
Subsumption

Let A,B be feature structures over the same signature. We say
that A subsumes B (A v B ; also, A is more general than B , and B

is subsumed by, or is more specific than, A) if the following
conditions hold:

1 if A is an atomic AVM then B is an atomic AVM with the
same atom;

2 for every f ∈ Feats, if f ∈ dom(A) then f ∈ dom(B), and
val(A, f) subsumes val(B , f); and

3 if two paths are reentrant in A, they are also reentrant in B : if

π1
A

! π2 then π1
B

! π2.



Subsumption

Example: Subsumption

[ ] v
[

num : sg
]

[

num : X
]

v
[

num : sg
]

[

num : sg
]

v

[

num : sg

pers : third

]

[

num1 : sg

num2 : sg

]

v

[

num1 : 1 sg

num2 : 1

]



Subsumption

Subsumption is a partial relation: not every pair of feature
structures is comparable:

[

num : sg
] 6v

6w

[

num : pl
]

A different case of incomparability is caused by the existence of
different features in the two structures:

[

num : sg
] 6v

6w

[

pers : third
]



Subsumption

Example: Subsumption

While subsumption informally encodes an order of information con-
tent among AVMs, sometimes the informal notion can be misleading:

[

num : sg

pers : third

]

6v
6w

[

agr :

[

num : sg

pers : third

]]



Subsumption

Some properties of subsumption:

Least element: the empty feature structure subsumes every feature
structure: for every feature structure A, [ ] v A

Refelxivity: for every feature structure A, A v A

Transitivity: If A v B and B v C than A v C .

Antisymmetry: Subsumption is antisymmetric: if A v B and
B v A then A = B .

To summarize, subsumption is a partial, reflexive, transitive and
antisymmetric relation; it is therefore a partial order.



Unification

The unification operation, denoted ‘t’, is defined over pairs of
feature structures, and yields the most general feature
structure that is more specific than both operands, if one
exists:
A = B t C if and only if A is the most general feature
structure such that B v A and C v A.

If such a structure exists, the unification succeeds, and the
two arguments are said to be unifiable (or consistent). If none
exists, the unification fails, and the operands are said to be
inconsistent.



Unification

Example: Unification

Unification combines consistent information:

[

num : sg
]

t
[

pers : third
]

=

[

num : sg

pers : third

]

Different atoms are inconsistent:

[

num : sg
]

t
[

num : pl
]

= >



Example: (continued)

Atoms and non-atoms are inconsistent:

[

num : sg
]

t sg = >



Example: (continued)

Unification is absorbing:

[

num : sg
]

t

[

num : sg

pers : third

]

=

[

num : sg

pers : third

]



Example: (continued)

Empty feature structures are identity elements:

[ ] t
[

agr :
[

num : sg
]]

=
[

agr :
[

num : sg
]]



Example: (continued)

Reentrancy causes two consistent values to coincide:

[

f :
[

num : sg
]

g :
[

pers : third
]

]

t

[

f : 1

g : 1

]

=





f : 1

[

num : sg

pers : third

]

g : 1







Example: (continued)

Variables can be (partially) instantiated:

[

f : X
]

t
[

f :
[

h : b
]]

=
[

f : X (
[

h : b
]

)
]



Example: (continued)

Unification acts differently depending on whether the values are
equal:

[

f :
[

num : sg
]

g :
[

num : sg
]

]

t
[

f :
[

pers : 3rd
]]

=





f :

[

num : sg

pers : 3rd

]

g :
[

num : sg
]





...or identical:

[

f : 1

[

num : sg
]

g : 1

]

t
[

f :
[

pers : 3rd
]]

=





f : 1

[

num : sg

pers : 3rd

]

g : 1







Variable binding

Unification binds variables together. Let:

A =
[

f : 1

[

num : sg
]]

B =
[

f : 2

[

pers : third
]]

Then:

A t B =

[

f : 1 2

[

num : sg

pers : third

]]

Of course, since the variables 1 and 2 occur nowhere else, they
can be simply omitted and the result is equal to:

A t B =

[

f :

[

num : sg

pers : third

]]



Variable binding

However, had either 1 or 2 occurred elsewhere (for example, as
the value of some feature g in A), their values would have been
modified as a result of the unification:

[

f : 1

[

num : sg
]

g : 1

]

t
[

f : 2

[

pers : third
]]

=





f : 3

[

num : sg

pers : third

]

g : 3







Unification

Some properties of unification:

Idempotency: A t A = A

Commutativity: A t B = B t A

Associativity: A t (B t C ) = (A t B) t C

Absorption: If A v B then A t B = B

Monotonicity: If A v B then for every C , A t C v B t C (if both
exist).



Generalization

Generalization (denoted u) is the operation that returns the
most specific (or least general) feature structure that is still
more general than both arguments.

Unlike unification, generalization can never fail. For every pair
of feature structures there exists a feature structure that is
more general than both: in the most extreme case, pick the
empty feature structure, which is more general than every
other structure.



Generalization

Example: Generalization

Generalization reduces information:

[

num : sg
]

u
[

pers : third
]

= [ ]

Different atoms are inconsistent:

[

num : sg
]

u
[

num : pl
]

=
[

num : [ ]
]



Example: (continued)

Generalization is restricting:

[

num : sg
]

u

[

num : sg

pers : third

]

=
[

num : sg
]



Example: (continued)

Empty feature structures are zero elements:

[ ] u
[

agr :
[

num : sg
]]

= [ ]

Reentrancies can be lost:
[

f : 1

[

num : sg
]

g : 1

]

u

[

f :
[

num : sg
]

g :
[

num : sg
]

]

=

[

f :
[

num : sg
]

g :
[

num : sg
]

]



Generalization

Some properties of generalization:

Idempotency: A u A = A

Commutativity: A u B = B u A

Absorption: If A v B then A u B = A



Using feature structures for representing lists

Feature structures can be easily used to encode (finite) lists. As an
example, consider the following representation of the list 〈1, 2, 3〉
(assuming a signature whose atoms include the numbers 1, 2, 3):

Example: Feature structure encoding of a list









first : 1

rest :





first : 2

rest :

[

first : 3
rest : elist

]















Using feature structures for representing lists

Example: A nested list

The list 〈〈1, 2, 6, 7〉, 〈3, 4〉, 〈5〉〉:





































first :













first : 1

rest :









first : 2

rest :





first : 6

rest :

[

first : 7
rest : elist

]

























rest :

















first :





first : 3

rest :

[

first : 4
rest : elist

]





rest :





first :

[

first : 5
rest : elist

]

rest : elist



























































Adding features to rules

Phrases, like words, have valued features and consequently,
grammar non-terminals, too, are decorated with features.

When a feature is assigned to a non-terminal symbol C , it
means that this feature is appropriate for all the phrases of
category C : it makes sense for it to appear in all the instances
of C .

Such categories interact, in the grammar, with other AVMs,
through application of rules, and the specified values might
thus undergo changes. In general, AVMs are changed as a
result of rule application.

We refer to such enriched categories as generalized categories

(or extended ones), which have a base category and an
associated feature structure.



Adding features to rules

Example:

A feature structure that might be associated with phrases of category
NP (noun phrases).

NP
[

num : [ ]
pers : [ ]

]

A third person singular noun phrase such as lamb may be associated
with:

NP
[

num : sg

pers : third

]



Extended grammar rules

Example: Rules for imposing number agreement

(1)
N

[

num : X
] →

lamb
[

num : X (sg)
]

(2)
N

[

num : X
] →

lambs
[

num : X (pl)
]

(3) S →
NP

[

num : X
]

VP
[

num : X
]

(4)
NP

[

num : X
] →

D
[

num : X
]

N
[

num : X
]



Scope of variables

The scope of a variable is the grammar rule in which it occurs.
Reformulating rule (2) as

N
[

num : Y
] →

lambs
[

num : Y (pl)
]

has no effect.
No sharing is implied by occurrences of the same variables in
different rules, for example the occurrences of X in
rules (1) and (2) above.



Declarativity

Consider rule 4:

(4)
NP

[

num : X
] →

D
[

num : X
]

N
[

num : X
]

This rule stipulates that in order to form a noun phrase (NP)
from the concatenation of a determiner (D) and a noun (N),
the num features of the determiner and the noun must agree.

The num feature of the noun phrase thus constructed is equal
to that of either daughter.

What the rule does not determine is an order of this value
check.

The undirectional view of agreement is a typical view of
unification-based grammar formalisms.



Extending AVMs

Multi-AVMs can be viewed as sequences of AVMs, with the
important observation that some sub-structures can be shared
among two or more AVMSs.

In other words, the scope of variables is extended from a
single AVM to a multi-AVM: the same variable can be
associated with two sub-structures of different AVMs.

The notion of well-formedness is extended to multi-AVMs.

The function val , associating a value with features (and
paths) has to be extended, too.

If the value of the path π1 leaving the i -th root of σ is
reentrant with the value of the path π2 leaving the j-th root,
we write (i , π1)

σ
! (j , π2).



Extending AVMs

Example: Multi-AVM

Let σ be the multi-AVM:

[

f :

[

g : a

h : X

]]

[

g : Y
]





f :

[

h : b

g : X

]

h : a





Then val(σ, 1, 〈f〉) is:

[

g : a

h : [ ]

]

whereas val(σ, 3, 〈f〉) is:

[

h : b

g : [ ]

]

In this example, (1, 〈F H〉)
σ

! (3, 〈F G〉).



Example: (continued)

A multi-AVM can have an empty feature structure as an element:

[

f :

[

g : a

h : X

]]

[ ]





f :

[

h : b

g : X

]

h : a







Extending AVMs

The following is a valid multi-AVM:

[

f : a

g : 2

]

2

[

h : b
]

The only restriction is that the same variable cannot be associated
with two different elements in the sequence. Thus, the following is
not a multi-AVM:

2

[

h : b
]

[

f : a

g : 2

]

2



Subsumption

The notion of subsumption can be naturally extended from AVMs
to multi-AVMs: if σ and ρ are two multi-AVMs of the same length,
n, then σ v ρ if the following conditions hold:

1 every element of σ subsumes the corresponding element of ρ:
for every i , 1 ≤ i ≤ n, val(σ, i , ε) v val(ρ, i , ε); and

2 if two paths are reentrant in σ, they are also reentrant in ρ: if
(i , π1)

σ
! (j , π2) then (i , π1)

ρ

! (j , π2).



Subsumption

Example: Multi-AVM subsumption

Let σ be:

[

f :

[

g : a

h : X

]]

[

g : c
]





f :

[

h : b

g : X (d)

]

h : a





and ρ be:

[

f :

[

g : a

h : d

]]

[

g : c
]





f :

[

h : b

g : d

]

h : a





Then σ does not subsume ρ, but ρ v σ.



Unification

In the same way, the notion of unification can be extended to
multi-AVMs (of the same length): we say that ρ is the unification
of σ1 and σ2 (and write ρ = σ1 t σ2) if σ1, σ2 and ρ are of the
same length, and ρ is the most general multi-AVM that is more
specific than both σ1 and σ2.



Rules and grammars

An extended context-free rule consists of two components: a
context-free rule, and a multi-AVM of the same length.

A unification grammar consists of a set of extended
context-free rules and an extended category that serves as the
start symbol.



Unification grammars

Example: G1, a unification grammar for E0

(1) S →
NP

[

num : X
]

VP
[

num : X
]

(2)
NP

[

num : X
] →

D
[

num : X
]

N
[

num : X
]

(3)
VP

[

num : X
] →

V
[

num : X
]



Example: (continued)

(4)
VP

[

num : X
] →

V
[

num : X
]

NP
[

num : Y
]

(5, 6)
N

[

num : X
] →

lamb
[

num : X (sg)
] |

sheep
[

num : X
] | . . .

(7, 8)
V

[

num : X
] →

sleeps
[

num : X (sg)
] |

sleep
[

num : X (pl)
] | . . .

(9, 10)
D

[

num : X
] →

a
[

num : X (sg)
] |

two
[

num : X (pl)
] | . . .



Rule application

Forms and sentential forms

Derivations

Derivation trees

Language



Forms

Forms are generalized and are composed of “sequences” of
generalized categories, that is, of a sequence of base categories
or words, augmented by a multi-AVM of the same length.

We use Greek letters such as α, β as meta-variables over
forms. For example, following is a form of length two:

NP
[

num : Y
]

VP
[

num : Y
]



Derivations

Derivation is a binary relation over generalized forms. Let α be a
generalized form, and B0 → B1B2 . . . Bk a grammar rule, where
the Bi are all generalized categories, and where reentrancies might
occur among elements of the form or the rule. Application of the
rule to α consists of the following steps:

Matching the rule’s head with some element of the form that
has the same base category;

Replacing the selected element in the form with the body of
the rule, producing a new form.



Derivations

Example: Matching

Suppose that

α =
NP

[

num : Y
]

VP
[

num : Y
]

is a (sentential) form and that

ρ =
VP

[

num : X
] →

V
[

num : X
]

NP
[

num : W
]

is a rule. Let the selected element of α be its second element, namely
the extended category

VP
[

num : Y
]



Example: (continued)

This extended category matches the head of the rule ρ, as the base
categories are identical (VP) and the AVMs associated with them are
unifiable (consistent). The result of the unification is the extended
category

VP
[

num : Z
]

which is equivalent to

VP
[

num : [ ]
]

An additional effect of the unification is that the variables Y of the
form and X of the rule are unified, too.



Replacement

The two feature structures (associated with the head of the
rule and with the selected element) are unified in their
respective contexts: the body of the rule and the form.

When some variable X in the form is unified with some
variable Y in the rule, all occurrences of X in the form and of
Y in the rule are modified: they are all set to the unified value.

The replacement operation inserts the modified rule body into
the modified form, replacing the selected element of the form.

The variables of the resulting form are then systematically
renamed.



Derivation

Example: Derivation step

Let

α =
NP

[

num : Y
]

VP
[

num : Y
]

ρ =
VP

[

num : X
] →

V
[

num : X
]

NP
[

num : W
]

be a form and a rule, respectively. The unification of the rule’s head
with the second element of α succeeds, and identifies the values of
X and Y . After replacement and variable renaming we obtain:

β =
NP

[

num : X1

]

V
[

num : X1

]

NP
[

num : W1

]



Example: (continued)

Now assume that the (terminal) rule

V
[

num : Y
] →

herds
[

num : Y (sg)
]

is to be applied to β. The value of the variable X1 in the form is
set, through unification, to sg , and the resulting form is:

γ =
NP

[

num : X2

]

herds
[

num : X2(sg)
]

NP
[

num : W2

]

Note that the first NP had its feature structure modified, even
though it did not participate directly in the rule application.



Derivation

Example: Derivation step (continued)

Assume now that γ is expanded by applying to its first element the
rule

NP
[

num : X
] →

D
[

num : X
]

N
[

num : X
]

In this case, unification of the first element of γ with the head of
the rule binds the value of X in the rule to sg :

δ =
D

[

num : X3

]

N
[

num : X3

]

herds
[

num : X3(sg)
]

NP
[

num : W3

]



Example: (continued)

If we now tried to apply the (terminal) rule

D
[

num : Y
] →

two
[

num : Y (pl)
]

to the first element of δ, this attempt would have caused unification
failure.



Derivation

Example: Derivation with ε-rules

Let

α =
A

[

f : X
]

B
[

f : X

g : Y

] C
[

g : Y
] , ρ =

B
[

f : Z

g : Z

]

→ ε

be a form and a rule, respectively. Applying the rule to the second
element of the form yields:

A
[

f : W
]

C
[

g : W
]



Derivation

Example: Derivation can modify information

Let

α =
A

[

f : a
]

B
[

g : b
] , ρ =

A
[

f : a
] →

A
[

f : c
]

be a form and a rule, respectively. Applying the rule to the first
element of the form yields:

A
[

f : c
]

B
[

g : b
]

Notice that in the result, the value of f in A was modified from a

to c .



Derivation

The full derivation relation is, as usual, the reflexive-transitive
closure of rule application.

A form is sentential if it is derivable from the start symbol.



Derivation

Consider a derivation of the sentence two sheep sleep with the
grammar G1. After each rule is applied, the variables in the
obtained form are renamed.

Example: Derivation

The derivation starts with the start symbol, which is the extended
category S . Applying rule (1), one gets:

NP
[

num : X1

]

VP
[

num : X1

]



Example: (continued)

It is now possible to select the leftmost element in the above sen-
tential form and to apply rule (2). Renaming all occurrences of X

in rule (2) to X2, one gets the following sentential form:

D
[

num : X2

]

N
[

num : X2

]

VP
[

num : X2

]

Now select the rightmost element in the above form and apply
rule (3), renaming all occurrences of X2 to X3:

D
[

num : X3

]

N
[

num : X3

]

V
[

num : X3

]



Example: (continued)

The leftmost element is selected, and (the terminal) rule (10) is
applied, binding X3 to pl:

two
[

num : X3(pl)
]

N
[

num : X3

]

V
[

num : X3

]

In the same way, rule (6) can be applied to the middle element in
this form, and rule (8) to the rightmost, resulting in:

two
[

num : X3(pl)
]

sheep
[

num : X3(pl)
]

sleep
[

num : X3(pl)
]

Thus the string two sheep sleep is indeed a sentence.



Derivation trees

Example: Snapshots of a derivation sequence

We begin with the start symbol, the extended category S , which is
expanded by applying rule (1), yielding (after renaming):

S

NP
[

num : X1

]

VP
[

num : X1

]



Example: (continued)

The next step is the application of rule (2) to the leftmost element
in the frontier of the tree. Since this application results in binding
X1 with X2, we rename all occurrences of X1 in the tree to X2,
obtaining the following tree:

S

NP
[

num : X2

]

VP
[

num : X2

]

D
[

num : X2

]

N
[

num : X2

]



Example: (continued)

Now select the rightmost element in the frontier of the above tree
and apply rule (3), renaming all occurrences of X2 in the tree to X3;
the following tree is obtained:

S

NP
[

num : X3

]

VP
[

num : X3

]

D
[

num : X3

]

N
[

num : X3

]

V
[

num : X3

]



Example: (continued)

Next, the leftmost element is selected, and (the terminal) rule (10)
is applied, binding X3 to pl:

S

NP
[

num : X3

]

VP
[

num : X3

]

D
[

num : X3

]

N
[

num : X3

]

V
[

num : X3

]

two
[

num : X3(pl)
]



Example: (continued)

Similarly, rule (6) can be applied to the middle element in the fron-
tier, and rule (8) to the rightmost, yielding:

S

NP
[

num : X3

]

VP
[

num : X3

]

D
[

num : X3

]

N
[

num : X3

]

V
[

num : X3

]

two
[

num : X3(pl)
]

sheep
[

num : X3

]

sleep
[

num : X3

]



Derivation trees

The final derivation tree for the same sentence:

Example: Derivation tree

S

NP
[

num : X
]

VP
[

num : X
]

D
[

num : X
]

N
[

num : X
]

V
[

num : X
]

two
[

num : X (pl)
]

sheep
[

num : X
]

sleep
[

num : X
]



Derivation trees

The final derivation tree for the sentence the shepherds feed a lamb:

Example: Derivation tree

S

NP
ˆ

num : X
˜

VP
ˆ

num : X
˜

D
ˆ

num : X
˜

N
ˆ

num : X
˜

V
ˆ

num : X
˜

NP
ˆ

num : Y
˜

D
ˆ

num : Y
˜

N
ˆ

num : Y
˜

the
ˆ

num : X (pl)
˜

shepherds
ˆ

num : X
˜

feed
ˆ

num : X
˜

a
ˆ

num : Y (sg)
˜

lamb
ˆ

num : Y
˜



Languages

To determine whether a sequence of words, w = a1 · · · an, is
in L(G ), consider a derivation in G whose first form consists
of the start symbol (an extended category, viewed as an
extended form of length 1), and whose last form is 〈w , σ′〉.

Let 〈w , σ〉 be an extended form obtained by concatenating
A1, . . . ,An, where each Ai is a lexical entry of the word a1.

We say that w ∈ L(G ) if and only if σ′ be a multi-AVM that
is unifiable with σ: σ t σ′ does not fail.



Languages

Example: Language

Given this definition, observe, for example, that the string
two sheep sleep is in the language generated by the example gram-
mar G1; we have seen a derivation sequence for this string. The first
and the last elements of this sequence, namely the feature struc-
tures associated with the words two and sleep, are identical to lexical
entries of G1. However, the middle element, namely the feature
structure associated with sheep, is more specific than (subsumed by)
the lexical entry of sheep.



Languages

The language generated by the grammar G1 is context free:

Example: A context-free grammar G ′

1

S → Ssg | Spl

Ssg → NPsg VPsg Spl → NPpl VPpl

NPsg → Dsg Nsg NPpl → Dpl Npl

VPsg → Vsg VPpl → Vpl

VPsg → Vsg NPsg | Vsg NPpl VPpl → Vpl NPsg | Vpl NPpl

Dsg → a Dpl → two

Nsg → lamb | sheep | · · · Npl → lambs | sheep | · · ·

Vsg → sleeps | · · · Vpl → sleep | · · ·



Imposing case control

The extensions of the CFG formalism can be used for
imposing various constraints on generated languages. Here we
suggest a solution for the problem of controlling the case of a
noun phrase.

First, add pronouns to the grammar:

(2.1)
NP

[

num : X
] →

D
[

num : X
]

N
[

num : X
]

(2.2)
NP

[

num : X
] →

PropN
[

num : X
]

(2.3)
NP

[

num : X
] →

Pron
[

num : X
]



Imposing case control

Additionally, the following terminal rules are needed:

PropN
[

num : sg
] → Jacob | Rachel | . . .

Pron
[

num : sg
] → she | her | . . .



Imposing case control

The additional rules allow sentences such as
She herds the sheep

Jacob loves her

but also non-sentences such as
∗Her herds the sheep

∗Jacob loves she



Imposing case control

We add a feature, case, to the feature structures associated
with nominal categories: nouns, pronouns, proper names and
noun phrases.

What should the values of the case feature be?



Imposing case control

(11)
PropN

[

num : X

case : Y

]

→
Rachel

[

num : X (sg)
case : Y

]

(12)
PropN

[

num : X

case : Y

]

→
Jacob

[

num : X (sg)
case : Y

]

(13)
Pron

[

num : X

case : Y

]

→
she

[

num : X (sg)
case : Y (nom)

]

(14)
Pron

[

num : X

case : Y

]

→
her

[

num : X (sg)
case : Y (acc)

]



Imposing case control

Percolating the value of the case feature from the lexical entries
to the category NP:

(2.1)
NP

[

num : X

case : Y

]

→
D

[

num : X
]

N
[

num : X

case : Y

]

(2.2)
NP

[

num : X

case : Y

]

→
PropN

[

num : X

case : Y

]

(2.3)
NP

[

num : X

case : Y

]

→
Pron

[

num : X

case : Y

]



Imposing case control

Imposing the constraint:

(1′) S →
NP

[

num : X

case : nom

] VP
[

num : X
]

(4′)
VP

[

num : X
] →

V
[

num : X
]

NP
[

num : Y

case : acc

]



Derivation tree with case control

Example: Derivation tree with case control

S

NP
»

num : X

case : Z (nom)

– VP
ˆ

num : X
˜

D
ˆ

num : X
˜

N
»

num : X

case : Z

– V
ˆ

num : X
˜

NP
»

num : Y

case : W (acc)

–

Pron
»

num : Y

case : W

–

the
ˆ

num : X (pl)
˜

shepherds
»

num : X

case : Z

– feed
ˆ

num : X
˜

them
»

num : Y (pl)
case : W

–



Example: (continued)

This tree represents a derivation which starts with the initial symbol,
S, and ends with multi-AVM σ′, where

σ′ =
the

[

num : X (pl)
]

shepherds
[

num : X

case : Z

] feed
[

num : X
]

them
[

num : Y (pl)
case : W (acc)

]

This multi-AVM is unifiable with (but not identical to!) the sequence
of lexical entries of the words in the sentence, which is:

σ =
the

[

num : [ ]
]

shepherds
[

num : pl

case : [ ]

] feed
[

num : pl
]

them
[

num : pl

case : acc

]



Imposing subcategorization constraints

We use the extended formalism for a näıve solution to the
subcategorization problem; reminder:

intransitive verbs: sleep, walk, run, laugh, . . .

transitive verbs (with a nominal object): feed, love, eat, . . .



Imposing subcategorization constraints

First, the lexical entries of verbs are extended:

Example: Lexical entries for verbs

V
[

num : X

subcat : intrans

]

→
sleeps

[

num : X (sg)
] |

sleep
[

num : X (pl)
] | . . .

V
[

num : X

subcat : trans

]

→
feeds

[

num : X (sg)
] |

feed
[

num : X (pl)
] | . . .



Imposing subcategorization constraints

Second, the rules that involve verbs and verb phrases are extended:

Example: Modified rules for verb phrases

(4.1)
VP

[

num : X
] →

V
[

num : X

subcat : intrans

]

(4.2)
VP

[

num : X
] →

V
[

num : X

subcat : trans

] NP
[

num : Y
]



Imposing subcategorization constraints

Example: Derivation of a shepherd feeds two sheep

S
(1)
⇒

NP
ˆ

num : X
˜

VP
ˆ

num : X
˜

(2)
⇒

D
ˆ

num : X
˜

N
ˆ

num : X
˜

VP
ˆ

num : X
˜

(4.2)
⇒

D
ˆ

num : X
˜

N
ˆ

num : X
˜

V
»

num : X

subcat : trans

– NP
ˆ

num : Y
˜



Example: Derivation of a shepherd feeds two sheep

(4.2)
⇒

D
ˆ

num : X
˜

N
ˆ

num : X
˜

V
»

num : X

subcat : trans

– NP
ˆ

num : Y
˜

(1)
⇒

D
ˆ

num : X
˜

N
ˆ

num : X
˜

V
»

num : X

subcat : trans

– D
ˆ

num : Y
˜

N
ˆ

num : Y
˜

∗

⇒
a

ˆ

num : sg
˜

shepherd
ˆ

num : sg
˜

feeds
»

num : sg

subcat : trans

– two
ˆ

num : pl
˜

sheep
ˆ

num : pl
˜



G2, a complete E0-grammar

Example: G2, a complete E0-grammar

S →
NP

»

num : X

case : nom

– VP
ˆ

num : X
˜

NP
»

num : X

case : Y

–

→
D

ˆ

num : X
˜

N
»

num : X

case : Y

–

NP
»

num : X

case : Y

–

→
Pron

»

num : X

case : Y

–

|
PropN

»

num : X

case : Y

–



Example: (continued)

VP
ˆ

num : X
˜ →

V
»

num : X

subcat : intrans

–

VP
ˆ

num : X
˜ →

V
»

num : X

subcat : trans

–

NP
»

num : Y

case : acc

–

V
»

num : X

subcat : intrans

–

→
sleeps

ˆ

num : X (sg)
˜ |

sleep
ˆ

num : X (pl)
˜ | . . .

V
»

num : X

subcat : trans

–

→
feeds

ˆ

num : X (sg)
˜ |

feed
ˆ

num : X (pl)
˜ | . . .



Example: (continued)

N
»

num : X

case : Y

–

→
lamb

»

num : X (sg)
case : Y

–

|
lambs

»

num : X (pl)
case : Y

–

| . . .

Pron
»

num : X

case : Y

–

→
she

»

num : X (sg)
case : Y (nom)

–

|
her

»

num : X (sg)
case : Y (acc)

–

| . . .

PropN
»

num : X

case : Y

–

→
Rachel

»

num : X (sg)
case : Y

–

|
Jacob

»

num : X (sg)
case : Y

–

| . . .

D
ˆ

num : X
˜ →

a
ˆ

num : X (sg)
˜ |

two
ˆ

num : X (pl)
˜ | . . .


