
A fragment of English

E0 is a small fragment of English consisting of very simple
sentences, constructed with only intransitive and transitive (but no
ditransitive) verbs, common nouns, proper names, pronouns and
determiners. Typical sentences are:

A sheep drinks

Rachel herds the sheep

Jacob loves her



A fragment of English

Similar strings are not E0- (and, hence, English-) sentences:

∗Rachel feed the sheep

∗Rachel feeds herds the sheep

∗The shepherds feeds the sheep

∗Rachel feeds

∗Jacob loves she

∗Jacob loves Rachel the sheep

∗Them herd the sheep



A fragment of English

All E0 sentences have two components, a subject, realized as
a noun phrase, and a predicate, realized as a verb phrase.

A noun phrase can either be a proper name, such as Rachel, or
a pronoun, such as they, or a common noun, possibly preceded
by a determiner: the lamb or three sheep.

A verb phrase consists of a verb, such as feed or sleeps, with a
possible additional object, which is a noun phrase.



A fragment of English

Furthermore, there are constraints on the combination of phrases
in E0:

The subject and the predicate must agree on number and
person: if the subject is a third person singular, so must the
verb be.

Objects complement only – and all – the transitive verbs.

When a pronoun is used, it is in the nominative case if it is in
the subject position, and in the accusative case if it is an
object.



A context-free grammar, G0, for E0

Example: A context-free grammar, G0, for E0

S → NP VP

VP → V

VP → V NP

NP → D N

NP → Pron

NP → PropN

D → the, a, two, every, . . .

N → sheep, lamb, lambs, shepherd, water . . .

V → sleep, sleeps, love, loves, feed, feeds, herd, herds, . . .

Pron → I, me, you, he, him, she, her, it, we, us, they, them

PropN → Rachel, Jacob, . . .



Problems of G0

Over-generation (agreement constraints are not imposed):

∗Rachel feed the sheep

∗The shepherds feeds the sheep

∗Rachel feeds

∗Jacob loves she

∗Them herd the sheep



Problems of G0

Over-generation:

S

NP VP

D N V NP

Pron

the lambs sleeps they



Problems of G0

Over-generation (subcategorization constraints are not imposed):

the lambs sleep

Jacob loves Rachel

∗the lambs sleep the sheep

∗Jacob loves



Methodological properties of the CFG formalism

1 Concatenation is the only string combination operation

2 Phrase structure is the only syntactic relationship

3 The terminal symbols have no properties

4 Non-terminal symbols (grammar variables) are atomic

5 Most of the information encoded in a grammar lies in the
production rules

6 Any attempt of extending the grammar with a semantics
requires extra means.



Alternative methodological properties

1 Concatenation is not necessarily the only way by which
phrases may be combined to yield other phrases.

2 Even if concatenation is the sole string operation, other
syntactic relationships are being put forward.

3 Modern computational formalisms for expressing grammars
adhere to an approach called lexicalism.

4 Some formalisms do not retain any context-free backbone.
However, if one is present, its categories are not atomic.

5 The expressive power added to the formalisms allows also a
certain way for representing semantic information.



Extending the CFG formalism

Formal issues:

Motivation: imposing on a grammar for E0 two of the
restrictions violated by G0: person and number agreement

Introducing feature structures

Extending the terminal symbols of a grammar

Generalizing phrases and rules

Unification grammars

Imposing case control



Extending the CFG formalism

Linguistic issues:

Subcategorization

Feature structures for representing complex categories

Subcategorization revisited

Long-distance dependencies

Subject/object control

Coordination



Motivation

The core idea is to incorporate into the grammar properties of
symbols, in terms of which the violations of G0 were stated.

CFGs can be extended by associating feature structures with
the terminal and non-terminal symbols of the grammar.

To represent feature structures graphically we use a notation
known as attribute-value matrices (AVMs).



Adding features to words

Words (terminal symbols) are endowed with structural information.
The collection of enriched terminals is the grammar’s lexicon.

Example: A lexicon

lamb
[

num : sg

pers : third

]

lambs
[

num : pl

pers : third

]

I
[

num : sg

pers : first

]

sheep
[

num : [ ]
pers : third

]

dreams
[

num : sg

pers : third

]



Complex values

Values can either be atomic, such as sg, or complex:

Example: A complex feature structure

lambs
[

agr :

[

num : pl

pers : third

]]

How to group features?



Variables

Example: Two notations for variables

[

agr : X

([

num : pl

pers : third

])] [

agr : 1

[

num : pl

pers : third

]]



Diversion: feature structures

Attribute-value matrices

Equality and reentrancy

Subsumption

Unification

Generalization

Representing lists



Attribute-value matrices

An AVM is a syntactic object, which can be either atomic or
a complex.

Each AVM is associated with a variable.

An atomic feature structure is a variable, associated with an
atom, drawn from a fixed set Atoms.

A complex feature structure is a variable, associated with a
finite, possibly empty set of pairs, where each pair consists of
a feature and a value. Features are drawn from a fixed (per
grammar), pre-defined set Feats; values are, recursively,
AVMs themselves.



Attribute-value matrices

Example: AVM

1

[

agr : 2

[

num : 3 pl

pers : 4 third

]]

pl, third ∈ Atoms

agr, num, pers ∈ Feats

Thus, Feats and Atoms, as well as the (infinite) set of
variables, are parameters for the collection of AVMs, and are
referred to as the signature.

We use meta-variables f,g,h to range over Feats and
A,B ,C to range over feature structures.



Attribute-value matrices

Let

A = i0







f1 : i1 A1

...
...

fn : in An







dom(A)

[ ]

functionality: fi 6= fj

val(A, fi ) = Ai



Well-formed AVMs

Since variables are used to denote value sharing, there is not much
sense in associating the same variable with two different values.

Example: Well-formed AVMs

A = Z

([

f : X (a)
g : Y

([

h : X (a)
])

])

,B = 4

[

f : 1

[

h : 2 a
]

g : 1 b

]

,

C = Z

([

f : X
([

h : Y (a)
])

g : X
([

k : W (b)
])

])



Conventions

We assume in the sequel that AVMs are well-formed.

Since multiple occurrences of the same variables always are
associated with the same values, we usually only make explicit
one instance of this value, leaving the other occurrences of
the same variable unspecified.

Whenever a variable is associated with the empty AVM we
omit the AVM itself and leave the variable only.

If a variable occurs only once in an AVM, we usually do not
depict it (as it carries no additional information).



Conventions

Example: Shorthand notation for AVMs

Using our shorthand notation, the following AVM A :

A = Z

([

f : X (a)
g : Y

([

h : X (a)
])

])

is depicted thus:
[

f : X (a)
g :

[

h : X
]

]



Conventions

Example: Conventions

A well-formed AVM:

4





f : 1 a

g : 2

[

f : 3 [ ]
h : 1 a

]







Conventions

Example: Conventions

Removing multiple values of multiply-occurring variables:

4





f : 1 a

g : 2

[

f : 3 [ ]
h : 1

]







Conventions

Example: Conventions

Removing the empty AVM:

4





f : 1 a

g : 2

[

f : 3

h : 1

]







Conventions

Example: Conventions

Removing non-informative variables:





f : 1 a

g :

[

f : 3

h : 1

]







Paths

A path is a (possibly empty) sequence of features that can be used
to pick a value in a feature structure.
We use angular brackets ‘〈. . .〉’ to depict paths explicitly.



Paths

Example: Paths

A =

[

f : X (a)
g :

[

h : X
]

]

The single feature 〈f〉 constitutes a path; and so does the sequence
〈g,h〉, since 〈g〉 can be used to pick the value

[

h : X (a)
]

(because
val(A,g) =

[

h : X (a)
]

).



Paths

The notion of values is extended from features to paths:
val(A, π) is the value obtained by following the path π in A;
this value (if defined) is again a feature structure.

If Ai is the value of some path π in A then Ai is said to be a
sub-AVM of A. The empty path is denoted ε, and
val(A, ε) = A for every feature structure A.



Paths

Example: Basic notions

Let

A =

[

agr :

[

num : pl

pers : third

]]

Then

dom(A) = {agr}, val(A,agr) =

[

num : pl

pers : third

]

.

The paths of A are {ε, 〈agr〉, 〈agr,num〉, 〈agr,pers〉}. The val-
ues of these paths are: val(A, ε) = A, val(A, 〈agr,num〉) = pl ,
val(A, 〈agr,pers〉) = third . Since there is no path 〈num,agr〉 in
A, val(A, 〈num,agr〉) is undefined.



Equality and reentrancy

When are two atomic feature structures equal?
Two atomic feature structures, whose variables are associated with
one and the same atom, are not necessarily identical:

[

f : X (a)
g : Y (a)

]

To ensure such identity, associate the same variable with the two
values:

[

f : X (a)
g : X

]



Equality and reentrancy

The features f and g are reentrant; a feature structure is reentrant
if it contains (at least two) reentrant features.
To denote reentrancy in some feature structure A we use the

symbol ‘
A

!’.

Example: reentrancy

A3 =

[

f1 :
[

g : 1

[

h : b
]]

f2 :
[

g : 1

]

]

〈f1,g〉
A3

! 〈f2,g〉.



Equality and reentrancy

Token identity vs. type identity

There is no path that can distinguish between the following two
(non-identical!) structures:

A =

[

f : a

g : a

]

B =

[

f : 1 a

g : 1

]

Thus, feature structures are intensional objects.
When referring to type identity, we use the ‘=’ symbol; to denote
token identity we use the symbol ‘

·

=’.

val(A, π1)
·

= val(A, π2) when π1

A
! π2.



Type-identity vs. token-identity

Example: Type-identity vs. token-identity

A =









subj :

[

agr :

[

num : sg

pers : third

]]

obj :

[

agr :

[

num : sg

pers : third

]]









B =





subj : 4

[

agr :

[

num : sg

pers : third

]]

obj : 4







Type-identity vs. token-identity

Example: Type-identity and token-identity revisited

Consider again the following feature structures:

A =









subj :

[

agr :

[

num : sg

pers : third

]]

obj :

[

agr :

[

num : pl

pers : third

]]









B =





subj : 4

[

agr :

[

num : sg

pers : third

]]

obj : 4





val(A, subj) = val(A,obj) and val(B , subj) = val(B ,obj).

However, while val(B , subj)
·

= val(B ,obj), val(A, subj) 6
·

=
val(A,obj).



Example: (continued)

Suppose that by some action a feature case with the value nom is
added to the value of subj in both A and B :

A′ =













subj :





agr :

[

num : sg

pers : third

]

case : nom





obj :

[

agr :

[

num : pl

pers : third

]]













val(A′
, subj) 6= val(A′

,obj)!



Example: (continued)

B ′ =









subj : 4





agr :

[

num : sg

pers : third

]

case : nom





obj : 4









Here, val(B ′
, subj)

·

= val(B ′
,obj), implying val(B ′

, subj) =
val(B ′

,obj).



Cycles

A special case of reentrancy is cyclicity: an AVM can contain a
path whose value is the AVM itself. In other words, an AVM can
be reentrant with a sub-structure of itself:

A =

[

f : 2

[

g : a

h : 2

]]



Renaming

If an AVM can be obtained from some other AVM through a
systematic renaming of its variables, we say that each of the AVMs
is a renaming of the other.

Example: Renaming

The following AVMs are renamings, as B can be obtained by re-
naming all the occurrences of the variable 1 in A to 4 , and all the
occurrences of 2 to 6 :

A = 3





f : 2

[

g : 1 a

h : 2

]

g : 1



 B = 3





f : 6

[

g : 4 a

h : 6

]

g : 4






