
Parsing

Recognition: Given a (context-free) grammar G and a string of
words w , determine whether w ∈ L(G).

Parsing: If w ∈ L(G), produce the (tree) structure that is
assigned by G to w .

Parsing

General requirements for a parsing algorithm:

Generality: the algorithm must be applicable to any grammar

Completeness: the algorithm must produce all the results in
case of ambiguity

Efficiency

Flexibility: a good algorithm can be easily modified

Parsing

Parameters that define different parsing algorithms:

Orientation: Top-down vs. bottom-up vs. mixed

Direction: Left-to-right vs. right-to-left vs. mixed (e.g.,
island-driven)

Handling multiple choice: Dynamic programming vs. parallel
processing vs. backtracking

Search: Breadth-first or Depth-first

An example grammar

Example: An example grammar

D → the NP → D N

N → cat PP → P NP

N → hat NP → NP PP

P → in

Example sentences:

the cat in the hat

the cat in the hat in the hat

A bottom-up recognition algorithm

Assumptions:

The grammar is given in Chomsky Normal Form: each rule is
either of the form A → B C (where A, B, C are
non-terminals) or of the form A → a (where a is a terminal).

The string to recognize is w = w1 · · ·wn.

A set of indices {0, 1, . . . , n} is defined to point to positions
between the input string’s words:

0 the 1 cat 2 in 3 the 4 hat 5

The CYK algorithm

Bottom-up, chart-based recognition algorithm for grammars in
CNF

To recognize a string of length n, uses a chart: a
bi-dimensional matrix of size n × (n + 1)

Invariant: a non-terminal A is stored in the [i , j] entry of the
chart iff A ⇒ wi+1 · · ·wj

Consequently, the chart is triangular. A word w is recognized
iff the start symbol S is in the [0, n] entry of the chart

The idea: build all constituents up to the i -th position before
constructing the i + 1 position; build smaller constituents
before constructing larger ones.

The CYK algorithm

for j := 1 to n do

for all rules A → wj do

chart[j-1,j] := chart[j-1,j] ∪ {A}
for i := j-2 downto 0 do

for k := i+1 to j-1 do

for all B ∈ chart[i,k] do

for all C ∈ chart[k,j] do

for all rules A → B C do

chart[i,j] := chart[i,j] ∪ {A}
if S ∈ chart[0,n] then accept else reject

The CYK algorithm: example

Example: The CYK algorithm

0 the 1 cat 2 in 3 the 4 hat 5

1 2 3 4 5
0
1
2
3
4

The CYK algorithm

Extensions:

Parsing in addition to recognition

Support for ε-rules

General context-free grammars (not just CNF)

Parsing schemata

To provide a unified framework for discussing various parsing
algorithms we use parsing schemata, which are generalized
schemes for describing the principles behind specific parsing
algorithms.

This is a generalization of the parsing as deduction paradigm.

A parsing schema consists of four components:

a set of items
a set of axioms
a set of deduction rules
a set of goal items

Parsing schema: CYK

Given a grammar G = 〈Σ,V ,S ,P〉 and a string w = w1 · · ·wn:

Items: [i ,A, j] for A ∈ V and 0 ≤ i , j ≤ n

(state that A
∗

⇒ wi+1 · · ·wj)

Axioms: [i ,A, i + 1] when A → wi+1 ∈ P

Goals: [0,S, n]

Inference rules:
[i ,B, j] [j ,C, k]

A → B C

[i ,A, k]

CYK parsing schema

Example: Deduction example

D → the NP → D N

N → cat PP → P NP

N → hat NP → NP PP

P → in

0 the 1 cat 2 in 3 the 4 hat 5

CYK parsing schema

Example: Deduction example

[0,D, 1] [1,N, 2] [2,P, 3] [3,D, 4] [4,N, 5]

[0,NP, 2] [3,NP, 5]

[2,PP, 5]

[0,NP, 5]

Parsing: bottom-up schema (Shift–Reduce)

Items: [α•, j] (state that αwj+1 · · ·wn
∗

⇒ w1 · · ·wn)

Axioms: [•, 0]

Goals: [S•, n]

Inference rules:
[α•, j]

Shift

[αwj+1•, j + 1]

[αγ•, j]
Reduce B → γ

[αB•, j]

Bottom-up deduction: example

Parsing: top-down schema

Item form: [•β, j] (state that S
∗

⇒ w1 · · ·wjβ)

Axioms: [•S , 0]

Goals: [•, n]

Inference rules:
[•wj+1β, j]

Scan

[•β, j + 1]

[•Bβ, j]
Predict B → γ

[•γβ, j]

Top-down deduction

Input: 0 the 1 cat 2 in 3 the 4 hat 5

Example: Top-down deduction

[•NP, 0] axiom

[•NP PP, 0] predict NP → NP PP

[•D N PP, 0] predict NP → D N

[•the N PP, 0] predict D → the

[•N PP, 1] scan

[•cat PP, 1] predict N → cat

[•PP, 2] scan

[•P NP, 2] predict PP → P NP

[•in NP, 2] predict P → in

[•NP, 3] scan

[•D N, 3] predict NP → D N

[•the N, 3] predict D → the

[•N, 4] scan

[•hat, 4] predict N → hat

[•, 5] scan

Top-down parsing: algorithm

Parse(β,j) ::

if β = ε and j = n then return true;

if β = wj+1 · β
′ then return parse(β′, j + 1)

else if β = B · β′ then

for every rule B → γ ∈ P

if Parse(γ · β′, j) then return true

return false

if Parse(S,0) then accept else reject

Top-down vs. Bottom-up parsing

Two inherent constraints:

1 The root of the tree is S

2 The yield of the tree is the input word

An example grammar

Example:

S → NP VP Det → that |this | a

S → Aux NP VP Noun → book |flight | meal

S → VP Verb → book | include | includes

VP → Verb Prep → from | to | on

VP → Verb NP Proper-Noun → Houston | TWA

NP → Det Nominal Aux → does

NP → Proper-Noun

Nominal → Noun

Nominal → Noun Nominal

Nominal → Nominal PP

PP → Prep NP

An example derivation tree

Example: Derivation tree

S

VP

NP

Nominal

Verb Det Noun

book that flight

An example derivation tree

S

NP VP

Nominal

PP NP

Nominal NP Nominal

Det Noun Prep Proper-Noun Verb Det Noun

the flight from Houston includes a meal

An example derivation tree

S

NP VP

Nominal

PP NP

Nominal NP Nominal

Aux Det Noun Prep Proper-Noun Verb Det Noun

does the flight from Houston include a meal

Top-down vs. Bottom-up parsing

When expanding the top-down search space, which local trees are
created?

Top-down vs. Bottom-up parsing

To reduce “blind” search, add bottom-up filtering.
Observation: when trying to Parse(β,j), where β = Bγ, the
parser succeeds only if B

∗

⇒ wj+1β.
Definition: A word w is a left-corner of a non-terminal B iff
B

∗

⇒ wβ for some β.

Top-down parsing with bottom-up filtering

Parse(β,j) ::

if β = ε and j = n then return true;

if β = wj+1 · β
′ then return parse(β′, j + 1)

else if β = B · β′ then

if wj+1 is a left-corner of B then

for every rule B → γ ∈ P

if Parse(γ · β′, j) then return true

return false

if Parse(S,0) then accept else reject

Top-down vs. Bottom-up parsing

Even with bottom-up filtering, top-down parsing suffers from the
following problems:

Left recursive rules can cause non-termination:
NP → NP PP .

Even when parsing terminates, it might take exponentially
many steps.

Constituents are computed over and over again

Top-down parsing: repeated generation of sub-trees

NP

Nominal

Det Noun

a flight from Chicago to Houston on TWA

Top-down parsing: repeated generation of sub-trees

NP

NP PP

Nominal NP

Det Noun Prep Prop-Noun

a flight from Chicago to Houston on TWA

Top-down parsing: repeated generation of sub-trees

NP

NP

NP PP PP

Nominal NP NP

Det Noun Prep Prop-Noun Prep Prop-Noun

a flight from Chicago to Houston on TWA

Top-down parsing: repeated generation of sub-trees

NP

NP

NP

NP PP PP PP

Nominal NP NP NP

Det Noun Prep Prop-Noun Prep Prop-Noun Prep Prop-Noun

a flight from Chicago to Houston on TWA

Top-down parsing: repeated generation of sub-trees

Reduplication:

Constituent #

a flight 4
from Chicago 3
to Houston 2
on TWA 1
a flight from Chicago 3
a flight from Chicago to Houston 2
a flight from Chicago to Houston on TWA 1

Top-down vs. Bottom-up parsing

When expanding the bottom-up search space, which local trees are
created?

Top-down vs. Bottom-up parsing

Bottom-up parsing suffers from the following problems:

All possible analyses of every substring are generated, even
when they can never lead to an S, or can never combine with
their neighbors

ε-rules can cause performance degradation

Reduplication of effort

Earley’s parsing algorithm

Dynamic programming: partial results are stored in a chart

Combines top-down predictions with bottom-up scanning

No reduplication of computation

Left-recursion is correctly handled

ε-rules are handled correctly

Worst-case complexity: O(n3)

Earley’s parsing algorithm

Basic concepts:

Dotted rules: if A → αβ is a grammar rule then A → α • β is a
dotted rule.

Edges: if A → α • β is a dotted rule and i , j are indices into
the input string then [i ,A → α • β, j] is an edge. An
edge is passive (or complete) if β = ε, active

otherwise.

Actions: The algorithm performs three operations: scan,

predict and complete.

Earley’s parsing algorithm

scan: read an input word and add a corresponding
complete edge to the chart.

predict: when an active edge is added to the chart, predict all
possible edges that can follow it

complete: when a complete edge is added to the chart, combine
it with appropriate active edges

Earley’s parsing algorithm

rightsisters: given an active edge A → α • Bβ, return all dotted
rules B → •γ

leftsisters: given a complete edge B → γ•, return all dotted
edges A → α • Bβ

combination:

[i ,A → α • Bβ, k]∗[k,B → γ•, j] = [i ,A → αB • β, j]

Parsing: Earley deduction

Item form: [i ,A → α • β, j] (state that S
∗

⇒ w1 · · ·wiAγ, and

also that α
∗

⇒ wi+1 · · ·wj)

Axioms: [0,S’ → • S , 0]

Goals: [0,S’ → S •, n]

Parsing: Earley deduction

Inference rules:

[i ,A → α • wj+1β, j]
Scan

[i ,A → αwj+1 • β, j + 1]

[i ,A → α • Bβ, j]
Predict B → γ

[j ,B → •γ, j]

[i ,A → α • Bβ, k] [k,B → γ•, j]
Complete

[i ,A → αB • β, j]

Earley’s parsing algorithm

Parse ::

enteredge([0, S’ → • S , 0])
for j := 1 to n do

for every rule A → wj do

enteredge([j-1,A → wj•,j])

if S’ → S • ∈ C[0,n] then accept else reject

Earley’s parsing algorithm

enteredge(i,edge,j) ::

if edge 6∈ C[i,j] then /* occurs check */

C[i,j] := C[i,j] ∪ {edge}
if edge is active then /* predict */

for edge’ ∈ rightsisters(edge) do

enteredge([j,edge’,j])

if edge is passive then /* complete */

for edge’ ∈ leftsisters(edge) do

for k such that edge’ ∈ C[k,i] do

enteredge([k,edge’*edge,j])

