
Internalizing categories

The grammars we have seen so far had an explicit context-free
backbone (or skeleton), obtained by considering the
(context-free) grammar induced by the base categories.

This is not imposed by the formalism; rather, the base
categories can be internalized into the feature structures
themselves.

Internalizing categories

For example, the rule

NP
[

num : X
] →

D
[

num : X
]

N
[

num : X
]

can be re-written as
[

cat : np
num : X

]

→

[

cat : d
num : X

] [

cat : n
num : X

]

Internalizing categories

In the new presentation of grammars, productions are
essentially multi-AVMs.

Derivations, derivation trees, languages...

Special features and the signature.

Internalizing categories

Example: Derivation tree

[

cat : s
]

[

cat : np
num : X

] [

cat : vp
num : X

]

[

cat : d
num : X

] [

cat : n
num : X

] [

cat : v
num : X (pl)

]

two sheep sleep

Internalizing categories

Once the base category of a phrase is admitted as the value of
one of the features in the feature structure associated with
that phrase, it does not have to be represented as an atomic
value.

For example, the Chomskian representation of categories:

nouns:

[

n : +
v : −

]

verbs:

[

n : −
v : +

]

adjectives:

[

n : +
v : +

]

prepositions:

[

n : −
v : −

]

Internalizing categories

Internalization of the category results in additional expressive
power.

It now becomes possible to consider feature structures in
which the value of the cat feature is underspecified, or even
unrestricted.

For example, one might describe a phrase in singular using
the feature structure

[

cat : []
num : sg

]

Internalizing categories

Once information about the category of a phrase is embedded
within the feature structure, it can be manipulated in more
ways than simply encoding the category of a phrase.

Internalized categories will be used to:

represent information about the subcategories of verbs
list information about constituents that are “moved”, or
“transformed”, using the slash notation
account for coordination.

Subcategorization lists

Motivation: to account for the subcategorization data in a
more general, elegant way, extending the coverage of our
grammar from the smallest fragment E0 to the fragment E1.

In E1 different verbs subcategorize for different kinds of
complements: noun phrases, infinitival verb phrases, sentences
etc. Also, some verbs require more than one complement.

The idea behind the solution is to store in the lexical entry of
each verb not an atomic feature indicating its subcategory,
but rather a list of atomic categories, indicating the
appropriate complements of the verb.

Subcategorization lists

Example: Lexical entries of verbs using subcategorization lists

sleep

2

4

cat : v

subcat : elist

num : pl

3

5

love

2

4

cat : v

subcat : 〈
ˆ

cat : np
˜

〉
num : pl

3

5

give

2

4

cat : v

subcat : 〈
ˆ

cat : np
˜

,

ˆ

cat : np
˜

〉
num : pl

3

5

tell

2

4

cat : v

subcat : 〈
ˆ

cat : np
˜

,

ˆ

cat : s
˜

〉
num : pl

3

5

Subcategorization lists

The grammar rules must be modified to reflect the additional
wealth of information in the lexical entries.

Example: VP rules using subcategorization lists

ˆ

cat : s
˜

→
ˆ

cat : np
˜

»

cat : v

subcat : elist

–

»

cat : v

subcat : Y

–

→

2

4

cat : v

subcat :

»

first :
ˆ

cat : X
˜

rest : Y

–

3

5

ˆ

cat : X
˜

Subcategorization lists

Example: A derivation tree

ˆ

cat : s
˜

»

cat : v

subcat : 〈〉

–

»

cat : v

subcat : 〈
ˆ

cat : 2

˜

〉

–

ˆ

cat : np
˜

»

cat : v

subcat : 〈
ˆ

cat : 1

˜

,

ˆ

cat : 2

˜

〉

–

ˆ

cat : 1 np
˜ ˆ

ca

Rachel gave the sheep

Subcategorization lists

Example: A derivation tree

ˆ

cat : s
˜

»

cat : v

sc : 〈〉

–

ˆ

cat : 2 s
˜

»

cat : v

sc : 〈
ˆ

cat : 2

˜

〉

–

ˆ

cat : np
˜

»

cat : v

sc : 〈
ˆ

cat : 1

˜

,

ˆ

cat : 2

˜

〉

–

ˆ

cat : 1

˜ ˆ

cat : np
˜

»

Jacob told Laban he

Subcategorization lists

In the above grammar, categories on subcategorization lists
are represented as an atomic symbol.

The method outlined here can be used with more complex
encodings of categories. In other words, the specification of
categories in a subcategorization list can include all the
constraints that the verb imposes on its complements

Subcategorization lists

Example: Subcategorization imposes case constraints

Ich gebe dem Hund den Knochen

I give the(dat) dog the(acc) bone
I give the dog the bone

∗ Ich gebe den Hund den Knochen

I give the(acc) dog the(acc) bone

∗ Ich gebe dem Hund dem Knochen

I give the(dat) dog the(dat) bone

Subcategorization lists

The lexical entry of gebe, then, could be:









cat : v

subcat :

〈[

cat : np
case : dat

]

,

[

cat : np
case : acc

]〉

num : sg









The VP rule has to be slightly modified:

[

cat : v
subcat : Y

]

→





cat : v

subcat :

[

first : X
rest : Y

]



 X ([])

G3, a complete E1-grammar

Example: G3, a complete E1-grammar

ˆ

cat : s
˜

→

2

4

cat : np

num : X

case : nom

3

5

2

4

cat : v

num : X

subcat : elist

3

5

2

4

cat : v

num : X

subcat : Y

3

5 →

2

6

6

4

cat : v

num : X

subcat :

»

first : Z

rest : Y

–

3

7

7

5

Z ([])

2

4

cat : np

num : X

case : Y

3

5 →

»

cat : d

num : X

–

2

4

cat : n

num : X

case : Y

3

5

2

4

cat : np

num : X

case : Y

3

5 →

2

4

cat : pron

num : X

case : Y

3

5 |

2

4

cat : propn

num : X

case : Y

3

5

Example: (continued)

sleep →

2

4

cat : v

subcat : elist

num : pl

3

5

love →

2

6

6

4

cat : v

subcat : 〈

»

cat : np

case : acc

–

〉

num : pl

3

7

7

5

give →

2

6

6

4

cat : v

subcat : 〈

»

cat : np

case : acc

–

,

ˆ

cat : np
˜

〉

num : pl

3

7

7

5

tell →

2

6

6

4

cat : v

subcat : 〈

»

cat : np

case : acc

–

,

ˆ

cat : s
˜

〉

num : pl

3

7

7

5

Example: (continued)

lamb →

2

4

cat : n

num : sg

case : Y

3

5 lambs →

2

4

cat : n

num : pl

case : Y

3

5

she →

2

4

cat : pron

num : sg

case : nom

3

5 her →

2

4

cat : pron

num : pl

case : acc

3

5

Rachel →

»

cat : propn

num : sg

–

Jacob →

»

cat : propn

num : sg

–

a →

»

cat : d

num : sg

–

two →

»

cat : d

num : pl

–

Long distance dependencies

Internalized categories are very useful in the treatment of
unbounded dependencies, which are included in the grammar
fragment E3.

Such phenomena involve a “missing” constituent that is
realized outside the clause from which it is missing, as in:

(1) The shepherd wondered whom Jacob loved
^

.
(2) The shepherd wondered whom Laban thought Jacob
loved

^
.

(3) The shepherd wondered whom Laban thought Rachel
claimed Jacob loved

^
.

An attempt to replace the gap with an explicit noun phrase
results in ungrammaticality:

(4) ∗The shepherd wondered who Jacob loved Rachel.

Long distance dependencies

The gap need not be in the object position:

(5) Jacob wondered who
^

loved Leah
(6) Jacob wondered who Laban believed

^
loved Leah

Again, an explicit noun phrase filling the gap results in
ungrammaticality:

(7) Jacob wondered who the shepherd loved Leah

Long distance dependencies

More than one gap may be present in a sentence (and, hence,
more than one filler):

(8a) This is the well which Jacob is likely to
^

draw
water from

^

(8b) It was Leah that Jacob worked for
^

without loving

^

In some languages (e.g., Norwegian) there is no (principled)
bound on the number of gaps that can occur in a single
clause.

Long distance dependencies

There are other fragments of English in which long distance
dependencies are manifested in other forms. Topicalization:

(9) Rachel, Jacob loved
^

(10) Rachel, every shepherd knew Jacob loved
^

Another example is interrogative sentences:

(11) Who did Jacob love
^

?
(12) Who did Laban believe Jacob loved

^
?

We do not account for such phenomena here.

Long distance dependencies

Phrases such as whom Jacob loved
^

or who
^

loved Rachel are
instances of a category that we haven’t discussed yet.

They are basically sentences, with a constituent which is
“moved” from its default position and realized as a
wh-pronoun in front of the phrase.

We will represent such phrases by using the same category, s,
which we used for sentences; but to distinguish them from
declarative sentences we will add a feature, que, to the
category. The value of que will be ‘+’ in sentences with an
interrogative pronoun realizing a transposed constituent.

Long distance dependencies

We add a lexical entry for the pronoun whom:

whom →





cat : pron
case : acc
que : +





and update the rule that derives pronouns:









cat : np
num : X
case : Y
que : Q









→









cat : pron
num : X
case : Y
que : Q









Long distance dependencies

We now propose an extension of G3 that can handle long
distance dependencies.

The idea is to allow partial phrases, such as Jacob loved
^

, to
be derived from a category that is similar to the category of
the full phrase, in this case Jacob loved Rachel; but to signal in
some way that a constituent, in this case a noun phrase, is
missing.

We extend G3 with two additional rules, based on the first two
rules of G3.

Long distance dependencies

(3)

[

cat : s
slash : Z

]

→





cat : np
num : X
case : nom













cat : v
num : X
subcat : elist
slash : Z









(4)









cat : v
num : X
subcat : Y
slash : Z









→









cat : v
num : X

subcat :

[

first : Z
rest : Y

]









Long distance dependencies

Example: A derivation tree for Jacob loves
^

»

cat : s

slash : 4

–

2

4

cat : np

num : 1

case : 2

3

5

2

6

6

4

cat : v

num : 1

slash : 4

subcat : elist

3

7

7

5

2

4

cat : propn

num : 1 sg

case : 2 nom

3

5

2

6

6

4

cat : v

num : 1

subcat :

fi

4

»

cat : np

case : acc

–fl

3

7

7

5

Jacob loves ^

Long distance dependencies

Now that partial phrases can be derived, with a record of their
“missing” constituent, all that is needed is a rule for creating
“complete” sentences by combining the missing category with a
“slashed” sentence:

(5)

[

cat : s
que : Q

]

→ Z (
[

que : Q(+)
]

)

[

cat : s
slash : Z

]

Long distance dependencies

Example: A derivation tree for whom Jacob loves
^

»

cat : s

que : 5

–

»

cat : s

slash : 4

–

4

2

4

cat : np

case : 3

que : 5

3

5

2

4

cat : np

num : 1

case : 2

3

5

2

6

6

4

cat : v

num : 1

slash : 4

subcat : elist

3

7

7

5

2

4

cat : pron

case : 3 acc

que : 5 +

3

5

2

4

cat : propn

num : 1 sg

case : 2 nom

3

5

2

4

cat : v

num : 1

subcat :
˙

4

¸

3

5

whom Jacob loves ^

Long distance dependencies

Unbounded dependencies can hold across several clause
boundaries:

The shepherd wondered whom Jacob loved
^

.
The shepherd wondered whom Laban thought Jacob
loved

^
.

The shepherd wondered whom Laban thought Leah
claimed Jacob loved

^
.

Also, the dislocated constituent does not have to be an object:

The shepherd wondered who
^

loved Rachel.
The shepherd wondered who Laban thought

^
loved

Rachel.
The shepherd wondered who Laban thought Leah claimed

^
loved Rachel.

Long distance dependencies

The solution we proposed for the simple case of unbounded
dependencies can be easily extended to the more complex
examples:

a slash introduction rule;
slash propagation rules;
and a gap filler rule.

In order to account for filler-gap relations that hold across
several clauses, all that needs to be done is to add more slash
propagation rules.

Long distance dependencies

For example, in

The shepherd wondered whom Laban thought Jacob
loved

^
.

the slash is introduced by the verb phrase loved
^

, and is
propagated to the sentence Jacob loved

^
by rule (3).

A rule that propagates the value of slash from a sentential
object to the verb phrase of which it is an object:

(6)

2

6

6

4

cat : v

num : X

subcat : Y

slash : Z

3

7

7

5

→

2

6

6

4

cat : v

num : X

subcat :

»

first : W

rest : Y

–

3

7

7

5

W (
ˆ

slash : Z
˜

)

Long distance dependencies

Then, the slash is propagated from the verb phrase
thought Jacob loved

^
to the sentence

Laban thought Jacob loved
^

:

(7)

[

cat : s
slash : Z

]

→





cat : np
num : X
case : nom













cat : v
num : X
subcat : elist
slash : Z









Long distance dependencies

Example: A derivation tree for whom Laban thought Jacob loves
^

"

cat : s

que : 6

#

"

cat : s

slash : 4

#

2

6

6

6

4

cat : v

num : 5

slash : 4

subcat : elist

3

7

7

7

5

8

"

cat : s

slash : 4

#

4

2

6

6

4

cat : np

case : 3

que : 6

3

7

7

5

2

6

6

4

cat : np

num : 5

case : 9

3

7

7

5

2

6

6

4

cat : np

num : 1

case : 2

3

7

7

5

2

6

6

6

4

cat : v

num : 1

slash : 4

subcat : elist

3

7

7

7

5

2

6

6

4

cat : pron

case : 3 acc

que : 6 +

3

7

7

5

2

6

6

4

cat : propn

num : 5 sg

case : 9 nom

3

7

7

5

2

6

6

4

cat : v

num : 5

subcat : 〈 8 〉

3

7

7

5

2

6

6

4

cat : propn

num : 1 sg

case : 2 nom

3

7

7

5

2

6

6

4

cat : v

num : 1

subcat :

D

4

E

3

7

7

5

whom Laban thought Jacob loves
^

Long distance dependencies

Finally, to account for gaps in the subject position, all that is
needed is an additional slash introduction rule:

(8)









cat : s

slash :





cat : np
num : X
case : nom













→





cat : v
num : X
subcat : elist





Long distance dependencies

Example: A derivation tree for who
^

loves Rachel

"

cat : s

que : 6

#

"

cat : s

slash : 4

#

2

6

4

cat : vp

num : 1

subcat : elist

3

7

5

4

2

6

6

4

cat : np

case : 3 nom

que : 6

3

7

7

5

8

"

cat : np

case : 2

#

2

6

6

4

cat : pron

case : 3 nom

que : 6

3

7

7

5

2

6

6

4

cat : v

num : 1 sg

subcat : 〈 8 〉

3

7

7

5

2

6

6

4

cat : propn

num : 6 sg

case : 2 acc

3

7

7

5

who
^

loves Rachel

Subject and object control

Subject and object control phenomena capture the differences
between the ‘understood’ subjects of the infinitive verb phrase
to work seven years in the following sentences:

Jacob promised Laban to work seven years
Laban persuaded Jacob to work seven years

The key observation in the solution is that the differences
between the two examples stem from differences in the matrix
verbs:

promise is a subject control verb
persuade is object control.

Subject and object control

Our departure point is the grammar G3. We modify it by adding a
subj feature to verb phrases, whose value is a feature structure
associated with the phrase that serves as the verb’s subject.

Example: G4: explicit subj values

ˆ

cat : s
˜

→ 1

2

4

cat : np

case : nom

num : 7

3

5

2

6

6

4

cat : v

num : 7

subcat : elist

subj : 1

3

7

7

5

2

6

6

4

cat : v

num : 7

subcat : 4

subj : 1

3

7

7

5

→

2

6

6

6

6

4

cat : v

num : 7

subcat :

»

first : 2

rest : 4

–

subj : 1

3

7

7

7

7

5

2 []

Subject and object control

Example: (continued)
2

4

cat : np

num : 7

case : 6

3

5 →

»

cat : d

num : 7

–

2

4

cat : n

num : 7

case : 6

3

5

2

4

cat : np

num : 7

case : 6

3

5 →

2

4

cat : pron

num : 7

case : 6

3

5 |

2

4

cat : propn

num : 7

case : 6

3

5

Subject and object control

Example: (continued)

sleep →

2

6

6

6

6

4

cat : v

subcat : elist

subj :

»

cat : np

case : nom

–

num : pl

3

7

7

7

7

5

love →

2

6

6

6

6

6

6

4

cat : v

subcat : 〈

»

cat : np

case : acc

–

〉

subj :

»

cat : np

case : nom

–

num : pl

3

7

7

7

7

7

7

5

give →

2

6

6

6

6

6

6

4

cat : v

subcat : 〈

»

cat : np

case : acc

–

,

ˆ

cat : np
˜

〉

subj :

»

cat : np

case : nom

–

num : pl

3

7

7

7

7

7

7

5

Example: (continued)

lamb →

2

4

cat : n

num : sg

case : 6

3

5 lambs →

2

4

cat : n

num : pl

case : 6

3

5

she →

2

4

cat : pron

num : sg

case : nom

3

5 her →

2

4

cat : pron

num : pl

case : acc

3

5

Rachel →

»

cat : propn

num : sg

–

Jacob →

»

cat : propn

num : sg

–

a →

»

cat : d

num : sg

–

two →

»

cat : d

num : pl

–

Subject and object control

Accounting for infinitival verb phrases:

to work →









cat : v
vform : inf
subcat : elist
subj :

[

cat : np
]









Subject and object control

The lexical entries of verbs such as promise or persuade:

promised →

























cat : v
vform : fin

subcat : 〈

[

cat : np
case : acc

]

,





cat : v
vform : inf
subj : 1



〉

subj : 1

[

cat : np
case : nom

]

num : []

























Subject and object control

Example: A derivation tree for Jacob promised Laban to work

ˆ

cat : s
˜

2

6

6

4

cat : v

vform : fin

subj : 1

subcat : elist

3

7

7

5

2

6

6

6

4

cat : v

vform : fin

subj : 1

subcat : 〈 3 〉

3

7

7

7

5

1

"

cat : np

case : 6 nom

#

2

6

6

6

4

cat : v

vform : fin

subj : 1

subcat : 〈 2 , 3 〉

3

7

7

7

5

2

"

cat : np

case : 7 acc

#

"

cat : propn

case : 6

"

cat : propn

case : 7

#

3

2

6

4

cat : v

vform : inf

subj : 1

3

7

5

Jacob promised Laban to work

Subject and object control

The only difference between the lexical entries of promised and
persuaded is that in the latter, the value of the subj list of the
infinitival verb phrase is reentrant with the first element on the
subcat list of the matrix verb, rather than with its subj value:

persuaded →

























cat : v
vform : fin

subcat : 〈 1

[

cat : np
case : acc

]

,





cat : v
vform : inf
subj : 1



〉

subj :

[

cat : np
case : nom

]

num : []

























Constituent coordination

Many languages exhibit a phenomenon by which constituents of
the same category can be conjoined to form a constituent of this
category.

Constituent coordination

Example:

N: no man lift up his [hand] or [foot] in all the land of Egypt

NP: Jacob saw [Rachel] and [the sheep of Laban]

VP: Jacob [went on his journey] and

[came to the land of the people of the east]

VP: Jacob [went near],

and [rolled the stone from the well’s mouth],

and [watered the flock of Laban his mother’s brother].

ADJ: every [speckled] and [spotted] sheep

ADJP: Leah was [tender eyed] but [not beautiful]

S: [Leah had four sons], but [Rachel was barren]

S: she said to Jacob, “[Give me children], or [I shall die]!”

Constituent coordination

We extend the grammar fragment to cover coordination,
referring to it as E4.

The lexicon of a grammar for E4 is extended by a closed class
of conjunction words; categorized under Conj, this class
includes the words and, or, but and perhaps a few others (E4

contains only these three).

We assume that in E4, every category of E0 can be conjoined.

We also assume – simplifying a little – that the same
conjunctions are possible for all the categories.

Constituent coordination

A context-free grammar for coordination:

S → S Conj S
NP → NP Conj NP
VP → VP Conj VP
...

Conj → and, or, but, . . .

With generalized categories, a single production is sufficient:

[

cat : X
]

→
[

cat : X
] [

cat : conj
] [

cat : X
]

Constituent coordination

Example: Coordination

[

cat : vp
]

[

cat : vp
] [

cat : vp
]

[

cat : v
sc : trans

] [

cat : np
num : sg

]

[

cat : conj
]

[

cat : v
sc : trans

] [

cat :
num :

rolled the stone and watered the sheep

Constituent coordination

The above solution is over-simplifying:

it allows coordination of E0 categories, but also of E4

categories;

it does not handle the properties of coordinated phrases
properly;

it does not permit conjunction of unlikes and of
non-constituents.

Constituent coordination

Not every category can be coordinated: for example, in English
conjunctions cannot themselves be conjoined (in most cases):

[

cat : X
conj’ble : −

]

→

[

cat : X
conj’ble : +

]

[

cat : conj
]

[

cat : X
conj’ble : +

]

Properties of conjoined constituents

Example: NP coordination

2

6

6

4

cat : np

num : ??
pers : ??
gen : ??

3

7

7

5

2

6

6

4

cat : np

num : Y

pers : second

gen : Z

3

7

7

5

2

6

6

4

cat : np

num : sg

pers : third

gen : X

3

7

7

5

2

6

6

4

cat : pron

num : Y

pers : second

gen : Z

3

7

7

5

ˆ

cat : conj
˜

»

cat : d

num : sg

–

2

6

6

4

cat : n

num : sg

pers : third

gen : X

3

7

7

5

you and a lamb

Coordination of unlikes

Consider the following English data:

Joseph became wealthy
Joseph became a minister
Joseph became [wealthy and a minister]
Joseph grew wealthy
∗Joseph grew a minister
∗Joseph grew [wealthy and a minister]

These data are easy to account for in a unification-based
framework with a possibility of specifying generalization
instead of unification in certain cases:

1 u 2 → 1

[

cat : X
] [

cat : conj
]

2

[

cat : Y
]

where ‘u’ is the generalization operator.

Coordination of unlikes

Example:

[

v : +
]

[

subcat :
[

n : +
]

v : +

]

[

n : +
]

[

v : +
n : +

]

[

cat : conj
]

[

v : −
n : +

]

became wealthy and a minister

Coordination of unlikes

The situation becomes more complicated when verbs, too, are
conjoined:

∗Joseph [grew and remained] [wealthy and a minister]

While this example is ungrammatical, it is obtainable by the
same grammar.

Coordination of unlikes

Example:

ˆ

v : +
˜

»

v : +
sc :

ˆ

n : +
˜

–

ˆ

n : +
˜

2

4

v : +

sc :

»

v : +
n : +

–

3

5

ˆ

cat : c
˜

»

v : +
sc :

ˆ

n : +
˜

– »

v : +
n : +

–

ˆ

cat : c
˜

»

v :
n :

grew and remained wealthy and a minister

Non-constituent coordination

Sometimes non-constituents can be conjoined:

Rachel gave the sheep [grass] and [water]
Rachel gave [the sheep grass] and [the lambs water]
Rachel [kissed] and Jacob [hugged] Binyamin

Expressiveness of unification grammars

Just how expressive are unification grammars?

What is the class of languages generated by unification
grammars?

Trans-context-free languages

A grammar, Gabc , for the language L = {anbncn | n > 0}.

Feature structures will have two features: cat, which stands
for category, and t, which “counts” the length of sequences
of a-s, b-s and c-s.

The “category” is ap for strings of a-s, bp for b-s and cp for
c-s. The categories at, bt and ct are pre-terminal categories
of the words a, b and c, respectively.

“Counting” is done in unary base: a string of length n is
derived by an AVM (that is, an multi-AVM of length 1) whose
depth is n.

For example, the string bbb is derived by the following AVM:

[

cat : bp

t :
[

t :
[

t : end
]]

]

Trans-context-free languages

Example: A unification grammar for the language {anbncn | n > 0}

The signature of the grammar consists in the features cat and t and
the atoms s, ap, bp, cp, at, bt, ct and end. The terminal symbols
are, of course, a, b and c. The start symbol is the left-hand side of
the first rule.

ρ1 :
[

cat : s
]

→

[

cat : ap
t : X

] [

cat : bp
t : X

] [

cat : cp
t : X

]

Example: (continued)

ρ2 :

[

cat : ap
t :

[

t : X
]

]

→
[

cat : at
]

[

cat : ap
t : X

]

ρ3 :

[

cat : ap
t : end

]

→
[

cat : at
]

ρ4 :

[

cat : bp
t :

[

t : X
]

]

→
[

cat : bt
]

[

cat : bp
t : X

]

ρ5 :

[

cat : bp
t : end

]

→
[

cat : bt
]

ρ6 :

[

cat : cp
t :

[

t : X
]

]

→
[

cat : ct
]

[

cat : cp
t : X

]

ρ7 :

[

cat : cp
t : end

]

→
[

cat : ct
]

Example: (continued)
[

cat : at
]

→ a

[

cat : bt
]

→ b

[

cat : ct
]

→ c

Trans-context-free languages

Example: Derivation sequence of a2b2c2

Start with a form that consists of the start symbol,

σ0 =
[

cat : s
]

.

Only one rule, ρ1, can be applied to the single element of the multi-
AVM in σ0, yielding:

σ1 =

[

cat : ap
t : X

] [

cat : bp
t : X

] [

cat : cp
t : X

]

Example: (continued)

Applying ρ2, to the first element of σ1:

σ2 =
ˆ

cat : at
˜

»

cat : ap

t : X

– »

cat : bp

t :
ˆ

t : X
˜

– »

cat : cp

t :
ˆ

t : X
˜

–

We can now choose the third element in σ2 and apply the rule ρ4:

σ3 =
ˆ

cat : at
˜

»

cat : ap

t : X

–

ˆ

cat : bt
˜

»

cat : bp

t : X

– »

cat : cp

t :
ˆ

t : X
˜

–

Applying ρ6 to the fifth element of σ3, we get:

σ4 =
ˆ

cat : at
˜

»

cat : ap

t : X

–

ˆ

cat : bt
˜

»

cat : bp

t : X

–

ˆ

cat : ct
˜

»

cat :

t :

Example: (continued)

The second element of σ4 is unifiable with the heads of both ρ2 and
ρ3. We choose to apply ρ3:

σ5 =
ˆ

cat : at
˜ ˆ

cat : at
˜ ˆ

cat : bt
˜

»

cat : bp

t : end

–

ˆ

cat : ct
˜

»

cat :

t :

In the same way we can now apply ρ5 and ρ7 and obtain, eventually,

σ7 =
ˆ

cat : at
˜ ˆ

cat : at
˜ ˆ

cat : bt
˜ ˆ

cat : bt
˜ ˆ

cat : ct
˜ ˆ

cat : ct

Now, let w = aabbcc; then σ7 is a member of PTw (1, 6); in fact, it
is the only member of the preterminal set. Therefore, w ∈ L(Gabc).

Trans-context-free languages

Example: Derivation tree of a2b2c2

ˆ

cat : s
˜

»

cat : ap

t :
ˆ

t : end
˜

– »

cat : bp

t :
ˆ

t : end
˜

– »

cat : cp

t :
ˆ

t : end
˜

–

»

cat : ap

t : end

– »

cat : bp

t : end

– »

cat : cp

t : end

–

ˆ

cat : at
˜ ˆ

cat : at
˜ ˆ

cat : bt
˜ ˆ

cat : bt
˜ ˆ

cat : ct
˜ ˆ

cat : ct
˜

a a b b c c

The repetition language

Example: A unification grammar for the language {ww | w ∈
{a, b}+}

The signature of the grammar consists in the features cat, first

and rest and the atoms s, ap, bp, at, bt and elist. The terminal
symbols are a and b. The start symbol is the left-hand side of the
first rule.

Example: (continued)

ˆ

cat : s
˜

→

»

first : X

rest : Y

– »

first : X

rest : Y

–

2

4

first : ap

rest :

»

first : X

rest : Y

–

3

5 →

ˆ

cat : at
˜

»

first : X

rest : Y

–

2

4

first : bp

rest :

»

first : X

rest : Y

–

3

5 →

ˆ

cat : bt
˜

»

first : X

rest : Y

–

»

first : ap

rest : elist

–

→

ˆ

cat : at
˜

»

first : bp

rest : elist

–

→

ˆ

cat : bt
˜

ˆ

cat : at
˜

→ a

ˆ

cat : bt
˜

→ b

Unification grammars and Turing machines

Unification grammars can simulate the operation of Turing
machines.

The membership problem for unification grammars is as hard
as the halting problem.

Unification grammars and Turing machines

A (deterministic) Turing machine (Q,Σ, [, δ, s, h) is a tuple such
that:

Q is a finite set of states

Σ is an alphabet, not containing the symbols L, R and elist

[∈ Σ is the blank symbol

s ∈ Q is the initial state

h ∈ Q is the final state

δ : (Q \ {h}) × Σ → Q × (Σ ∪ {L,R}) is a total function
specifying transitions.

Unification grammars and Turing machines

A configuration of a Turing machine consists of the state, the
contents of the tape and the position of the head on the tape.

A configuration is depicted as a quadruple (q,wl , σ,wr) where
q ∈ Q, wl ,wr ∈ Σ∗ and σ ∈ Σ; in this case, the contents of
the tape is [ω · wl · σ · wr · [

ω, and the head is positioned on
the σ symbol.

A given configuration yields a next configuration, determined
by the transition function δ, the current state and the
character on the tape that the head points to.

Unification grammars and Turing machines

Let

first(σ1 · · · σn) =

{

σ1 n > 0
[n = 0

but-first(σ1 · · · σn) =

{

σ2 · · · σn n > 1
ε n ≤ 1

last(σ1 · · · σn) =

{

σn n > 0
[n = 0

but-last(σ1 · · · σn) =

{

σ1 · · · σn−1 n > 1
ε n ≤ 1

Unification grammars and Turing machines

Then the next configuration of a configuration (q,wl , σ,wr) is
defined iff q 6= h, in which case it is:

(p,wl , σ
′,wr) if δ(q, σ) = (p, σ′) where σ′ ∈ Σ

(p,wlσ, first(wr), but-first(wr)) if δ(q, σ) = (p,R)
(p, but-last(wl), last(wl), σwr) if δ(q, σ) = (p,L)

Unification grammars and Turing machines

A next configuration is only defined for configurations in
which the state is not the final state, h.

Since δ is a total function, there always exists a unique next
configuration for every given configuration.

We say that a configuration c1 yields the configuration c2,
denoted c1 ` c2, iff c2 is the next configuration of c1.

Unification grammars and Turing machines

Program:

define a unification grammar GM for every Turing machine M
such that the grammar generates the word halt if and only if
the machine accepts the empty input string:

L(GM) =

{

{halt} if M terminates for the empty input
∅ if M does not terminate on the empty input

if there were a decision procedure to determine whether
w ∈ L(G) for an arbitrary unification grammar G , then in
particular such a procedure could determine membership in
the language of GM , simulating the Turing machine M.

the procedure for deciding whether w ∈ L(G), when applied to
the problem halt∈ L(GM), determines whether M terminates
for the empty input, which is known to be undecidable.

Unification grammars and Turing machines

Feature structures will have three features: curr, representing
the character under the head; right, representing the tape
contents to the right of the head (as a list); and left,
representing the tape contents to the left of the head, in a
reversed order.

All the rules in the grammar are unit rules; and the only
terminal symbol is halt. Therefore, the language generated by
the grammar is necessarily either the singleton {halt} or the
empty set.

Unification grammars and Turing machines: signature

Let M = (Q,Σ, [, δ, s, h) be a Turing machine. Define a unification
grammar GM as follows:

Feats = {cat, left, right, curr, first, rest}

Atoms = Σ ∪ {start, elist}.

The start symbol is
[

cat : start
]

.

the only terminal symbol is halt.

Unification grammars and Turing machines: rules

Two rules are defined for every Turing machine:

[

cat : start
]

→









cat : s
curr : [

right : elist
left : elist









h → halt

Unification grammars and Turing machines: rules

For every q, σ such that δ(q, σ) = (p, σ′) and σ′ ∈ Σ, the following
rule is defined:









cat : q
curr : σ

right : X
left : Y









→









cat : p
curr : σ′

right : X
left : Y









Unification grammars and Turing machines: rules

For every q, σ such that δ(q, σ) = (p,R) we define two rules:









cat : q
curr : σ

right : elist
left : X









→













cat : p
curr : [

right : elist

left :

[

first : σ

rest : X

]

























cat : q
curr : σ

right :

[

first : X
rest : Y

]

left : W













→













cat : p
curr : X
right : Y

left :

[

first : σ

rest : W

]













Unification grammars and Turing machines: rules

For every q, σ such that δ(q, σ) = (p,L) we define two rules:









cat : q
curr : σ

right : X
left : elist









→













cat : p
curr : [

right :

[

first : σ

rest : X

]

left : elist

























cat : q
curr : σ

right : X

left :

[

first : Y
rest : W

]













→













cat : p
curr : Y

right :

[

first : σ

rest : X

]

left : W













Unification grammars and Turing machines: results

Lemma

Let c1, c2 be configurations of a Turing machine M, and A1,A2

be AVMs encoding these configurations, viewed as multi-AVMs of
length 1. Then c1 ` c2 iff A1 ⇒ A2 in Gm.

Theorem

A Turing machine M halts for the empty input iff halt ∈ L(GM).

Corollary

The universal recognition problem for unification grammars is unde-
cidable.

