composition of obligatory Rules 1 and 2

1

0

2

N : m

b : b,m : m, p : p

N : n

?, n : n

N : m
?, b : b,

m : m, p : p, n : n

N : n

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 154 / 689

Finite-state technology Composition

Implementing composition

Regular relations are closed under composition.

Recall that

R1 ◦ R2 = {〈x , y〉 | there exists z s. t. 〈x , z〉 ∈ R1 and 〈z , y〉 ∈ R2}

Let T1 = (Q1, q1,Σ1,Σ2, δ1,F1) and T2 = (Q2, q2,Σ2,Σ3, δ2,F2)

Then

T1 ◦ T2 = T = (Q1 × Q2, 〈q1, q2〉,Σ1,Σ3, δ,F1 × F2),

where δ(〈s1, s2〉, a, b) = {〈t1, t2〉 | for some c ∈ Σ2 ∪ {ǫ}, t1 ∈
δ1(s1, a, c) and t2 ∈ δ2(s2, c , b)}

This definition is flawed!

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 155 / 689

Finite-state technology Implementing replace rules

Implementing replace rules

We begin with the simplest rule: unconditional, obligatory replacement:
UPPER -> LOWER.

Example:

a -> b

bcd abac aaab

bcd bbbc bbbb

a+ -> b

bcd abac aaab aaab aaab

bcd bbbc bbbb bbb bb

[[a b] | [b c]] -> x

abc abc

ax xc

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 156 / 689

Finite-state technology Implementing replace rules

Implementing replace rules

Incremental construction:

$A: The language of all strings which contain, as a substring, a string
from A. Equivalent to ?* A ?*.

noUPPER: Strings which do not contain strings from UPPER.
Näıvely, this would be defined as ~$UPPER. However, if UPPER
happens to include the empty string, then ~$UPPER is empty.
A better definition is therefore ~$[UPPER - []], which is identical
except that if UPPER includes the empty string, noUPPER includes at
least the empty string.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 157 / 689

Finite-state technology Implementing replace rules

Implementing replace rules

UPPER -> LOWER: Defined as

[noUPPER [UPPER .x. LOWER]]* noUPPER

A regular relation whose members include any number (possibly zero)
of iterations of [UPPER .x. LOWER], interleaved with strings that do
not contain UPPER which are mapped to themselves.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 158 / 689

Finite-state technology Implementing replace rules

Implementing replace rules

Example: Special cases

[] -> a | b

A transducer that freely inserts as and bs in the input string.

∼$[] -> a | b

No replacement; equivalent to ?*.

a | b -> []

Removes all as and bs from the input string.

a | b -> ∼$[]
Strings containing as or bs are excluded from the upper language.
Equivalent to ∼$[a | b].

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 159 / 689

Finite-state technology Implementing replace rules

Implementing replace rules

Inverse replacement: UPPER < − LOWER.

Meaning: obligatory unconditional inverse replacement.

Definition and construction: [LOWER -> UPPER].i

(A.i is the inverse relation of A)

The difference between UPPER -> LOWER and UPPER < − LOWER:

a→ b a← b

aa bb ab aa aa aa

bb bb bb ab aa bb

?, b, a : b ?, a, a : b

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 160 / 689

Finite-state technology Implementing replace rules

Implementing replace rules

Optional replacement: UPPER (->) LOWER.

Meaning: optionally replace occurrences of strings from UPPER by
strings from LOWER.

Example:

Example: a (→) b

ab ab

ab bb

?, a, b, a : b

The tempting (and incorrect) construction:
[UPPER -> LOWER] | [UPPER].

The correct construction: [?* [UPPER .x. LOWER]]* ?*

or [$[UPPER -> LOWER]]*.
Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 161 / 689

Finite-state technology Implementing replace rules

Conditional replacement

Conditional replacement: UPPER -> LOWER || L R.

Meaning: Replace occurrences of strings from UPPER by strings from
LOWER in the context of L on the left and R on the right.

Outstanding issue:

the interpretation of “between L and R”
interactions between multiple applications of the same rule at different
positions in a string: the part that is being replaced may at the same
time serve as the context of another adjacent replacement
optionality

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 162 / 689

Finite-state technology Implementing replace rules

Conditional replacement

Conditional replacement:

Example:

Upward oriented: a b -> x || a b a

a b a b a b a
a b x x a

Downward oriented: a b -> x \/ a b a

a b a b a b a a b a b a b a
a b x a b a a b a b x a

Right oriented: a b -> x // a b a

a b a b a b a
a b x a b a

Left oriented: a b -> x \\ a b a

a b a b a b a
a b a b x a

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 163 / 689

Finite-state technology Implementing replace rules

Implementing conditional replacement

We focus on upward oriented, mandatory replacement rules:
UPPER -> LOWER || L R.

The idea: make the conditional replacement behave exactly like
unconditional replacement except that the operation does
not take place unless the specified context is present.

The problem: the part being replaced can be at the same time the context
of another replacement.

The solution: first, decompose the complex relation into a set of relatively
simple components, define them independently of one
another, and finally use composition to combine them.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 164 / 689

Finite-state technology Implementing replace rules

Implementing conditional replacement

Construction:

1 InsertBrackets

2 ConstrainBrackets

3 LeftContext

4 RightContext

5 Replace

6 RemoveBrackets

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 165 / 689

Finite-state technology Implementing replace rules

Implementing conditional replacement

Two bracket symbols, < and >, are introduced in (1) and (6).

< indicates the end of a complete left context. > indicates the
beginning of a complete right context.

Their distribution is controlled by (2), (3) and (4). (2) constrains
them with respect to each other, whereas (3) and (4) constrain them
with respect to the left and right context.

The replacement expression (5) includes the brackets on both sides of
the relation.

The final result of the composition does not contain any brackets. (1)
removes them from the upper side, (6) from the lower side.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 166 / 689

Finite-state technology Implementing replace rules

Implementing conditional replacement

Let < and > be two symbols not in Σ.

InserBrackets eliminates from the upper side language all context
markers that appear on the lower side.

InsertBrackets = [] <- [< | >].

ConstrainBrackets denotes the language consisting of strings that do
not contain <> anywhere.

ConstrainBrackets = ~$[< >].

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 167 / 689

Finite-state technology Implementing replace rules

Implementing conditional replacement

LeftContext denotes the language in which any instance of < is
immediately preceded by L and every L is immediately followed by <,
ignoring irrelevant brackets.

[...L] denotes the language of all strings ending in L, ignoring all
brackets except for a final <.

[...L] is defined as [?* L/[<|>]] - [?* <].

(A/B is A ignore B, the language obtained by splicing in strings from
B* anywhere within strings from A)

Next, [<...] denotes the language of strings beginning with <,
ignoring the other bracket: [</> ?*].

Finally, LeftContext is defined as:

~[~[...L] [<...]] & ~[[...L] ~[<...]] .

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 168 / 689

Finite-state technology Implementing replace rules

Implementing conditional replacement

RightContext denotes the language in which any instance of > is
immediately followed by R and any R is immediately preceded by >,
ignoring irrelevant brackets.

[R...] denotes the language of all strings beginning with R, ignoring
all brackets except for an initial >.

[R...] is defined as [R/[<|>] ?*] - [> ?*].

[...>] denotes the language of strings ending with >, ignoring the
other bracket.

[...>] is defined as [?* >/<].

Finally, RightContext is defined as

~[[...>] ~[R...]] & ~[~[...>] [R...]] .

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 169 / 689

Finite-state technology Implementing replace rules

Implementing conditional replacement

Replace is the unconditional replacement of <UPPER> by <LOWER>,
ignoring irrelevant brackets.

Replace is defined as:

< UPPER/[<|>] > -> < LOWER/[</>] >

RemoveBrackets denotes the relation that maps the strings of the
upper language to the same strings without any context markers.

RemoveBrackets=[<|>] -> [].

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 170 / 689

Finite-state technology Implementing replace rules

Implementing conditional replacement

Construction:

InsertBrackets

.o.

ConstrainBrackets

.o.

LeftContext

.o.

RightContext

.o.

Replace

.o.

RemoveBrackets

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 171 / 689

Finite-state technology Implementing replace rules

Implementing conditional replacement

Special cases:

A = {ǫ} or ǫ ∈ A.

Boundary symbol (.#.): L _ R actually means ?* L _ R ?*.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 172 / 689

Finite-state technology Implementing replace rules

Introduction to XFST

XFST is an interface giving access to finite-state operations
(algorithms such as union, concatenation, iteration, intersection,
composition etc.)

XFST includes a regular expression compiler

The interface of XFST includes a lookup operation (apply up) and a
generation operation (apply down)

The regular expression language employed by XFST is an extended
version of standard regular expressions

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 173 / 689

Finite-state technology XFST

Introduction to XFST

a a simple symbol

c a t a concatenation of three symbols

[c a t] grouping brackets

cat a single multicharacter symbol

? denotes any single symbol

%+ the literal plus-sign symbol

%* the literal asterisk symbol (and similarly for %?, %(, %]

etc.)

‘‘+Noun’’ single symbol with multicharacter print name

%+Noun single symbol with multicharacter print name

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 174 / 689

Finite-state technology XFST

Introduction to XFST

{cat} equivalent to [c a t]

[] the empty string

0 the empty string

[A] bracketing; equivalent to A

A|B union

(A) optionality; equivalent to [A|0]

A&B intersection

A B concatenation

A-B set difference

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 175 / 689

Finite-state technology XFST

Introduction to XFST

A* Kleene-star

A+ one or more iterations

?* the universal language

∼A the complement of A; equivalent to [?* - A]

∼[?*] the empty language

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 176 / 689

Finite-state technology XFST

Introduction to XFST – denoting relations

A .x. B Cartesian product; relates every string in A to every string
in B

a:b shorthand for [a .x. b]

%+Pl:s shorthand for [%+Pl .x. s]

%+Past:ed shorthand for [%+Past .x. ed]

%+Prog:ing shorthand for [%+Prog .x. ing]

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 177 / 689

Finite-state technology XFST

Introduction to XFST – useful abbreviations

$A the language of all the strings that contain A; equivalent to
[?* A ?*]

A/B the language of all the strings in A, ignoring any strings
from B

a*/b includes strings such as a, aa, aaa, ba, ab, aba etc.

\A any single symbol, minus strings in A. Equivalent to [? -

A]

\b any single symbol, except ‘b’. Compare to:

∼A the complement of A, i.e., [?* - A]

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 178 / 689

Finite-state technology XFST

Introduction to XFST – user interface

Example: XFST

prompt% H:\class\data\shuly\xfst

xfst> help

xfst> help union net

xfst> exit

xfst> read regex [d o g | c a t];

xfst> read regex < myfile.regex

xfst> apply up dog

xfst> apply down dog

xfst> pop stack

xfst> clear stack

xfst> save stack myfile.fsm

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 179 / 689

Finite-state technology XFST

Introduction to XFST – example

Example: Leave

[[l e a v e %+VBZ .x. l e a v e s] |

[l e a v e %+VB .x. l e a v e] |

[l e a v e %+VBG .x. l e a v i n g] |

[l e a v e %+VBD .x. l e f t] |

[l e a v e %+NN .x. l e a v e] |

[l e a v e %+NNS .x. l e a v e s] |

[l e a f %+NNS .x. l e a v e s] |

[l e f t %+JJ .x. l e f t]

]

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 180 / 689

Finite-state technology XFST

Introduction to XFST – example of lookup and generation

Example: Leave

APPLY DOWN> leave+VBD

left

APPLY UP> leaves

leave+NNS

leave+VBZ

leaf+NNS

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 181 / 689

Finite-state technology XFST

Introduction to XFST – variables

Example: Variables

xfst> define Myvar;

xfst> define Myvar2 [d o g | c a t];

xfst> undefine Myvar;

xfst> define var1 [b i r d | f r o g | d o g];

xfst> define var2 [d o g | c a t];

xfst> define var3 var1 | var2;

xfst> define var4 var1 var2;

xfst> define var5 var1 & var2;

xfst> define var6 var1 - var2;

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 182 / 689

Finite-state technology XFST

Introduction to XFST – variables

Example: Variables

xfst> define Root [w a l k | t a l k | w o r k];

xfst> define Prefix [0 | r e];

xfst> define Suffix [0 | s | e d | i n g];

xfst> read regex Prefix Root Suffix;

xfst> words

xfst> apply up walking

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 183 / 689

Finite-state technology XFST

Introduction to XFST – replace rules

Replace rules are an extremely powerful extension of the regular
expression metalanguage.

The simplest replace rule is of the form

upper→ lower ‖ leftcontext rightcontext

Its denotation is the relation which maps string to themselves, with
the exception that an occurrence of upper in the input string,
preceded by leftcontext and followed by rightcontext, is replaced in
the output by lower.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 184 / 689

Finite-state technology XFST

Introduction to XFST – replace rules

Word boundaries can be explicitly referred to:

Example:

xfst> define Vowel [a|e|i|o|u];

xfst> e -> ’ || [.#.] [c | d | l | s] _ [% Vowel];

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 185 / 689

Finite-state technology XFST

Introduction to XFST – replace rules

Contexts can be omitted:

Example:

xfst> define Rule1 N -> m || _ p ;

xfst> define Rule2 N -> n ;

xfst> define Rule3 p -> m || m _ ;

This can be used to clear unnecessary symbols introduced for
“bookkeeping”:

Example:

xfst> define Rule1 %^MorphmeBoundary -> 0;

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 186 / 689

Finite-state technology XFST

Introduction to XFST – replace rules

The language Bambona has an underspecified nasal morpheme N

that is realized as a labial m or as a dental n depending on its
environment: N is realized as m before p and as n elsewhere.

The language also has an assimilation rule which changes p to m

when the p is followed by m.

Example:

xfst> clear stack ;

xfst> define Rule1 N -> m || _ p ;

xfst> define Rule2 N -> n ;

xfst> define Rule3 p -> m || m _ ;

xfst> read regex Rule1 .o. Rule2 .o. Rule3 ;

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 187 / 689

Finite-state technology XFST

Introduction to XFST – replace rules

Rules can define multiple replacements:

[A -> B, B -> A]

or multiple replacements that share the same context:

[A -> B, B -> A || L _ R]

or multiple contexts:

[A -> B || L1 _ R1, L2 _ R2]

or multiple replacements and multiple contexts:

[A -> B, B -> A || L1 _ R1, L2 _ R2]

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 188 / 689

Finite-state technology XFST

Introduction to XFST – replace rules

Rules can apply in parallel:

Example:

xfst> clear stack

xfst> read regex a -> b .o. b -> a ;

xfst> apply down abba

aaaa

xfst> clear stack

xfst> read regex b -> a .o. a -> b ;

xfst> apply down abba

bbbb

xfst> clear stack

xfst> read regex a -> b , b -> a ;

xfst> apply down abba

baab

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 189 / 689

Finite-state technology XFST

Introduction to XFST – replace rules

When rules that have contexts apply in parallel, the rule separator is a
double comma:

Example:

xfst> clear stack

xfst> read regex

b -> a || .#. s ?* _ ,, a -> b || _ ?* e .#. ;

xfst> apply down sabbae

sbaabe

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 190 / 689

Finite-state technology XFST

Introduction to XFST – English verb morphology

Example:

define Vowel [a|e|i|o|u] ;

define Cons [? - Vowel] ;

define base [{dip} | {print} | {toss} | {bake} | {move}] ;

define suffix [0 | {s} | {ed} | {ing}] ;

define form [base %+ suffix];

define FinalS [s %+ s] -> [s %+ e s] ;

define FinalE e -> 0 || _ %+ [e | i];

define DoubleFinal b -> [b b], d -> [d d], f -> [f f],

g -> [g g], k -> [k k], l -> [l l], m -> [m m],

n -> [n n], p -> [p p], r -> [r r], s -> [s s],

t -> [t t], z -> [z z] || Cons Vowel _ %+ Vowel ;

define RemovePlus %+ -> 0 ;

read regex form .o. DoubleFinal .o. FinalS .o. FinalE

.o. RemovePlus;

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 191 / 689

Finite-state technology XFST

Introduction to XFST – English spell checking

Example:

clear;

define A [i e] -> [e i] || c _ ,,

[e i] -> [i e] || [? - c] _ ;

define B [[e i] -> [i e]] .o.

[[i e] -> [e i] || c _];

read regex B;

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 192 / 689

Finite-state technology XFST

Introduction to XFST – morphology

Example: Hebrew adjective inflection

clear stack ;

define base [{gdwl} | {yph} | {xbrwty} | {rk} | {adwm} |

{q$h} | {ap$ry}] ;

define suffix [0 | {h} | {ym} | {wt}] ;

define form [base %+ suffix];

define FinalH h -> 0 || _ %+ ? ;

define FinalY h -> t || y %+ _ ;

define RemovePlus %+ -> 0 ;

read regex form .o. FinalH .o. FinalY .o. RemovePlus;

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 193 / 689

Finite-state technology XFST

Introduction to XFST – marking

The special symbol “...” in the right-hand side of a replace rule
stands for whatever was matched in the left-hand side of the rule.

Example:

xfst> clear stack;

xfst> read regex [a|e|i|o|u] -> %[... %];

xfst> apply down unnecessarily

[u]nn[e]c[e]ss[a]r[i]ly

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 194 / 689

Finite-state technology XFST

Introduction to XFST – marking

Example:

xfst> clear stack;

xfst> read regex [a|e|i|o|u]+ -> %[... %];

xfst> apply down feeling

f[e][e]l[i]ng

f[ee]l[i]ng

xfst> apply down poolcleaning

p[o][o]lcl[e][a]n[i]ng

p[oo]lcl[e][a]n[i]ng

p[o][o]lcl[ea]n[i]ng

p[oo]lcl[ea]n[i]ng

xfst> read regex [a|e|i|o|u]+ @-> %[... %];

xfst> apply down poolcleaning

p[oo]lcl[ea]n[i]ng

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 195 / 689

Finite-state technology XFST

Introduction to XFST – shallow parsing

Assume that text is represented as strings of part-of-speech tags,
using ‘d’ for determiner, ‘a’ for adjective, ‘n’ for noun, and ‘v’ verb,
etc. In other words, in this example the regular expression symbols
represent whole words rather than single letters in a text.

Assume that a noun phrase consists of an optional determiner, any
number of adjectives, and one or more nouns:

[(d) a* n+]

This expression denotes an infinite set of strings, such as “n” (cats),
“aan” (discriminating aristocratic cats), “nn” (cat food), “dn” (many
cats), “dann” (that expensive cat food) etc.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 196 / 689

Finite-state technology XFST

Introduction to XFST – shallow parsing

A simple noun phrase parser can be thought of as a transducer that
inserts markers, say, a pair of braces { }, around noun phrases in a
text.

The task is not as trivial as it seems at first glance. Consider the
expression

[(d) a* n+ -> %{ ... %}]

Applied to the input “danvn” (many small cats like milk) this
transducer yields three alternative bracketings:

xfst> apply down danvn

da{n}v{n}

d{an}v{n}

{dan}v{n}

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 197 / 689

Finite-state technology XFST

Introduction to XFST – longest match

For certain applications it may be desirable to produce a unique parse,
marking the maximal expansion of each NP: “{dan}v{n}”.

Using the left-to-right, longest-match replace operator @-> instead of
the simple replace operator -> yields the desired result:

[(d) a* n+ @-> %{ ... %}]

xfst> apply down danvn

{dan}v{n}

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 198 / 689

Finite-state technology XFST

Introduction to XFST – the coke machine

A vending machine dispenses drinks for 65 cents a can.

It accepts any sequence of the following coins: 5 cents (represented
as ‘n’), 10 cents (‘d’) or 25 cents (‘q’).

Construct a regular expression that compiles into a finite-state
automaton that implements the behavior of the soft drink machine,
pairing “PLONK” with a legal sequence that amounts to 65 cents.

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 199 / 689

Finite-state technology XFST

Introduction to XFST – the coke machine

The construction A^n denotes the concatenation of A with itself n

times.

Thus the expression [n .x. c^5] expresses the fact that a nickel is
worth 5 cents.

A mapping from all possible sequences of the three symbols to the
corresponding value:

[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]*

The solution:

[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]*

.o.

[c^65 .x. PLONK]

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 200 / 689

Finite-state technology XFST

Introduction to XFST – the coke machine

Example:

clear stack

define SixtyFiveCents

[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]* ;

define BuyCoke

SixtyFiveCents .o. [c^65 .x. PLONK] ;

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 201 / 689

Finite-state technology XFST

Introduction to XFST – the coke machine

In order to ensure that extra money is paid back, we need to modify
the lower language of BuyCoke to make it a subset of
[PLONK* q* d* n*].

To ensure that the extra change is paid out only once, we need to
make sure that quarters get paid before dimes and dimes before
nickels.

Example:

clear stack

define SixtyFiveCents

[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]* ;

define ReturnChange SixtyFiveCents .o.

[[c^65 .x. PLONK]* [c^25 .x. q]*

[c^10 .x. d]* [c^5 .x. n]*] ;

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 202 / 689

Finite-state technology XFST

Introduction to XFST – the coke machine

The next refinement is to ensure that as much money as possible is
converted into soft drinks and to remove any ambiguity in how the
extra change is to be reimbursed.

Example:

clear stack

define SixtyFiveCents

[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]* ;

define ReturnChange SixtyFiveCents .o.

[[c^65 .x. PLONK]* [c^25 .x. q]*

[c^10 .x. d]* [c^5 .x. n]*] ;

define ExactChange ReturnChange .o.

[~$[q q q | [q q | d] d [d | n] | n n]] ;

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 203 / 689

Finite-state technology XFST

Introduction to XFST – the coke machine

To make the machine completely foolproof, we need one final
improvement.

Some clients may insert unwanted items into the machine (subway
tokens, foreign coins, etc.). These objects should not be accepted;
they should passed right back to the client.

This goal can be achieved easily by wrapping the entire expression
inside an ignore operator.

Example:

define IgnoreGarbage

[[ExactChange]/[\[q | d | n]]] ;

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 204 / 689

Finite-state technology XFST

Applications of finite-state technology in NLP

Phonology; language models for speech recognition

Representing lexicons and dictionaries

Morphology; morphological analysis and generation

Shallow parsing

Named entity recognition

Sentence boundary detection; segmentation

Translation...

Shuly Wintner (University of Haifa) Computational Linguistics c©Copyrighted material 205 / 689

	Finite-state technology
	Introduction
	Introduction to formal language theory
	Regular expressions
	Finite-state automata
	Regular relations
	Finite-state transducers

	Finite-state technology
	Motivation
	Composition
	Implementing replace rules
	XFST

