
Implementing morphology and phonology

We begin with a simple problem: a lexicon of some natural
language is given as a list of words. Suggest a data structure that
will provide insertion and retrieval of data. As a first solution, we
are looking for time efficiency rather than space efficiency.
The solution: trie (word tree).
Access time: O(|w |). Space requirement: O(

∑
w |w |).

A trie can be augmented to store also a morphological dictionary
specifying concatenative affixes, especially suffixes. In this case it is
better to turn the tree into a graph.
The obtained model is that of finite-state automata.



Finite-state technology

Finite-state automata are not only a good model for representing
the lexicon, they are also perfectly adequate for representing
dictionaries (lexicons+additional information), describing
morphological processes that involve concatenation etc.
A natural extension of finite-state automata – finite-state
transducers – is a perfect model for most processes known in
morphology and phonology, including non-segmental ones.



Formal language theory – definitions

Formal languages are defined with respect to a given alphabet,
which is a finite set of symbols, each of which is called a letter.
A finite sequence of letters is called a string.

Example: Strings

Let Σ = {0, 1} be an alphabet. Then all binary numbers are strings
over Σ.
If Σ = {a, b, c , d , . . . , y , z} is an alphabet then cat, incredulous

and supercalifragilisticexpialidocious are strings, as are tac, qqq and
kjshdflkwjehr.



Formal language theory – definitions

The length of a string w , denoted |w |, is the number of letters in
w . The unique string of length 0 is called the empty string and is
denoted ε.
If w1 = 〈x1, . . . , xn〉 and w2 = 〈y1, . . . , ym〉, the concatenation of
w1 and w2, denoted w1 · w2, is the string 〈x1, . . . , xn, y1, . . . , ym〉.
|w1 · w2| = |w1| + |w2|.
For every string w , w · ε = ε · w = w .



Formal language theory – definitions

Example: Concatenation

Let Σ = {a, b, c , d , . . . , y , z} be an alphabet. Then master ·mind =
mastermind, mind · master = mindmaster and master · master =
mastermaster. Similarly, learn · s = learns, learn · ed = learned and
learn · ing = learning.



Formal language theory – definitions

An exponent operator over strings is defined in the following way:
for every string w , w0 = ε. Then, for n > 0, wn = wn−1 · w .

Example: Exponent

If w = go, then w0 = ε, w1 = w = go, w2 = w1·w = w ·w = gogo,
w3 = gogogo and so on.



Formal language theory – definitions

The reversal of a string w is denoted wR and is obtained by
writing w in the reverse order. Thus, if w = 〈x1, x2, . . . , xn〉,
wR = 〈xn, xn−1, . . . , x1〉.
Given a string w , a substring of w is a sequence formed by taking
contiguous symbols of w in the order in which they occur in w . If
w = 〈x1, . . . , xn〉 then for any i , j such that 1 ≤ i ≤ j ≤ n,
〈xi , . . . xj〉 is a substring of w .
Two special cases of substrings are prefix and suffix : if
w = wl · wc · wr then wl is a prefix of w and wr is a suffix of w .



Formal language theory – definitions

Example: Substrings

Let Σ = {a, b, c , d , . . . , y , z} be an alphabet and w =
indistinguishable a string over Σ. Then ε, in, indis, indistinguish

and indistinguishable are prefixes of w , while ε, e, able, distinguish-

able and indistinguishable are suffixes of w . Substrings that are
neither prefixes nor suffixes include distinguish, gui and is.



Formal language theory – definitions

Given an alphabet Σ, the set of all strings over Σ is denoted by Σ∗.
A formal language over an alphabet Σ is a subset of Σ∗.



Formal language theory – definitions

Example: Languages

Let Σ = {a, b, c, . . ., y, z}. The following are formal languages:
Σ∗;

the set of strings consisting of consonants only;

the set of strings consisting of vowels only;

the set of strings each of which contains at least one vowel
and at least one consonant;

the set of palindromes;



Formal language theory – definitions

Example: Languages

Let Σ = {a, b, c, . . ., y, z}. The following are formal languages:
the set of strings whose length is less than 17 letters;

the set of single-letter strings (= Σ);

the set {i, you, he, she, it, we, they};

the set of words occurring in Joyce’s Ulysses;

the empty set;
Note that the first five languages are infinite while the last five are
finite.



Formal language theory – definitions

The string operations can be lifted to languages.
If L is a language then the reversal of L, denoted LR , is the
language {w | wR ∈ L}.
If L1 and L2 are languages, then
L1 · L2 = {w1 · w2 | w1 ∈ L1 and w2 ∈ L2}.

Example: Language operations

L1 = {i, you, he, she, it, we, they}, L2 = {smile, sleep}.
Then L1

R = {i, uoy, eh, ehs, ti, ew, yeht} and L1 · L2 = {ismile,

yousmile, hesmile, shesmile, itsmile, wesmile, theysmile, isleep,

yousleep, hesleep, shesleep, itsleep, wesleep, theysleep}.



Formal language theory – definitions

If L is a language then L0 = {ε}.
Then, for i > 0, Li = L · Li−1.

Example: Language exponentiation

Let L be the set of words {bau, haus, hof, frau}. Then L0 = {ε},
L1 = L and L2 = {baubau, bauhaus, bauhof, baufrau, haus-

bau, haushaus, haushof, hausfrau, hofbau, hofhaus, hofhof, hoffrau,

fraubau, frauhaus, frauhof, fraufrau}.



Formal language theory – definitions

The Kleene closure of L and is denoted L∗ and is defined as⋃
∞

i=0
Li .

L+ =
⋃

∞

i=1
Li .

Example: Kleene closure

Let L = {dog, cat}. Observe that L0 = {ε}, L1 = {dog, cat}, L2 =
{catcat, catdog, dogcat, dogdog}, etc. Thus L∗ contains, among
its infinite set of strings, the strings ε, cat, dog, catcat, catdog,

dogcat, dogdog, catcatcat, catdogcat, dogcatcat, dogdogcat, etc.
The notation for Σ∗ should now become clear: it is simply a special
case of L∗, where L = Σ.



Regular expressions

Regular expressions are a formalism for defining (formal)
languages. Their “syntax” is formally defined and is relatively
simple. Their “semantics” is sets of strings: the denotation of a
regular expression is a set of strings in some formal language.



Regular expressions

Regular expressions are defined recursively as follows:

∅ is a regular expression

ε is a regular expression

if a ∈ Σ is a letter then a is a regular expression

if r1 and r2 are regular expressions then so are (r1 + r2) and
(r1 · r2)

if r is a regular expression then so is (r)∗

nothing else is a regular expression over Σ.



Regular expressions

Example: Regular expressions

Let Σ be the alphabet {a, b, c, . . ., y, z}. Some regular expressions
over this alphabet are:

∅

a

((c · a) · t)

(((m · e) · (o)∗) · w)

(a + (e + (i + (o + u))))

((a + (e + (i + (o + u)))))∗



Regular expressions

For every regular expression r its denotation, [[r ]], is a set of strings
defined as follows:

[[∅]] = ∅

[[ε]] = {ε}

if a ∈ Σ is a letter then [[a]] = {a}

if r1 and r2 are regular expressions whose denotations are [[r1]]
and [[r2]], respectively, then [[(r1 + r2)]] = [[r1]] ∪ [[r2]],
[[(r1 · r2)]] = [[r1]] · [[r2]] and [[(r1)

∗]] = [[r1]]
∗



Regular expressions

Example: Regular expressions and their denotations

∅ ∅
a {a}
((c · a) · t) {c · a · t}
(((m · e) · (o)∗) · w) {mew, meow, meoow, meooow, . . .}
(a + (e + (i + (o + u)))) {a, e, i , o, u}
((a + (e + (i + (o + u)))))∗ all strings of 0 or more vowels



Regular expressions

Example: Regular expressions

Given the alphabet of all English letters, Σ = {a, b, c , . . . , y , z}, the
language Σ∗ is denoted by the regular expression Σ∗.
The set of all strings which contain a vowel is denoted by Σ∗ · (a +
e + i + o + u) · Σ∗.
The set of all strings that begin in “un” is denoted by (un)Σ∗.
The set of strings that end in either “tion” or “sion” is denoted by
Σ∗ · (s + t) · (ion).
Note that all these languages are infinite.



Regular languages

A language is regular if it is the denotation of some regular
expression.
Not all formal languages are regular.



Properties of regular languages

Closure properties:
A class of languages L is said to be closed under some operation
‘•’ if and only if whenever two languages L1, L2 are in the class
(L1,L2 ∈ L), also the result of performing the operation on the
two languages is in this class: L1 • L2 ∈ L.



Properties of regular languages

Regular languages are closed under:

Union

Intersection

Complementation

Difference

Concatenation

Kleene-star

Substitution and homomorphism



Finite-state automata

Automata are models of computation: they compute languages.
A finite-state automaton is a five-tuple 〈Q, q0,Σ, δ,F 〉, where Σ is
a finite set of alphabet symbols, Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is a set of final (accepting)
states and δ : Q × Σ × Q is a relation from states and alphabet
symbols to states.



Finite-state automata

Example: Finite-state automaton

Q = {q0, q1, q2, q3}

Σ = {c , a, t, r}

F = {q3}

δ = {〈q0, c , q1〉, 〈q1, a, q2〉, 〈q2, t, q3〉, 〈q2, r , q3〉}

q0 q1 q2 q3

c a
t

r



Finite-state automata

The reflexive transitive extension of the transition relation δ is a
new relation, δ̂, defined as follows:

for every state q ∈ Q, (q, ε, q) ∈ δ̂

for every string w ∈ Σ∗ and letter a ∈ Σ, if (q,w , q′) ∈ δ̂ and
(q′, a, q′′) ∈ δ then (q,w · a, q′′) ∈ δ̂.



Finite-state automata

Example: Paths

For the finite-state automaton:

q0 q1 q2 q3

c a
t

r

δ̂ is the following set of triples:

〈q0, ε, q0〉, 〈q1, ε, q1〉, 〈q2, ε, q2〉, 〈q3, ε, q3〉,
〈q0, c , q1〉, 〈q1, a, q2〉, 〈q2, t, q3〉, 〈q2, r , q3〉,
〈q0, ca, q2〉, 〈q1, at, q3〉, 〈q1, ar , q3〉,
〈q0, cat, q3〉, 〈q0, car , q3〉



Finite-state automata

A string w is accepted by the automaton A = 〈Q, q0,Σ, δ,F 〉 if
and only if there exists a state qf ∈ F such that (q0,w , qf ) ∈ δ̂.
The language accepted by a finite-state automaton is the set of all
the strings it accepts.

Example: Language

The language of the finite-state automaton:

q0 q1 q2 q3

c a
t

r

is {cat, car}.



Finite-state automata

Example: Some finite-state automata

q0 ∅



Finite-state automata

Example: Some finite-state automata

q0 q1

a
{a}



Finite-state automata

Example: Some finite-state automata

q0 {ε}



Finite-state automata

Example: Some finite-state automata

q0 q1

a
a {a, aa, aaa, aaaa, . . .}



Finite-state automata

Example: Some finite-state automata

q0 a a∗



Finite-state automata

Example: Some finite-state automata

q0 ? Σ∗



Finite-state automata

An extension: ε-moves.
The transition relation δ is extended to: δ ⊆ Q × (Σ ∪ {ε}) × Q

Example: Automata with ε-moves

The language accepted by the following automaton is {do, undo,

done, undone}:

q0 q1 q2 q3

q4 q5 q6

u n d

o

n e

ε

ε



Finite-state automata

Theorem (Kleene, 1956): The class of languages recognized by
finite-state automata is the class of regular languages.



Finite-state automata

Example: Finite-state automata and regular expressions

∅ q0

a q0 q1

a

((c · a) · t) q0 q1 q2 q3

c a t



Finite-state automata

Example: Finite-state automata and regular expressions

(((m · e) · (o)∗) · w) q0 q1 q2 q3

m e

o

w

((a + (e + (i + (o + u)))))∗ q0 a, e, i , o, u



Operations on finite-state automata

Concatenation

Union

Intersection

Minimization

Determinization



Minimization and determinization

If L is a regular language then there exists a finite-state automaton
A accepting L such that the number of states in A is minimal. A is
unique up to isomorphism.
A finite-state automaton is deterministic if its transition relation
is a function.
If L is a regular language then there exists a deterministic, ε-free
finite-state automaton which accepts it.



Minimization and determinization

Example: Equivalent automata

A1

n gi
g o n e

A2

g o i n g

g o n e
g o

A3

g o i n g

n e ε
ε

ε



Applications of finite-state automata in NLP

Finite-state automata are efficient computational devices for
generating regular languages.
An equivalent view would be to regard them as recognizing

devices: given some automaton A and a word w , applying the
automaton to the word yields an answer to the question: Is w a
member of L(A), the language accepted by the automaton?
This reversed view of automata motivates their use for a simple yet
necessary application of natural language processing: dictionary
lookup.



Applications of finite-state automata in NLP

Example: Dictionaries as finite-state automata

go :
g o

go, gone, going :

g o i n g

g o n e

g
o

go, gone, going :

n g
i

g o n e



Applications of finite-state automata in NLP

Example: Adding morphological information

Add information about part-of-speech, the number of nouns and the
tense of verbs:

Σ = {a, b, c, . . ., y, z, -N, -V, -sg, -pl, -inf, -prp, -psp}

g o i n g -V -prp

n
e -V -psp

-V
-inf



The appeal of regular languages for NLP

Most phonological and morphological process of natural
languages can be straight-forwardly described using the
operations that regular languages are closed under.

The closure properties of regular languages naturally support
modular development of finite-state grammars.

Most algorithms on finite-state automata are linear. In
particular, the recognition problem is linear.

Finite-state automata are reversible: they can be used both
for analysis and for generation.



Regular relations

While regular expressions are sufficiently expressive for some
natural language applications, it is sometimes useful to define
relations over two sets of strings.



Regular relations

Part-of-speech tagging:

I know some new tricks
PRON V DET ADJ N

said the Cat in the Hat
V DET N P DET N



Regular relations

Morphological analysis:

I know some new
I-PRON-1-sg know-V-pres some-DET-indef new-ADJ

tricks said the Cat
trick-N-pl say-V-past the-DET-def cat-N-sg

in the Hat
in-P the-DET-def hat-N-sg



Regular relations

Singular-to-plural mapping:

cat hat ox child mouse sheep goose
cats hats oxen children mice sheep geese



Finite-state transducers

A finite-state transducer is a six-tuple 〈Q, q0,Σ1,Σ2, δ,F 〉.
Similarly to automata, Q is a finite set of states, q0 ∈ Q is the
initial state, F ⊆ Q is the set of final (or accepting) states, Σ1 and
Σ2 are alphabets: finite sets of symbols, not necessarily disjoint (or
different). δ : Q × Σ1 × Σ2 × Q is a relation from states and pairs
of alphabet symbols to states.

q1 q2 q3 q4 q5

q6 q7 q8 q9 q10 q11

g : g

o : e o : e s : s e : e

s : s h : h e : e e : e p : p



Finite-state transducers

Shorthand notation:

g
o : e o : e s e

s h e e p

Adding ε-moves:

g o : e o : e s e

s h e e p

o x ε : e ε : n

m

o : i u : ε s : c e



Finite-state transducers

A finite-state transducer defines a set of pairs: a binary relation
over Σ∗

1 × Σ∗

2.
The relation is defined analogously to how the language of an
automaton is defined: A pair 〈w1,w2〉 is accepted by the
transducer A = 〈Q, q0,Σ1,Σ2, δ,F 〉 if and only if there exists a
state qf ∈ F such that (q0,w1,w2, qf ) ∈ δ̂.
The transduction of a word w ∈ Σ∗

1 is defined as
T (w) = {u | (q0,w , u, qf ) ∈ δ̂ for some qf ∈ F}.



Finite-state transducers

Example: The uppercase transducer

q0

a : A, b : B , c : C , . . .



Finite-state transducers

Example: English-to-French

c : c

ε : h a : a t : t

d : c

o : h g : i ε : e ε : n



Properties of finite-state transducers

Given a transducer 〈Q, q0,Σ1,Σ2, δ,F 〉,

its underlying automaton is 〈Q, q0,Σ1 × Σ2, δ
′,F 〉, where

(q1, (a, b), q2) ∈ δ′ iff (q1, a, b, q2) ∈ δ

its upper automaton is 〈Q, q0,Σ1, δ1,F 〉, where
(q1, a, q2) ∈ δ1 iff for some b ∈ Σ2, (q1, a, b, q2) ∈ δ

its lower automaton is 〈Q, q0,Σ2, δ2,F 〉, where
(q1, b, q2) ∈ δ2 iff for some a ∈ Σa, (q1, a, b, q2) ∈ δ



Properties of finite-state transducers

A transducer T is functional if for every w ∈ Σ∗

1, T (w) is either
empty or a singleton.
Transducers are closed under union: if T1 and T2 are transducers,
there exists a transducer T such that for every w ∈ Σ∗

1,
T (w) = T1(w) ∪ T2(w).
Transducers are closed under inversion: if T is a transducer, there
exists a transducer T−1 such that for every w ∈ Σ∗

1,
T−1(w) = {u ∈ Σ∗

2 | w ∈ T (u)}.
The inverse transducer is 〈Q, q0,Σ2,Σ1, δ

−1,F 〉, where
(q1, a, b, q2) ∈ δ−1 iff (q1, b, a, q2) ∈ δ.



Properties of regular relations

Example: Operations on finite-state relations

R1 = {tomato:Tomate, cucumber:Gurke,

grapefruit:Grapefruit, pineapple:Ananas,

coconut:Koko}

R2 = {grapefruit:pampelmuse, coconut:Kokusnuß}

R1 ∪ R2 = {tomato:Tomate, cucumber:Gurke,

grapefruit:Grapefruit, grapefruit:pampelmuse,

pineapple:Ananas,

coconut:Koko ,coconut:Kokusnuß}



Properties of finite-state transducers

Transducers are closed under composition: if T1 is a transduction
from Σ∗

1 to Σ∗

2 and and T2 is a transduction from Σ∗

2 to Σ∗

3, then
there exists a transducer T such that for every w ∈ Σ∗

1,
T (w) = T2(T1(w)).
The number of states in the composition transducer might be
|Q1 × Q2|.



Example: Composition of finite-state relations

R1 = {tomato:Tomate, cucumber:Gurke,

grapefruit:Grapefruit, grapefruit:pampelmuse,

pineapple:Ananas,

coconut:Koko ,coconut:Kokusnuß}
R2 = {tomate:tomato, ananas:pineapple,

pampelmousse:grapefruit, concombre:cucumber,

cornichon:cucumber, noix-de-coco:coconut}
R2 ◦ R1 = {tomate:Tomate, ananas:Ananas,

pampelmousse:Grapefruit,

pampelmousse:Pampelmuse,

concombre:Gurke,cornichon:Gurke,

noix-de-coco:Koko, noix-de-coco:Kokusnuße}



Properties of finite-state transducers

Transducers are not closed under intersection.

q1 q2 q3 q4

T1 T2

c : a

ε : b

ε : b ε : a

c : b

c : b

T1(c
n) = {anbm | m ≥ 0}

T2(c
n) = {ambn | m ≥ 0} ⇒

(T1 ∩ T2)(c
n) = {anbn}

Transducers with no ε-moves are closed under intersection.



Properties of finite-state transducers

Computationally efficient

Denote regular relations

Closed under concatenation, Kleene-star, union

Not closed under intersection (and hence complementation)

Closed under composition

Weights


