
Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

Laboratory in Natural Language Processing

Shuly Wintner

Semester B, 2008: Wednesday, 10:00–13:00

http://cs.haifa.ac.il/∼ shuly/teaching/08/lab/

1 Objectives
The Lab offers a number of practical projects in Natural Language Processing (NLP), focusing on
(but not limited to) processing of Hebrew. Some projects require previous knowledge of compu-
tational linguistics but some assume no previous background. All projects involve programming:
the end result is a relatively large-scale, well-documented and efficient software package. Some of
the projects may involve also some research (e.g., reading a research paper and implementing its
ideas).

2 List of projects

2.1 Morphology-aware search engine for Hebrew
No background in NLP is required

Existing search engines are text-oriented: they index documents by tokens, which are usually
defined as space-delimited strings. However, natural language texts are not just collections of to-
kens, since words in natural languages are formed through certain well-understood morphological
processes, and are hence related to each other in ways which can contribute to better search results.

In this project you will augment a search engine with morphological capabilities: given query
terms, you will generate all their possible inflections and submit those as a disjunctive query. In
addition, you will use a bilingual dictionary to translate query terms from Hebrew to English and
retrieve also relevant documents in English.

The extension will be implemented as a browser plug-in. Users will be able to enter search
queries as usual; but those queries will be interpreted as lexemes (base forms). Query terms will

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

then be inflected. For example, if the user entered the query term ŽČŇŮŐ, the term will be expanded
and the inflected forms ŽĚČŇŮŐĎ ,ŽČŇŮŐĎ ,ŽĚČŇŮŐ etc. will be generated. All those terms will
be presented to the search engine as a disjunction. The user will also have the ability to specify
that translated terms should be generated. In this case, the term keyboard will be generated and
presented to the search engine.

The morphological generator (which produces all the inflected forms of a given lexeme) and
the bilingual dictionary are given, although you may have to modify them slightly to adapt them
for this task. Your main task, however, will be to implement a plug-in for the search engine that
will interface with these existing resources to provide the additional capability and to evaluate the
contribution of your work.

2.2 T9 for Hebrew
No background in NLP is required

T9 (Text on 9 keys) is a predictive text technology for mobile phones. T9’s objective is to make
it easier to type text messages on mobile devices with 9 keys. It allows words to be entered by a
single keypress for each letter. It combines the groups of letters on each phone key with a fast-
access dictionary of words, and looks up in the dictionary all words corresponding to the sequence
of keypresses.

In this project you will design and implement a T9 algorithm for Hebrew. Your main task will
be to create a dictionary of Hebrew word forms and experiment with various ways of compacting
it. Several resources, including an existing list of inflected Hebrew words, will be provided to you,
but you will have to adapt them to the task. Your solution should be easily adaptable: it should
extend the dictionary as new word forms are entered, and update the frequencies of existing forms.

2.3 Collecting a bilingual corpus
No background in NLP is required

Text corpora are among the most important resource for a variety of NLP applications. They are
used to provide word frequency counts for statistical NLP and information retrieval applications
such as part-of-speech taggers, shallow parsers, categorization and summarization, to list just a
few. Collecting corpora, representing and maintaining them are non-trivial tasks. The objective of
this project is to build a parallel corpus of Hebrew and English documents by crawling the web.
The documents in the corpus will then be sentence- and word-aligned.

You will develop software for collecting Hebrew-English corpora. The main technique is web-
crawling: a program which crawls the web and searches for relevant documents. The main task is
determining whether two documents are indeed possible translations, and you will be able to use
some of the techniques reported in the literature (Resnik and Smith, 2003). Search will be limited
to a number of dynamic web sites which are known to have similar documents in the two languages
(e.g., some newspapers).

You will have to develop a storage solution for the collected corpora, such that new documents
can be easily added at any time. In particular, the Hebrew documents you will collect will be mor-

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

phologically analyzed (using an existing system), and then stored in an SQL database of Hebrew
texts, and will be accessible via an existing GUI for searching and viewing linguistic information.

2.4 Aligning a bilingual corpus
No background in NLP is required

Once a parallel corpus is available, it is useful to align it such that each sentence in L1 cor-
responds to zero or more sentences in L2 which represent its translation. In this project you
will implement sentence- and word-level alignment algorithms (Gale and Church, 1993; Kay and
Röscheisen, 1993) and apply them to the texts in the corpus. You will also compare their perfor-
mance with that of an existing tool (GIZA++, Och and Ney (2000)). The expected outcome of the
project is a tool for inducing a bilingual Hebrew-English dictionary.

2.5 Hebrew to English Named entity transliteration
No background in NLP is required

Transliteration is the process of replacing words and phrases in one language with their ap-
proximate spelling or phonetic equivalents in some other language. We distinguish between two
types of transliteration:

Forward transliteration: When a Hebrew name is transliterated into English. For example,
ŔĚŸŹ ŇĂĽŸĂ is transliterated to Ariel Sharon and ŇĂŸŹĽ ,ĎŤĽĞ to Haifa, Israel.

Backward transliteration: This is the reverse transliteration process where an English term
which was transliterated to Hebrew has to be recovered. For example, ŔĚĹŘĽŇŮ ŇĽĄ to Bill Clin-
ton, ČĚĚĽŇĚĎ to Hollywood.

When translating text from one language to another, proper names are sometimes translated,
sometimes transliterated and sometimes a mixed approach is used. For example, when translating
from Hebrew to English, names of people are always transliterated: ŔĚŸŹ ŇĂĽŸĂ is transliterated to
Ariel Sharon and ŔĚĹŘĽŇŮ ŇĽĄ to Bill Clinton. Other proper names, especially of organizations, are
translated: ŔĄŇĎ ŽĽĄĎ to The White House, ŽĚČĞĚĂŐĎ ŽĚŐĚĂĎ to The United Nations. Sometimes,
however, proper names are partly translated and partly transliterated, as in ŔĚŐŸĞ ŸĎ Mount Her-
mon or ĎŤĽĞ ŢŸŤŐ Haifa bay.

In this project you will adapt an algorithm that transliterates Arabic to English (Hermjakob,
Knight, and Daumé III, 2008) to the special case of Hebrew to English transliteration.

2.6 Corpus-based clustering of Hebrew terms
No background in NLP is required

For many natural language application it is useful to know whether words are related to each
other in various words. In particular, it is useful to be able to cluster words according to their se-
mantic function. Natural clusters would be, for example, color terms; fruits; fruits and vegetables;
edible items; etc.

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

Several techniques were suggested to automatically cluster words which occur in large corpora
of texts. One of the most popular techniques is latent semantic analysis (Deerwester et al., 1990),
which clusters words according to the context in which they occur.

In this project you will implement an LSA-based system for clustering Hebrew words. You
will use available corpora of Hebrew provided by the Knowledge Center for Processing Hebrew.
The corpora are morphologically analyzed and disambiguated; you will experiment with the effect
of using the morphological information for this task. Specifically, you will have to develop an
evaluation scheme for assessing the quality of your results.

A variant of this project will consist of a similar implementation and evaluation of a different
algorithm, Chatterjee and Mohan (2008).

2.7 Morphological analysis of dotted Hebrew
Introduction to Computational Linguistics recommended but not required. As you will be
revising an existing Java code, knowledge of Java is mandatory.

Morphological analysis is the process of determining the base (also known as lexeme, or
lemma) of a word, along with its morphological attributes. An example of the morphological
analysis of a simple Hebrew sentence is depicted in Figure 1.

Hebrew has a complex morphology and hence the design of a morphological analyzer for the
language is a complex task. We currently have a large-scale and relatively accurate morphological
system for Hebrew (Yona and Wintner, 2005) which works for undotted texts. In this project you
will create a variant of the morphological system for the dotted script.

The main task here is to understand the morphological rules that apply to works, as stipulated
for the undotted case, and then revise and refine them for the dotted case. The greatest benefit of
such a system is that it will facilitate, in conjunction with a morphological disambiguation system
which is currently under development, an automatic vocalization of undotted texts.

2.8 A compiler from XFST to LexTools
Introduction to Computational Linguistics is required

Finite-state technology is widely considered to be the appropriate means for describing the
phonological and morphological phenomena of natural languages. Several finite-state ”toolboxes”
exist which facilitate the stipulation of phonological and morphological rules by extending the
language of regular expressions with additional operators. Such toolboxes typically include a lan-
guage for extended regular expressions and a compiler from regular expressions to finite-state de-
vices (automata and transducers). Unfortunately, there are no standards for the syntax of extended
regular expression languages.

In this project you will design and implement a compiler which translates grammars expressed
in XFST (Beesley and Karttunen, 2003) to grammars LexTools, a simple language built on top of
the FSM finite-state toolbox (Mohri, Pereira, and Riley, 2000). You will be able to use a front-end
compiler of XFST (Cohen-Sygal and Wintner, 2005), but the back-end, generating the LexTools
code, will have to be implemented from scratch.

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

Figure 1: Example morphological analysis

The contribution of such a project lies in the fact that the Xerox utilities are proprietary; com-
pilation to LexTools will enable us to use grammars developed with XFST on publicly available
systems. Furthermore, parallel investigation of two similar, yet different, systems, is likely to result
in new insights regarding the two systems and there interrelationships. Finally, such a compiler
will enable us to compare the performance of the two systems on very similar benchmarks.

2.9 Implementation of registered FSAs
Introduction to Computational Linguistics is required. Due to the Unix-only availability of
FSM, this project must be implemented in a Unix environment.

Finite-state registered automata (FSRA, Cohen-Sygal and Wintner (2006)) extend standard
finite-state automata by adding very limited memory, in the form of a finite number of finitely-
valued registers, to networks. Provably equivalent to finite-state automata, FSRA have been shown
to be useful for naturally implementing several non-concatenative phenomena which are observed
in natural languages.

In this project you will implement a package which supports FSRA. This will consist in two
main phases:

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

• Extending the regular expression language of XFST by adding dedicated operators for FSRA.
You will be able to use a front-end compiler of XFST (Cohen-Sygal and Wintner, 2005), and
will have to extend it to support also the operators introduced by Cohen-Sygal and Wintner
(2006).

• Compiling extended regular expressions to FSM. Extending and modifying the back-end
of the XFST compiler (Cohen-Sygal and Wintner, 2005), you will support register opera-
tions by compiling extended regular expressions directly to FSM (Mohri, Pereira, and Riley,
2000), a finite-state low-level toolbox.

3 Administration
Projects are to be implemented by groups of at most two students. All systems will be presented at
the end of the semester for a final demo. A coordination meeting is planned for Wednesday, July
25th; all work must be completed by Wednesday, September 24th.

The programming language must be portable enough to be usable on a variety of platforms;
Java is recommended, C++ or Perl will be tolerated, if you have a different language in mind
discuss it with the instructor.

Grading will be based on comprehension of the problem, quality of the implementation and
quality of the documentation. In particular, the final grade will be based on:

• Comprehension of the problem (and the accompanying paper, where applicable)

• Full implementation of a working solution

• Presentation of a final working system

• Comprehensive documentation

References
Beesley, Kenneth R. and Lauri Karttunen. 2003. Finite-State Morphology: Xerox Tools and

Techniques. CSLI, Stanford.

Chatterjee, Niladri and Shiwali Mohan. 2008. Discovering word senses from text using random
indexing. In Alexander F. Gelbukh, editor, CICLing, volume 4919 of Lecture Notes in Com-
puter Science, pages 299–310. Springer.

Cohen-Sygal, Yael and Shuly Wintner. 2005. XFST2FSA: Comparing two finite-state toolboxes.
In Proceedings of the ACL-2005 Workshop on Software, Ann Arbor, MI, June.

Cohen-Sygal, Yael and Shuly Wintner. 2006. Finite-state registered automata for non-
concatenative morphology. Computational Linguistics, 32(1):49–82, March.

Computational Linguistics Group
Department of Computer Science
University of Haifa

!"#$%"& !$'%(#

#%&)* "+,)(-$&*

*."& !/"01#"'$2

Deerwester, Scott C., Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A.
Harshman. 1990. Indexing by latent semantic analysis. Journal of the American Society of
Information Science, 41(6):391–407.

Gale, William A. and Kenneth W. Church. 1993. A program for aligning sentences in bilingual
corpora. Computational Linguistics, 19(1):75–102.

Hermjakob, Ulf, Kevin Knight, and Hal Daumé III. 2008. Name translation in statistical machine
translation: Learning when to transliterate. In Conference of the Association for Computational
Linguistics (ACL), Columbus, OH.

Kay, Martin and Martin Röscheisen. 1993. Text-translation alignment. Computational Linguis-
tics, 19(1):121–142.

Mohri, Mehryar, Fernando Pereira, and Michael Riley. 2000. The design principles of a weighted
finite-state transducer library. Theoretical Computer Science, 231(1):17–32, January.

Och, F. J. and H. Ney. 2000. Improved statistical alignment models. In Proceedings of ACL-2000,
pages 440–447, Hongkong, China, October.

Resnik, Philip and Noah A. Smith. 2003. The web as a parallel corpus. Comput. Linguist.,
29(3):349–380.

Yona, Shlomo and Shuly Wintner. 2005. A finite-state morphological grammar of Hebrew. In
Proceedings of the ACL Workshop on Computational Approaches to Semitic Languages, pages
9–16, Ann Arbor, Michigan, June. Association for Computational Linguistics.

