
Empirical methods in NLP

Some history

The underlying motivation

The current state-of-the-art

A few application examples

Empirical methods in NLP: applications

Example: Segmentation

Problem: Given a word w , find a sequence of morphemes m1, . . . ,mk

such that w = m1 · · ·mk .
im|possible, in|credible, ir|regular, ir|resistable, in|finite, in|dependent, ...

ink, imply, Iran,...

resist|able, comfort|able, ed|ible, incred|ible, imposs|ible, ...

table, stable, ...

More complex cases: segmenting sentences to words in Asian lan-
guages.

Empirical methods in NLP: applications

Example: POS tagging

Problem: Given a text where each word is associated with all its
possible parts of speech, determine the most likely POS for the
word with respect to its context.
who PRON(int), PRON(rel)
can AUX, V(inf), N(sg)
it EXPLETIVE, PRON(3sg)
be V(inf)
? PUNC

Empirical methods in NLP: applications

Example: POS tagging

Empirical methods in NLP: applications

Example: Morphological disambiguation

A generalization of Part-of-speech Tagging
Problem: Given a text where each word is associated with all its
possible morphological analyses, determine the most likely analysis
for the word with respect to its context.

Empirical methods in NLP: applications

Example: Morphological disambiguation

Empirical methods in NLP: applications

Example: Shallow parsing

Problem: Given a sentence, segment it into phrases such that no
two phrases overlap.
Example (from http://pi0657.kub.nl/cgi-bin/tstchunk/demo.pl):

http://pi0657.kub.nl/cgi-bin/tstchunk/demo.pl

Empirical methods in NLP: applications

Example: attachment

Problem: Given an ambiguous syntactic structure, determine which
of the candidate structures is most likely.

The teacher [wrote [three equations] [on the board]]
The author [wrote [three novels [on the civil war]]]

Empirical methods in NLP: applications

Example: Word sense disambiguation

Problem: Given a text in which each word is associated with several
senses, determine the correct sense in the context of each of the
words.
brilliant:

of surpassing excellence; ”a brilliant performance”

brainy: having or marked by unusual and impressive
intelligence; ”a brilliant solution to the problem”

characterized by grandeur; ”Versailles brilliant court life”

bright: having striking color; ”brilliant tapestries”;

full of light; shining intensely; ”a brilliant star”; ”brilliant
chandeliers”

bright: clear and sharp and ringing; ”the brilliant sound of the
trumpets”

Empirical methods in NLP: applications

Example: Text categorization

Problem: Given a document and a (hierarchical) classification of
“topics”, determine which topics are addressed by the document.

Empirical methods in NLP: applications

Example: Text categorization

Empirical methods in NLP: roadmap

Probabilistic models

Basic probability theory
Bayes Rule

Collocations, N-grams and the use of corpora

N-grams
Normalization
Maximum-likelihood estimation
Data sparseness, smoothing and backoff

Markov Models

Weighted automata and Markov chains
Hidden Markov Models
decoding and the forward algorithm
The Viterbi algorithm
Parameter estimation

Empirical methods in NLP: roadmap

Classification in general

Problem representation
Training
Evaluation

Classification methods

Decision trees
Memory-based learning (KNN)
Perceptron

Empirical methods in NLP: roadmap

Spell checking

The noisy channel model
Bayesian methods
Minimum edit distance

Part of speech tagging

HMMs

Text categorization

Chunking as a classification task

Chunking, shallow parsing, argument detection
Transformation-based learning
Sequential inference

Basic probability theory

Probability theory deals with the likelihood of events, where
likelihood is established through experiments (trials)

An event is a subset of the sample space

A probability distribution distributes a probability mass of 1
throughout the sample space

Conditional probability:

P(A ∩ B) = P(B)P(A|B) = P(A)P(B |A)

Basic probability theory

Chain rule:

P(A1∩· · ·∩An) = P(A1)P(A2|A1)P(A3|A1∩A2) · · ·P(An|∩
n−1
i=1 Ai)

Bayes theorem:

P(B |A) =
P(B ∩ A)

P(A)
=

P(A|B)P(B)

P(A)

Partition: if Bi is a partition of A, i.e., A = ∪iBi and the Bi ’s
are disjoint, then

P(A) = ΣiP(A|Bi)P(Bi)

N-grams

Can we guess the next word in a sequence?

I’d like to make a collect

Why is this important?

Speech recognition, hand-writing recognition, spell checking,
machine translation, ...
Analytical methods usually fail.

N-gram models predict the next word using the previous
N − 1 words

In general, this is called language modeling.

N-grams

The use of corpora in natural language processing

Collocations

Example: Collocations

strong tea
weapons of mass destruction
by and largeǑ� �� �{ ������� ���
Limited compositionality

Usually very hard to define analytically, but much easier with
corpora

Applications: linguistic research, parsing, generation, machine
translation, ...

Frequency: counting words in corpora

The simplest method for finding collocations is by counting
words in a corpus
However, most bi-grams are uninteresting.

Example: Bi-grams in a corpus

#(w1,w2) w1 w2

80,871 of the
58,841 in the
26,430 to the

...
11,428 New York
10,007 he said
9,775 as a

...

Frequency: counting words in corpora

Solution: apply part-of-speech filtering
Looking only for the patterns noun-noun and adjective-noun:

Example: Bi-grams in a corpus

#(w1,w2) w1 w2 POS

11428 New York A N
7261 United States A N
5412 Los Angeles N N
3301 last year A N
3191 Saudi Arabia N N
2699 last week A N
2514 vice president A N

...
2106 President Bush N N

...

Frequency: counting words in corpora

Example: Collocations for synonym selection

w #(strong,w) w #(powerful,w)

support 50 force 13
safety 22 computers 10
sales 21 position 8
opposition 19 men 8
showing 18 computer 8
sense 18 man 7
message 15 symbol 6
defense 14 military 6
gains 13 machine 6
evidence 13 country 6

Simple N-gram models

Computing the probability of a sequence of words
w = w1, . . . ,wn

Using the chain rule:

P(w) = P(w1)P(w2|w1)P(w3|w1,w2) · · ·P(wn|w1, . . . ,wn−1)

= Πn
k=1P(wk |w1, . . . ,wk−1)

However, to compute P(wk |w1, . . . ,wk−1) reliably we need a
huge corpus, and will usually run into data sparseness

problems

Solution: make the simplifying assumption that
P(wk |w1, . . . ,wk−1) = P(wk |wk−1)

Markov chains and higher-order Markov models.

Simple N-gram models: normalization

For bi-grams:

P(wn|wn−1) =
#(wn−1wn)

Σw#(wn−1w)

=
#(wn−1wn)

#(wn−1)

For general N-grams:

P(wn|wn−N+1, . . . ,wn−1) =
#(wn−N+1, . . . ,wn−1wn)

#(wn−N+1, . . . ,wn−1)

Maximum-likelihood estimation

Maximum-likelihood estimation:

PML(w) =
#(w)

N

where N is the size of the training corpus

If the observed data are fixed and the space of all possible
assignments within a certain distribution is considered, then
the maximum likelihood estimate is the choice of parameter
values which gives the highest probability to the training
corpus

Maximum-likelihood estimation

Example: Maximum-likelihood estimates

Assume a trigram model (using two preceding words to predict the
next word). Assume that the two preceding words are comes across.
In a given corpus, there were 10 instances of comes across, 8 of which
were followed by as, one by more and one by a. The MLE is then

P(as) = 0.8

P(more) = 0.1

P(a) = 0.1

P(w) = 0 for all other words w

Smoothing

N-gram models are trained on a (finite) corpus, and hence
necessarily some (perfectly grammatical) N-grams are never
observed

It would be useful to assign non-zero probabilities to N-grams
which are not observed in the training corpus

This is usually done by distributing some of the probability
mass differently

Smoothing: re-evaluating the probabilities assigned to
zero-probability and low-probability events.

Add-one smoothing

Add one to all counts before normalizing

For unigram probabilities, using a corpus C of size N:

P(w) =
#(w)

Σw ′∈C#(w ′)
=

#(w)

N

After add-one smoothing:

P(w) =
#(w) + 1

Σw ′∈C#(w ′) + 1
=

#(w) + 1

N + V

where V is the size of the vocabulary.

For bi-gram probabilities:

P(wn|wn−1) =
#(wn−1wn) + 1

#(wn−1) + V

Backoff

Suppose we want to estimate P(wn|wn−1wn−2) but we have
no examples of the trigram wn−2wn−1wn.

Backoff methods resort to lower-order models: estimate
P(wn|wn−1wn−2) as P(wn|wn−1)

For the trigram case:

P̂(wi |wi−2wi−1) =

P(wi |wi−2wi−1) if #(wi−2wi−1wi) > 0
α1P(wi |wi−1) if #(wi−2wi−1wi) = 0

and #(wi−1wi) > 0
α2P(wi) otherwise

Some models combine backoff with smoothing.

Hidden Markov Models

Let X = (X1,X2, . . .) be a sequence of random variables.
Think of the sequence as a random variable in different points
in time

Assume that the value of the variable is taken from a finite
domain S = {s1, . . . , sN} of states

X is a Markov chain if:

limited horizon

P(Xt+1 = sk |X1, . . . ,Xt) = P(Xt+1 = sk |Xt)

time invariant
P(Xt+1 = sk |Xt) = P(X2 = sk |X1)

The probability of X being in state sk at time t + 1 depends
only on the value of X in time t. In particular, it is
independent of previous values of X or of the time t.

Hidden Markov Models

A Markov chain can be characterized by:

A transition matrix,

aij = P(Xt+1 = sj |Xt = si)

where aij > 0 for all i , j and ΣN
j=1aij = 1 for all i ; and

the initial probabilities,

πi = P(X1 = si)

where ΣN
i=1πi = 1

Alternatively, Markov chains can be specified as weighted
automata.

Weighted automata

Like a standard finite-state automaton/transducer, with
weights on the edges

The sum of the weights of all edges leaving some node must
be 1

Each path in the automaton is thus assigned a weight

Markov chains, or visible Markov models: a weighted
automaton in which the input sequence uniquely determines
the path (i.e., unambiguous). The state sequence can thus be
taken as output

Hidden Markov Models (HMMs): we don’t know the state
sequence the model passes through, but only some
probabilistic function of it.

Weighted automata

Example: Weighted automaton

e t i

h a p

0.3

0.4

0.3 0.6

0.4

0.41.0

1.0

0.6

Markov chains

Given a Markov chain, the probability of a sequence of states
can be calculated directly from the model

It is the product of the probabilities that occur on the arcs (or
in the stochastic matrix):

P(X1, . . . , XT) = P(X1)P(X2|X1)P(X3|X1, X2) · · ·P(XT |X1, . . . , XT−1)

= P(X1)P(X2|X1)P(X3|X2) · · ·P(XT |XT−1)

= πX1
ΠT−1

t=1 aXtXt+1

Hidden Markov Models

Definition: An HMM is a tuple (Q,Σ,Π,A,B) where:

Q is a set of states

Σ is the (output) alphabet

Π = {πi | i ∈ Q} is the probability of starting at state i ∈ Q

A = {aij | i , j ∈ Q} is the state transition probability

B = {bijσ | i , j ∈ Q and σ ∈ Σ} is the symbol emission
probability.

The symbol emitted at time t depends on the states at times t
and t + 1 (arc-emission HMM).

Hidden Markov Models

Notation:

O = (o1, . . . , oT), where oi ∈ Σ: the observation
µ = (Π, A, B): the model
X = (X1, . . . , XT+1), where Xi ∈ Q: the state sequence

The three fundamental questions for HMM:
1 Given a model µ, how to compute the likelihood of some

observation O, P(O|µ)? (decoding)
2 Given a model µ and an observation O, which state sequence

(X1, . . . , XT+1) best explains the observation? (classification)
3 Given an observation sequence O, which model µ best explains

the observed data? (parameter estimation)

HMM: decoding

Given an HMM and an observation O, decoding is the
process of finding the probability of O

By partition,

P(O|µ) = ΣXP(O|X , µ)P(X |µ)

By definition of X ,

P(X |µ) = πX1
aX1X2

aX2X3
· · · aXT XT+1

Similarly, from the definition of the model,

P(O|X , µ) = ΠT
t=1P(ot |Xt ,Xt+1, µ)

= bX1X2o1
bX2X3o2

· · · bXT XT+1oT

Putting it all together,

P(O|µ) = ΣX1···XT+1
πX1

ΠT
t=1aXtXt+1

bXtXt+qot

HMM: decoding

The forward algorithm: a dynamic programming
implementation of decoding

Given a model µ and an observation O, the forward algorithm
computes P(O|µ)

forward [t, i] is the probability of being in state i after seeing
the first t observations

This is the sum of all the probabilities of the paths that lead
to state i

Cashing:

forward[t, i] = P(o1o2 · · · ot−1,Xt = i |µ)

HMM: decoding

forward[t, i] = P(o1o2 · · · ot−1,Xt = i |µ)

Initialization: for all i , 1 ≤ i ≤ N,

forward[1, i] = πi

Induction: for all t, 1 ≤ t ≤ T and all j , 1 ≤ j ≤ N,

forward[t + 1, j] = ΣN
i=1forward[t, i]aijbijot

Finally,
P(O|µ) = ΣN

i=1forward[T + 1, i]

HMM: decoding

Results can also be cashed working backwards through time.

backward[t, i] = P(ot · · · oT+1,Xt = i |µ)

Initialization: for all i , 1 ≤ i ≤ N,

backward[T + 1, i] = 1

Induction: for all t, 1 ≤ t ≤ T and all j , 1 ≤ j ≤ N,

backward[t, i] = ΣN
j=1backward[t + 1, j]aijbijot

Finally, P(O|µ) = ΣN
i=1πibackward[1, i]

It can even be shown that

P(O|µ) = ΣN
i=1backward[t, i]forward[t, i]

HMM: classification

Given an observation sequence, which is the most likely state
sequence which generated this observation?

X̂ = arg max
X

P(X |O, µ) = arg max
X

P(X ,O|µ)

The Viterbi algorithm: use dynamic programming

For each state, stored the probability of the most probable
path leading to this state:

δ[t, j] = max
X1···Xt−1

P(X · · ·Xt−1, o1 · · · ot−1,Xt = j |µ)

Also, store the node Ψ[t + 1, j] of the incoming arc that led to
this most probable path.

The Viterbi algorithm

Initialization: for all j , 1 ≤ j ≤ N,

δ[1, j] = πj

Induction: for all j , 1 ≤ j ≤ N,

δ[t + 1, j] = max
1≤i≤N

δ[t, i]aijbijot

and
Ψ[t + 1, j] = arg max

1≤i≤N

δ[t, i]aijbijot

Finally, backtrack by working from the end backwards:

X̂T+1 = arg max1≤i≤N δ[T + 1, i]

X̂t = Ψ[t + 1, X̂t+1]

P(X̂) = max1≤i≤N δ[T + 1, i]

HMM: parameter estimation

Given an observation sequence O, which model µ = (Π,A,B)
best explains the observation?
Using maximum likelihood estimation, this is:

arg max
µ

P(O|µ)

There is no analytic way to choose µ to maximize P(O|µ)
However, it can be locally maximized by an iterative
hill-climbing algorithm:

Choose some model (perhaps in random)
Calculate the probability of O given this model
Observing the calculation, select the state transitions and
symbol emissions that were used most
increase the probability of those and choose a revised model
that gives a higher probability to the observed sequence

This method is referred to as training the model and requires
training data

Classification: a general framework

Several supervised machine learning techniques:

Decision trees

K Nearest Neighbors

Perceptron

Näıve Bayes

All are instances of techniques for a general problem: classification.

Classification

Problem: Given a universe of objects and a pre-defined set of of
classes, or categories, assign each object to its correct class.

Example: Classification tasks

Problem Objects Categories

POS tagging words in context POS tag
WSD words in context word sense
PP attachment sentences parse trees
Language identification text language
Text categorization text topic

Text categorization

We focus on a specific problem, text categorization.

Problem: Given a document and a pre-defined set of topics,
assign the document to one or more topics.

Typical sets of topic categories: Reuters; Yahoo; etc.

Typical categories: “mergers and acquisitions”; “crude oil”;
“earning reports”; etc.

Classification

Formal setting for statistical classification problems:

A training set is given containing a set of objects, each
labeled by one or more classes;

The training set is encoded via a data representation

model. Typically, each object in the training set is
represented as a pair (~x , c), where ~x ∈ Rn is a vector of
measurements and c is a category label;

A model class, which is a parameterized family of classifiers,
is defined. A training procedure selects one classifier from
this family (training).

The classifier is evaluated (testing).

Classification

Example: Text categorization

training set: a collection of text documents, each labeled by one
or more topic categories

data representation: each document is associated with a feature
vector

training: the parameters of a model class are set

testing: for binary classification, recall and precision.

Decision trees

A decision tree takes as input an object described by a set of
properties, and outputs a yes/no decision. Decision trees
therefore represent Boolean functions.

Each internal node in the tree corresponds to a test of the
value of one of the properties, and the branches from the
node are labeled with the possible values of the test.

Each leaf node in the tree specifies the Boolean value to be
returned if that leaf is reached.

Decision trees

Example: A decision tree for deciding whether to wait for a table

Decision trees

How to find an appropriate data representation model? This is an
art by itself, and feature engineering is a major task.

Example: Data representation

Alternate: Is there an alternative restaurant nearby?

Bar: Does the restaurant have a bar to wait in?

Fri/Sat: Is it a weekend?

Hungry: Are we hungry?

Patrons: How many people are in the restaurant?

Price: The restaurant’s price range ($/$$/$$$)

Raining: Is it raining outside?

Reservation: Do we have a reservation?

Type: The type of restaurant (Thai/French/Italian/Burger)

WaitEstimate: Estimated wait time (0-10/10-30/30-60/>60)

Inducing decision trees from examples

An example is described by the values of the features and the
category label (the classification of the example).

In binary classification tasks, examples are either positive or
negative.

The complete set of example is called the training set.

Inducing decision trees from examples

Example: Inducing decision trees from examples
A
lt

B
ar

W
k
n
d

H
u
n
g
ry

P
a
t

$ R
a
in

R
es

T
yp

e

W
a
it

G
o
a
l

1 + - - + Some $$$ - + French 10 Yes

2 + - - + Full $ - - Thai 60 No

3 - + - - Some $ - - Burger 10 Yes

4 + - + + Full $ - - Thai 30 Yes

5 + - + - Full $$$ - + French >60 No

6 - + - + Some $$ + + Italian 10 Yes

7 - + - - None $ + - Burger 10 No

8 - - - + Some $$ + + Thai 10 Yes

9 - + + - Full $ + - Burger >60 No

10 + + + + Full $$$ - + Italian 30 No

11 - - - - Some $ - - Thai 10 No

12 + + + + Full $ - - Burger 60 Yes

Inducing decision trees from examples

How to find a decision tree that agrees with the training set?

This is always possible, since a tree can consist of a unique
path from root to leaf for each example. However, such a tree
does not generalize to other examples.

An induced tree must not only agree with all the examples,
but also be concise. Unfortunately, finding the smallest tree is
an intractable problem.

The basic idea behind the Decision-Tree-Learning algorithm is
to test the most important feature first. By “most important”
we mean the one that makes the most difference to the
classification of an example. This way we hope to get the
correct classification with a small number of tests, thereby
generating a smaller tree with shorter paths.

Inducing decision trees from examples

Example: The contribution of the features Patrons and Type

Hence “Patrons?” is a better feature than “Type?”.

An algorithm for inducing decision trees

The algorithm: Decide which attribute to use as the first test in
the tree. After the first feature splits up the examples, each
outcome is a new decision tree learning problem in itself, with
fewer examples and one fewer feature. For this recursive problem:

if there are both positive and negative examples, choose the
best attribute to split them.

If all remaining examples are positive (or all negative), the
answer is “yes” (“no”).

if no examples are left, return a default value.

if no features are left (noise in the data), use a majority vote.

The result on the 12 examples

Example: Decision tree

Decision trees for text categorization

In order to set a data representation model we must
understand what documents look like.

Assume that the task is to classify Reuters documents to the
class “earnings”. That is, given a Reuters document, the
classifier must determine whether its topic is “earnings” or
not.

Decision trees for text categorization

Example: A Reuters document

<REUTERS TOPICS="YES" NEWID="2005">

<DATE> 5-MAR-1987 09:22:57.75</DATE>

<TOPICS><D>earn</D></TOPICS>

<PLACES><D>usa</D></PLACES>

<TEXT>

<TITLE>NORD RESOURCES CORP <NRD> 4TH QTR NET</TITLE>

<DATELINE> DAYTON, Ohio, March 5 - </DATELINE>

<BODY>Shr 19 cts vs 13 cts

Net 2,656,000 vs 1,712,000

Revs 15.4 mln vs 9,443,000

Avg shrs 14.1 mln vs 12.6 mln

Shr 98 cts vs 77 cts

Net 13.8 mln vs 8,928,000

Revs 58.8 mln vs 48.5 mln

Avg shrs 14.0 mln vs 11.6 mln

NOTE: Shr figures adjusted for 3-for-2 split paid Feb 6, 1987.

Reuter </BODY></TEXT>

</REUTERS>

Data representation

For the text categorization problem: use words which are
frequent in “earnings” documents.

The 20 most representative words of this category are:
vs, mln, cts, loss, 000, profit, dlrs, pct, net etc.

Each document j is represented as a vector of K = 20
integers, ~xj = 〈s j

1, . . . , s
j
K 〉, where:

s j
i = round

(

10 ×
1 + log tfji
1 + log l j

)

tfji is the number of occurrences of word i in document j , and

l j is the length of document j . s j
i is set to 0 if word i does not

occur in document j .

In the above example, whose length is 59, the word vs occurs
8 times, hence s j

i = round(10 × 1+log 8
1+log 59

) = 7.

Training procedure

The model class is decision trees; the data representation is
20-integer vectors; now the training procedure has to be
determined.

The splitting criterion is the criterion used to determine which
feature should be used for splitting next, and which values this
feature should split on.

The idea: split the objects at a node to two piles in the way
that gives maximum information gain. Use information theory
to measure information gain.

The stopping criterion is used to determine when to stop
splitting.

Decision trees: summary

Decision trees are useful in non-trivial classification tasks (for
simple tasks, simpler methods are available).

They are attractive because they can be very easily
interpreted.

Their main drawback is that they sometimes make poor
generalizations, since they split the training set into smaller
and smaller subsets.

Memory-based learning

A memory-based classification method.

The basic idea: store all the training set examples in memory.

To classify a new object, find the training example closest to
it and return the class of this nearest example.

Problems: How to measure similarity? How to break ties?

K-Nearest Neighbors (KNN)

KNN is a simple algorithm that stores all available examples
and classifies new instances of the example language based on
a similarity measure.

If there are n features, all vectors are instances of Rn. The
distance d(~x1, ~x2) of two example vectors x1 and x2 can be
defined in various ways. This distance is regarded as a
measure for their similarity.

To classify a new instance e, the k examples most similar to e
are determined. The new instance is assigned the class of the
majority of the k nearest neighbors.

KNN variations

Distance measures:

Euclidean distance:

d(~x , ~y) =
√

Σn
i=1(xi − yi)2

Cosine:

d(~x , ~y) =
~x · ~y

|~x ||~y
=

Σn
i=1xiyi

√

Σn
i=1x

2
i

√

Σn
i=1y

2
i

A variant of this approach calculates a weighted average of
the nearest neighbors. Given an instance e to be classified, the
weight of an example increases with increasing similarity to e.

Memory-based learning: summary

The attractiveness of KNN stems from its simplicity: if an
example in the training set has the same representation as the
example to be classified, its category will be assigned.

A major problem of the simple approach of KNN is that the
vector distance is not necessarily suited for finding intuitively
similar examples, especially if irrelevant attributes are present.

Performance is also very dependent on the right similarity
metric.

Finally, computing similarity for the entire training set may
take more time (and certainly more space) than determining
the appropriate path of a decision tree.

Perceptron

Perceptrons are a simple example of hill-climbing (or
gradient-descent) algorithms.

The idea is to try to optimize a function of the data that
computes a goodness criterion (such as error rate).

Data are again represented as numeric vectors. The goal is to
learn a weight vector ~w and a threshold θ such that the
weight vector multiplied by the example vector is greater than
the threshold for positive examples and lower than the
threshold for negative ones.

In other words, for an example ~x j , the classifier returns “yes”
iff ΣK

i=1wix
j
i > θ.

Training a perceptron

Example: Training perceptrons

~w = 0
θ = 0
while not converged do

for all elements ~x j in the training set do
if ~x j · ~w > θ then d := 1 else d := 0
if class(~x j = d) then continue
else if class(~x j = 1) and d = 0 then

θ := θ − 1; ~w = ~w + ~x j

else if class(~x j = 0) and d = 1 then
θ := θ + 1; ~w = ~w − ~x j

Perceptron: summary

Perceptrons are guaranteed to converge when the class of
examples is linearly separable.

Several tasks cannot be classified using linear models;
sometimes a transformation to another space is useful (e.g.,
with SVM).

Perceptrons are useful for simple classification tasks but
cannot cope with more complex ones which abound in NLP.

Evaluation

Am important recent development in empirical NLP has been
the use of rigorous standards for evaluation of systems.

The ultimate demonstration of success is showing improved
performance at the application level (here, text
categorization).

For various tasks, standard benchmarks are being developed
(e.g., the Reuters collection for text categorization).

Evaluation

Borrowing from Information Retrieval, empirical NLP systems
are usually evaluated using the notions of precision and
recall.

Example: Text categorization. A set of documents is given of
which a subset is in a particular category (say, “earnings”).
The system classifies some other subset of the documents as
belonging to the “earnings” category.

The results of the system are compared with the actual results
as follows:

target not target

selected tp fp
not selected fn tn

Evaluation

Graphically, the situation can be depicted thus:

Recall and precision

Precision is the proportion of the selected items that the
system got right; in the case of text categorization it
is the percentage of documents classified as
“earning” by the system which are indeed “earning”
documents:

P =
tp

tp + fp

Recall is the proportion of target items that the system
selected. In the case of text categorization, it is the
percentage of the “earning” documents which were
actually classified as “earning” by the system:

R =
tp

tp + fn

Recall and precision

In applications like Information Retrieval, one can usually
trade off recall and precision.

This tradeoff can be plotted in a precision–recall curve.

It is therefore convenient to combine recall and precision into
a single measure of overall performance.

One way to do it is the F-measure, defined as:

F =
P · R

αR + (1 − α)P

To weigh recall similarly to precision, α is set to 0.5, yielding:

F =
2PR

P + R

Accuracy and error

Other measures of performance, perhaps more intuitive ones,
are accuracy and error.

Accuracy is the proportion of items the system got right:

tp + tn

tp + tn + fp + fn

whereas error is its complement:

fp + fn

tp + tn + fp + fn

The disadvantage of using accuracy is the observation that in
most cases, the value of tn is huge, dwarfing all other
numbers.

Evaluation of text categorization systems

For binary classification tasks, classifiers are typically
evaluated using a table of counts:

YES is correct NO is correct

YES was assigned tp fp
NO was assigned fn tn

and then:
Accuracy: tp+tn

tp+tn+fp+fn

Recall: tp
tp+fn

Precision: tp
tp+fp

Evaluation of text categorization systems

When more than two categories exist, first prepare
contingency tables for each category ci , measuring ci versus
everything that is not ci .

Then there are two options:

Macro-averaging compute an evaluation measure for each
contingency table separately and average the
evaluation measure over categories to get an
overall measure of performance.

Micro-averaging make a single contingency table for all
categories by summing the scores in each cell for
all categories, then compute the evaluation
measure for this large table.

Evaluation of text categorization systems

Macro-averaging gives equal weight to each category, whereas
micro-averaging gives equal weight to each item. They can
give different results when the evaluation measure is averaged
over categories with different sizes.

Micro-averaged precision is dominated by large categories
whereas micro-averaged precision gives a better sense of the
quality of classification across all categories.

