
Recursive Functions of Symbolic
Expressions and Their Application,

Part I
JOHN MCCARTHY

Review: Amit Kirschenbaum

Seminar in Programming Languages

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 1/43

Historical Background

LISP (LISt Processor) is the second oldest
programming language and is still in widespread use
today.

Defined by John McCarthy from M.I.T.

Development began in the 1950s at IBM as FLPL -
Fortran List Processing Language.

Implementation developped for the IBM 704 computer
by the A.I. group at M.I.T.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 2/43

Historical Backgroung (Cont’d)

“ The main requirement was a programming system for
manipulating expressions representing formalized
declerative and imperative sentences so that the Advice
Taker could make deductions.”
Many dialects have been developed from LISP: Franz Lisp,
MacLisp, ZetaLisp . . .

Two important dialects

Common Lisp - ANSI Standard

Scheme - A simple and clean dialect. Will be used in
our examples.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 3/43

Imperative Programming

Program relies on modfying a state, using a sequence
of commands.

State is mainly modified by assignment

Commands can be executed one after another by
writing them sequentially.

Commands can be executed conditinonally using if
and repeatedly using while

Program is a series of instructions on how to modify
the state.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 4/43

Imperative Prog. (Cont’d)

Execution of program can be considered, abstractly as:

s0 → s1 · · · → sn

Program starts at state s0 including inputs

Program passes through a finite sequence of state
changes,by the commands, to get from s0 to sn

Program finishes in sn containing the outputs.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 5/43

Functional Programming

A functional program is an expression, and executing a
program means evaluating the expression.

There is no state, meaning there are no variables.

No assignments, since there is nothing to assign to.

No sequencing.

No repetition but recursive functions instead.

Functions can be used more flexibly.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 6/43

Why use it?

At first glance, a language without variables,
assignments and sequencing seems very impractical

Imperative languages have been developed as an
abstraction of hardware from machine-code to
assembler to FORTRAN and so on.

Maybe a different approach is needed i.e, from human
side. Perhaps functional languages are more suitable
to people.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 7/43

Advantages of functional programming

Clearer sematics. Programs correspond more directly
to mathematical objects.

More freedom in implementation e.g, parallel programs
come for free.

The flexible use of functions we gain elegance and
better modularity of programs.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 8/43

Some Mathematical Concepts

Partial Function - function that is defined only of part of
its domain.

Propositonal Expressions and Predicates -
Expressions whose possible values are T (truth) and F

(false).

Conditional Expressions - Expressing the dependence
of quantties on propositional quantities. Have the form

(p1 → e1, · · · , pn → en)

Equivalent to
“If p1 then e1, else if p2 then e2, · · · else if pn then en”

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 9/43

Mathematical Concepts (Cont’d)

Conditional expression can define noncommutative
propositional connectives:

p ∧ q = (p → q, T → F)

p ∨ q = (p → T, T → q)

¬p = (p → F, T → T)

Recursive function definitions - Using conditional
expressions, we can define recursive functions

n! = (n = 0 → 1, T → n · (n − 1)!)

Functions are defined and used, using λ-notation.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 10/43

Brief intro to λ-calculus

A formal system designed to investigate
function definition
function application
recursion

Can be called the
smallest universal programming language.

It is universal in the sense that any computable
function can be expressed within this formalism.

Thus, it is equivalent in expressive power to Turing
machines.

λ-calculus was developed by Alonzo Church in the
1930s

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 11/43

λ-notation

Defining a function in mathematics means:

Giving it a name.

The value of the function is an expression in the formal
arguments of the function.

e.g., f(x) = x + 1

Using λ-notation we express it as a λ-expression

λx . (+ x 1)

It has no name.

prefix notation is used.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 12/43

λ-notation (Cont’d)

The function f may be applied to the argument 1 :

f(1)

Similarly, the λ-expression may be applied to the
argument 1

(λx . (+ x 1))1

Application here means
Subtitue 1 for x: (+ x 1) ⇒ (+ 1 1)

Evaluate the function body: make the addition
operation .
Return the result: 2

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 13/43

Syntax ofλ-calculus

Pure λ-calculus contains just three kinds of expressions

variables (identifiers)

function applications

λ-abstractions (function defintions)

It is convinient to add

predefined constants (e.g., numbers) and operations
(e.g., arithmetic operators)

〈exp〉 ::=

var
| const
| (〈exp〉 〈exp〉)

| (λ var . 〈exp〉)
Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 14/43

Function Application

Application is of the form (E1 E2)

E1 is expected to be evaluated to a function.

The function may be either a predefined one or one
defined by a λ-abstraction.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 15/43

λ-abstractions

The expression
(λx . (∗ x 2))

is the function of x which multiplies x by 2

The part of the expression that occurs after λx is called
the body of the expression.

When application of λ-abstraction occurs, we return
the result of the body evaluation.

The body can be any λ-expression, therefore it may be
a λ-abstraction.

The parameter of λ-abstraction can be a function itself

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 16/43

λ-abstractions

In mathematics there are also functions which return
functions as values and have function arguments.

Usually they are called operators or functionals

For example: the differentiation operator

d

dx
x2 = 2x

.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 17/43

Constants

Pure λ-calculus doesn’t have any constants like
0, 1, 2, . . . or built in functions like +,−, ∗, . . ., since they
can be defined by λ-expressions.

For the purpose of this discussion we’ll assume we
have them.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 18/43

Naming Expressions

Expressions can be given names, for later reference:

square ≡ (λx . (∗ x x))

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 19/43

Free and bound variables

Consider the expression

(λx . (∗ x y))2

x is bound: it is just the formal parameter of the
function.

y is free: we have to know its value in advance.

A variable v is called bound in an expression E if there
is some use of v in E that is bound by a decleration λv

of v in E.

A variable v is called free in an expression E if there is
some use of v in E that is not bound by any decleration
λv of v in E.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 20/43

Reduction rule

The main rule for simplifiying expressions in λ-calculus
is called β-reduction.

Applying a λ-abstraction to an argument is an instance
of its body in which free occurences of the formal
parameter are substituted by the argument.

parameter may occur multiple times in the body

(λx . (∗ x x))4 → (∗ 4 4) → 16

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 21/43

Reduction rule

Functions may be arguments

(λf .(f 3))(λx .(− x 1))

(λf .(f 3))(λx .(− x 1))

→ (λx .(− x 1))3

→ (− 3 1)

→ 2

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 22/43

Expressions for Recursive Functions

The λ-notation is inadequte for defining functions
recursively

the function

n! = (n = 0 → 1, T → n · (n − 1)!)

should be converted into

! = λ((n)(n = 0 → 1, T → n · (n − 1)!))

There is no clear reference from ‘!’ inside the λ-clause,
to the expression as a whole.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 23/43

Expressions for Recursive Functions

A new notation: label(a, E) denotes the expression E ,
provided that occurences of a within Eare to be
referred as a whole.

For example, for the latter function the notation would
be

label(!, λ((n)(n = 0 → 1, T → n · (n − 1)!)

(There is a way to describe recursion in λ-calculus,
using Y-combinator, but McCarthy doesn’t use it.)

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 24/43

S-Expressions

A new class of Symbolic expressions.
S-Expression are composed of the special characters

(- start of composed expression

) - end of composed expression

• - composition

and “an infinite set of distinguishable atomic
symbols”.
e.g.,

A
ABA

APPLE-PIE-NUMBER-3

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 25/43

S-Expression : Definition

Atomic symbols are S-expression.

if e1 and e2 are S-expressions then so is (e1 · e2)

examples

AB
(A· B)

((AB· C) · D)

S-expression is then simply an ordered pair.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 26/43

S-Expression : Lists

The list
(m1,m2, . . . ,mn)

is represented by the S-expression

(m1 · (m2 · (· · · (mn · NIL) · · ·)))

NIL is an atomic symbol, used to terminate lists, also
known as the empty list.

(m) stands for (m · NIL)

(m1,m2, . . . ,mn · x) stands for
(m1 · (m2 · (· · · (mn · x) · · ·)))

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 27/43

M-expressions

Meta-expressions are functions of S-expressions, also
called S-functions.

Written in conventional functional notation.

There are some elementry S-functions and predicates

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 28/43

M-expressions

atom - atom[x] has the value T or F according to
whether x is atomic symbol.

atom[X] = T .
atom[(X·A)] = F .

eq - eq[x;y] is defined iff both x and y are symbols.
eq[x;y] = T if x and y are the same symbol and
eq[x;y] = F otherwise

eq[X;X] = T .
eq[X;A] = F .
eq[X;(A · B)] is undefined

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 29/43

M-expressions

car - car[x] is defined iff x is not atomic.
car[(e1 · e2)]=e1

car[(X·A)] = X.
car[(X·A)· Y)]= (X·A).

cdr - cdr[x] is also defined iff x is not atomic.
cdr[(e1 · e2)]=e2

cdr[(X·A)] = A.
cdr[(X·A)· Y)]= Y.

cons - cons[x;y] is defined for any x and y. It is the list
constructor
cons[(e1;e2)]=(e1 · e2)

cons[X;A] = (X·A).
cons[(X·A);Y]= ((X·A)· Y).

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 30/43

M-expressions

Compositions of car and cdr arise very frequently.

Many expressions can be written more concisely if we
abbreviate.

cadr[x] ≡ car[cdr[x]]

caddr[x] ≡ car[cdr[cdr[x]]]

cdadr[x] ≡ cdr[car[cdr[x]]]

expressions are not defined for every x. depends on
the list structure.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 31/43

Recursive S-functions

Forming new functions of S-expression by conditional
expression and recursive definition gives us much
larger class of functions.

In fact all computable functions.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 32/43

Recursive S-function examples

ff[x] - returns the first atomic symbol of the
S-expression x, ignoring the parentheses.

ff[x] = [atom[x]→x ; T → ff[car[x]]]

ff[(A·B)]
= [atom[(A·B)]→ (A·B) ; T → ff[car[(A·B)]]]
= [F →(A·B);T → ff[car[(A·B)]]]
= ff[car[(A·B)]]
= ff[A]
= ff[atom[A]→A ; T →ff[car[A]]]
= [T →A ; T →ff[car[A]]]
= A

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 33/43

Transform M-expressions to S-expressions

There is a transformation mechanism that translate an
M-expression E into S-expression E∗

if E is an S-expression, E∗ is (QUOTE E).

M-expression f [e1; . . . ; en] is translated to (f∗ e∗
1
. . . e∗

n
).

Thus, {cons[A; B]}∗ is (CONS (QUOTE A) (QUOTE B))

{[p1 → e1]; . . . ; [pn → en]}∗ is (COND (p∗
1
e∗
1
) . . . (p∗

n
e∗
n
))

{λ[x1; . . . ; xn]E}∗ is (LAMBDA(x1 . . . xn) E∗.

{label[a; E]}∗ is (LABEL a E∗)

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 34/43

What do we gain?

Unifying Symbol-level and Meta-level, gives us a way
to treat expressions over symbols exactly the same as
symbols.

Functions and data are the same.

Thus we can write a program, which write another
program and evaluating it.

This is useful in AI.

Furthermore, we can expand the language with new
features.

LISP interpreters are easily implemented in LISP.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 35/43

S-function apply

“Plays the theoretical role of a universal Turing
machine and the practical role of an interpreter”.

Formally,
If f is an S-expression for an S-function f ′

and args is a list of arguments of the form
(arg1, . . . , argn) where arg1, . . . , argn are
S-expressions,
Then apply[f ; args] and f ′[arg1, . . . , argn] are
defined for the same values of arg1, . . . , argn and
are equal when defined.

example: λ[[x; y]; cons[car[x]; y]] [(A,B); (C,D)] ≡
apply[(LAMBDA, (X,Y)(CONS(CARX)Y))((A B)(C D))] =
(A C D)

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 36/43

S-function eval

serves both as a formal definition of the language and
as an interpreter

Before apply applies the function f on the list of
arguments (arg1, . . . , argn), it sends them to eval for
evaluating the S-expressions which represents them.

> (eval ’(lambda (x) (+ x 1)))
#<procedure>

’(lambda (x) (+ x 1)))

is an S-expression which repersents a function. eval

evalutes it and return its value, which is indeed a function

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 37/43

Implementing eval

(define (eval exp env)

(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))

((quoted? exp) (text-of-quotation exp))

((assignment? exp) (eval-assignment exp env))

((definition? exp) (eval-definition exp env))

((if? exp) (eval-if exp env))

((lambda? exp)

(make-procedure (lambda-parameters exp)

(lambda-body exp)

env))

((begin? exp)

(eval-sequence (begin-actions exp) env))

((cond? exp) (eval (cond->if exp) env))

((application? exp)

(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))

(else

(error "Unknown expression type -- EVAL" exp))))

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 38/43

Strength of the mechanism

Extending the language is done easily by adding
required forms to eval.

Just add syntax and evaluation rules.

Paraphrasing Oscar Wilde: LISP programmers know
the value of everything but the cost of nothing.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 39/43

The cost

Performance of LISP systems became a growing issue
Garbage Collection.
Representation of internal structures.

Became difficult to run on the memory-limited
hardware of that time.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 40/43

LISP Machines

The solution was LISP machine - a computer which
has been optimized to run LISP efficiently and provide
a good environment for programming in it.

Typical optimizations to LISP machines
Fast function calls.
Efficient representation of lists.
Hardware garbage collection.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 41/43

LISP in the real world

de-facto standard in AI

NLP

Modelling speech and vision

Some more

AutoCAD

Yahoo Store

Emacs

Mirai, the 3d animation package was used to create
Gollum in Lord Of The Rings.

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 42/43

The End

((lambda(x)(x x))

(lambda(x)(x x)))

Recursive Functions of Symbolic Expressions and Their Application, Part I – p. 43/43

	Historical Background
	Historical Backgroung (Cont'd)
	Imperative Programming
	Imperative Prog. (Cont'd)
	Functional Programming
	Why use it?
	Advantages of functional programming
	Some Mathematical Concepts
	Mathematical Concepts (Cont'd)
	Brief intro to $lambda $-calculus
	$lambda $-notation
	$lambda $-notation (Cont'd)
	Syntax of $lambda $-calculus
	Function Application
	$lambda $-abstractions
	$lambda $-abstractions
	Constants
	Naming Expressions
	Free and bound variables
	Reduction rule
	Reduction rule
	Expressions for Recursive Functions
	Expressions for Recursive Functions
	S-Expressions
	S-Expression : Definition
	S-Expression : Lists
	M-expressions
	M-expressions
	M-expressions
	M-expressions
	Recursive S-functions
	Recursive S-function examples
	Transform M-expressions to S-expressions
	What do we gain?
	S-function $apply$
	S-function $eval$
	Implementing $eval$
	Strength of the mechanism
	The cost
	LISP Machines
	LISP in the real world
	The End

