Parsing

Recognition: Given a (context-free) grammar G and a string of
words w, determine whether w € L(G).

Parsing: If w € L(G), produce the (tree) structure that is
assigned by G to w.

Parsing

General requirements for a parsing algorithm:
@ Generality: the algorithm must be applicable to any grammar

o Completeness: the algorithm must produce all the results in
case of ambiguity

o Efficiency

o Flexibility: a good algorithm can be easily modified

Parsing

Parameters that define different parsing algorithms:
Orientation: Top-down vs. bottom-up vs. mixed

Direction: Left-to-right vs. right-to-left vs. mixed (e.g.,
island-driven)
Handling multiple choice: Dynamic programming vs. parallel
processing vs. backtracking

Search: Breadth-first or Depth-first

An example grammar

Example: An example grammar

D — the NP — D N
N — cat PP — P NP
N — hat NP — NP PP
P —in

Example sentences:

the cat in the hat
the cat in the hat in the hat

A bottom-up recognition algorithm

Assumptions:

® The grammar is given in Chomsky Normal Form: each rule is
either of the form A — B C (where A, B, C are
non-terminals) or of the form A — a (where a is a terminal).
@ The string to recognize is w = wy - - - wp,.
@ A set of indices {0,1,...,n} is defined to point to positions
between the input string's words:
0 the 1 cat 2 in 3 the 4 hat 5

The CYK algorithm

@ Bottom-up, chart-based recognition algorithm for grammars in
CNF

@ To recognize a string of length n, uses a chart: a
bi-dimensional matrix of size n x (n+ 1)

@ Invariant: a non-terminal A is stored in the [/,] entry of the
chart iff A= wii1---w;

o Consequently, the chart is triangular. A word w is recognized
iff the start symbol S is in the [0, n] entry of the chart

@ The idea: build all constituents up to the i-th position before
constructing the / 4 1 position; build smaller constituents
before constructing larger ones.

The CYK algorithm

for j :=1 ton do
for all rules 4 — w; do
chart[j-1,j] := chart[j-1,j] U {4}
for i := j-2 downto O do
for k := i+l to j-1 do
for all B € chart[i,k] do
for all C € chartl[k,j] do
for all rules 4 — B C do
chart[i,j] := chartl[i,j]l U {4}
if S € chart[0,n] then accept else reject

The CYK algorithm: example

Example: The CYK algorithm

O the 1 cat 2 in 3 the 4 hat 5
1 2 3 4 5

B~ w N RO

The CYK algorithm

Extensions:
@ Parsing in addition to recognition
@ Support for e-rules

@ General context-free grammars (not just CNF)

Parsing schemata

@ To provide a unified framework for discussing various parsing
algorithms we use parsing schemata, which are generalized
schemes for describing the principles behind specific parsing
algorithms.

@ This is a generalization of the parsing as deduction paradigm.

@ A parsing schema consists of four components:

<

a set of items

a set of axioms

a set of deduction rules
a set of goal items

¢ ¢ €

Parsing schema: CYK

Given a grammar G = (X, V,S,P) and a string w = wy - - - wy:
Items: [i,A,j]for Ac Vand0<i,j<n
(state that A = Wiy w;)
Axioms: [i,A,i+ 1] when A — wj11 € P
Goals: [0, S, n|

Inference rules:] . .
[i, B, j] lj, C, K]
A— BC

[i, A, K]

CYK parsing schema

Example: Deduction example

D — the NP — D N
N — cat PP — P NP
N — hat NP — NP PP
P — in

0 the 1 cat 2 in 3 the 4 hat 5

CYK parsing schema

Example: Deduction example

[0,D,1] [1,N,2] [2,P,3] [3,D,4] [4,N,5]

\/ \/

[0, NP, 2] [3, NP, 5]

/

[2, PP, 5]

7

[0, NP, 5]

Parsing: bottom-up schema (Shift—-Reduce)

ltems: [cve, j] (state that awjyy - w, = wy - - w,)

Axioms: [e,0]
Goals: [Se, n]
Inference rules: _
e, j]
Shift -
[am{]'+1.7j + 1]
[aye, j]
Reduce - B —yxy
[aBe,]

Bottom-up deduction: example

Parsing: top-down schema

ltem form: [e3,/] (state that S = wy - - - w;[3)
Axioms: [eS,0]
Goals: [e, n]

Inference rules:

[.M/J'-f—lﬁaj]
Scan -
[3,j +1]
[¢B3, /]
Predict _ B -y
[e75,]

Top-down deduction

Input: 0 the 1 cat 2 in 3 the 4 hat 5

Example: Top-down deduction

[e NP, 0] axiom

[éNP PP,0] predict NP — NP PP
[D N PP,0] predict NP — D N
[ethe N PP,0] predict D — the

[eN PP, 1] scan

[ecat PP, 1] predict N — cat
[ePP, 2] scan

[¢P NP, 2] predict PP — P NP
[ein NP, 2] predict P — in

[eNP, 3] scan

[¢D N, 3] predict NP — D N
[ethe N, 3] predict D — the
[o/V, 4] scan

[ehat, 4] predict N — hat

e b Scan _

Top-down parsing: algorithm

Parse((3,))
if §=¢€ and j = n then return true;
if 3= wjy1 -3 then return parse(3,j+ 1)
else if 3 =B-[then
for every rule B — v€ P
if Parse(y-#,j) then return true
return false

if Parse(S,0) then accept else reject

Top-down vs. Bottom-up parsing

Two inherent constraints:
© The root of the tree is S
© The yield of the tree is the input word

An example grammar

S— NP VP Det — that |this | a

S — Aux NP VP Noun — book |flight | meal
S— VP Verb — book | include | includes
VP — Verb Prep — from | to | on

VP — Verb NP Proper-Noun — Houston | TWA

NP — Det Nominal Aux — does
NP — Proper-Noun

Nominal — Noun

Nominal — Noun Nominal
Nominal — Nominal PP

PP — Prep NP

An example derivation tree

Example: Derivation tree

5

Nomlnal

Verb Det Noun

book that f//ght

An example derivation tree

5
Nom/na/
Nominal / Nom/nal
Det Noun Prep Proper-Noun Verb Det Noun

the flight from Houston includes a meal

An example derivation tree

5
VP
Nomma/ AN
~ PP NP
Nominal / NP Nominal
Aux Det Noun Prep Proper-Noun Verb Det Noun

does the flight from Houston include a meal

Top-down vs. Bottom-up parsing

When expanding the top-down search space, which local trees are
created?

Top-down vs. Bottom-up parsing

To reduce "blind” search, add bottom-up filtering.
Observation: when trying to Parse((3,j), where 3 = By, the
parser succeeds only if B = wj1/3.

Definition: A word w is a left-corner of a non-terminal B iff
B = wf for some f.

Top-down parsing with bottom-up filtering

Parse(J3,))
if §=¢€ and j = n then return true;
if = wj;1 -3 then return parse(f,j+1)
else if 3 =B-3 then
if wjy1 is a left-corner of B then
for every rule B — y€ P
if Parse(v-(,j) then return true
return false

if Parse(S,0) then accept else reject

Top-down vs. Bottom-up parsing

Even with bottom-up filtering, top-down parsing suffers from the
following problems:

@ Left recursive rules can cause non-termination:
NP — NP PP.

@ Even when parsing terminates, it might take exponentially
many steps.

@ Constituents are computed over and over again

Top-down parsing: repeated generation of sub-trees

NP
Nominal

Det Noun

a flight from Chicago to Houston on TWA

Top-down parsing: repeated generation of sub-trees

NP
RN
NP PP
\ \
Nominal NP

Det Noun Prep Prop-Noun

a flight from Chicago to Houston on TWA

Top-down parsing: repeated generation of sub-trees

NP
7\
NP PP PP
\ \ \
Nominal NP NP

Det Noun Prep Prop-Noun Prep Prop-Noun

a flight from Chicago to Houston on TWA

Top-down parsing: repeated generation of sub-trees

Y

NP
N\
NP PP PP PP
\ \ \ \
Nominal NP NP NP

Det Noun Prep Prop-Noun Prep Prop-Noun Prep Prop-Noun

a flight from Chicago to Houston on TWA

Top-down parsing: repeated generation of sub-trees

Reduplication:

Constituent +#

a flight 4
from Chicago 3
to Houston 2
on TWA 1
a flight from Chicago 3
a flight from Chicago to Houston 2
a flight from Chicago to Houston on TWA 1

Top-down vs. Bottom-up parsing

When expanding the bottom-up search space, which local trees are
created?

Top-down vs. Bottom-up parsing

Bottom-up parsing suffers from the following problems:

@ All possible analyses of every substring are generated, even
when they can never lead to an S, or can never combine with
their neighbors

@ e-rules can cause performance degradation

@ Reduplication of effort

Earley’s parsing algorithm

Dynamic programming: partial results are stored in a chart
Combines top-down predictions with bottom-up scanning
No reduplication of computation

Left-recursion is correctly handled

e-rules are handled correctly

e ¢ © ¢ ¢ ¢

Worst-case complexity: O(n%)

Earley’s parsing algorithm

Basic concepts:

Dotted rules: if A — «af is a grammar rule then A — ce 3 is a
dotted rule.

Edges: if A— «a e (3 is a dotted rule and /, j are indices into
the input string then [/, A — « e (3,/] is an edge. An
edge is passive (or complete) if 5 = ¢, active
otherwise.

Actions: The algorithm performs three operations: scan,
predict and complete.

Earley’s parsing algorithm

scCan:

predict:

complete:

read an input word and add a corresponding
complete edge to the chart.

when an active edge is added to the chart, predict all
possible edges that can follow it

when a complete edge is added to the chart, combine
it with appropriate active edges

Earley’s parsing algorithm

rightsisters: given an active edge A — « e B3, return all dotted
rules B — e

leftsisters: given a complete edge B — ~ye, return all dotted
edges A — « e B3

combination:

[i,A— aeBj klx[k,B — ~e,j] =[i,A— aBef,]]

Parsing: Earley deduction

ltem form: [i,A — « e f3,]] (state that S = wy - - - w;Ay, and
also that oo = wjyq - -- w;j)

Axioms: [0,5" — e S,0]
Goals: [0,S" — S e, n]

Parsing: Earley deduction

Inference rules:

[IaA — e M/j+1/87.j]

Scan
[IaA - avvj—i—l ./87.j+ 1]
[[,A— aeBj,j|
Predict B — ~
[,B — ev,]]
[i,A— o e B3, k| [k, B — ve,]]
Complete

[[,A— aBef,j]
D

Earley’s parsing algorithm

Parse ::
enteredge([0,S’ — e S,0])
for j := 1 to n do
for every rule 4 — w; do
enteredge([j-1,4 — wje,jl)

if S — S e € C[0,n] then accept else reject

Earley’s parsing algorithm

enteredge (i,edge,j)
if edge ¢ C[i,j] then /* occurs check */
Cli,j] := Cli,j]l U {edge}
if edge is active then /* predict */
for edge’ € rightsisters(edge) do
enteredge([j,edge’,jl)
if edge is passive then /* complete */
for edge’ € leftsisters(edge) do
for k such that edge’ € Cl[k,i] do
enteredge ([k,edge’*edge, jl)

