A NN DTN 2WNNN MY 1NN ch
Department of Computer Science University of Haifa

Programming Languages Seminar

Lecture in the subject of

Abstraction
and
Specification

Yair Moshe

Partly based on the book:

. Program Development in Java — Abstraction, Specification and Object-Oriented
Design / Barbara Liskov & John Guttag

nd also partly based on the course:
bject Oriented Programming and Design, Technion — IIT, Gabi Zodik & Yair M

- Outline

* Why software engineering is hard?
* Reducing Complexity

* Abstraction by Specification

* Rep. Invariant & Rep. Exposure

* Abstraction Function

* Subtyping and Specification

* Conclusion

‘.\
-
2

The Problem — Development Failures

 IBM survey, 1994 ;" %
— 55% of systems cost more than expected f

— 68% overran schedules
— 88% had to be substantially redesigned

* Bureau of Labor Statistics, 1997

— For every 3 new systems put into operation, 1 cancelled

— Probability of cancellation is about 50% for biggest
systems

— 75% of the systems are regarded as “operating failures”
*\Why?

"\ Because building good software is hard! 3
\

Why Software Engineering is Hard?

Large software systems are enormously complex
— Millions of “moving parts”
Software never dies
— Lots of legacy software, causes an integration nightmare
People expect software to be malleable
— After all, it’s “only software”
We are always trying to do new things with
software
— Relevant experience often missing

. Software engineering is like all engineering but is
\different

\\ "
\
\
\

Software Engineering is Different

Little separation between design and fabrication
— Radical design changes during implementation
Il-defined goals
— Enormous pressure for features
Tight and rapidly changing schedules
— Hard to anticipate needs
Variety of applications
— Banking to games
Huge design space
, — Physics rarely intrudes

* Need for flexibility

\

Size is a Major Issue

* Some industry studies suggest effort = length!-
* Adding people adds problems

— Nobody understands the whole system

— Opportunities for misunderstandings

— Management overhead

Let’'s Summarize the Problem

Programming today is a race between software
engineers striving to build bigger and better idiot-
proof programs, and the Universe trying to
produce bigger and better idiots. So far, the
Universe is winning.

Rich Cook

Solution

No magic bullet

Development processes (e.g., RUP, XP)

— Tools, best practices, etc.

Documentation can ameliorate difficulties

— Undocumented software of no commercial value

Must reduce complexity of software
— Goal: Make difficulty linear with respect to size

Outline

Why software engineering is hard?
Reducing Complexity

Abstraction by Specification

Rep. Invariant & Rep. Exposure
Abstraction Function

Subtyping and Specification

Conclusion

Reducing and Ordering Complexity

Divide and rule is the key
We do this by

— Decomposition / Decoupling
— Abstraction

Decomposition creates structure
— What kind of structure is best?

Abstraction suppresses details
— Trick is to suppress the right details

10

Abstraction and Specification

* Decomposition is used to break software into
components that can be combined to solve the
original problem

* Abstractions assist in making a good choice of
components
* Kinds of abstraction
— Abstraction by parameterization
— Abstraction by specification
— Data Abstraction (ADT — Abstract Data Types)
\

1"

Abstraction by Parameterization

3X+2y

* Hide the identity of the data by replacing it with
parameters

* We use abstraction by parameterization in the
definition of procedures/methods

* Generalizes the procedure so it can be used in
more situations
— This is a good reason not to hardwire things (e.g., file
names, numbers)

\‘«,— Also a good reason for not using global variables

12
\\

Outline

* Why software engineering is hard?
* Reducing Complexity

» Abstraction by Specification

* Rep. Invariant & Rep. Exposure

* Abstraction Function

* Subtyping and Specification

* Conclusion

\

Y 13
\
\

Abstraction by Specification

* For the client, hides the implementations details
— Point of view: What the module does

* For the implementer, hides the way of use

— Point of view : How the module is implemented
* A contract between client
and implementer

Specification i

* Describing required behavior
— Not means of achieving it
* Specification denotes a (usually infinite) set of
programs
— E.g., Set of all procedures that sort lists
» Itis essential that abstractions be given precise
definitions
— “One person’s feature is another person’s bug”

Procedure Specification

qualifiers return_type procedure_name(...)

requires: States any constraints on use; the constraints under
which the abstraction is defined (precondition)

modifies: Lists of all modified states by the procedure

effects: Describes the behavior for all inputs not ruled out
by the requires clause (postcondition). Says nothing
about the procedure’s behavior when the requires
clause is not satisfied

Procedure Specification Examples

/**

* @requires: i>0

* @modifies: nothing

* @effects: returns true if i is a prime number and false otherwise
**/

public static boolean isPrime(int i) {

}

/**

* @requires: value € arr

* @modifies: nothing

* @effects: returns an i such that arr[i]==value
**/
‘public int find(int[] arr, int value) {

A -

17

. \(Vhat happens if precondition doesn’t hold?
\
\

Total vs. Partial Procedures

* When a precondition doesn’t hold, the behavior is
completely unconstrained
— throw an exception, crash, loop forever, play a nice tune...

* A procedure is total if its behavior is specified for
all legal inputs; otherwise it is partial

* Should we write partial procedures? %
+ Easier to implement W no
- Not as safe as total ones \6ea
- Not well-defined everywhere
- A weaker specification (we’ll talk about this in a minute)

\,\ Abstraction is less general 18
\

Strength of Specification @

* A stronger specification
— Asking less of the client

» Has weaker preconditions

» Making requires easier to satisfy
— Promises more

* Has stronger postcondition

» Making effects harder to satisfy and/or fewer objects in modifies
clause

* If specification S, is weaker than specification S,,
then for every implementation I:

\ Isatisfies S, — I satisfies S,

Writing a Good Specification

* A specification should have the following
properties
— Restrictiveness

 Strong enough
» Make guarantees to something useful

— Generality
* Weak enough

* Don’t deny legitimate implementations
— Clarity
* Informative
A * Coherent

Another Specification Example

* From java.util.Vector

/**

* Replaces the element at the specified position in this Vector with the
* specified element.

* @modifies: this[index]

* @effects: this [index] = element

* @return: this,, [index]

* @throws IndexOutOfBoundsException if (index<0 || index=size())
**/

public Object set(int index, Object element) {

\ 21

Outline

* Why software engineering is hard?
* Reducing Complexity

* Abstraction by Specification

* Rep. Invariant & Rep. Exposure

* Abstraction Function

* Subtyping and Specification

* Conclusion

\

\ 22
\

Abstract Date Type

* A data abstraction is defined by a specification
— A collection of procedural abstractions

* Together, these procedural abstractions provide
— A set of values
— All ways of using that set of values

* To implement an ADT one should
— Select representation of instance variables - The Rep.

— Implement operations in terms of that rep

Abstract Date Type

* We choose the rep so that
— It is possible (and preferably easy) to implement operations

— Most frequently used operations are efficient

* Abstraction allows to change the rep in a later
time

Rep. Invariant & Abstraction Func.

* The rep is a data structure + a set of conventions

* Conventions are defined by the Rep. Invariant
— Defines set of reachable values of the data structure

— A set of values that is the subset of rep values that are well

formed

* Abstraction function

— Defines how the data structure is to be interpreted

— i.e., how to get from the values of the rep fields to the

values of the spec fields

\

\ 25
\
\
ADT Example
import java.util.ArrayList; /I @maodifies: this
Il @effects: this,,s = thisy - {c}
/I CharSets are finite sets of chars public void delefe(char c){
public class CharSet { elements.remove(elements.indexOf(
new Character(c)));
private ArrayList elements; }
/I @effects: Creates an empty CharSet /I @return: (c<this)
public CharSet() { public boolean member(char c) {
elements = new ArrayList(); return elements.contains(
new Character(c));
}
/I @madifies: this
Il @effects: thisp,s = this,,, U {c} /I @return: cardinality of this
public void insert(char c) { public int size() {
Character character = return elements.size();
new Character(c); }
. elements.add(character); }
\ 26

ADT Example — Where is the Error?

This is an important question | CharSet set =new CharSet();
set.insert(‘'a’);

— Tells us what needs to be fixed set.insert(‘a’);
. set.delete(‘a’);
* Perhaps delete() is wrong if (set.member(‘a’))

/I print wrong
— It should remove all occurrences | else
/[print right

Perhaps insert() is wrong
— It should not insert a char that is already in the CharSet

We have no way of knowing
— Or do we?

\\ This is what rep. invariant is all about

\
\

ADT Example — Rep. Invariant

* Let’s write a rep. invariant to CharSet

/I elements has only instances of Character and no duplicates
* And if you insist on formality

// Velement e of elements, e instanceof(Character) &

// ¥indices 1,j of elements
// elements.elementsAt(i).equals(elements.elementAt(j)) — i=j

* Now, who’s faults is it?
— insert()
« We can prove correctness by showing that every
\ operation preserves the rep. invariant
C Proof by induction

28
- This is not always valid — let’s see a counter-example

Rep. Exposure

* Consider adding the following abstraction and
implementation to CharSet

/I @return: An ArrayList containing the elements of this
public ArrayList getElements() {
return elements;

}

* And consider the following code

CharSet set = new CharSet();
set.insert(‘a’);
 ArrayList e = set.getElements;
\ e.add(‘a’);
\set.delete(‘a’);
if. (set.member(‘a’)) ...

29

\

Rep. Exposure

* What we have just seen is rep. exposure
* This is almost always evil

* It’s not against the law Israel Police /3

— But it ought to be

TNOw Mown (§)

30

Avoiding Rep. Exposure

* Exploit immutability

public Character getElement(int i) {
return (Character)elements.elementAt(i);
}

— This is safe since Character is immutable

* Make a copy

public ArrayList getElements() {
return (ArrayList)elements.clone();
}

— This is safe since changes in copy will not affect the
original

Checking Rep. Invariant

* Should code check that rep. invariant holds?
— Yes, if inexpensive
— Yes, as debugging code (even if expensive)
* Rep Invariant should be checked
— At the start of every public method
— At every possible end of every public method
— At every possible end of every constructor

Checking Rep. Invariant - Example

public void delete(char c) {
checkRep();
elements.remove(elements.indexOf(new Character(c)));
checkRep();

}

private void checkRep() throws RuntimeException {
for (inti = 0; i < elements.size(); i++) {
if (lelements.elementAt(i) instanceof Character)
throw new RuntimeException(
“An element of CharSet is not an instance of Character”);
if (elements.lastindexOf(elements.elementAt(i)) != i)
throw new RuntimeException(
“Duplicate elements in CharSet”);

A

[o o)

Rep. Invariant Implications

* Makes modular reasoning possible

— To check whether an operation is implemented correctly,
we don’t need to look at any other methods. Instead, we
appeal to the principle of induction.

» As long as the representation is not exposed

* Checking the rep invariant using checkRep() helps
to discover errors

* One should design and record the rep invariant as
part of the design of the representation, before he
starts coding

— When trying to implementing an abstract data type, writing

\ down the rep invariant is a good place to start

\ 34
\
\

\

Outline

* Why software engineering is hard?

* Reducing Complexity

» Abstraction by Specification

* Rep. Invariant & Rep. Exposure

e Abstraction Function

* Subtyping and Specification

* Conclusion

\

\

35

Fixed (?) ADT Example

import java.util. ArrayList;

/I CharSets are finite sets of chars
public class CharSet {

private ArrayList elements;

/I @effects: Creates an empty CharSet
public CharSet() {
elements = new ArrayList();

/I @modifies: this
Il @effects: thisyg = thisy, U {c}
public void insert(char c) {

Character character =

new Character(encrypt(c));

. if (lelements.contains(character))
. elements.add(character);
A

}

/I @maodifies: this
Il @effects: this,,s = thisy - {c}
public void delefe(char c){
elements.remove(elements.indexOf(
new Character(c)));

}

/I @return: (c<this)
public boolean member(char c) {
return elements.contains(
new Character(c));

}

/I @return: cardinality of this
public int size() {
return elements.size();

}

\
\
A

36

ADT Example — Where is the Error?

¢ Program still does the wrong gm;ssztﬂ?zt; new CharSet();
thing if (set.membér(‘a‘))
/I print wrong
« Now who’s fault is it? 9'5‘7/ e

* We have no way of knowing
— Or do we?

This is what abstraction function is all about

Abstraction Function

* Abstraction Function relates the concrete
representation to the abstract value it represents

* Let’s write abstraction function for CharSet:
/I AF(CharSet this) = { c | c is contained in this.elements }

* Once again we can safely place the blame

— insert() is violating the abstraction function

* And what if we change the abstraction function to:
/I AF(CharSet this) = { c | decrypt(c) is contained in this.elements }

\

\ 38
\
A\

Abstraction Function

* Abstraction function needs to be defined properly
on all representations that satisfy the rep invariant

* Valuable for debugging

* While writing rep invariant is usually easy,
writing abstraction function is often a challenge
— Problem lies in denoting the range of abstraction function

¢ The abstraction function and the specification go
together, since they link the code to the abstract
view of the type seen by the client

\«,_ The rep invariant, in contrast, can be used without any

\ reference to the specification 39
A\

Rep. Invariant & Abstraction Function

* Rep invariant
— Which legal concrete values represent abstract values
— Use induction to show that is indeed an invariant
» Abstraction function
— Which abstract value each concrete value represents
* Together allow us to examine methods
independently
— Correctness becomes local issue
. In practice
\.\— Rep invariant is almost always worth writing

\—\' Abstraction function is harder to write &

\

Outline

* Why software engineering is hard?
* Reducing Complexity

» Abstraction by Specification

* Rep. Invariant & Rep. Exposure

* Abstraction Function

* Subtyping and Specification

¢ Conclusion

Subtyping

* Sometimes every A is a B
— Example: In library database, every book and CD is a
library holding
* Subtyping expresses this in the program
— Programmer declares A is a subtype of B

— Meaning “every object that satisfies interface A also
satisfies interface B

— In Java, using the extends or implements keywords

* Goal: code written using B's specification operates
‘\correctly even if given an A

\ 42
\
\

Subtyping Non-Example

* Does “A extends B” always imply “A is a subtype
of B”?

class GComponent {

/I @effects: paints this on the screen
public void draw() { ... }

}
class GColorComponents extends GComponent {
/I @requires: the color of this has been set

/| @effects: paints this on the screen
p\ublic void draw() { ... }

il

43

\

Subtyping Non-Example

* Scenario #1
— Application doesn't set color before calling draw()
— Draw fails

* Scenario #2
— Application sets color before drawing to screen
— Rationale for this design is not visible in code
— Can forget the hidden dependency when modifying

e Problem is

. — GComponent.draw() specification not sufficient to use
\ GColorComponent.draw() safely

»r\ GColorComponent is not a GComponent
\

44

Another Subtyping Non-Example

* Elementary school: every square is a rectangle

class Rectangle extends GComponent {
Il @effects: thisy,q.width = w, this,..height = h
void setSize(int w, inth) { ... }

}

class Square extends Rectangle { ... }

* Let’s choose the best spec for Square.setSize()

/I @requires: w = h 2
Il @effects: thisp..width = w, this,q.height = h
void setSize(int w, inth) { ... }

\ /] @effects: this,.width = edgeLength, this,..height = edgeLength All are
' void setSize(int edgelLength) { ... } wrong
I @effects: this,.g.width = w, this,.g.height = h
/I @throws: BadSizeException if w != h 45
void\setSize(int w, int h) throws BadSizeException { ... })

‘If for each object o, of type S there is an object o,
of type T such that for all programs P defined in
terms of T, the behavior of P is unchanged when
0, is substituted for o, then S is a subtype of T”

* The subtype must have the same or stronger
specification as the supertype, so that the subtype
can be called in all states where the supertype
could be correctly called

\

Y 46
\

Inheritance

* Inheritance should be viewed as subcontracting

* A subcontractor must promise to carry out the
original contract, and possibly more

 In pratice, subtype methods must be substitutable
for supertype methods
— No additional exceptions
— No more requires
— No more modifies

. This occasionally violates our intuitions

\

\ 47
\
\

Outline

* Why software engineering is hard?
* Reducing Complexity

* Abstraction by Specification

* Rep. Invariant & Rep. Exposure

* Abstraction Function

* Subtyping and Specification

¢ Conclusion

Conclusion

* Decomposition and abstraction are the key to
reduce software complexity

* Specification gives abstraction precise definitions

* Rep invariant and abstraction function allow us to
examine methods correctness independently

* Liskov substitution principle - A subtype must
promise to carry out the original supertype’s
\ contract, and possibly more

\ 49

