Recursive Functions of Symbolic Expressions and Their Application, Part I

John McCarthy

Review: Amit Kirschenbaum
Seminar in Programming Languages

Historical Background

- LISP (LISt Processor) is the second oldest programming language and is still in widespread use today.
- Defined by John McCarthy from M.I.T.
- Development began in the 1950s at IBM as FLPL Fortran List Processing Language.
- Implementation developped for the IBM 704 computer by the A.I. group at M.I.T.

Historical Backgroung (Cont’d)

" The main requirement was a programming system for manipulating expressions representing formalized declerative and imperative sentences so that the Advice Taker could make deductions."
Many dialects have been developed from LISP: Franz Lisp, MacLisp, ZetaLisp ...
Two important dialects

- Common Lisp - ANSI Standard
- Scheme - A simple and clean dialect. Will be used in our examples.

Imperative Programming

- Program relies on modfying a state, using a sequence of commands.
- State is mainly modified by assignment
- Commands can be executed one after another by writing them sequentially.
- Commands can be executed conditinonally using if and repeatedly using while
- Program is a series of instructions on how to modify the state.

Imperative Prog. (Cont'd)

- Execution of program can be considered, abstractly as:

$$
s_{0} \longrightarrow s_{1} \cdots \longrightarrow s_{n}
$$

- Program starts at state s_{0} including inputs
- Program passes through a finite sequence of state changes, by the commands, to get from s_{0} to s_{n}
- Program finishes in s_{n} containing the outputs.

Functional Programming

A functional program is an expression, and executing a program means evaluating the expression.

- There is no state, meaning there are no variables.
- No assignments, since there is nothing to assign to.
- No sequencing.
- No repetition but recursive functions instead.
- Functions can be used more flexibly.

Why use it?

- At first glance, a language without variables, assignments and sequencing seems very impractical
- Imperative languages have been developed as an abstraction of hardware from machine-code to assembler to FORTRAN and so on.
- Maybe a different approach is needed i.e, from human side. Perhaps functional languages are more suitable to people.

Advantages of functional programming

- Clearer sematics. Programs correspond more directly to mathematical objects.
- More freedom in implementation e.g, parallel programs come for free.
- The flexible use of functions we gain elegance and better modularity of programs.

Some Mathematical Concepts

- Partial Function - function that is defined only of part of its domain.
- Propositonal Expressions and Predicates Expressions whose possible values are T (truth) and F (false).
- Conditional Expressions - Expressing the dependence of quantties on propositional quantities. Have the form

$$
\left(p_{1} \rightarrow e_{1}, \cdots, p_{n} \rightarrow e_{n}\right)
$$

Equivalent to
"If p_{1} then e_{1}, else if p_{2} then e_{2}, \cdots else if p_{n} then e_{n} "

Mathematical Concepts (Cont'd)

- Conditional expression can define noncommutative propositional connectives:

$$
\begin{gathered}
p \wedge q=(p \rightarrow q, T \rightarrow F) \\
p \vee q=(p \rightarrow T, T \rightarrow q) \\
\neg p=(p \rightarrow F, T \rightarrow T)
\end{gathered}
$$

- Recursive function definitions - Using conditional expressions, we can define recursive functions

$$
n!=(n=0 \rightarrow 1, T \rightarrow n \cdot(n-1)!)
$$

- Functions are defined and used, using λ-notation.

Brief intro to λ-calculus

- A formal system designed to investigate
- function definition
- function application
- recursion
- Can be called the
smallest universal programming language.
- It is universal in the sense that any computable function can be expressed within this formalism.
- Thus, it is equivalent in expressive power to Turing machines.
- λ-calculus was developed by Alonzo Church in the 1930s

λ-notation

Defining a function in mathematics means:

- Giving it a name.
- The value of the function is an expression in the formal arguments of the function.
- e.g., $f(x)=x+1$

Using λ-notation we express it as a λ-expression

- $\lambda x .(+x 1)$
- It has no name.
- prefix notation is used.

λ-notation (Cont'd)

- The function f may be applied to the argument 1 :

$$
f(1)
$$

- Similarly, the λ-expression may be applied to the argument 1

$$
(\lambda x \cdot(+x 1)) 1
$$

- Application here means
- Subtitue 1 for $x:(+x 1) \Rightarrow(+11)$
- Evaluate the function body: make the addition operation.
- Return the result: 2

Syntax of λ-calculus

Pure λ-calculus contains just three kinds of expressions

- variables (identifiers)
- function applications
- λ-abstractions (function defintions)

It is convinient to add

- predefined constants (e.g., numbers) and operations (e.g., arithmetic operators)
$\langle e x p\rangle$::=
var
| const
| ($\langle e x p\rangle\langle e x p\rangle)$
| (λ var. $\langle e x p\rangle)$

Function Application

- Application is of the form $\left(E_{1} E_{2}\right)$
- E_{1} is expected to be evaluated to a function.
- The function may be either a predefined one or one defined by a λ-abstraction.

λ-abstractions

- The expression

$$
(\lambda x .(* x 2))
$$

is the function of x which multiplies x by 2

- The part of the expression that occurs after λx is called the body of the expression.
- When application of λ-abstraction occurs, we return the result of the body evaluation.
- The body can be any λ-expression, therefore it may be a λ-abstraction.
- The parameter of λ-abstraction can be a function itself

λ-abstractions

- In mathematics there are also functions which return functions as values and have function arguments.
- Usually they are called operators or functionals
- For example: the differentiation operator

$$
\frac{d}{d x} x^{2}=2 x
$$

Constants

- Pure λ-calculus doesn't have any constants like $0,1,2, \ldots$ or built in functions like $+,-, *, \ldots$, since they can be defined by λ-expressions.
- For the purpose of this discussion we'll assume we have them.

Naming Expressions

- Expressions can be given names, for later reference:

$$
\text { square } \equiv(\lambda x \cdot(* x x))
$$

Free and bound variables

- Consider the expression

$$
(\lambda x \cdot(* x y)) 2
$$

- x is bound: it is just the formal parameter of the function.
- y is free: we have to know its value in advance.
- A variable v is called bound in an expression E if there is some use of v in E that is bound by a decleration λv of v in E.
- A variable v is called free in an expression E if there is some use of v in E that is not bound by any decleration λv of v in E.

Reduction rule

- The main rule for simplifiying expressions in λ-calculus is called β-reduction.
- Applying a λ-abstraction to an argument is an instance of its body in which free occurences of the formal parameter are substituted by the argument.
- parameter may occur multiple times in the body

$$
(\lambda x \cdot(* x x)) 4 \rightarrow(* 44) \rightarrow 16
$$

Reduction rule

- Functions may be arguments

$$
(\lambda f .(f 3))(\lambda x .(-x 1))
$$

$$
\begin{aligned}
& (\lambda f \cdot(f 3))(\lambda x \cdot(-x 1)) \\
& \rightarrow(\lambda x \cdot(-x 1)) 3 \\
& \rightarrow(-31) \\
& \rightarrow 2
\end{aligned}
$$

Expressions for Recursive Functions

- The λ-notation is inadequte for defining functions recursively
- the function

$$
n!=(n=0 \rightarrow 1, T \rightarrow n \cdot(n-1)!)
$$

should be converted into

$$
!=\lambda((n)(n=0 \rightarrow 1, T \rightarrow n \cdot(n-1)!))
$$

- There is no clear reference from '!' inside the λ-clause, to the expression as a whole.

Expressions for Recursive Functions

- A new notation: $\operatorname{label}(a, \mathcal{E})$ denotes the expression \mathcal{E}, provided that occurences of a within \mathcal{E} are to be referred as a whole.
- For example, for the latter function the notation would be

$$
\text { label }(!, \lambda((n)(n=0 \rightarrow 1, T \rightarrow n \cdot(n-1)!)
$$

- (There is a way to describe recursion in λ-calculus, using Y-combinator, but McCarthy doesn't use it.)

S-Expressions

A new class of Symbolic expressions.
S-Expression are composed of the special characters

- (- start of composed expression
-) - end of composed expression
- - - composition
- and "an infinite set of distinguishable atomic symbols".
e.g.,

> A
> ABA
> APPLE-PIE-NUMBER-3

S-Expression : Definition

- Atomic symbols are S-expression.
- if e_{1} and e_{2} are S -expressions then so is $\left(e_{1} \cdot e_{2}\right)$
- examples

$$
\begin{gathered}
A B \\
(\mathrm{~A} \cdot \mathrm{~B}) \\
((\mathrm{AB} \cdot \mathrm{C}) \cdot \mathrm{D})
\end{gathered}
$$

- S-expression is then simply an ordered pair.

S-Expression : Lists

- The list

$$
\left(m_{1}, m_{2}, \ldots, m_{n}\right)
$$

is represented by the S-expression

$$
\left(m_{1} \cdot\left(m_{2} \cdot\left(\cdots\left(m_{n} \cdot N I L\right) \cdots\right)\right)\right)
$$

- $N I L$ is an atomic symbol, used to terminate lists, also known as the empty list.
- (m) stands for $(m \cdot N I L)$
- $\left(m_{1}, m_{2}, \ldots, m_{n} \cdot x\right)$ stands for $\left(m_{1} \cdot\left(m_{2} \cdot\left(\cdots\left(m_{n} \cdot x\right) \cdots\right)\right)\right)$

M-expressions

- Meta-expressions are functions of S-expressions, also called S-functions.
- Written in conventional functional notation.
- There are some elementry S-functions and predicates

M-expressions

- atom - atom $[\mathrm{x}]$ has the value T or F according to whether x is atomic symbol.
- $\operatorname{atom}[\mathrm{X}]=T$.
- $\operatorname{atom}[(X \cdot A)]=F$.
- eq - eq $[x ; y]$ is defined iff both x and y are symbols. $\mathrm{eq}[\mathrm{x} ; \mathrm{y}]=T$ if x and y are the same symbol and $\mathrm{eq}[\mathrm{x} ; \mathrm{y}]=F$ otherwise
- $\mathrm{eq}[\mathrm{X} ; \mathrm{X}]=T$.
- eq $[\mathrm{X} ; \mathrm{A}]=F$.
- eq[X;(A • B)] is undefined

M-expressions

- car - car[$[\mathrm{x}]$ is defined iff x is not atomic. $\operatorname{car}\left[\left(e_{1} \cdot e_{2}\right)\right]=e_{1}$
- $\operatorname{car}[(X \cdot A)]=X$.
- $\operatorname{car}[(X \cdot A) \cdot Y)]=(X \cdot A)$.
- cdr $-\operatorname{cdr}[\mathrm{x}]$ is also defined iff x is not atomic. $\operatorname{cdr}\left[\left(e_{1} \cdot e_{2}\right)\right]=e_{2}$
- $\operatorname{cdr}[(X \cdot A)]=A$.
- $\operatorname{cdr}[(X \cdot A) \cdot Y)]=Y$.
- cons - cons $[x ; y]$ is defined for any x and y. It is the list constructor
$\operatorname{cons}\left[\left(e_{1} ; e_{2}\right)\right]=\left(e_{1} \cdot e_{2}\right)$
- $\operatorname{cons}[X ; A]=(X \cdot A)$.

M-expressions

- Compositions of car and cdr arise very frequently.
- Many expressions can be written more concisely if we abbreviate.
- $\operatorname{cadr}[\mathrm{x}] \equiv \operatorname{car[}[\operatorname{cdr}[\mathrm{x}]]$
- $\operatorname{caddr}[x] \equiv \operatorname{car}[\operatorname{cdr}[\operatorname{cdr}[x]]]$
- $\operatorname{cdadr}[x] \equiv \operatorname{cdr}[\operatorname{car}[\operatorname{cdr}[x]]]$
- expressions are not defined for every x. depends on the list structure.

Recursive S-functions

- Forming new functions of S-expression by conditional expression and recursive definition gives us much larger class of functions.
- In fact all computable functions.

Recursive S-function examples

- $\mathrm{ff}[\mathrm{x}]$ - returns the first atomic symbol of the S-expression x, ignoring the parentheses.
- $\mathrm{ff}[\mathrm{x}]=[\operatorname{atom}[\mathrm{x}] \rightarrow \mathrm{x} ; T \rightarrow \mathrm{ff}[\operatorname{car}[\mathrm{x}]]]$

```
ff[(A.B)]
= [atom[(A.B)]-> (A.B);T->ff[car[(A.B)]]]
= [F->(A.B);T->ff[[car[(A.B)]]]
= ff[car[(A.B)]]
= ff[A]
= ff[atom[A] }->\textrm{A};T->ff[car[A]]]
= [T->\mathbf{A ; T ->ff[car[A]]]}]
= A
```


Iransform M-expressions to S-expressions

There is a transformation mechanism that translate an M-expression \mathcal{E} into S -expression \mathcal{E}^{*}

- if \mathcal{E} is an S -expression, \mathcal{E}^{*} is (QUOTE \mathcal{E}).
- M-expression $f\left[e_{1} ; \ldots ; e_{n}\right]$ is translated to $\left(f^{*} e_{1}^{*} \ldots e_{n}^{*}\right)$. Thus, $\{\operatorname{cons}[A ; B]\}^{*}$ is (CONS (QUOTE A) (QUOTE B))
- $\left\{\left[p_{1} \rightarrow e_{1}\right] ; \ldots ;\left[p_{n} \rightarrow e_{n}\right]\right\}^{*}$ is (COND $\left.\left(p_{1}^{*} e_{1}^{*}\right) \ldots\left(p_{n}^{*} e_{n}^{*}\right)\right)$
- $\left\{\lambda\left[x_{1} ; \ldots ; x_{n}\right] \mathcal{E}\right\}^{*}$ is $\left(\operatorname{LAMBDA}\left(x_{1} \ldots x_{n}\right) \mathcal{E}^{*}\right.$.
- $\{\operatorname{label}[a ; \mathcal{E}]\}^{*}$ is (LABEL a $\left.\mathcal{E}^{*}\right)$

What do we gain?

- Unifying Symbol-level and Meta-level, gives us a way to treat expressions over symbols exactly the same as symbols.
- Functions and data are the same.
- Thus we can write a program, which write another program and evaluating it.
- This is useful in AI.
- Furthermore, we can expand the language with new features.
- LISP interpreters are easily implemented in LISP.

S-function apply

- "Plays the theoretical role of a universal Turing machine and the practical role of an interpreter".
- Formally,
- If f is an S-expression for an S-function f^{\prime}
- and args is a list of arguments of the form $\left(\arg _{1}, \ldots, \arg _{n}\right)$ where $\arg _{1}, \ldots, \arg _{n}$ are S-expressions,
- Then apply $[f ;$ args $]$ and $f^{\prime}\left[\arg _{1}, \ldots, \arg _{n}\right]$ are defined for the same values of $\arg _{1}, \ldots, \arg _{n}$ and are equal when defined.
- example: $\lambda[[x ; y] ; \operatorname{cons}[\operatorname{car}[x] ; y]][(A, B) ;(C, D)] \equiv$ apply $[(\operatorname{LAMBDA},(X, Y)(\operatorname{CONS}(\operatorname{CAR} X) Y))((A B)(C D))]=$ (ACD)

S-function eval

- serves both as a formal definition of the language and as an interpreter
- Before apply applies the function f on the list of arguments $\left(\arg _{1}, \ldots, \arg g_{n}\right)$, it sends them to eval for evaluating the S-expressions which represents them.
$>$ (eval '(lambda (x) (+ x 1)))
\#<procedure>
' (lambda (x) (+ x 1)))
is an S-expression which repersents a function. eval evalutes it and return its value, which is indeed a function

Implementing eval

```
(define (eval exp env)
    (cond ((self-evaluating? exp) exp)
        ((variable? exp) (lookup-variable-value exp env))
        ((quoted? exp) (text-of-quotation exp))
        ((assignment? exp) (eval-assignment exp env))
        ((definition? exp) (eval-definition exp env))
        ((if? exp) (eval-if exp env))
        ((lambda? exp)
        (make-procedure (lambda-parameters exp)
                            (lambda-body exp)
                        env))
    ((begin? exp)
        (eval-sequence (begin-actions exp) env))
    ((cond? exp) (eval (cond->if exp) env))
    ((application? exp)
        (apply (eval (operator exp) env)
            (list-of-values (operands exp) env)))
    (else
        (error "Unknown expression type -- EVAL" exp))))
```


Strength of the mechanism

- Extending the language is done easily by adding required forms to eval.
- Just add syntax and evaluation rules.
- Paraphrasing Oscar Wilde: LISP programmers know the value of everything but the cost of nothing.

The cost

- Performance of LISP systems became a growing issue
- Garbage Collection.
- Representation of internal structures.
- Became difficult to run on the memory-limited hardware of that time.

LISP Machines

- The solution was LISP machine - a computer which has been optimized to run LISP efficiently and provide a good environment for programming in it.
- Typical optimizations to LISP machines
- Fast function calls.
- Efficient representation of lists.
- Hardware garbage collection.

LISP in the real world

- de-facto standard in AI
- NLP
- Modelling speech and vision

Some more

- AutoCAD
- Yahoo Store
- Emacs
- Mirai, the 3d animation package was used to create Gollum in Lord Of The Rings.

The End

