Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural language is given as a list of words. Suggest a data structure that will provide insertion and retrieval of data. As a first solution, we are looking for time efficiency rather than space efficiency. The solution: trie (word tree).
Access time: $O(|w|)$. Space requirement: $O\left(\sum_{w}|w|\right)$.
A trie can be augmented to store also a morphological dictionary specifying concatenative affixes, especially suffixes. In this case it is better to turn the tree into a graph.
The obtained model is that of finite-state automata.

Finite-state technology

Finite-state automata are not only a good model for representing the lexicon, they are also perfectly adequate for representing dictionaries (lexicons+additional information), describing morphological processes that involve concatenation etc.
A natural extension of finite-state automata - finite-state transducers - is a perfect model for most processes known in morphology and phonology, including non-segmental ones.

Formal language theory - definitions

Formal languages are defined with respect to a given alphabet, which is a finite set of symbols, each of which is called a letter. A finite sequence of letters is called a string.

Example: Strings

Let $\Sigma=\{0,1\}$ be an alphabet. Then all binary numbers are strings over Σ.
If $\Sigma=\{a, b, c, d, \ldots, y, z\}$ is an alphabet then cat, incredulous and supercalifragilisticexpialidocious are strings, as are tac, $q q q$ and kjshdflkwjehr.

Formal language theory - definitions

The length of a string w, denoted $|w|$, is the number of letters in w. The unique string of length 0 is called the empty string and is denoted ϵ.
If $w_{1}=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ and $w_{2}=\left\langle y_{1}, \ldots, y_{m}\right\rangle$, the concatenation of w_{1} and w_{2}, denoted $w_{1} \cdot w_{2}$, is the string $\left\langle x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\rangle$. $\left|w_{1} \cdot w_{2}\right|=\left|w_{1}\right|+\left|w_{2}\right|$.
For every string $w, w \cdot \epsilon=\epsilon \cdot w=w$.

Formal language theory - definitions

Example: Concatenation

Let $\Sigma=\{a, b, c, d, \ldots, y, z\}$ be an alphabet. Then master \cdot mind $=$ mastermind, mind \cdot master $=$ mindmaster and master \cdot master $=$ mastermaster. Similarly, learn $\cdot s=$ learns, learn \cdot ed $=$ learned and learn \cdot ing $=$ learning.

Formal language theory - definitions

An exponent operator over strings is defined in the following way: for every string $w, w^{0}=\epsilon$. Then, for $n>0, w^{n}=w^{n-1} \cdot w$.

Example: Exponent

If $w=g o$, then $w^{0}=\epsilon, w^{1}=w=g o, w^{2}=w^{1} \cdot w=w \cdot w=$ gogo, $w^{3}=$ gogogo and so on.

Formal language theory - definitions

The reversal of a string w is denoted w^{R} and is obtained by writing w in the reverse order. Thus, if $w=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, $w^{R}=\left\langle x_{n}, x_{n-1}, \ldots, x_{1}\right\rangle$.
Given a string w, a substring of w is a sequence formed by taking contiguous symbols of w in the order in which they occur in w. If $w=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ then for any i, j such that $1 \leq i \leq j \leq n$, $\left\langle x_{i}, \ldots x_{j}\right\rangle$ is a substring of w.
Two special cases of substrings are prefix and suffix: if $w=w_{l} \cdot w_{c} \cdot w_{r}$ then w_{l} is a prefix of w and w_{r} is a suffix of w.

Formal language theory - definitions

Example: Substrings

Let $\Sigma=\{a, b, c, d, \ldots, y, z\}$ be an alphabet and $w=$ indistinguishable a string over Σ. Then ϵ, in, indis, indistinguish and indistinguishable are prefixes of w, while ϵ, e, able, distinguishable and indistinguishable are suffixes of w. Substrings that are neither prefixes nor suffixes include distinguish, gui and is.

Formal language theory - definitions

Given an alphabet Σ, the set of all strings over Σ is denoted by Σ^{*}. A formal language over an alphabet Σ is a subset of Σ^{*}.

Formal language theory - definitions

Example: Languages

Let $\Sigma=\{a, b, c, \ldots, y, z\}$. The following are formal languages:

- Σ^{*};
- the set of strings consisting of consonants only;
- the set of strings consisting of vowels only;
- the set of strings each of which contains at least one vowel and at least one consonant;
- the set of palindromes;

Formal language theory - definitions

Example: Languages

Let $\Sigma=\{a, b, c, \ldots, y, z\}$. The following are formal languages:

- the set of strings whose length is less than 17 letters;
- the set of single-letter strings $(=\Sigma)$;
- the set $\{i, y o u$, he, she, it, we, they $\}$;
- the set of words occurring in Joyce's Ulysses;
- the empty set;

Note that the first five languages are infinite while the last five are finite.

Formal language theory - definitions

The string operations can be lifted to languages.
If L is a language then the reversal of L, denoted L^{R}, is the
language $\left\{w \mid w^{R} \in L\right\}$.
If L_{1} and L_{2} are languages, then
$L_{1} \cdot L_{2}=\left\{w_{1} \cdot w_{2} \mid w_{1} \in L_{1}\right.$ and $\left.w_{2} \in L_{2}\right\}$.

Example: Language operations

$L_{1}=\{i$, you, he, she, it, we, they $\}, L_{2}=\{$ smile, sleep $\}$.
Then $L_{1}{ }^{R}=\{i$ uoy, eh, ehs, ti, ew, yeht $\}$ and $L_{1} \cdot L_{2}=\{$ ismile, yousmile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep, yousleep, hesleep, shesleep, itsleep, wesleep, theysleep \}.

Formal language theory - definitions

If L is a language then $L^{0}=\{\epsilon\}$.
Then, for $i>0, L^{i}=L \cdot L^{i-1}$.

Example: Language exponentiation

Let L be the set of words $\left\{\right.$ bau, haus, hof, frau\}. Then $L^{0}=\{\epsilon\}$, $L^{1}=L$ and $L^{2}=\{$ baubau, bauhaus, bauhof, baufrau, hausbau, haushaus, haushof, hausfrau, hofbau, hofhaus, hofhof, hoffrau, fraubau, frauhaus, frauhof, fraufrau\}.

Formal language theory - definitions

The Kleene closure of L and is denoted L^{*} and is defined as $\bigcup_{i=0}^{\infty} L^{i}$.
$L^{+}=\bigcup_{i=1}^{\infty} L^{i}$.

Example: Kleene closure

Let $L=\{d o g$, cat $\}$. Observe that $L^{0}=\{\epsilon\}, L^{1}=\{d o g, c a t\}, L^{2}=$ \{catcat, catdog, dogcat, dogdog\}, etc. Thus L^{*} contains, among its infinite set of strings, the strings ϵ, cat, dog, catcat, catdog, dogcat, dogdog, catcatcat, catdogcat, dogcatcat, dogdogcat, etc. The notation for Σ^{*} should now become clear: it is simply a special case of L^{*}, where $L=\Sigma$.

Regular expressions

Regular expressions are a formalism for defining (formal) languages. Their "syntax" is formally defined and is relatively simple. Their "semantics" is sets of strings: the denotation of a regular expression is a set of strings in some formal language.

Regular expressions

Regular expressions are defined recursively as follows:

- \emptyset is a regular expression
- ϵ is a regular expression
- if $a \in \Sigma$ is a letter then a is a regular expression
- if r_{1} and r_{2} are regular expressions then so are $\left(r_{1}+r_{2}\right)$ and $\left(r_{1} \cdot r_{2}\right)$
- if r is a regular expression then so is $(r)^{*}$
- nothing else is a regular expression over Σ.

Regular expressions

Example: Regular expressions

Let Σ be the alphabet $\{a, b, c, \ldots, y, z\}$. Some regular expressions over this alphabet are:

- \emptyset
- a
- $((c \cdot a) \cdot t)$
- $\left(\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right)$
- $(a+(e+(i+(o+u))))$
- $((a+(e+(i+(o+u)))))^{*}$

Regular expressions

For every regular expression r its denotation, $\llbracket r \rrbracket$, is a set of strings defined as follows:

- $\llbracket \emptyset \rrbracket=\emptyset$
- $\llbracket \epsilon \rrbracket=\{\epsilon\}$
- if $a \in \Sigma$ is a letter then $\llbracket a \rrbracket=\{a\}$
- if r_{1} and r_{2} are regular expressions whose denotations are $\llbracket r_{1} \rrbracket$ and $\llbracket r_{2} \rrbracket$, respectively, then $\llbracket\left(r_{1}+r_{2}\right) \rrbracket=\llbracket r_{1} \rrbracket \cup \llbracket r_{2} \rrbracket$, $\llbracket\left(r_{1} \cdot r_{2}\right) \rrbracket=\llbracket r_{1} \rrbracket \cdot \llbracket r_{2} \rrbracket$ and $\llbracket\left(r_{1}\right)^{*} \rrbracket=\llbracket r_{1} \rrbracket^{*}$

Regular expressions

Example: Regular expressions and their denotations
\emptyset
a
$((c \cdot a) \cdot t)$
$\left(\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right)$
$(a+(e+(i+(o+u))))$
$((a+(e+(i+(o+u)))))^{*}$
\emptyset
\{a\}
$\{c \cdot a \cdot t\}$
$\{$ mew, meow, meoow, meooow, ...\}
$\{a, e, i, o, u\}$
all strings of 0 or more vowels

Regular expressions

Example: Regular expressions

Given the alphabet of all English letters, $\Sigma=\{a, b, c, \ldots, y, z\}$, the language Σ^{*} is denoted by the regular expression Σ^{*}.
The set of all strings which contain a vowel is denoted by $\Sigma^{*} \cdot(a+$ $e+i+o+u) \cdot \Sigma^{*}$.
The set of all strings that begin in "un" is denoted by (un) Σ^{*}. The set of strings that end in either "tion" or "sion" is denoted by $\Sigma^{*} \cdot(s+t) \cdot(i o n)$.
Note that all these languages are infinite.

Regular languages

A language is regular if it is the denotation of some regular expression.
Not all formal languages are regular.

Properties of regular languages

Closure properties:
A class of languages \mathcal{L} is said to be closed under some operation
' \bullet ' if and only if whenever two languages L_{1}, L_{2} are in the class $\left(L_{1}, L_{2} \in \mathcal{L}\right)$, also the result of performing the operation on the two languages is in this class: $L_{1} \bullet L_{2} \in \mathcal{L}$.

Properties of regular languages

Regular languages are closed under:

- Union
- Intersection
- Complementation
- Difference
- Concatenation
- Kleene-star
- Substitution and homomorphism

Finite-state automata

Automata are models of computation: they compute languages. A finite-state automaton is a five-tuple $\left\langle Q, q_{0}, \Sigma, \delta, F\right\rangle$, where Σ is a finite set of alphabet symbols, Q is a finite set of states, $q_{0} \in Q$ is the initial state, $F \subseteq Q$ is a set of final (accepting) states and $\delta: Q \times \Sigma \times Q$ is a relation from states and alphabet symbols to states.

Finite-state automata

Example: Finite-state automaton

- $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
- $\Sigma=\{c, a, t, r\}$
- $F=\left\{q_{3}\right\}$
- $\delta=\left\{\left\langle q_{0}, c, q_{1}\right\rangle,\left\langle q_{1}, a, q_{2}\right\rangle,\left\langle q_{2}, t, q_{3}\right\rangle,\left\langle q_{2}, r, q_{3}\right\rangle\right\}$

$$
\text { (90) } \stackrel{c}{a} \xrightarrow{a} \text { (q3) }
$$

Finite-state automata

The reflexive transitive extension of the transition relation δ is a new relation, $\hat{\delta}$, defined as follows:

- for every state $q \in Q,(q, \epsilon, q) \in \hat{\delta}$
- for every string $w \in \Sigma^{*}$ and letter $a \in \Sigma$, if $\left(q, w, q^{\prime}\right) \in \hat{\delta}$ and $\left(q^{\prime}, a, q^{\prime \prime}\right) \in \delta$ then $\left(q, w \cdot a, q^{\prime \prime}\right) \in \hat{\delta}$.

Finite-state automata

Example: Paths

For the finite-state automaton:

$\hat{\delta}$ is the following set of triples:

$$
\begin{aligned}
& \left\langle q_{0}, \epsilon, q_{0}\right\rangle,\left\langle q_{1}, \epsilon, q_{1}\right\rangle,\left\langle q_{2}, \epsilon, q_{2}\right\rangle,\left\langle q_{3}, \epsilon, q_{3}\right\rangle, \\
& \left\langle q_{0}, c, q_{1}\right\rangle,\left\langle q_{1}, a, q_{2}\right\rangle,\left\langle q_{2}, t, q_{3}\right\rangle,\left\langle q_{2}, r, q_{3}\right\rangle, \\
& \left\langle q_{0}, c a, q_{2}\right\rangle,\left\langle q_{1}, a t, q_{3}\right\rangle,\left\langle q_{1}, a r, q_{3}\right\rangle, \\
& \left\langle q_{0}, c a t, q_{3}\right\rangle,\left\langle q_{0}, c a r, q_{3}\right\rangle
\end{aligned}
$$

Finite-state automata

A string w is accepted by the automaton $A=\left\langle Q, q_{0}, \Sigma, \delta, F\right\rangle$ if and only if there exists a state $q_{f} \in F$ such that $\left(q_{0}, w, q_{f}\right) \in \hat{\delta}$. The language accepted by a finite-state automaton is the set of all the strings it accepts.

Example: Language

The language of the finite-state automaton:

is $\{c a t, c a r\}$.

Finite-state automata

Example: Some finite-state automata

Finite-state automata

Example: Some finite-state automata

Finite-state automata

Example: Some finite-state automata

$$
\text { (90) }\{\epsilon\}
$$

Finite-state automata

Example: Some finite-state automata

$$
\text { (90) } \xrightarrow{a} a(91) a\{a, \text { aa, aaa, aaaa, } \ldots\}
$$

Finite-state automata

Example: Some finite-state automata

Finite-state automata

Example: Some finite-state automata

$$
\text { (90)? } \quad \Sigma^{*}
$$

Finite-state automata

An extension: ϵ-moves.
The transition relation δ is extended to: $\delta \subseteq Q \times(\Sigma \cup\{\epsilon\}) \times Q$

Example: Automata with ϵ-moves

The language accepted by the following automaton is $\{d o$, undo, done, undone\}:

Finite-state automata

Theorem (Kleene, 1956): The class of languages recognized by finite-state automata is the class of regular languages.

Finite-state automata

Example: Finite-state automata and regular expressions

$$
\begin{array}{ll}
\emptyset & (90 \\
a & \xrightarrow{a}\left(q_{1}\right) \\
((c \cdot a) \cdot t) & q_{0}^{c} \rightarrow q_{1} \xrightarrow{a} q_{2} \rightarrow q_{3}
\end{array}
$$

Finite-state automata

Example: Finite-state automata and regular expressions

$$
\begin{aligned}
& \left(\left((m \cdot e) \cdot(o)^{*}\right) \cdot w\right) \\
& ((a+(e+(i+(o+u)))))^{*}
\end{aligned}
$$

$$
\text { (90) } a, e, i, o, u
$$

Operations on finite-state automata

- Concatenation
- Union
- Intersection
- Minimization
- Determinization

Minimization and determinization

If L is a regular language then there exists a finite-state automaton A accepting L such that the number of states in A is minimal. A is unique up to isomorphism.
A finite-state automaton is deterministic if its transition relation is a function.
If L is a regular language then there exists a deterministic, ϵ-free finite-state automaton which accepts it.

Minimization and determinization

Example: Equivalent automata
A_{1}
A_{2}

Applications of finite-state automata in NLP

Finite-state automata are efficient computational devices for generating regular languages.
An equivalent view would be to regard them as recognizing devices: given some automaton A and a word w, applying the automaton to the word yields an answer to the question: Is w a member of $L(A)$, the language accepted by the automaton?
This reversed view of automata motivates their use for a simple yet necessary application of natural language processing: dictionary lookup.

Applications of finite-state automata in NLP

Example: Dictionaries as finite-state automata

$$
\begin{aligned}
& \text { go : } \\
& \bigcirc \xrightarrow{g} \bigcirc \xrightarrow{\circ} \odot
\end{aligned}
$$

go, gone, going :
go, gone, going :

Applications of finite-state automata in NLP

Example: Adding morphological information

Add information about part-of-speech, the number of nouns and the tense of verbs:

$$
\begin{aligned}
& \Sigma=\{a, b, c, \ldots, y, z,-N,-V,-s g,-p l,-i n f,-p r p,-p s p\}
\end{aligned}
$$

The appeal of regular languages for NLP

- Most phonological and morphological process of natural languages can be straight-forwardly described using the operations that regular languages are closed under.
- The closure properties of regular languages naturally support modular development of finite-state grammars.
- Most algorithms on finite-state automata are linear. In particular, the recognition problem is linear.
- Finite-state automata are reversible: they can be used both for analysis and for generation.

Regular relations

While regular expressions are sufficiently expressive for some natural language applications, it is sometimes useful to define relations over two sets of strings.

Regular relations

Part-of-speech tagging:

I	know	some	new	tricks
PRON	V	DET	ADJ	N

said	the	Cat	in	the	Hat
V	DET	N	P	DET	N

Regular relations

Morphological analysis:

I	know	some	new
I-PRON-1-sg	know-V-pres	some-DET-indef	new-ADJ
tricks	said	the	Cat
trick-N-pl	say-V-past	the-DET-def	cat-N-sg
in	the	Hat	
in-P	the-DET-def	hat-N-sg	

Regular relations

Singular-to-plural mapping:

cat	hat	ox	child	mouse	sheep	goose
cats	hats	oxen	children	mice	sheep	geese

Finite-state transducers

A finite-state transducer is a six-tuple $\left\langle Q, q_{0}, \Sigma_{1}, \Sigma_{2}, \delta, F\right\rangle$.
Similarly to automata, Q is a finite set of states, $q_{0} \in Q$ is the initial state, $F \subseteq Q$ is the set of final (or accepting) states, Σ_{1} and Σ_{2} are alphabets: finite sets of symbols, not necessarily disjoint (or different). $\delta: Q \times \Sigma_{1} \times \Sigma_{2} \times Q$ is a relation from states and pairs of alphabet symbols to states.

Finite-state transducers

Shorthand notation:

Adding ϵ-moves:

Finite-state transducers

A finite-state transducer defines a set of pairs: a binary relation over $\Sigma_{1}^{*} \times \Sigma_{2}^{*}$.
The relation is defined analogously to how the language of an automaton is defined: A pair $\left\langle w_{1}, w_{2}\right\rangle$ is accepted by the transducer $A=\left\langle Q, q_{0}, \Sigma_{1}, \Sigma_{2}, \delta, F\right\rangle$ if and only if there exists a state $q_{f} \in F$ such that $\left(q_{0}, w_{1}, w_{2}, q_{f}\right) \in \hat{\delta}$.
The transduction of a word $w \in \Sigma_{1}^{*}$ is defined as $T(w)=\left\{u \mid\left(q_{0}, w, u, q_{f}\right) \in \hat{\delta}\right.$ for some $\left.q_{f} \in F\right\}$.

Finite-state transducers

Example: The uppercase transducer

$$
a: A, b: B, c: C, \ldots
$$

Finite-state transducers

Example: English-to-French

Properties of finite-state transducers

Given a transducer $\left\langle Q, q_{0}, \Sigma_{1}, \Sigma_{2}, \delta, F\right\rangle$,

- its underlying automaton is $\left\langle Q, q_{0}, \Sigma_{1} \times \Sigma_{2}, \delta^{\prime}, F\right\rangle$, where $\left(q_{1},(a, b), q_{2}\right) \in \delta^{\prime}$ iff $\left(q_{1}, a, b, q_{2}\right) \in \delta$
- its upper automaton is $\left\langle Q, q_{0}, \Sigma_{1}, \delta_{1}, F\right\rangle$, where $\left(q_{1}, a, q_{2}\right) \in \delta_{1}$ iff for some $b \in \Sigma_{2},\left(q_{1}, a, b, q_{2}\right) \in \delta$
- its lower automaton is $\left\langle Q, q_{0}, \Sigma_{2}, \delta_{2}, F\right\rangle$, where $\left(q_{1}, b, q_{2}\right) \in \delta_{2}$ iff for some $a \in \Sigma_{a},\left(q_{1}, a, b, q_{2}\right) \in \delta$

Properties of finite-state transducers

A transducer T is functional if for every $w \in \Sigma_{1}^{*}, T(w)$ is either empty or a singleton.
Transducers are closed under union: if T_{1} and T_{2} are transducers, there exists a transducer T such that for every $w \in \Sigma_{1}^{*}$,
$T(w)=T_{1}(w) \cup T_{2}(w)$.
Transducers are closed under inversion: if T is a transducer, there exists a transducer T^{-1} such that for every $w \in \Sigma_{1}^{*}$, $T^{-1}(w)=\left\{u \in \Sigma_{2}^{*} \mid w \in T(u)\right\}$.
The inverse transducer is $\left\langle Q, q_{0}, \Sigma_{2}, \Sigma_{1}, \delta^{-1}, F\right\rangle$, where $\left(q_{1}, a, b, q_{2}\right) \in \delta^{-1}$ iff $\left(q_{1}, b, a, q_{2}\right) \in \delta$.

Properties of regular relations

Example: Operations on finite-state relations

$R_{1}=\{$ tomato:Tomate, cucumber:Gurke, grapefruit:Grapefruit, pineapple:Ananas, coconut:Koko\}
$R_{2}=\{$ grapefruit:pampelmuse, coconut:Kokusnuß\}
$R_{1} \cup R_{2}=\{$ tomato:Tomate, cucumber:Gurke, grapefruit:Grapefruit, grapefruit:pampelmuse, pineapple:Ananas, coconut:Koko ,coconut:Kokusnuß\}

Properties of finite-state transducers

Transducers are closed under composition: if T_{1} is a transduction from Σ_{1}^{*} to Σ_{2}^{*} and and T_{2} is a transduction from Σ_{2}^{*} to Σ_{3}^{*}, then there exists a transducer T such that for every $w \in \Sigma_{1}^{*}$, $T(w)=T_{2}\left(T_{1}(w)\right)$.
The number of states in the composition transducer might be $\left|Q_{1} \times Q_{2}\right|$.

Example: Composition of finite-state relations

$R_{1}=\{$ tomato:Tomate, cucumber:Gurke, grapefruit:Grapefruit, grapefruit:pampelmuse, pineapple:Ananas, coconut:Koko ,coconut:Kokusnuß\}
$R_{2}=\{$ tomate:tomato, ananas:pineapple, pampelmousse:grapefruit, concombre:cucumber, cornichon:cucumber, noix-de-coco:coconut $\}$
$R_{2} \circ R_{1}=\{$ tomate:Tomate, ananas:Ananas, pampelmousse:Grapefruit, pampelmousse:Pampelmuse, concombre:Gurke,cornichon:Gurke, noix-de-coco:Koko, noix-de-coco:Kokusnuße\}

Properties of finite-state transducers

Transducers are not closed under intersection.

T_{1}
T_{2}

$$
\begin{aligned}
& T_{1}\left(c^{n}\right)=\left\{a^{n} b^{m} \mid m \geq 0\right\} \\
& T_{2}\left(c^{n}\right)=\left\{a^{m} b^{n} \mid m \geq 0\right\} \Rightarrow \\
& \left(T_{1} \cap T_{2}\right)\left(c^{n}\right)=\left\{a^{n} b^{n}\right\}
\end{aligned}
$$

Transducers with no ϵ-moves are closed under intersection.

Properties of finite-state transducers

- Computationally efficient
- Denote regular relations
- Closed under concatenation, Kleene-star, union
- Not closed under intersection (and hence complementation)
- Closed under composition
- Weights

