
Yair Moshe
Partly based on the book:
Program Development in Java – Abstraction, Specification and Object-Oriented
Design / Barbara Liskov & John Guttag
And also partly based on the course:
Object Oriented Programming and Design, Technion – IIT, Gabi Zodik & Yair Moshe

Apr. 6th, 2005

Lecture in the subject of

Programming Languages Seminar

2

Outline

• Why software engineering is hard?
• Reducing Complexity
• Abstraction by Specification
• Rep. Invariant & Rep. Exposure
• Abstraction Function
• Subtyping and Specification
• Conclusion

3

The Problem – Development Failures

• IBM survey, 1994
– 55% of systems cost more than expected
– 68% overran schedules
– 88% had to be substantially redesigned

• Bureau of Labor Statistics, 1997
– For every 3 new systems put into operation, 1 cancelled
– Probability of cancellation is about 50% for biggest

systems
– 75% of the systems are regarded as “operating failures”

• Why?
Because building good software is hard!

4

Why Software Engineering is Hard?

• Large software systems are enormously complex
– Millions of “moving parts”

• Software never dies
– Lots of legacy software, causes an integration nightmare

• People expect software to be malleable
– After all, it’s “only software”

• We are always trying to do new things with
software
– Relevant experience often missing

• Software engineering is like all engineering but is
different

5

Software Engineering is Different

• Little separation between design and fabrication
– Radical design changes during implementation

• Ill-defined goals
– Enormous pressure for features

• Tight and rapidly changing schedules
– Hard to anticipate needs

• Variety of applications
– Banking to games

• Huge design space
– Physics rarely intrudes

• Need for flexibility

6

Size is a Major Issue

• Some industry studies suggest effort = length1.5

• Adding people adds problems
– Nobody understands the whole system
– Opportunities for misunderstandings
– Management overhead

7

Let’s Summarize the Problem

Programming today is a race between software
engineers striving to build bigger and better idiot-
proof programs, and the Universe trying to
produce bigger and better idiots. So far, the
Universe is winning.

Rich Cook

8

Solution

• No magic bullet
• Development processes (e.g., RUP, XP)

– Tools, best practices, etc.

• Documentation can ameliorate difficulties
– Undocumented software of no commercial value

• Must reduce complexity of software
– Goal: Make difficulty linear with respect to size

9

Outline

• Why software engineering is hard?
• Reducing Complexity
• Abstraction by Specification
• Rep. Invariant & Rep. Exposure
• Abstraction Function
• Subtyping and Specification
• Conclusion

10

Reducing and Ordering Complexity

• Divide and rule is the key
• We do this by

– Decomposition / Decoupling
– Abstraction

• Decomposition creates structure
– What kind of structure is best?

• Abstraction suppresses details
– Trick is to suppress the right details

11

Abstraction and Specification

• Decomposition is used to break software into
components that can be combined to solve the
original problem

• Abstractions assist in making a good choice of
components

• Kinds of abstraction
– Abstraction by parameterization
– Abstraction by specification
– Data Abstraction (ADT – Abstract Data Types)

12

Abstraction by Parameterization

• Hide the identity of the data by replacing it with
parameters

• We use abstraction by parameterization in the
definition of procedures/methods

• Generalizes the procedure so it can be used in
more situations
– This is a good reason not to hardwire things (e.g., file

names, numbers)
– Also a good reason for not using global variables

3 2x y+

13

Outline

• Why software engineering is hard?
• Reducing Complexity
• Abstraction by Specification
• Rep. Invariant & Rep. Exposure
• Abstraction Function
• Subtyping and Specification
• Conclusion

14

Abstraction by Specification

• For the client, hides the implementations details
– Point of view: What the module does

• For the implementer, hides the way of use
– Point of view : How the module is implemented

• A contract between client
and implementer

15

Specification

• Describing required behavior
– Not means of achieving it

• Specification denotes a (usually infinite) set of
programs
– E.g., Set of all procedures that sort lists

• It is essential that abstractions be given precise
definitions
– “One person’s feature is another person’s bug”

16

Procedure Specification

qualifiers return_type procedure_name(…)
requires: States any constraints on use; the constraints under

which the abstraction is defined (precondition)
modifies: Lists of all modified states by the procedure
effects: Describes the behavior for all inputs not ruled out

by the requires clause (postcondition). Says nothing
about the procedure’s behavior when the requires
clause is not satisfied

17

Procedure Specification Examples
/**
* @requires: i>0
* @modifies: nothing
* @effects: returns true if i is a prime number and false otherwise

**/
public static boolean isPrime(int i) {

…
}

/**
* @requires: value ∈ arr
* @modifies: nothing
* @effects: returns an i such that arr[i]==value

**/
public int find(int[] arr, int value) {

…
}

• What happens if precondition doesn’t hold?

18

Total vs. Partial Procedures

• When a precondition doesn’t hold, the behavior is
completely unconstrained
– throw an exception, crash, loop forever, play a nice tune…

• A procedure is total if its behavior is specified for
all legal inputs; otherwise it is partial

• Should we write partial procedures?
+ Easier to implement
- Not as safe as total ones
- Not well-defined everywhere
- A weaker specification (we’ll talk about this in a minute)
- Abstraction is less general

19

Strength of Specification

• A stronger specification
– Asking less of the client

• Has weaker preconditions
• Making requires easier to satisfy

– Promises more
• Has stronger postcondition
• Making effects harder to satisfy and/or fewer objects in modifies

clause

• If specification S1 is weaker than specification S2,
then for every implementation I:

I satisfies S2 → I satisfies S1

20

Writing a Good Specification

• A specification should have the following
properties
– Restrictiveness

• Strong enough
• Make guarantees to something useful

– Generality
• Weak enough
• Don’t deny legitimate implementations

– Clarity
• Informative
• Coherent

21

Another Specification Example

/**
* Replaces the element at the specified position in this Vector with the
* specified element.
* @modifies: this[index]
* @effects: thispost[index] = element
* @return: thispre[index]
* @throws IndexOutOfBoundsException if (index<0 || index≥size())

**/
public Object set(int index, Object element) {

…
}

• From java.util.Vector

22

Outline

• Why software engineering is hard?
• Reducing Complexity
• Abstraction by Specification
• Rep. Invariant & Rep. Exposure
• Abstraction Function
• Subtyping and Specification
• Conclusion

23

Abstract Date Type

• A data abstraction is defined by a specification
– A collection of procedural abstractions

• Together, these procedural abstractions provide
– A set of values
– All ways of using that set of values

• To implement an ADT one should
– Select representation of instance variables - The Rep.
– Implement operations in terms of that rep

24

Abstract Date Type

• We choose the rep so that
– It is possible (and preferably easy) to implement operations
– Most frequently used operations are efficient

• Abstraction allows to change the rep in a later
time

25

Rep. Invariant & Abstraction Func.

• The rep is a data structure + a set of conventions
• Conventions are defined by the Rep. Invariant

– Defines set of reachable values of the data structure
– A set of values that is the subset of rep values that are well

formed

• Abstraction function
– Defines how the data structure is to be interpreted
– i.e., how to get from the values of the rep fields to the

values of the spec fields

26

ADT Example

import java.util.ArrayList;

// CharSets are finite sets of chars
public class CharSet {

private ArrayList elements;

// @effects: Creates an empty CharSet
public CharSet() {

elements = new ArrayList();
}

// @modifies: this
// @effects: thispost = thispre U {c}
public void insert(char c) {

Character character =
new Character(c);

elements.add(character);
}

// @modifies: this
// @effects: thispost = thispre - {c}
public void delete(char c) {

elements.remove(elements.indexOf(
new Character(c)));

}

// @return: (c∈this)
public boolean member(char c) {

return elements.contains(
new Character(c));

}

// @return: cardinality of this
public int size() {

return elements.size();
}

}

27

ADT Example – Where is the Error?

CharSet set = new CharSet();
set.insert(‘a’);
set.insert(‘a’);
set.delete(‘a’);
if (set.member(‘a’))

// print wrong
else

// print right

• This is an important question
– Tells us what needs to be fixed

• Perhaps delete() is wrong
– It should remove all occurrences

• Perhaps insert() is wrong
– It should not insert a char that is already in the CharSet

• We have no way of knowing
– Or do we?

This is what rep. invariant is all about

28

ADT Example – Rep. Invariant

• Let’s write a rep. invariant to CharSet

• And if you insist on formality

• Now, who’s faults is it?
– insert()

• We can prove correctness by showing that every
operation preserves the rep. invariant
– Proof by induction
– This is not always valid – let’s see a counter-example

// elements has only instances of Character and no duplicates

// ∀element e of elements, e instanceof(Character) &
// ∀indices i,j of elements
// elements.elementsAt(i).equals(elements.elementAt(j)) → i=j

29

Rep. Exposure

• Consider adding the following abstraction and
implementation to CharSet

• And consider the following code

// @return: An ArrayList containing the elements of this
public ArrayList getElements() {

return elements;
}

CharSet set = new CharSet();
set.insert(‘a’);
ArrayList e = set.getElements;
e.add(‘a’);
set.delete(‘a’);
if (set.member(‘a’)) …

30

Rep. Exposure

• What we have just seen is rep. exposure
• This is almost always evil
• It’s not against the law

– But it ought to be

31

Avoiding Rep. Exposure

• Exploit immutability

– This is safe since Character is immutable

• Make a copy

– This is safe since changes in copy will not affect the
original

public Character getElement(int i) {
return (Character)elements.elementAt(i);

}

public ArrayList getElements() {
return (ArrayList)elements.clone();

}

32

Checking Rep. Invariant

• Should code check that rep. invariant holds?
– Yes, if inexpensive
– Yes, as debugging code (even if expensive)

• Rep Invariant should be checked
– At the start of every public method
– At every possible end of every public method
– At every possible end of every constructor

33

Checking Rep. Invariant - Example

public void delete(char c) {
checkRep();
elements.remove(elements.indexOf(new Character(c)));
checkRep();

}

private void checkRep() throws RuntimeException {
for (int i = 0; i < elements.size(); i++) {

if (!elements.elementAt(i) instanceof Character)
throw new RuntimeException(

“An element of CharSet is not an instance of Character”);
if (elements.lastIndexOf(elements.elementAt(i)) != i)

throw new RuntimeException(
“Duplicate elements in CharSet”);

}
}

34

Rep. Invariant Implications

• Makes modular reasoning possible
– To check whether an operation is implemented correctly,

we don’t need to look at any other methods. Instead, we
appeal to the principle of induction.

• As long as the representation is not exposed

• Checking the rep invariant using checkRep() helps
to discover errors

• One should design and record the rep invariant as
part of the design of the representation, before he
starts coding
– When trying to implementing an abstract data type, writing

down the rep invariant is a good place to start

35

Outline

• Why software engineering is hard?
• Reducing Complexity
• Abstraction by Specification
• Rep. Invariant & Rep. Exposure
• Abstraction Function
• Subtyping and Specification
• Conclusion

36

Fixed (?) ADT Example

import java.util.ArrayList;

// CharSets are finite sets of chars
public class CharSet {

private ArrayList elements;

// @effects: Creates an empty CharSet
public CharSet() {

elements = new ArrayList();
}

// @modifies: this
// @effects: thispost = thispre U {c}
public void insert(char c) {

Character character =
new Character(encrypt(c));

if (!elements.contains(character))
elements.add(character);

}

// @modifies: this
// @effects: thispost = thispre - {c}
public void delete(char c) {

elements.remove(elements.indexOf(
new Character(c)));

}

// @return: (c∈this)
public boolean member(char c) {

return elements.contains(
new Character(c));

}

// @return: cardinality of this
public int size() {

return elements.size();
}

}

37

ADT Example – Where is the Error?

CharSet set = new CharSet();
set.insert(‘a’);
if (set.member(‘a’))

// print wrong
else

// print right

• Program still does the wrong
thing

• Now who’s fault is it?
• We have no way of knowing

– Or do we?

This is what abstraction function is all about

38

Abstraction Function

• Abstraction Function relates the concrete
representation to the abstract value it represents

• Let’s write abstraction function for CharSet:

• Once again we can safely place the blame
– insert() is violating the abstraction function

• And what if we change the abstraction function to:

// AF(CharSet this) = { c | c is contained in this.elements }

// AF(CharSet this) = { c | decrypt(c) is contained in this.elements }

39

Abstraction Function

• Abstraction function needs to be defined properly
on all representations that satisfy the rep invariant

• Valuable for debugging
• While writing rep invariant is usually easy,

writing abstraction function is often a challenge
– Problem lies in denoting the range of abstraction function

• The abstraction function and the specification go
together, since they link the code to the abstract
view of the type seen by the client
– The rep invariant, in contrast, can be used without any

reference to the specification

40

Rep. Invariant & Abstraction Function

• Rep invariant
– Which legal concrete values represent abstract values
– Use induction to show that is indeed an invariant

• Abstraction function
– Which abstract value each concrete value represents

• Together allow us to examine methods
independently
– Correctness becomes local issue

• In practice
– Rep invariant is almost always worth writing
– Abstraction function is harder to write

41

Outline

• Why software engineering is hard?
• Reducing Complexity
• Abstraction by Specification
• Rep. Invariant & Rep. Exposure
• Abstraction Function
• Subtyping and Specification
• Conclusion

42

Subtyping

• Sometimes every A is a B
– Example: In library database, every book and CD is a

library holding

• Subtyping expresses this in the program
– Programmer declares A is a subtype of B
– Meaning “every object that satisfies interface A also

satisfies interface B“
– In Java, using the extends or implements keywords

• Goal: code written using B's specification operates
correctly even if given an A

43

Subtyping Non-Example

• Does “A extends B” always imply “A is a subtype
of B”?

class GComponent {

// @effects: paints this on the screen
public void draw() { … }
…

}

class GColorComponents extends GComponent {

// @requires: the color of this has been set
// @effects: paints this on the screen
public void draw() { … }
…

}

44

Subtyping Non-Example

• Scenario #1
– Application doesn't set color before calling draw()
– Draw fails

• Scenario #2
– Application sets color before drawing to screen
– Rationale for this design is not visible in code
– Can forget the hidden dependency when modifying

• Problem is
– GComponent.draw() specification not sufficient to use

GColorComponent.draw() safely
– GColorComponent is not a GComponent

45

Another Subtyping Non-Example

• Elementary school: every square is a rectangle
class Rectangle extends GComponent {

// @effects: thispost.width = w, thispost.height = h
void setSize(int w, int h) { ... }

}

class Square extends Rectangle { ... }

• Let’s choose the best spec for Square.setSize()
// @requires: w = h
// @effects: thispost.width = w, thispost.height = h
void setSize(int w, int h) { ... }

// @effects: thispost.width = edgeLength, thispost.height = edgeLength
void setSize(int edgeLength) { ... }

// @effects: thispost.width = w, thispost.height = h
// @throws: BadSizeException if w != h
void setSize(int w, int h) throws BadSizeException { ... }

All are
wrong

46

Liskov Substitution Principle

• “If for each object o1 of type S there is an object o2
of type T such that for all programs P defined in
terms of T, the behavior of P is unchanged when
o1 is substituted for o2 then S is a subtype of T”

• The subtype must have the same or stronger
specification as the supertype, so that the subtype
can be called in all states where the supertype
could be correctly called

47

Inheritance

• Inheritance should be viewed as subcontracting
• A subcontractor must promise to carry out the

original contract, and possibly more
• In pratice, subtype methods must be substitutable

for supertype methods
– No additional exceptions
– No more requires
– No more modifies

• This occasionally violates our intuitions

48

Outline

• Why software engineering is hard?
• Reducing Complexity
• Abstraction by Specification
• Rep. Invariant & Rep. Exposure
• Abstraction Function
• Subtyping and Specification
• Conclusion

49

Conclusion

• Decomposition and abstraction are the key to
reduce software complexity

• Specification gives abstraction precise definitions
• Rep invariant and abstraction function allow us to

examine methods correctness independently
• Liskov substitution principle - A subtype must

promise to carry out the original supertype’s
contract, and possibly more

50

