
Spelling errors

Assumption: the only spelling errors are a single insertion,
deletion, substitution or transposition:

Example: Spelling errors

insertion: the → ther

deletion: the → th

substitution: the → thw

transposition: the → hte

The noisy channel model: the surface form is an instance of
the lexical form which has been passed through a noisy
communication channel.

Spelling error detection has to restore the original form from
the noisy instance.



Spelling errors

Example: Spelling errors

Error Correction Correct Error Position Type

acress actress t ǫ 2 deletion

acress cress ǫ a 0 insertion

acress caress ca ac 0 transposition

acress access c r 2 substitution

acress across o e 3 substitution

acress acres ǫ s 5 insertion

acress acres ǫ s 4 insertion



Bayesian inference

Spelling correction as a classification problem: given an
observation (misspelled word), determine which of a set of
classes (correctly spelled words) it belongs to.

Given a vocabulary V and an observation O, the (estimated)
correct word ŵ is:

ŵ = arg max
w∈V

P(w |O)

The problem: how to (directly) compute P(w |O).



Bayesian inference

Bayes rule:

P(x |y) =
P(y |x)P(x)

P(y)

Hence,

ŵ = arg max
w∈V

P(w |O)

= arg max
w∈V

P(O|w)P(w)

P(O)

= arg max
w∈V

P(O|w)P(w)

because P(O) is independent of w , and we are maximizing
over all words.

P(O|w) is the likelihood, and P(w) is the prior probability.



Spelling errors

Let O be a misspelled word and V a set of corrections. Then
the most likely correction is:

ŵ = arg max
w∈V

P(O|w)P(w)

The prior probability of each correction, P(w), can be
estimated from a corpus by counting how many times w

occurs in the corpus #(w) and normalizing by the size of the
corpus, N:

P(w) ≈
#(w)

N

Zero counts can cause problems, and hence we smooth:

P(w) =
#(w) + 0.5

N + 0.5V



Spelling errors: estimating the prior

Example: Prior probabilities

In a particular corpus of N = 44 million words, the following data
were observed:

w #(w) P(w)

actress 1343 0.0000315
cress 0 0.000000014
caress 4 0.0000001
access 2280 0.000058
across 8436 0.00019
acres 2879 0.000065



Spelling errors: estimating the likelihood

How to estimate P(O|w), the probability of a typo given the
correct word?

The exact probability depends on various factors (who the
typist is, etc.)

Factors which can be estimated include the identity of the
letters (e.g., m is substituted for n because their pronunciation
is similar and because they are next to each other on the
keyboard) and on context (because they are pronounced
similarly, they occur in similar contexts).

A simplification: using a confusion matrix which specifies
the number of times one letter was substituted for another in
a corpus of errors.



Spelling errors: estimating the likelihood

Example: Confusion matrices

del(x , y): The number of times the characters xy were typed as
x

ins(x , y): The number of times the character x was typed as xy

sub(x , y): The number of times the character x was typed as y

trans(x , y): The number of times the characters xy were typed as
yx .

P(O|w) =



































del(wp−1,wp)
count(wp−1wp)

if deletion

ins(wp−1,Op)
count(wp−1)

if insertion

sub(Op ,wp)
count(wp)

if substitution

trans(wp ,wp+1)
count(wpwp+1)

if transposition



Spelling errors: putting everything together

Example: Ranking of candidate corrections for acress

w #(w) P(w) P(O|w) P(w)P(O|w) %

actress 1343 0.0000315 0.000117 3.69−9 37
cress 0 0.000000014 0.00000144 2.02−14 0
caress 4 0.0000001 0.00000164 1.64−13 0
access 2280 0.000058 0.000000209 1.21−11 0
across 8436 0.00019 0.0000093 1.77 × 10−9 18
acres 2879 0.000065 0.0000321 2.09 × 10−9 21
acres 2879 0.000065 0.0000342 2.22 × 10−9 23

Results: acres (normalized percentage of 45%), actress (37%).



Minimum edit distance

Motivation: The previous (over-simplifying) method assumed
that each word had only a single error.

In general, the problem is that of finding the distance between
two strings.

Minimum edit distance: the minimum number of operations
(insert, delete or substitute) needed to transform one string
into another.

Levenshtein distance: each operation has the same cost.
Variant: insertions and deletions cost 1, substitutions not
allowed.

Variant: assign a cost to each instance of the operations, e.g.,
using confusion matrices.



Minimum edit distance

Example: Computing minimum edit distance

For two strings, s and t,

dist(i , j) =































0 if i = j = 0
i if j = 0
j if i = 0

min







dist(i − 1, j) + ins-cost(ti ),
dist(i − 1, j − 1) + subst-cost(sj , ti )
dist(i , j − 1) + del-cost(sj)







otherwise



Part of speech tagging

The problem: given a sentence O = o1, . . . , on, assign to each
word oi a correct part of speech (POS) ti

Resources:

Tagset a set of POS tags
Lexicon a list of words with associated possible POS tags

Training data a corpus where each word is correctly tagged

Tagsets for English vary, but most have 40–150 tags

Why is this task important?

POS tagging for languages with complex morphology...



POS tagging

Example: The Penn Treebank Tagset

Tag Description Example Tag Description Example
CC Coordin. Conjunctionand, but, or SYM Symbol +,%, &
CD Cardinal number one, two, three TO “to” to
DT Determiner a, the UH Interjection ah, oops
EX Existential‘there’ there VB Verb, base form eat
FW Foreign word mea culpa VBD Verb, past tense ate
IN Preposition/sub-conjof, in, by VBG Verb, gerund eating
JJ Adjective yellow VBN Verb, past participleeaten
JJR Adj., comparative bigger VBP Verb, non-3sg preseat
JJS Adj., superlative wildest VBZ Verb, 3sg pres eats
LS List item marker 1, 2, One WDT Wh-determiner which, that
MD Modal can, should WP Wh-pronoun what, who
NN Noun, sing. or mass llama WP$ Possessive wh- whose
NNS Noun, plural llamas WRB Wh-adverb how, where
NNP Proper noun, singularIBM $ Dollar sign $
NNPSProper noun, plural Carolinas # Pound sign #
PDT Predeterminer all, both “ Left quote (‘ or “)
POS Possessive ending ’s ” Right quote (’ or ”)
PP Personal pronoun I, you, he ( Left parenthesis ( [, (, f,<)
PP$ Possessive pronoun your, one’s ) Right parenthesis ( ], ), g,>)
RB Adverb quickly, never , Comma ,
RBR Adverb, comparativefaster . Sentence-final punc(. ! ?)
RBS Adverb, superlative fastest : Mid-sentence punc(: ; ... – -)
RP Particle up, off



Part of speech tagging

Example: POS ambiguity in two corpora

English Hebrew
#Tags #word types #analyses #tokens

1 35,340 1 17,106
2 3,760 2 7,753
3 264 3 4,619
4 61 4 3,272
5 12 5 1,512
6 2 6 648
7 1 7 388

8 307
9 128

10–12 78



Markov Model POS tagging

Assumptions:

limited horizon: the tag of a word depends only on the tag of
the previous word

time invariant: this dependency does not change over time

For example, if a pronoun has a probability p to occur after an
auxiliary verb in the beginning of a sentence, then this
probability does not change in the rest of the sentence.

Plausibility?

Notation: subscripts refer to positions in the sentence and in
the corpus; superscripts refer to word types in the lexicon and
tag types in the tagset.



Markov Model POS tagging

The states of the Markov model are tags; each time the
computation leaves a state, a word is emitted

The maximum likelihood estimates of some tag tk following a
tag t j are estimated from the tags’ relative frequencies:

P(tk |t j) =
#(t jtk)

#(t j)

This constitutes the values of the transition probabilities aij

The probability of a word being emitted by a particular state
(tag) via maximum likelihood estimation:

P(w l |t j) =
#(w l : t j)

#(t j)

This constitutes the values of the emission probabilities bijk .



Markov Model POS tagging

The best tagging t1..n for a sentence w1..n is:

arg max
t1..n

P(t1..n|w1..n) = arg max
t1..n

P(w1..n|t1..n)P(t1..n)

P(w1..n)

= arg max
t1..n

P(w1..n|t1..n)P(t1..n)

Assuming (wrongly!) that words are independent of each
other, and that a word’s identity depends only on its tag,

P(w1..n|t1..n) = Πn
i=1P(wi |t1..n)

= Πn
i=1P(wi |ti )

By partitioning and the assumption of limited horizon,

P(t1..n) = P(tn|t1..n−1)P(tn−1|t1..n−2) · · ·P(t2|t1)

= P(tn|tn−1)P(tn−1|tn−2) · · ·P(t2|t1)



Markov Model POS tagging

The best tagging t1..n for a sentence w1..n is:

arg max
t1..n

P(t1..n|w1..n) = Πn
i=1P(wi |ti)P(ti |ti−1)

A direct evaluation would require an exponential number of
multiplications

Use the Viterbi algorithm for classification:

δ[t, i ] is the probability of being at state (tag) i at time (word)
t

Ψ[t + 1, i ] is the most likely state (tag) at time (word) t given
that at time (word) t we are in state (tag) i



Markov Model POS tagging

Example: Viterbi classification

Initialization:
δ[., 1] = 1.0; δ[t, 1] = 0.0 for t 6= .;

Induction:
for i = 1 to n

for all tags t j

δ[t j , i + 1] = max1≤k≤T (δ[tk , i ]P(wi+1|t
j)P(t j |tk));

Ψ[t j , i + 1] = arg max1≤k≤T (δ[tk , i ]P(wi+1|t
j)P(t j |tk));

Termination and path read-out:
tn+1 = arg max1≤j≤T δ[j , n + 1];

for j = n downto 1
tj = Ψ[tj+1, j + 1];

P(t1, . . . , tn) = max1≤j≤T δ[t j , n + 1];



Shallow parsing

Shallow parsing consists of identifying the main components
of sentences and their heads and determining syntactic
relationships among them.

Problem: Given an input string O = 〈o1, . . . , on〉, a phrase is
a consecutive substring 〈oi , . . . , oj 〉. The goal is, given a
sentence, to identify all the phrases in the string.

A secondary goal is to tag the phrases as Noun Phrase, Verb
Phrase etc.

An additional goal is to identify relations between phrases,
such as subject–verb, verb–object etc.

Question: How can this problem be cast as a classification
problem?



Text chunking

Text chunking involves dividing sentences into non-overlapping
segments on the basis of fairly simple superficial analysis.

This is a useful and relatively tractable precursor to full
parsing, since it provides a foundation for further levels of
analysis, while still allowing complex attachment decisions to
be postponed to a later phase.



Deriving chunks from treebank parses

Annotation of training data can be done automatically based
on the parsed data of the Penn Tree Bank

Two different chunk structure tagsets: one bracketing
non-recursive “base NPs”, and one which partitions sentences
into non-overlapping N-type and V-type chunks



“Base NP” chunk structure

The goal of the “base NP” chunks is to identify essentially
the initial portions of non-recursive noun phrases up to the
head, including determiners but not including postmodifying
prepositional phrases or clauses.

These chunks are extracted from the Treebank parses,
basically by selecting NPs that contain no nested NPs.

The handling of conjunction follows that of the Treebank
annotators as to whether to show separate baseNPs or a
single baseNP spanning the conjunction.

Possessives are treated as a special case, viewing the
possessive marker as the first word of a new baseNP, thus
flattening the recursive structure in a useful way.



“Base NP” chunk structure

Example: “Base NP” chunk structure

[N The government N ] has [N other agencies and instruments N ] for
pursuing [N these other objectives N ] .
Even [N Mao Tse-tung N ] [N ’s China N ] began in [N 1949 N ] with
[N a partnership N ] between [N the communists N ] and [N a number

N ] of [Nsmaller , non-communist parties N ] .



Partitioning chunks

In the partitioning chunk experiments, the prepositions in
prepositional phrases are included with the object NP up to
the head in a single N-type chunk.

The handling of conjunction again follows the Treebank parse.

The portions of the text not involved in N-type chunks are
grouped as chunks termed V-type, though these “V” chunks
include many elements that are not verbal, including adjective
phrases.

Again, the possessive marker is viewed as initiating a new
N-type chunk.



Partitioning chunks

Example: Partitioning chunks

[N Some bankers N ] [V are reporting V ] [N more inquiries than usual

N ] [N about CDs N ] [N since Friday N ] .
[N Indexing N ] [N for the most part N ] [V has involved simply buying

V ] [V and then holding V ] [N stocks N ] [N in the correct mix N ] [V
to mirror V ] [N a stock market barometer N ] .



Encoding chunking as a tagging problem

Each word carries both a part-of-speech tag and also a “chunk
tag” from which the chunk structure can be derived.

In the baseNP experiments, the chunk tag set is {I ,O,B},
where words marked I are inside some baseNP, those marked
O are outside, and the B tag is used to mark the leftmost
item of a baseNP which immediately follows another baseNP.

In the partitioning experiments, the chunk tag set is
{BN,N,BV ,V ,P}, where BN marks the first word and N

the succeeding words in an N-type group while BV and V

play the same role for V-type groups.



Encoding chunking as a tagging problem

Encoding chunk structure with tags attached to words (rather
than inserting bracket markers between words) limits the
dependence between different elements of the encoded
representation.

While brackets must be correctly paired in order to derive a
chunk structure, it is easy to define a mapping that can
produce a valid chunk structure from any sequence of chunk
tags; the few hard cases that arise can be handled locally.

For example, in the baseNP tag set, whenever a B tag
immediately follows an O, it must be treated as an I .

In the partitioning chunk tag set, wherever a V tag
immediately follows an N tag without any intervening BV , it
must be treated as a BV.



Transformation-based learning for Chunking

Transformational learning begins with some initial “baseline”
prediction, which here means a baseline assignment of chunk
tags to words.

Reasonable suggestions for baseline heuristics after a text has
been tagged for part-of-speech might include assigning to
each word the chunk tag that it carried most frequently in the
training set, or assigning each part-of-speech tag the chunk
tag that was most frequently associated with that
part-of-speech tag in the training.

Testing both approaches, the baseline heuristic using
part-of-speech tags turned out to do better.



Rule templates

Rules can refer to words and to POS tags. Up to three words
to the left and right of the target word, and up to two POS
tags to the left and right of the target can be addressed.

A set of 100 rule templates, obtained by the cross product of
20 word-patterns and 5 tag-patterns, was used.

Then, a variant of Brill’s TBL algorithm was implemented.



Results

BaseNP chunks:
Training Recall Precision

Baseline 81.9% 78.2%
50K 90.4% 89.8%

100K 91.8% 91.3%
200K 92.3% 91.8%

Partitioning chunks:

Training Recall Precision

Baseline 60.0% 47.8%
50K 86.6% 85.8%

100K 88.2% 87.4%
200K 88.5% 87.7%



Memory-based shallow parsing

Shallow parsing consists of discovering the main constituents
of sentences (NPs, VPs, PPs) and their heads, and
determining syntactic relationships (like subjects, objects or
adjuncts) between verbs and heads of other constituents.

This is an important component of text analysis systems in
applications such as information extraction and summary
generation.



Memory-based learning: reminder

A memory-based learning algorithm constructs a classifier for
a task by storing a set of examples.

Each example associates a feature vector (the problem
description) with one of a finite number of classes (the
solution).

Given a new feature vector, the classifier extrapolates its class
from those of the most similar feature vectors in memory.

The metric defining similarity can be automatically adapted to
the task at hand.



Organization

Syntactic analysis is carved up into a number of classification
tasks.

These can be segementation tasks (e.g., deciding whether a
word or tag is the beginning or the end of an NP) or
disambiguation tasks (e.g., deciding whether a chunk is the
subject, object or neither).

Output of one module (e.g., POS tagging or chunking) is
used as input by other modules (e.g., syntactic relation
assignment).



Algorithms and implementation

All the experiments use TiMBL.

Two variants of MBL are used:

ib1-ig: The distance between a test item and a memory
item is the number of features on which they
disagree. The algorithm uses information gain to
weigh the cost of mismatches. Classification
speed is linear in the number of training
instances times the number of features.

IGTree: A decision tree is created with features as tests,
ordered according to information gain of
features. Classification speed is linear in the
number of features times the average branching
factor of the tree, which is bound by the average
number of values per feature.



Experiments

Two series of experiments:

Memory-based NP and VP chunking
Subject/object detection using the chunker



Chunking as a tagging task

Each word is assigned a tag which indicates whether it is
inside or outside a chunk:

I NP inside a baseNP
O outside both a baseNP and a baseVP

B NP inside a baseNP, but the preceding word is in
another baseNP

I VP inside a baseVP
B VP inside a baseVP, but the preceding word is in

another baseVP

Since baseNPs and baseVPs are non-overlapping and
non-recursive, these five tags suffice to unambiguously chunk
a sentence.



Tagging example

Example:

[NP PierreI NP VinkenI NP NP ] ,O [NP 61I NP yearsI NPNP ] oldO ,O
[VP willI VP joinI VP VP ] [NP theI NP boardI NP NP ] asO [NP aI NP

nonexecutiveI NP directorI NP NP ] [NP Nov.B NP 29I NP NP ] .



Chunking as a tagging task: experiments

The features for the experiments are the word and the POS
tag (as provided by the Penn Tree Bank) of two words to the
left, the target word and one word to the right.

The baseline is computed with ib1-ig, using as features only
the focus word/POS.



Results

BaseNP chunks:
Method Recall Precision

Baseline words 79.7% 76.2%
Baseline POS 82.4% 79.5%

IGTree 93.1% 91.8%
IB1-IG 94.0% 93.7%

BaseVP chunks:
Method Recall Precision

Baseline words 73.4% 67.5%
Baseline POS 87.7% 74.7%

IGTree 94.2% 93.0%
IB1-IG 95.5% 94.0%



Subject/object detection

Finding the subject or object of a verb is defined as a mapping
from pairs of words (the verb and the head of the
constituent), and a representation of their context, to a class
(subject, object or neither).

A verb can have multiple subjects (in the case of NP
coordination) and a word can be the subject of more than one
verb (VP coordination).

The input is POS tagged and chunked.

Example:

[NP My/PRP sisters/NNS NP ] [VP have/VBP not/RB seen/VBN

VP ] [NP the/DT old/JJ man/NN NP ] lately/RB ./.

All chunks are reduced to their heads, defined as the
rightmost word of a baseNP or baseVP.



Subject/object detection: features

The distance, in chunks, between the verb and the head

The number of other baseVPs between the verb and the head

The number of commas between the verb and the head

The verb and its POS tag

The head and its POS tag

The two left context and one right context words/chunks of
the head, represented by the word and its POS tag



Subject/object detection: results

Finding unrestricted subjects and objects is hard:

Method Together Subjects Objects

Heuristic baseline 66.2 65.2 67.7
IGTree 76.2 75.8 76.8
IB1-IG 75.6 76.5 74.0

Unanimous 77.8 77.1 79.0



The use of classifiers in sequential inference

Combination of the outcome of several classifiers in a way that
provides a coherent inference that satisfies some constraints.

Two general approaches to identifying phrase structure:
projection-based Markov models and constraint satisfaction

with classifiers.



Identifying phrase structure

Classifiers recognize in the input string local signals which are
indicative of the existence of phrases

Classifiers can indicate that an input symbol is inside or
outside a string or that a symbol opens or closes a string.

The open/close approach has been found more robust and is
pursued here.

The classifiers’ outcomes can be combined to determine the
phrase, but this combination must satisfy certain constraints
for the result to be legitimate.

Several types of constraints, such as length, order and others,
can be formalized and incorporated into the two approaches
studied here.



Identifying phrase structure

Two complex phrase identification tasks are defined: base
NPs and Subject-Verb patterns.

Example:

[ The theory presented claims ] that [ the algorithm runs ] and
performs ...

Two classifiers are learned for each task, predicting whether
word t opens or closes a phrase.



Identifying phrase structure

Each classifier may output two values: open/¬open and
close/¬close.

However, for technical reasons, three values are output by
each classifier, where the ‘not’ value is divided according to
whether or not the word is inside a phrase.

Consequently, the values are: O, nOi, nOo, C, nCi, nCo.

The order of these values is constrained according to the
following diagram:



Definitions

The input string is O = 〈o1, o2, . . . , on〉

A phrase πi ,j(O) is a substring 〈o1, oi+1, . . . , oj 〉 of O

π∗(O) is the set of all possible phrases of O

πi ,j(O) and πk,l (O) overlap, denoted πi ,j(O) ⇋ πk,l (O), iff
j ≥ k and l ≥ i

Given a string O and a set Y of classes of phrases, a solution
to the phrase identification problem is a set
{(π, y) | π ∈ π∗(O) and y ∈ Y } such that for all
(πi , y), (πj , y), if i 6= j then πi 6⇋ πj

We assume that |Y | = 1.



Hidden Markov Model combinator

Reminder: an HMM is a probabilistic finite state automaton
consisting of

A finite set S of states

A set O of observations

An initial state distribution P1(s)

A state-transition distribution P(s|s ′) for s, s ′ ∈ S , and

An observation distribution P(o|s) for o ∈ O, s ∈ S .

Constraints can be incorporated into the HMM by
constraining the state transition probability distribution. For
example, set P(s|s ′) = 0 for cases where the transition from
s ′ to s is not allowed.



Hidden Markov Model combinator

We assume that we have local signals which indicate the state.
That is, classifiers are given with states as their outcome.

Formally, we assume that Pt(s|oy ) is given, where t is a time
step in the sequence.

Constraints on state transitions do not have to be stated
explicitly; they can be recovered from training data.



Hidden Markov Model combinator

Instead of estimating the observation probability P(o|s)
directly from training data, it is computed from the classifiers’
output:

Pt(ot |s) =
Pt(s|ot) × Pt(ot)

Pt(s)

Pt(s) = Σs′∈SP(s|s ′) × Pt−1(s
′)

where P1(s) and P(s|s ′) are the standard HMM distributions

Pt(ot) can be treated as constant since the observation
sequence is fixed for all compared sequences.

The Viterbi algorithm can be used to find the most likely state
sequence for a given observation.



Projection based Markov Model combinator

In standard HMMs, observations are allowed to depend only
on the current state; no long-term dependencies can be
modeled.

Similarly, constraint structure is restricted by having a
stationary probability distribution of a state given the previous
state.

In PMM, these limitations are relaxed by allowing the
distribution of a state to depend, in addition to the previous
state, on the observation.

Formally, the independence assumption is:

P(st |st−1, . . . , s1, ot−1, . . . , o1) = P(st |st−1, ot)



Projection based Markov Model combinator

Given an observation sequence O, the most likely state
sequence S given O is obtained by maximizing

P(S |O) = Πn
t=2[P(st |s1, . . . , st−1, o)]P1(s1|o)

= Πn
t=2[P(st |st−1, ot)]P1(s1|o1)

In this model the classifiers decisions are incorporated in the
terms P(s|s ′, o) and P1(s|o). The classifiers take into account
not only the current input symbol but also the previous state.
The hope is that these new classifiers perform better because
they are given more information.



Constraint satisfaction based combinator

A boolean constraint satisfaction problem consists of a set of
n variables V = {v1, . . . , vn}, each ranging over values in a
domain Di (here, 0/1).

A constraint is a relation over a subset of the variables,
defining a set of “global” possible assignments to the referred
variables.

A solution to a CSP is an assignment that satisfies all the
constraints.

The CSP formalism is extended to deal with probabilistic
variables; the solution now has to minimize some cost
function. Thus, each variable is associated with a cost
function ci : Di → ℜ.



Constraint satisfaction with classifiers

Given an input O = 〈o1, . . . , ol 〉, let
V = {vi ,j | 1 ≤ i ≤ j ≤ l}. Each variable vi ,j corresponds to a
potential phrase πi ,j(O).

Associate with each variable vi ,j a cost function ci ,j .

Constraints can now be expressed as boolean formulae. For
example, the constraint that requires that no two phrases
overlap is expressed as:

∧

πa,b⇋πc,d

(¬va,b ∨ ¬vc,d)

The solution is an assignment of 0/1 to variables which
satisfies the constrains and, in addition, minimizes the overall
cost

Σn
i=1ci (vi )



Constraint satisfaction with classifiers

In general, the corresponding optimization problem is
NP-hard.

In the special case where costs are in [0, 1], a solution which is
at most twice the optimal can be found efficiently.

For the specific case of non-overlapping phrase identification,
the problem can be solved efficiently using a graph
representation of the constraints (the problem reduces to
finding a shortest path in a weighted graph).

What is left is determining the cost function.



Constraint satisfaction with classifiers: cost function

It can be shown that in order to maximize the number of
correct phrases, each phrase has to be assigned a cost that is
minus the probability of the phrase being correct:

ci ,j(vi ,j) =

{

−pi ,j if vi ,j = 1
0 otherwise

where pi ,j is the probability that the phrase πi ,j is correct.



Constraint satisfaction with classifiers: cost function

Assuming independence between symbols in a phrase, and
assuming that the important part of a phrase are only its
beginning and end words,

pi ,j = PO
i (O) × PC

j (C )

where PO
i (O) is the probability that the first symbol oi in the

phrase is actually the beginning of a phrase, and PC
j (C ) is the

probability that the last symbol oj of the phrase is actually the
end of a phrase.

These two probabilities are supplied by the classifiers.



Results

NP SV
Method POS only POS + word POS only POS + word

HMM 90.64 92.89 64.15 77.54
PMM 90.61 92.98 74.98 86.07
CSCL 90.87 92.88 85.36 90.09


