
Uniprocessor Garbage 
Collection Techniques

Presented by:
Shiri Dori
Shai Erera



Outline

� What is Garbage Collection
� Basic Garbage Collection Techniques
� Advanced Techniques

� Incremental Garbage Collection
� Generational Garbage Collection

� Language-Related Features



Garbage Collection

� Garbage Collection (GC) is the automatic 
storage reclamation of computer storage

� The GC function is to find data objects that 
are no longer in use and make their space 
available by the running program



So Why Garbage Collection?

� A software routine operating on a data 
structure should not have to depend what 
other routines may be operating on the same 
structure

� If the process does not free used memory, 
the unused space is accumulated until the 
process terminates or swap space is 
exhausted



Explicit Storage Management 
Hazards

� Programming errors may lead to errors in the 
storage management:
� May reclaim space earlier than necessary
� May not reclaim space at all, causing memory 

leaks

� These errors are particularly dangerous since 
they tend to show up after delivery

� Many programmers allocate several objects 
statically, to avoid allocation on the heap and 
reclaiming them at a later stage



Explicit Storage Management 
Hazards

� In many large systems, garbage collection is 
partially implemented in the system’s objects
� Garbage Collection is not supported by the 

programming language
� Leads to buggy, partial Garbage Collectors which 

are not useable by other applications

� The purpose of GC is to address these 
issues



GC Complexity

� Garbage Collection is sometimes considered 
cheaper than explicit deallocation

� A good Garbage Collector slows a program 
down by a factor of 10 percent

� Although it seems a lot, it is only a small price 
to pay for:
� Convenience
� Development time
� Reliability



Garbage Collection – The 
Two-Phase Abstraction

� The basic functioning of a garbage collector 
consists, abstractly speaking, of two parts:
� Distinguishing the live objects from the garbage in 

some way (garbage detection)
� Reclaiming the garbage objects’ storage, so that 

the running program can use it (garbage 
reclamation)

� In practice these two phases may be 
interleaved



Basic Garbage Collection 
Techniques

� The first part of a Garbage Collector, 
distinguishing live objects from garbage, can 
be done in two ways:
� Reference Counting
� Tracing

� There are several varieties of tracing 
collection which will be discussed later



Reference Counting

� Each object has an associated count of the 
references (pointers) to it

� Each time a reference to the object is 
created, its reference count is increased by 
one and vice-versa

� When the reference count reaches 0, the 
object’s space may be reclaimed



Example



Reference Counting – Cont.

� When an object is reclaimed, its pointer fields 
are examined and every object it points to 
has its reference count decremented

� Reclaiming one object may therefore lead to 
a series of object reclamations

� There are two major problems with reference 
counting



The Cycles Problem

� Reference Counting fails to reclaim circular 
structures

� Originates from the definition of garbage
� Circular structures are not rare in modern 

programs:
� Trees
� Cyclic data structures

� The solution is up to the programmer



Reference Counting



The Efficiency Problem

� When a pointer is created or destroyed, its 
reference count must be adjusted

� Short-lived stack variables can incur a great 
deal of overhead in a simple reference 
counting scheme

� In these cases, reference counts are 
incremented and then decremented back 
very soon



Deferred Reference Counting

� Much of this cost can be optimized away by 
special treatment of local variables

� Reference from local variables are not 
included in this bookkeeping

� However, we cannot ignore pointers from the 
stack completely

� Therefore the stack is scanned before object 
reclamation and only if a pointer’s reference 
count is still 0, it is reclaimed



Reference Counting - Recap

� While reference counting is out of vogue for 
high-performance applications,

� It is quite common in applications where 
acyclic data structures are used

� Most file systems use reference counting to 
manage files and/or disk blocks

� Very simple scheme



Mark-Sweep Collection

� Distinguishing live object from garbage
� Done by tracing – starting at the root set and 

usually traversing the graph of pointers 
relationships

� The reached objects are marked

� Reclaiming the garbage
� Once all live objects are marked, memory is 

exhaustively examined to find all of the unmarked 
(garbage) objects and reclaim their space



Mark-Sweep Collection

� There are three major problems with 
traditional mark-sweep garbage collectors:
� It is difficult to handle objects of varying sizes 

without fragmentation of the available memory
� The cost of the collection is proportional to the 

size of the heap, including live and garbage 
objects

� Locality of reference



Mark-Compact Collection

� Mark-Compact collectors remedy the 
fragmentation and allocation problems of 
mark-sweep collectors

� The collector traverses the pointers graph 
and copy every live object after the previous 
one

� This results in one big contiguous space 
which contains live objects and another which 
is considered free space



Mark-Compact Collection

� Garbage objects are “squeezed” to the end of 
the memory

� The process requires several passes over the 
memory:
� One to computes the new location for objects
� Subsequent passes update pointers and actually 

move the objects

� The algorithm can be significantly slower than 
Mark-Sweep Collection

http://www.artima.com/insidejvm/applets/HeapOfFish.html



Copying Garbage Collection

� Like Mark-Compact, the algorithm moves all 
of the live objects into one area, and the rest 
of the heap becomes available

� There are several schemes of copying 
garbage collection, one of which is the “Stop-
and-Copy” garbage collection

� In this scheme the heap is divided into two 
contiguous semispaces. During normal 
program execution, only one of them is in use



Stop-and-Copy Collector

� Memory is allocated linearly upward through 
the “current” semispace

� When the running program demands an 
allocation that will not fit in the unused area,

� The program is stopped and the copying 
garbage collector is called to reclaim space



Copying Garbage Collection



Copying Garbage Collection



Copying Garbage Collection

� Can be made arbitrarily efficient if sufficient 
memory is available

� The work done in each collection is 
proportional to the amount of live data

� To decrease the frequency of garbage 
collection, simply allocate larger semispaces

� Impractical if there is not enough RAM and 
paging occurs



Choosing Among Basic 
Tracing Techniques

� A common criterion for high-performance 
garbage collection is that the cost of 
collecting objects be comparable, on 
average, to the cost of allocating objects

� While current copying collectors appear to be 
more efficient than mark-sweep collectors, 
the difference is not high for state-of-the art 
implementations



Choosing Among Basic 
Tracing Techniques

� When the overall memory capacity is small, 
reference counting collectors are more 
attractive

� Simple Garbage Collection Techniques:
� Too much space, too much time



Advanced Approaches

� Two advanced yet conflicting approaches:
� Incremental Tracing

� Suits Real-Time environments, where time matters
� Works in parallel to the program

� Generational Collection
� Collects better, based on age of objects
� Hides time from user, but not good for Real-Time



Incremental Tracing

� Real-Time Systems have time constraints
� The garbage collector works in parallel to the 

program, as a concurrent process
� Must have a way to keep track of changes 

that the program makes during the collection 
cycle
� While the collector “isn’t looking”…



Consistency as Coherence

� Both Program and Garbage Collector access 
the data structure

� This is akin to coherence among processes:
� Incremental Mark-Sweep

� Multiple Read, Single Write (only by the program)

� Copying Collectors - harder!
� Multiple Read, Multiple Write (program and GC)

� Solution – views don’t have to be identical



Conservatism

� As long as the different views don’t harm 
execution, a garbage collector can be 
conservative
� Might view unreachable objects as reachable
� But not the opposite – that causes errors

� This “Floating Garbage” is guaranteed to be 
collected during the next cycle
� Unfortunate, but essential
� Allows cheaper coordination



Tricolor Marking Abstraction

� Collection can be viewed as traversing a 
graph of reachable objects and coloring them
� White – haven’t reached it yet
� Gray – reached it, but not traversed all edges 

originating from it (i.e. not reached all sons)
� Black – reached it and all its edges (sons)

� “A wavefront of gray objects, which separates 
the white from the black”

� When finished tracing, white objects are 
unreachable and can be reclaimed



Wavefront Advancement



Violation of Coloring Invariant

� Suppose the program changed the pointers:



Tricolor Marking Abstraction 
– Changes by the Program

� If the program creates a pointer from black to 
white, the GC has to be aware of this

� This can be done in several ways:
� Read Barrier – whenever reading a white object, it 

becomes gray
� This is very expensive

� Write Barrier – whenever a pointer is written, the 
write is recorded or acted upon



Quick Overview –
Incremental Algorithms

� Several incremental algorithms exist:
� Snapshot-at-Beginning
� Baker’s Read Barrier (Copying, non-copying)
� Replication Copying
� Incremental Update (Dijkstra’s, Steele’s)

� They differ in how close they are to the real 
view of the data-structure



Incremental Algorithms –
Snapshot-at-Beginning

� Creates a copy-on-write virtual copy of the 
graph; uses write barrier to maintain it

� Traverses graph as it was at start of cycle
� Ignores objects that were freed in the 

meantime – lots of Floating Garbage
� Therefore, new objects treated specially

� Allocated black, to avoid a useless traversal

� Extra Conservative



Incremental Algorithms –
Incremental Update (Steele)

� Tries (heuristically) to retain only objects live 
at the end of the collection

� Uses Write Barrier – if new pointer installed in 
black object, it is grayed and traversed again 
to find any live objects

� New objects are allocated white
� They might die before ever being collected!
� Risky…

� Non-Conservative – willing to recompute



Conservatism and Coherence

� There is a big tradeoff between:
� Coordination costs – to be most up-to-date, and
� Conservatism wastes – lots of floating garbage

� The less conservative an algorithm, the 
higher cost of being coordinated

� E.g. Dijkstra’s version of Incremental Update
� In a stack with many pushes and pops

� The objects will be reclaimed in Steele’s, by undoing
� Not in Dijkstra’s, but its cost will be lower



Opportunistic Traversal

� It matters very much in what order the objects 
are traversed!

� An object will not be reached if all paths to it 
are broken before the collector touches them

� So, traversing the graph in a smart way will 
impact performance (not just BFS, DFS)
� E.g. delay traversing rapidly-changing objects



Really Real-Time

� Incremental is well-suited for Real-Time
� GC must impose only small delays on the 

program
� Although the scale of “small delay” may change
� Can take advantage of mixed time-scales

� Must consider Worst-Case, not Average!
� GC wastes both time and space necessary 

for the Real-Time application



Real-Time Garbage Collection 
– Problems and Solutions

� Root Set is usually treated at once
� Large root set means large initial operation
� Can be solved by treating some (or all) variables 

as being on the heap
� But – wastes time on a bigger read/write barrier



Real-Time Garbage Collection 
– Problems and Solutions

� Root Set is usually treated at once

� Must guarantee progress of freeing space
� Otherwise the program will have to stop and wait!
� Must have enough CPU to free memory
� Allocation clock – free some memory for every 

allocation made; and so, ensure some free space



Generational GC

� Assumption: “Most objects live a very short 
time, while a small percentage of them live 
much longer.”

� If an object survives one collection, it will 
probably survive many collections
� In a copy-collector, it will be copied over and over

� These premises lead to the Generational 
approach, which segregates objects by age



Generational GC Principles

� Divide the heap into parts, each with different 
ages (generations)

� When an object lives long enough, it is 
advanced to the next generation

� Younger generations are collected often
� To do this, we must track pointers from the old 

generations to younger ones

� Usually implemented with Copy Collector





Conservative Approximation

� Generational GC is somewhat conservative
� Because it uses all intergenerational pointers 

as roots
� Older objects may have died, but we won’t 

know until we collect the older generation
� So some garbage will be retained



Questions in Generational GC

� Advancement Policy – when do you get old?
� How should the heap be organized?

� Make different spaces for each generation (copy), 
or use header to mark age (non-copy)?

� When should collection be scheduled?
� How to maintain intergenerational references?

� Use write barrier? Dirty bits?
� Many low-level options – tables, lists, pages…



Advancement Policy

� Advance young objects in every collection
� Easy to implement; in copy-collector, saves space
� Danger of filling older generation too fast

� Wait one collection before advancing
� Delays advancement
� Similar to allocating black in incremental

� Waiting longer than two cycles doesn’t seem 
to improve performance

� Advancement vs. Number of Generations



Pitfalls of Generational GC

� “Pig in the Snake”
� Big data structure that lasts, and dies at once

� Small Heap Objects
� Lots of pointers from old to young

� Large Root Set
� Many stack and global variables must be scanned 

each time to check for pointers
� Same problem as incremental…



Incremental-Generational GC 
– “An Unhappy Marriage”

� Generational GC uses heuristics, while Real-
Time requires worst-case guarantees
� If programmer can provide object lifetime 

guarantees, Generational will be effective
� Alternatively, soft RT can tolerate some delays

� One collection is going on at any given time, 
which collects some generations
� Youngest generation, or youngest two, etc.
� When all are being collected, it’s incremental GC

� Degrades performance – more CPU or more space



Language Features related to 
Garbage Collection

� Sometimes, it can be useful for the 
programmer to be aware of the Garbage…

� Weak Pointers – do not prevent the object 
from being collected
� Object will be retained as long as a non-weak 

pointer points to it, as well
� Useful for cache-like data, or for metadata which 

is only relevant as long as the object lives



Language Features related to 
Garbage Collection – Cont.

� Finalization – actions to be performed 
automatically when the object is collected
� Like a Destructor in C++, e.g. for closing 

connections or files
� Method called asynchronously, at a time 

undetermined by the programmer – use carefully!

� Multiple Heaps – it may be useful to hold 
more than one heap
� Some Garbage-Collected, others explicit
� Or, different-policy heaps for distributed systems



Summary

� Garbage Collection is much better than 
explicit storage, and today it’s affordable

� Basic Techniques give the building blocks
� Advanced Techniques allow state-of-the-art 

implementation
� Generational GC lowers costs
� Incremental GC allows Real-Time

� GC-related language features allow smart 
interaction with GC



The End…

Shai and Shiri



If you’re bored



Quick Overview –
Incremental Algorithms

� Incremental Copying
� Cycle starts with a flip between the spaces

� Objects in fromspace are unreached
� Reachable objects will be copied “on-demand”

� Read Barrier – any “white” object (in tospace) 
accessed will first be copied, only then accessed

� In parallel, finds and copies other reachable data
� Gray-Wave keeps one step ahead of the program

� Somewhat Conservative, and expensive
� A Non-Copying version also exists



Quick Overview –
Incremental Algorithms

� Replication Copying
� The reverse – program keeps seeing the tospace, 

and flips when all objects were copied
� i.e., program sees the old versions till cycle ends
� Write Barrier – any update to objects must be 

recopied, to keep in sync
� Is impractical – EXCEPT! – Functional languages, 

where side effects are rare or nonexistent



Collecting Older Generation

� It is possible to collect older generation 
independently, in one of two ways:

� Recording Young-to-Old pointers
� More costly – generally many such pointers

� Considering all young objects as root set
� Somewhat feasible

� Usually, younger generations are collected 
whenever older ones are



Future research about GC

� Persistent Object Storage
� Multiprocessor – GC running in parallel
� Distributed – Data Integrity, recovery
� Fine-Grained Incremental (for multimedia, 

VR)
� Interoperability among systems


