Uniprocessor Garbage
Collection Techniques

Presented by:
Shiri Dori
Shai Erera

Outline

e What is Garbage Collection
e Basic Garbage Collection Techniques

e Advanced Techniques
Incremental Garbage Collection
Generational Garbage Collection

e Language-Related Features

Garbage Collection

e Garbage Collection (GC) is the automatic
storage reclamation of computer storage

e The GC function is to find data objects that
are no longer in use and make their space
available by the running program

So Why Garbage Collection?

e A software routine operating on a data
structure should not have to depend what
other routines may be operating on the same
structure

e If the process does not free used memory,
the unused space is accumulated until the
process terminates or swap space Is
exhausted

Explicit Storage Management
Hazards

e Programming errors may lead to errors in the
storage management:
May reclaim space earlier than necessary
May not reclaim space at all, causing memory
leaks
e [hese errors are particularly dangerous since
they tend to show up after delivery

e Many programmers allocate several objects
statically, to avoid allocation on the heap and
reclaiming them at a later stage

Explicit Storage Management
Hazards

e In many large systems, garbage collection is
partially implemented in the system’s objects

Garbage Collection is not supported by the
programming language
Leads to buggy, partial Garbage Collectors which
are not useable by other applications
e The purpose of GC is to address these
issues

GC Complexity

e Garbage Collection is sometimes considered
cheaper than explicit deallocation

e A good Garbage Collector slows a program
down by a factor of 10 percent

e Although it seems a lot, it is only a small price
to pay for:
Convenience
Development time
Reliability

Garbage Collection — The
Two-Phase Abstraction

e The basic functioning of a garbage collector
consists, abstractly speaking, of two parts:

Distinguishing the live objects from the garbage in
some way (garbage detection)

Reclaiming the garbage objects’ storage, so that
the running program can use it (garbage
reclamation)

e In practice these two phases may be

interleaved

Basic Garbage Collection
Techniques

e The first part of a Garbage Collector,
distinguishing live objects from garbage, can
be done in two ways:

Reference Counting
Tracing

e There are several varieties of tracing
collection which will be discussed later

Reference Counting

e Each object has an associated count of the
references (pointers) to it

e Each time a reference to the object is
created, its reference count is increased by
one and vice-versa

e When the reference count reaches 0, the
object’s space may be reclaimed

ROOT
SET

HEAF SPACE

Reference Counting — Cont.

e When an object is reclaimed, its pointer fields
are examined and every object it points to
has its reference count decremented

e Reclaiming one object may therefore lead to
a series of object reclamations

e There are two major problems with reference
counting

The Cycles Problem

e Reference Counting fails to reclaim circular
structures

e QOriginates from the definition of garbage

e Circular structures are not rare in modern
programs:
Trees
Cyclic data structures

e [he solution is up to the programmer

Reference Counting

HEAP 5FACE
.'___..--'_
.r-"'"'
1 1]

ROOT
SET

The Efficiency Problem

e When a pointer is created or destroyed, its
reference count must be adjusted

e Short-lived stack variables can incur a great
deal of overhead in a simple reference
counting scheme

e In these cases, reference counts are
iIncremented and then decremented back
Very soon

Deferred Reference Counting

e Much of this cost can be optimized away by
special treatment of local variables

e Reference from Ilocal variables are not
included in this bookkeeping

e However, we cannot ignore pointers from the
stack completely

e Therefore the stack is scanned before object
reclamation and only if a pointer’s reference
count is still 0, it is reclaimed

Reference Counting - Recap

e While reference counting is out of vogue for
high-performance applications,

e [t iIs quite common Iin applications where
acyclic data structures are used

e Most file systems use reference counting to
manage files and/or disk blocks

e Very simple scheme

Mark-Sweep Collection

e Distinguishing live object from garbage

Done by tracing — starting at the root set and
usually traversing the graph of pointers
relationships

The reached objects are marked

e Reclaiming the garbage

Once all live objects are marked, memory is
exhaustively examined to find all of the unmarked
(garbage) objects and reclaim their space

Mark-Sweep Collection

e There are three major problems with
traditional mark-sweep garbage collectors:

It Is difficult to handle objects of varying sizes
without fragmentation of the available memory

The cost of the collection is proportional to the
size of the heap, including live and garbage
objects

Locality of reference

Mark-Compact Collection

e Mark-Compact collectors remedy the
fragmentation and allocation problems of
mark-sweep collectors

e The collector traverses the pointers graph
and copy every live object after the previous
one

e This results In one big contiguous space
which contains /ive objects and another which
IS considered free space

Mark-Compact Collection

e (Garbage objects are “squeezed” to the end of
the memory

e [he process requires several passes over the
memory:
One to computes the new location for objects

Subsequent passes update pointers and actually
move the objects

e The algorithm can be significantly slower than
Mark-Sweep Collection

http://www.artima.com/insidejvm/applets/HeapOfFish.html

Copying Garbage Collection

e Like Mark-Compact, the algorithm moves all
of the live objects into one area, and the rest
of the heap becomes available

e There are several schemes of copying
garbage collection, one of which is the “Stop-
and-Copy” garbage collection

e In this scheme the heap is divided into two
contiguous semispaces. During normal
program execution, only one of them is in use

Stop-and-Copy Collector

e Memory is allocated linearly upward through
the “current” semispace

e When the running program demands an
allocation that will not fit in the unused area,

e The program Is stopped and the copying
garbage collector is called to reclaim space

Copying Garbage Collection

ROOT
SET

B

FROMSPACE TOSPACE

]
v
a1y, ’
&g o o
"\
]
" I 1 i
ﬁ-‘--l La=
'.I'
i
i [] |]
sesdesakheai

FROMSPACE

ROOT
SET

Copying Garbage Collection

TOSPACE

Copying Garbage Collection

e Can be made arbitrarily efficient if sufficient
memory is available

e The work done in each collection is
proportional to the amount of live data

e To decrease the frequency of garbage
collection, simply allocate larger semispaces

e Impractical if there is not enough RAM and
paging occurs

Choosing Among Basic
Tracing Techniques

e A common criterion for high-performance
garbage collection is that the cost of
collecting objects be comparable, on
average, to the cost of allocating objects

e While current copying collectors appear to be
more efficient than mark-sweep collectors,
the difference is not high for state-of-the art
iImplementations

Choosing Among Basic
Tracing Techniques

e When the overall memory capacity is small,
reference counting collectors are more
attractive

e Simple Garbage Collection Techniques:
e Too much space, too much time

Advanced Approaches

e Two advanced yet conflicting approaches:

e Incremental Tracing
Suits Real-Time environments, where time matters
Works in parallel to the program
e Generational Collection
Collects better, based on age of objects
Hides time from user, but not good for Real-Time

Incremental Tracing

e Real-Time Systems have time constraints

e The garbage collector works in parallel to the
program, as a concurrent process

e Must have a way to keep track of changes
that the program makes during the collection
cycle

While the collector “isn’t looking”...

Consistency as Coherence

e Both Program and Garbage Collector access
the data structure

e This is akin to coherence among processes:

Incremental Mark-Sweep
Multiple Read, Single Write (only by the program)

Copying Collectors - harder!
Multiple Read, Multiple Write (program and GC)

e Solution — views don’t have to be identical

Conservatism

e As long as the different views don't harm
execution, a garbage collector can be
conservative

Might view unreachable objects as reachable
But not the opposite — that causes errors

e This “Floating Garbage” is guaranteed to be

collected during the next cycle
Unfortunate, but essential
Allows cheaper coordination

Tricolor Marking Abstraction

e Collection can be viewed as traversing a
graph of reachable objects and coloring them
White — haven't reached it yet

Gray — reached it, but not traversed all edges
originating from it (i.e. not reached all sons)

Black — reached it and all its edges (sons)

e “A wavefront of gray objects, which separates
the white from the black”

e When finished tracing, white objects are
unreachable and can be reclaimed

Wavefront Advancement

Violation of Coloring Invariant

e Suppose the program changed the pointers:

Tricolor Marking Abstraction
— Changes by the Program

e If the program creates a pointer from black to
white, the GC has to be aware of this

e This can be done in several ways:

Read Barrier — whenever reading a white object, it
becomes gray
This is very expensive

Write Barrier — whenever a pointer is written, the
write Is recorded or acted upon

Quick Overview —
Incremental Algorithms

e Several incremental algorithms exist:
Snapshot-at-Beginning
Baker's Read Barrier (Copying, non-copying)
Replication Copying
Incremental Update (Dijkstra’s, Steele’s)

e They differ in how close they are to the real
view of the data-structure

Incremental Algorithms —
Snhapshot-at-Beginning

e Creates a copy-on-write virtual copy of the
graph; uses write barrier to maintain it

e [raverses graph as it was at start of cycle

e Ignores objects that were freed in the
meantime — lots of Floating Garbage

e [herefore, new objects treated specially
Allocated black, to avoid a useless traversal

e Extira Conservative

Incremental Algorithms —
Incremental Update (Steele)

e [ries (heuristically) to retain only objects live
at the end of the collection

e Uses Write Barrier — if new pointer installed in
black object, it iIs grayed and traversed again
to find any live objects

e New objects are allocated white

They might die before ever being collected!
Risky...
e Non-Conservative — willing to recompute

Conservatism and Coherence

e There is a big tradeoff between:
Coordination costs — to be most up-to-date, and
Conservatism wastes — lots of floating garbage
e The less conservative an algorithm, the
higher cost of being coordinated
e E.g. Dijkstra’s version of Incremental Update

In a stack with many pushes and pops
The objects will be reclaimed in Steele’s, by undoing
Not in Dijkstra’s, but its cost will be lower

Opportunistic Traversal

e |t matters very much in what order the objects
are traversed!

e An object will not be reached if all paths to it
are broken before the collector touches them

e S0, traversing the graph in a smart way will
impact performance (not just BFS, DFS)

E.g. delay traversing rapidly-changing objects

Really Real-Time

e Incremental is well-suited for Real-Time

e GC must impose only small delays on the
program
Although the scale of “small delay” may change
Can take advantage of mixed time-scales

e Must consider Worst-Case, not Average!

e GC wastes both time and space necessary
for the Real-Time application

Real-Time Garbage Collection
— Problems and Solutions

e Root Set is usually treated at once
o Large root set means large initial operation

o Can be solved by treating some (or all) variables
as being on the heap

o But — wastes time on a bigger read/write barrier

Real-Time Garbage Collection
— Problems and Solutions

e Root Set is usually treated at once

e Must guarantee progress of freeing space
o Otherwise the program will have to stop and wait!
e Must have enough CPU to free memory

o Allocation clock — free some memory for every
allocation made; and so, ensure some free space

Generational GC

e Assumption: “Most objects live a very short
time, while a small percentage of them live
much longer.”

e If an object survives one collection, it will
probably survive many collections
In a copy-collector, it will be copied over and over

e These premises lead to the Generational
approach, which segregates objects by age

Generational GC Principles

e Divide the heap into parts, each with different
ages (generations)

e When an object lives long enough, it is
advanced to the next generation

e Younger generations are collected often

To do this, we must track pointers from the old
generations to younger ones

e Usually implemented with Copy Collector

Older Generation

Younger Generatio

-
e e -

Conservative Approximation

e Generational GC is somewhat conservative

e Because it uses all intergenerational pointers
as roots

e Older objects may have died, but we won't
know until we collect the older generation

e S0 some garbage will be retained

Questions in Generational GC

e Advancement Policy — when do you get old?

e How should the heap be organized?

Make different spaces for each generation (copy),
or use header to mark age (non-copy)?

e When should collection be scheduled?
e How to maintain intergenerational references?

Use write barrier? Dirty bits?
Many low-level options — tables, lists, pages...

Advancement Policy

e Advance young objects in every collection
Easy to implement; in copy-collector, saves space
Danger of filling older generation too fast

e Wait one collection before advancing
Delays advancement
Similar to allocating black in incremental

e Waiting longer than two cycles doesn’'t seem
to improve performance

e Advancement vs. Number of Generations

Pitfalls of Generational GC

e “Pig in the Snake”

Big data structure that lasts, and dies at once
e Small Heap Objects

Lots of pointers from old to young

e Large Root Set

Many stack and global variables must be scanned
each time to check for pointers

Same problem as incremental...

Incremental-Generational GC
“An Unhappy Marriage”

e Generational GC uses heuristics, while Real-
Time requires worst-case guarantees

If programmer can provide object lifetime
guarantees, Generational will be effective

Alternatively, soft RT can tolerate some delays

e One collection is going on at any given time,
which collects some generations
Youngest generation, or youngest two, etc.

When all are being collected, it’s incremental GC
Degrades performance — more CPU or more space

Language Features related to
Garbage Collection

e Sometimes, it can be useful for the
programmer to be aware of the Garbage...

e Weak Pointers — do not prevent the object
from being collected

Object will be retained as long as a non-weak
pointer points to it, as well

Useful for cache-like data, or for metadata which
IS only relevant as long as the object lives

Language Features related to
Garbage Collection — Cont.

e Finalization — actions to be performed
automatically when the object is collected

Like a Destructor in C++, e.g. for closing
connections or files

Method called asynchronously, at a time
undetermined by the programmer — use carefully!
e Multiple Heaps — it may be useful to hold
more than one heap
Some Garbage-Collected, others explicit
Or, different-policy heaps for distributed systems

Summary

e Garbage Collection is much better than
explicit storage, and today it's affordable

e Basic Techniques give the building blocks

e Advanced Techniques allow state-of-the-art
iImplementation
Generational GC lowers costs
Incremental GC allows Real-Time

e GC-related language features allow smart
interaction with GC

The End...

Shai and Shiri

If you’re bored

Quick Overview —
Incremental Algorithms

e Incremental Copying

Cycle starts with a flip between the spaces
Objects in fromspace are unreached
Reachable objects will be copied “on-demand”

Read Barrier — any “white” object (in tospace)
accessed will first be copied, only then accessed

In parallel, finds and copies other reachable data
Gray-Wave keeps one step ahead of the program

e Somewhat Conservative, and expensive
e A Non-Copying version also exists

Quick Overview —
Incremental Algorithms

e Replication Copying
The reverse — program keeps seeing the tospace,
and flips when all objects were copied
l.e., program sees the old versions till cycle ends

Write Barrier — any update to objects must be
recopied, to keep in sync

Is impractical — EXCEPT! — Functional languages,
where side effects are rare or nonexistent

Collecting Older Generation

e It Is possible to collect older generation
independently, in one of two ways:

e Recording Young-to-Old pointers
More costly — generally many such pointers

e Considering all young objects as root set
Somewhat feasible

e Usually, younger generations are collected
whenever older ones are

Future research about GC

e Persistent Object Storage
e Multiprocessor — GC running in parallel
e Distributed — Data Integrity, recovery

e Fine-Grained Incremental (for multimedia,
VR)

e Interoperability among systems

