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The Problem – Development Failures

• IBM survey, 1994 
– 55% of systems cost more than expected 
– 68% overran schedules 
– 88% had to be substantially redesigned

• Bureau of Labor Statistics, 1997
– For every 3 new systems put into operation, 1 cancelled 
– Probability of cancellation is about 50% for biggest 

systems 
– 75% of the systems are regarded as “operating failures”

• Why?
Because building good software is hard!
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Why Software Engineering is Hard?

• Large software systems are enormously complex
– Millions of “moving parts”

• Software never dies
– Lots of legacy software, causes an integration nightmare

• People expect software to be malleable
– After all, it’s “only software”

• We are always trying to do new things with 
software
– Relevant experience often missing

• Software engineering is like all engineering but is 
different
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Software Engineering is Different

• Little separation between design and fabrication
– Radical design changes during implementation

• Ill-defined goals
– Enormous pressure for features

• Tight and rapidly changing schedules
– Hard to anticipate needs

• Variety of applications
– Banking to games

• Huge design space
– Physics rarely intrudes

• Need for flexibility
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Size is a Major Issue

• Some industry studies suggest effort = length1.5

• Adding people adds problems
– Nobody understands the whole system
– Opportunities for misunderstandings
– Management overhead
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Let’s Summarize the Problem

Programming today is a race between software 
engineers striving to build bigger and better idiot-
proof programs, and the Universe trying to 
produce bigger and better idiots. So far, the 
Universe is winning.

Rich Cook
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Solution

• No magic bullet
• Development processes (e.g., RUP, XP)

– Tools, best practices, etc.

• Documentation can ameliorate difficulties
– Undocumented software of no commercial value

• Must reduce complexity of software
– Goal: Make difficulty linear with respect to size
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Reducing and Ordering Complexity

• Divide and rule is the key
• We do this by

– Decomposition / Decoupling
– Abstraction

• Decomposition creates structure
– What kind of structure is best?

• Abstraction suppresses details
– Trick is to suppress the right details
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Abstraction and Specification

• Decomposition is used to break software into 
components that can be combined to solve the 
original problem

• Abstractions assist in making a good choice of 
components

• Kinds of abstraction
– Abstraction by parameterization
– Abstraction by specification
– Data Abstraction (ADT – Abstract Data Types)
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Abstraction by Parameterization

• Hide the identity of the data by replacing it with 
parameters

• We use abstraction by parameterization in the 
definition of procedures/methods

• Generalizes the procedure so it can be used in 
more situations
– This is a good reason not to hardwire things (e.g., file 

names, numbers)
– Also a good reason for not using global variables

3 2x y+
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Abstraction by Specification

• For the client, hides the implementations details
– Point of view: What the module does

• For the implementer, hides the way of use
– Point of view : How the module is implemented 

• A contract between client
and implementer
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Specification

• Describing required behavior
– Not means of achieving it

• Specification denotes a (usually infinite) set of 
programs
– E.g., Set of all procedures that sort lists

• It is essential that abstractions be given precise 
definitions
– “One person’s feature is another person’s bug”
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Procedure Specification

qualifiers return_type procedure_name(…)
requires: States any constraints on use; the constraints under

which the abstraction is defined (precondition)
modifies: Lists of all modified states by the procedure
effects: Describes the behavior for all inputs not ruled out

by the requires clause (postcondition). Says nothing
about the procedure’s behavior when the requires 
clause is not satisfied
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Procedure Specification Examples
/**
* @requires: i>0
* @modifies: nothing
* @effects: returns true if i is a prime number and false otherwise

**/
public static boolean isPrime(int i) {

…
}

/**
* @requires: value ∈ arr
* @modifies: nothing
* @effects: returns an i such that arr[i]==value

**/
public int find(int[] arr, int value) {

…
}

• What happens if precondition doesn’t hold?
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Total vs. Partial Procedures

• When a precondition doesn’t hold, the behavior is 
completely unconstrained
– throw an exception, crash, loop forever, play a nice tune…

• A procedure is total if its behavior is specified for 
all legal inputs; otherwise it is partial

• Should we write partial procedures?
+ Easier to implement
- Not as safe as total ones
- Not well-defined everywhere
- A weaker specification (we’ll talk about this in a minute)
- Abstraction is less general
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Strength of Specification

• A stronger specification
– Asking less of the client

• Has weaker preconditions
• Making requires easier to satisfy

– Promises more
• Has stronger postcondition
• Making effects harder to satisfy and/or fewer objects in modifies

clause

• If specification S1 is weaker than specification S2, 
then for every implementation I:

I satisfies S2 → I satisfies S1
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Writing a Good Specification

• A specification should have the following 
properties
– Restrictiveness

• Strong enough
• Make guarantees to something useful

– Generality
• Weak enough
• Don’t deny legitimate implementations 

– Clarity
• Informative 
• Coherent
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Another Specification Example

/**
* Replaces the element at the specified position in this Vector with the
* specified element.
* @modifies: this[index]
* @effects: thispost[index] = element
* @return: thispre[index]
* @throws IndexOutOfBoundsException if (index<0 || index≥size())

**/
public Object set(int index, Object element) {

…
}

• From java.util.Vector
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Abstract Date Type

• A data abstraction is defined by a specification
– A collection of procedural abstractions

• Together, these procedural abstractions provide
– A set of values
– All ways of using that set of values

• To implement an ADT one should
– Select representation of instance variables - The Rep.
– Implement operations in terms of that rep
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Abstract Date Type

• We choose the rep so that
– It is possible (and preferably easy) to implement operations 
– Most frequently used operations are efficient

• Abstraction allows to change the rep in a later 
time
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Rep. Invariant & Abstraction Func.

• The rep is a data structure + a set of conventions
• Conventions are defined by the Rep. Invariant

– Defines set of reachable values of the data structure
– A set of values that is the subset of rep values that are well 

formed

• Abstraction function
– Defines how the data structure is to be interpreted
– i.e., how to get from the values of the rep fields to the 

values of the spec fields
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ADT Example

import java.util.ArrayList;

// CharSets are finite sets of chars
public class CharSet {

private ArrayList elements;

// @effects: Creates an empty CharSet
public CharSet( ) {

elements = new ArrayList();
}

// @modifies: this
// @effects: thispost = thispre U {c}
public void insert(char c) {

Character character =
new Character(c);

elements.add(character);
}

// @modifies: this
// @effects: thispost = thispre - {c}
public void delete(char c) {

elements.remove(elements.indexOf(
new Character(c)));

}

// @return: (c∈this)
public boolean member(char c) {

return elements.contains(
new Character(c));

}

// @return: cardinality of this
public int size( ) {

return elements.size();
}

}
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ADT Example – Where is the Error?

CharSet set = new CharSet();
set.insert(‘a’);
set.insert(‘a’);
set.delete(‘a’);
if (set.member(‘a’))

// print wrong
else

// print right

• This is an important question
– Tells us what needs to be fixed

• Perhaps delete() is wrong
– It should remove all occurrences

• Perhaps insert() is wrong
– It should not insert a char that is already in the CharSet

• We have no way of knowing
– Or do we?

This is what rep. invariant is all about
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ADT Example – Rep. Invariant

• Let’s write a rep. invariant to CharSet

• And if you insist on formality

• Now, who’s faults is it?
– insert()

• We can prove correctness by showing that every 
operation preserves the rep. invariant
– Proof by induction
– This is not always valid – let’s see a counter-example

// elements has only instances of Character and no duplicates

// ∀element e of elements, e instanceof(Character) &
// ∀indices i,j of elements
// elements.elementsAt(i).equals(elements.elementAt(j)) → i=j
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Rep. Exposure

• Consider adding the following abstraction and 
implementation to CharSet

• And consider the following code

// @return: An ArrayList containing the elements of this
public ArrayList getElements() {

return elements;
}

CharSet set = new CharSet();
set.insert(‘a’);
ArrayList e = set.getElements;
e.add(‘a’);
set.delete(‘a’);
if (set.member(‘a’)) …

30

Rep. Exposure

• What we have just seen is rep. exposure
• This is almost always evil
• It’s not against the law

– But it ought to be  
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Avoiding Rep. Exposure

• Exploit immutability

– This is safe since Character is immutable

• Make a copy

– This is safe since changes in copy will not affect the 
original

public Character getElement(int i) {
return (Character)elements.elementAt(i);

}

public ArrayList getElements() {
return (ArrayList)elements.clone();

}
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Checking Rep. Invariant

• Should code check that rep. invariant holds?
– Yes, if inexpensive
– Yes, as debugging code (even if expensive)

• Rep Invariant should be checked
– At the start of every public method
– At every possible end of every public method
– At every possible end of every constructor
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Checking Rep. Invariant - Example

public void delete(char c) {
checkRep();
elements.remove(elements.indexOf(new Character(c)));
checkRep();

}

private void checkRep() throws RuntimeException {
for (int i = 0; i < elements.size(); i++) {

if (!elements.elementAt(i) instanceof Character)
throw new RuntimeException(

“An element of CharSet is not an instance of Character”);
if (elements.lastIndexOf(elements.elementAt(i)) != i)

throw new RuntimeException(
“Duplicate elements in CharSet”);

}
}
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Rep. Invariant Implications

• Makes modular reasoning possible
– To check whether an operation is implemented correctly, 

we don’t need to look at any other methods. Instead, we 
appeal to the principle of induction.

• As long as the representation is not exposed

• Checking the rep invariant using checkRep() helps 
to discover errors

• One should design and record the rep invariant as 
part of the design of the representation, before he 
starts coding
– When trying to implementing an abstract data type, writing 

down the rep invariant is a good place to start
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Fixed (?) ADT Example

import java.util.ArrayList;

// CharSets are finite sets of chars
public class CharSet {

private ArrayList elements;

// @effects: Creates an empty CharSet
public CharSet( ) {

elements = new ArrayList( );
}

// @modifies: this
// @effects: thispost = thispre U {c}
public void insert(char c) {

Character character =
new Character(encrypt(c));

if (!elements.contains(character))
elements.add(character);

}

// @modifies: this
// @effects: thispost = thispre - {c}
public void delete(char c) {

elements.remove(elements.indexOf(
new Character(c)));

}

// @return: (c∈this)
public boolean member(char c) {

return elements.contains(
new Character(c));

}

// @return: cardinality of this
public int size( ) {

return elements.size();
}

}
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ADT Example – Where is the Error?

CharSet set = new CharSet();
set.insert(‘a’);
if (set.member(‘a’))

// print wrong
else

// print right

• Program still does the wrong
thing

• Now who’s fault is it?
• We have no way of knowing

– Or do we?

This is what abstraction function is all about
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Abstraction Function

• Abstraction Function relates the concrete 
representation to the abstract value it represents

• Let’s write abstraction function for CharSet:

• Once again we can safely place the blame
– insert() is violating the abstraction function

• And what if we change the abstraction function to:

// AF(CharSet this) = { c | c is contained in this.elements }

// AF(CharSet this) = { c | decrypt(c) is contained in this.elements }
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Abstraction Function

• Abstraction function needs to be defined properly 
on all representations that satisfy the rep invariant

• Valuable for debugging
• While writing rep invariant is usually easy, 

writing abstraction function is often a challenge
– Problem lies in denoting the range of abstraction function

• The abstraction function and the specification go 
together, since they link the code to the abstract 
view of the type seen by the client
– The rep invariant, in contrast, can be used without any 

reference to the specification
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Rep. Invariant & Abstraction Function

• Rep invariant
– Which legal concrete values represent abstract values
– Use induction to show that is indeed an invariant

• Abstraction function
– Which abstract value each concrete value represents

• Together allow us to examine methods 
independently
– Correctness becomes local issue

• In practice
– Rep invariant is almost always worth writing
– Abstraction function is harder to write
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Subtyping

• Sometimes every A is a B
– Example: In library database, every book and CD is a 

library holding

• Subtyping expresses this in the program
– Programmer declares A is a subtype of B
– Meaning “every object that satisfies interface A also 

satisfies interface B“
– In Java, using the extends or implements keywords

• Goal: code written using B's specification operates 
correctly even if given an A
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Subtyping Non-Example

• Does “A extends B” always imply “A is a subtype  
of B”?

class GComponent {

// @effects: paints this on the screen
public void draw() { … }
…

}

class GColorComponents extends GComponent {

// @requires: the color of this has been set
// @effects: paints this on the screen
public void draw() { … }
…

}
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Subtyping Non-Example

• Scenario #1
– Application doesn't set color before calling draw()
– Draw fails

• Scenario #2
– Application sets color before drawing to screen
– Rationale for this design is not visible in code
– Can forget the hidden dependency when modifying

• Problem is
– GComponent.draw() specification not sufficient to use 

GColorComponent.draw() safely
– GColorComponent is not a GComponent
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Another Subtyping Non-Example

• Elementary school: every square is a rectangle
class Rectangle extends GComponent {

// @effects: thispost.width = w, thispost.height = h
void setSize(int w, int h) { ... }

}

class Square extends Rectangle { ... }

• Let’s choose the best spec for Square.setSize()
// @requires: w = h
// @effects: thispost.width = w, thispost.height = h
void setSize(int w, int h) { ... }

// @effects: thispost.width = edgeLength, thispost.height = edgeLength
void setSize(int edgeLength) { ... }

// @effects: thispost.width = w, thispost.height = h
// @throws: BadSizeException if w != h
void setSize(int w, int h) throws BadSizeException { ... }

All are 
wrong
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Liskov Substitution Principle

• “If for each object o1 of type S there is an object o2
of type T such that for all programs P defined in 
terms of T, the behavior of P is unchanged when 
o1 is substituted for o2 then S is a subtype of T”

• The subtype must have the same or stronger 
specification as the supertype, so that the subtype 
can be called in all states where the supertype
could be correctly called
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Inheritance

• Inheritance should be viewed as subcontracting
• A subcontractor must promise to carry out the 

original contract, and possibly more
• In pratice, subtype methods must be substitutable 

for supertype methods
– No additional exceptions
– No more requires
– No more modifies

• This occasionally violates our intuitions
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Conclusion

• Decomposition and abstraction are the key to 
reduce software complexity

• Specification gives abstraction precise definitions
• Rep invariant and abstraction function allow us to 

examine methods correctness independently
• Liskov substitution principle - A subtype must 

promise to carry out the original supertype’s
contract, and possibly more
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