
Finite-state transducers for phonology and morphology

A motivating example:

Example:

Consider the following pairs:
accurate adequate balanced competent

inaccurate inadequate imbalanced incompetent

definite finite mature nutrition

indefinite infinite immature innutrition

patience possible sane tractable

impatience impossible insane intractable

The negative forms are constructed by adding the abstract mor-
pheme iN to the positive forms. N is realized as either n or m.

Finite-state transducers for phonology and morphology

A linguistically accurate description of this phenomenon could be:

Rule 1: N -> m || _ [b|m|p]

Rule 2: N -> n

The rules must be interpreted as obligatory and applied in the
order given.

Finite-state transducers for phonology and morphology

A finite-state transducer for Rule 2 (interpreted as optional):

a : a, . . . , z : z ,N : NN : n

A finite-state transducer for Rule 2 (interpreted as obligatory):

?, n : nN : n

where ‘?’ stands for “any symbol that does not occur elsewhere in
this rule.”

Finite-state transducers for phonology and morphology

A finite-state transducer for Rule 1 (interpreted as obligatory):

1

0

2

N : m

b : b,m : m, p : p

N : N

?

N : m
?, b : b,

m : m, p : p

N : N

Finite-state transducers for phonology and morphology

Composition of obligatory Rules 1 and 2:

1

0

2

N : m

b : b,m : m, p : p

N : n

?, n : n

N : m
?, b : b,

m : m, p : p, n : n

N : n

Implementing composition

Regular relations are closed under composition.
Recall that R1 ◦ R1 =

{〈x , y〉 | there exists z such that 〈x , z〉 ∈ R1 and 〈z , y〉 ∈ R2}

Let T1 = (Q1, q1,Σ1,Σ2, δ1,F1) and T2 = (Q2, q2,Σ2,Σ3, δ2,F2).
Then

T1 ◦ T2 = T = (Q1 × Q2, 〈q1, q2〉,Σ1,Σ3, δ,F1 × F2),

where δ(〈s1, s2〉, a, b) =

{〈t1, t2〉 | for some c ∈ Σ2∪{ε}, t1 ∈ δ1(s1, a, c) and t2 ∈ δ2(s2, c , b)}

This definition is flawed! See Challenge 2

Implementing replace rules

We begin with the simplest rule: unconditional, obligatory
replacement: UPPER -> LOWER.

Example:

a -> b

bcd abac aaab

bcd bbbc bbbb

a+ -> b

bcd abac aaab aaab aaab

bcd bbbc bbbb bbb bb

[[a b] | [b c]] -> x

abc abc

ax xc

Implementing replace rules

Incremental construction:

$A: The language of all strings which contain, as a substring,
a string from A. Equivalent to ?* A ?*.

noUPPER: Strings which do not contain strings from UPPER.
Näıvely, this would be defined as ~$UPPER. However, if UPPER
happens to include the empty string, then ~$UPPER is empty.
A better definition is therefore ~$[UPPER - []], which is
identical except that if UPPER includes the empty string,
noUPPER includes at least the empty string.

Implementing replace rules

UPPER -> LOWER: Defined as

[noUPPER [UPPER .x. LOWER]]* noUPPER

A regular relation whose members include any number
(possibly zero) of iterations of [UPPER .x. LOWER],
interleaved with strings that do not contain UPPER which are
mapped to themselves.

Implementing replace rules

Special cases:

Example:

[] -> a | b

A transducer that freely inserts as and bs in the input string.

∼$[] -> a | b

No replacement; equivalent to ?*.

a | b -> []

Removes all as and bs from the input string.

a | b -> ∼$[]
Strings containing as or bs are excluded from the upper
language. Equivalent to ∼$[a | b].

Implementing replace rules

Inverse replacement: UPPER < − LOWER.

Meaning: obligatory unconditional inverse replacement.

Definition and construction: [LOWER -> UPPER].i

(A.i is the inverse relation of A)

The difference between UPPER -> LOWER and UPPER < −
LOWER:

a→ b a← b

bb ab ab ab

bb bb ab bb

?, b, a : b ?, a, a : b

Implementing replace rules

Optional replacement: UPPER (->) LOWER.

Meaning: optionally replace occurrences of strings from
UPPER by strings from LOWER.

Example:

Example: a (→) b

ab ab

ab bb

?, a, b, a : b

The tempting (and incorrect) construction:
[UPPER -> LOWER] | [UPPER].

The correct construction: [?* [UPPER .x. LOWER]]* ?*

or [$[UPPER -> LOWER]]*.

Conditional replacement

Conditional replacement: UPPER -> LOWER || L R.

Meaning: Replace occurrences of strings from UPPER by
strings from LOWER in the context of L on the left and R on
the right.

Outstanding issue:

the interpretation of “between L and R”
interactions between multiple applications of the same rule at
different positions in a string: the part that is being replaced
may at the same time serve as the context of another adjacent
replacement
optionality

Conditional replacement

Conditional replacement:

Example:

Upward oriented: a b -> x || a b a

a b a b a b a
a b x x a

Downward oriented: a b -> x \/ a b a

a b a b a b a a b a b a b a
a b x a b a a b a b x a

Right oriented: a b -> x // a b a

a b a b a b a
a b x a b a

Left oriented: a b -> x \\ a b a

a b a b a b a
a b a b x a

Implementing conditional replacement

We focus on upward oriented, mandatory replacement rules:
UPPER -> LOWER || L R.

The idea: make the conditional replacement behave exactly like
unconditional replacement except that the operation
does not take place unless the specified context is
present.

The problem: the part being replaced can be at the same time the
context of another replacement.

The solution: first, decompose the complex relation into a set of
relatively simple components, define them
independently of one another, and finally use
composition to combine them.

Implementing conditional replacement

Construction:

1 InsertBrackets

2 ConstrainBrackets

3 LeftContext

4 RightContext

5 Replace

6 RemoveBrackets

Implementing conditional replacement

Two bracket symbols, < and >, are introduced in (1) and (6).

< indicates the end of a complete left context. > indicates the
beginning of a complete right context.

Their distribution is controlled by (2), (3) and (4). (2)
constrains them with respect to each other, whereas (3) and
(4) constrain them with respect to the left and right context.

The replacement expression (5) includes the brackets on both
sides of the relation.

The final result of the composition does not contain any
brackets. (1) removes them from the upper side, (6) from the
lower side.

Implementing conditional replacement

Let < and > be two symbols not in Σ.

InserBrackets eliminates from the upper side language all
context markers that appear on the lower side.

InsertBrackets = [] <- [< | >].

ConstrainBrackets denotes the language consisting of strings
that do not contain <> anywhere.

ConstrainBrackets = ~$[< >].

Implementing conditional replacement

LeftContext denotes the language in which any instance of <
is immediately preceded by L and every L is immediately
followed by <, ignoring irrelevant brackets.

[...L] denotes the language of all strings ending in L,
ignoring all brackets except for a final <.

[...L] is defined as [?* L/[<|>]] - [?* <].

(A/B is A ignore B, the language obtained by splicing in strings
from B* anywhere within strings from A)

Next, [<...] denotes the language of strings beginning with
<, ignoring the other bracket: [</> ?*].

Finally, LeftContext is defined as:

~[~[...L] [<...]] & ~[[...L] ~[<...]] .

Implementing conditional replacement

RightContext denotes the language in which any instance of >
is immediately followed by R and any R is immediately
preceded by >, ignoring irrelevant brackets.

[R...] denotes the language of all strings beginning with R,
ignoring all brackets except for an initial >.

[R...] is defined as [R/[<|>] ?*] - [> ?*].

[...>] denotes the language of strings ending with >,
ignoring the other bracket.

[...>] is defined as [?* >/<].

Finally, RightContext is defined as

~[[...>] ~[R...]] & ~[~[...>] [R...]] .

Implementing conditional replacement

Replace is the unconditional replacement of <UPPER> by
<LOWER>, ignoring irrelevant brackets.

Replace is defined as:

< UPPER/[<|>] > -> < LOWER/[</>] >

RemoveBrackets denotes the relation that maps the strings
of the upper language to the same strings without any context
markers.

RemoveBrackets=[<|>] -> [].

Implementing conditional replacement

Construction:

InsertBrackets

.o.

ConstrainBrackets

.o.

LeftContext

.o.

RightContext

.o.

Replace

.o.

RemoveBrackets

Implementing conditional replacement

Special cases:

A = {ε} or ε ∈ A.

Boundary symbol (.#.): L _ R actually means ?* L _ R ?*.

Introduction to XFST

XFST is an interface giving access to finite-state operations
(algorithms such as union, concatenation, iteration,
intersection, composition etc.)

XFST includes a regular expression compiler

The interface of XFST includes a lookup operation (apply up)
and a generation operation (apply down)

The regular expression language employed by XFST is an
extended version of standard regular expressions

Introduction to XFST

a a simple symbol

c a t a concatenation of three symbols

[c a t] grouping brackets

cat a single multicharacter symbol

? denotes any single symbol

%+ the literal plus-sign symbol

%* the literal asterisk symbol (and similarly for %?,
%(, %] etc.)

‘‘+Noun’’ single symbol with multicharacter print name

%+Noun single symbol with multicharacter print name

Introduction to XFST

{cat} equivalent to [c a t]

[] the empty string

0 the empty string

[A] bracketing; equivalent to A

A|B union

(A) optionality; equivalent to [A|0]

A&B intersection

A B concatenation

A-B set difference

Introduction to XFST

A* Kleene-star

A+ one or more iterations

?* the universal language

∼A the complement of A; equivalent to [?* - A]

∼[?*] the empty language

Introduction to XFST – denoting relations

A .x. B Cartesian product; relates every string in A to every
string in B

a:b shorthand for [a .x. b]

%+Pl:s shorthand for [%+Pl .x. s]

%+Past:ed shorthand for [%+Past .x. ed]

%+Prog:ing shorthand for [%+Prog .x. ing]

Introduction to XFST – useful abbreviations

$A the language of all the strings that contain A;
equivalent to [?* A ?*]

A/B the language of all the strings in A, ignoring any
strings from B

a*/b includes strings such as a, aa, aaa, ba, ab,

aba etc.

\A any single symbol, minus strings in A. Equivalent to
[? - A]

\b any single symbol, except ‘b’. Compare to:

∼A the complement of A, i.e., [?* - A]

Introduction to XFST – user interface

prompt% H:\class\data\shuly\xfst

xfst> help

xfst> help union net

xfst> exit

xfst> read regex [d o g | c a t];

xfst> read regex < myfile.regex

xfst> apply up dog

xfst> apply down dog

xfst> pop stack

xfst> clear stack

xfst> save stack myfile.fsm

Introduction to XFST – example

[[l e a v e %+VBZ .x. l e a v e s] |

[l e a v e %+VB .x. l e a v e] |

[l e a v e %+VBG .x. l e a v i n g] |

[l e a v e %+VBD .x. l e f t] |

[l e a v e %+NN .x. l e a v e] |

[l e a v e %+NNS .x. l e a v e s] |

[l e a f %+NNS .x. l e a v e s] |

[l e f t %+JJ .x. l e f t]

]

Introduction to XFST – example of lookup and generation

APPLY DOWN> leave+VBD

left

APPLY UP> leaves

leave+NNS

leave+VBZ

leaf+NNS

Introduction to XFST – variables

xfst> define Myvar;

xfst> define Myvar2 [d o g | c a t];

xfst> undefine Myvar;

xfst> define var1 [b i r d | f r o g | d o g];

xfst> define var2 [d o g | c a t];

xfst> define var3 var1 | var2;

xfst> define var4 var1 var2;

xfst> define var5 var1 & var2;

xfst> define var6 var1 - var2;

Introduction to XFST – variables

xfst> define Root [w a l k | t a l k | w o r k];

xfst> define Prefix [0 | r e];

xfst> define Suffix [0 | s | e d | i n g];

xfst> read regex Prefix Root Suffix;

xfst> words

xfst> apply up walking

Introduction to XFST – replace rules

Replace rules are an extremely powerful extension of the regular
expression metalanguage.
The simplest replace rule is of the form

upper→ lower ‖ leftcontext rightcontext

Its denotation is the relation which maps string to themselves, with
the exception that an occurrence of upper in the input string,
preceded by leftcontext and followed by rightcontext, is replaced in
the output by lower.

Introduction to XFST – replace rules

Word boundaries can be explicitly referred to:

xfst> define Vowel [a|e|i|o|u];

xfst> e -> ’ || [.#.] [c | d | l | s] _ [% Vowel];

Introduction to XFST – replace rules

Contexts can be omitted:

xfst> define Rule1 N -> m || _ p ;

xfst> define Rule2 N -> n ;

xfst> define Rule3 p -> m || m _ ;

This can be used to clear unnecessary symbols introduced for
“bookkeeping”:

xfst> define Rule1 %^MorphmeBoundary -> 0;

Introduction to XFST – replace rules

The language Bambona has an underspecified nasal morpheme N

that is realized as a labial m or as a dental n depending on its
environment: N is realized as m before p and as n elsewhere.
The language also has an assimilation rule which changes p to m

when the p is followed by m.

xfst> clear stack ;

xfst> define Rule1 N -> m || _ p ;

xfst> define Rule2 N -> n ;

xfst> define Rule3 p -> m || m _ ;

xfst> read regex Rule1 .o. Rule2 .o. Rule3 ;

Introduction to XFST – replace rules

Rules can define multiple replacements:

[A -> B, B -> A]

or multiple replacements that share the same context:

[A -> B, B -> A || L _ R]

or multiple contexts:

[A -> B || L1 _ R1, L2 _ R2]

or multiple replacements and multiple contexts:

[A -> B, B -> A || L1 _ R1, L2 _ R2]

Introduction to XFST – replace rules

Rules can apply in parallel:

xfst> clear stack

xfst> read regex a -> b .o. b -> a ;

xfst> apply down abba

aaaa

xfst> clear stack

xfst> read regex b -> a .o. a -> b ;

xfst> apply down abba

bbbb

xfst> clear stack

xfst> read regex a -> b , b -> a ;

xfst> apply down abba

baab

Introduction to XFST – replace rules

When rules that have contexts apply in parallel, the rule separator
is a double comma:

xfst> clear stack

xfst> read regex

b -> a || .#. s ?* _ ,, a -> b || _ ?* e .#. ;

xfst> apply down sabbae

sbaabe

Introduction to XFST – English verb morphology

define Vowel [a|e|i|o|u] ;

define Cons [? - Vowel] ;

define base [{dip} | {print} | {fuss} | {toss} | {bake} | {move}]

define suffix [0 | {s} | {ed} | {ing}] ;

define form [base %+ suffix];

define FinalS [s %+ s] -> [s %+ e s] ;

define FinalE e -> 0 || _ %+ [e | i];

define DoubleFinal b -> [b b], d -> [d d], f -> [f f],

g -> [g g], k -> [k k], l -> [l l], m -> [m m],

n -> [n n], p -> [p p], r -> [r r], s -> [s s],

t -> [t t], z -> [z z] || Cons Vowel _ %+ Vowel ;

define RemovePlus %+ -> 0 ;

read regex form .o. DoubleFinal .o. FinalS .o. FinalE

.o. RemovePlus;

Introduction to XFST – English spell checking

clear;

define A [i e] -> [e i] || c _ ,,

[e i] -> [i e] || [? - c] _ ;

define B [[e i] -> [i e]] .o.

[[i e] -> [e i] || c _];

read regex B;

Introduction to XFST – marking

The special symbol “...” in the right-hand side of a replace rule
stands for whatever was matched in the left-hand side of the rule.

xfst> clear stack;

xfst> read regex [a|e|i|o|u] -> %[... %];

xfst> apply down unnecessarily

[u]nn[e]c[e]ss[a]r[i]ly

Introduction to XFST – marking

xfst> clear stack;

xfst> read regex [a|e|i|o|u]+ -> %[... %];

xfst> apply down feeling

f[e][e]l[i]ng

f[ee]l[i]ng

xfst> apply down poolcleaning

p[o][o]lcl[e][a]n[i]ng

p[oo]lcl[e][a]n[i]ng

p[o][o]lcl[ea]n[i]ng

p[oo]lcl[ea]n[i]ng

xfst> read regex [a|e|i|o|u]+ @-> %[... %];

xfst> apply down poolcleaning

p[oo]lcl[ea]n[i]ng

Introduction to XFST – shallow parsing

Assume that text is represented as strings of part-of-speech tags,
using ‘d’ for determiner, ‘a’ for adjective, ‘n’ for noun, and ‘v’ verb,
etc. In other words, in this example the regular expression symbols
represent whole words rather than single letters in a text.
Assume that a noun phrase consists of an optional determiner, any
number of adjectives, and one or more nouns:

[(d) a* n+]

This expression denotes an infinite set of strings, such as “n”
(cats), “aan” (discriminating aristocratic cats), “nn” (cat food),
“dn” (many cats), “dann” (that expensive cat food) etc.

Introduction to XFST – shallow parsing

A simple noun phrase parser can be thought of as a transducer
that inserts markers, say, a pair of braces { }, around noun phrases
in a text. The task is not as trivial as it seems at first glance.
Consider the expression

[(d) a* n+ -> %{ ... %}]

Applied to the input “danvn” (many small cats like milk) this
transducer yields three alternative bracketings:

xfst> apply down danvn

da{n}v{n}

d{an}v{n}

{dan}v{n}

Introduction to XFST – longest match

For certain applications it may be desirable to produce a unique
parse, marking the maximal expansion of each NP: “{dan}v{n}”.
Using the left-to-right, longest-match replace operator @-> instead
of the simple replace operator -> yields the desired result:

[(d) a* n+ @-> %{ ... %}]

xfst> apply down danvn

{dan}v{n}

Introduction to XFST – the coke machine

A vending machine dispenses drinks for 65 cents a can. It accepts
any sequence of the following coins: 5 cents (represented as ‘n’),
10 cents (‘d’) or 25 cents (‘q’). Construct a regular expression that
compiles into a finite-state automaton that implements the
behavior of the soft drink machine, pairing “PLONK” with a legal
sequence that amounts to 65 cents.

Introduction to XFST – the coke machine

The construction A^n denotes the concatenation of A with itself n

times.
Thus the expression [n .x. c^5] expresses the fact that a nickel
is worth 5 cents.
A mapping from all possible sequences of the three symbols to the
corresponding value:

[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]*

The solution:

[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]*

.o.

[c^65 .x. PLONK]

Introduction to XFST – the coke machine

clear stack

define SixtyFiveCents

[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]* ;

define BuyCoke

SixtyFiveCents .o. [c^65 .x. PLONK] ;

Introduction to XFST – the coke machine

In order to ensure that extra money is paid back, we need to
modify the lower language of BuyCoke to make it a subset of
[PLONK* q* d* n*].
To ensure that the extra change is paid out only once, we need to
make sure that quarters get paid before dimes and dimes before
nickels.

clear stack

define SixtyFiveCents

[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]* ;

define ReturnChange SixtyFiveCents .o.

[[c^65 .x. PLONK]* [c^25 .x. q]*

[c^10 .x. d]* [c^5 .x. n]*] ;

Introduction to XFST – the coke machine

The next refinement is to ensure that as much money as possible is
converted into soft drinks and to remove any ambiguity in how the
extra change is to be reimbursed.

clear stack

define SixtyFiveCents

[[n .x. c^5] | [d .x. c^10] | [q .x. c^25]]* ;

define ReturnChange SixtyFiveCents .o.

[[c^65 .x. PLONK]* [c^25 .x. q]*

[c^10 .x. d]* [c^5 .x. n]*] ;

define ExactChange ReturnChange .o.

[~$[q q q | [q q | d] d [d | n] | n n]] ;

Introduction to XFST – the coke machine

To make the machine completely foolproof, we need one final
improvement. Some clients may insert unwanted items into the
machine (subway tokens, foreign coins, etc.). These objects should
not be accepted; they should passed right back to the client. This
goal can be achieved easily by wrapping the entire expression inside
an ignore operator.

define IgnoreGarbage

[[ExactChange]/[\[q | d | n]]] ;

Applications of finite-state technology in NLP

Phonology; language models for speech recognition

Representing lexicons and dictionaries

Morphology; morphological analysis and generation

Shallow parsing

Named entity recognition

Sentence boundary detection; segmentation

Translation...

